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NOTATION

<x„ a 2, a 3 

x, y, z

u'’ ufl< w« l
X „ Y „  Zx ^
Xy, Yy, Zy l
x „  Y„ Z z \  
R r, Rr, Zr ) 

Bp. Z» \  
R z, R z, Z z I 
Rr, Rr, A r } 
Bp. Bp. ^ P  I
B«. B«. A a)

E  =
X-|-C

orthogonal curvilinear co-ordi­
nates
rectangular Cartesian co-ordi­
nates
cylindrical co-ordinates 
spherical co-ordinates 
projections of the displacement u 
of a point on fixed co-ordinate 
axes (*, y, z; r, P, z; r, p, a), 
i.e., the components of the dis­
placement vector

components of the stress tensor 
in rectangular co-ordinates

components of the stress tensor 
in cylindrical co-ordinates

components of the stress tensor 
in spherical co-ordinates

density of material 
modulus of longitudinal elas­
ticity



Poisson’s ratio

8

X

\
2 (X+G)

=  r _  B2(l +  a) 
_  E(J 

(1 + 0) (1 —2<y)

j
i

Ov, Tv, />v

<7l, <*2, <73

Jl> J 3

/ „  h ,  h

Lamp's coefficients

components of the strain tensor 
in rectangular co-ordinates

time
temperature
normal, tangential, and total 
stress on a plane with normal v 
principal normal stresses at a 
point
principal shearing stresses at a 
point
invariants of the state of stress 
at a point
invariants of the state of strain 
at a point



Chapter 1

THEORY OF STRESS

I. STATIC AND DYNAMIC EQUILIBRIUM EQUATIONS

I. Orthogonal curvlllnaar co-ordinatos

3 (///IA)__ 1_ ■CT l\A  3gj  . •CT 3 I VftAg/! \
2 Z l *v dah 'r  Z j 5a, \ /

+  tfA /* A  =  p A V * A -?^ . (1.1)

where a v, a A =  orthogonal curvilinear co-ordinates (mu­
tually perpendicular surfaces),

H h, Vv =  normal stresses,
Vh =  H y =  shearing stresses,

ffa. gv =  coefficients in the first quadratic form,

Vgh dah = dsh =  length of an element of a co-ordinate line, 

cos(cct, x ) = Y f i ^ - ,  I

ds2=  Tj ghd*ah.

cos (a,, y) =  Y  g, -yJ-, 1 =  direction cosines of a normal to 
_  y surface a, at point (d(, a ,,  a 3),

cos (a„Ts) = y  gt .



Ch. 1. Theory of Stress

A =  Vgig2gi =  un it volume factor, 
AK =  Arfoci rfa2 </a3 =  element of volume,

H  =  body force per un it volume in 
tho direction of the <xh co-or­
dinate,

M/i. uv =  displacements in the direction 
of curvilinear co-ordinates.

whore X , Y ,  /  are the projections of body forces on ilio 
x, y, z axes.

1. Cylindrical co-ordinates
« i =  r =  circular cylinders,
=2 =  P =  planes through the Oz axis, 
a3 =  z — planes parallel to the xOy plane (Fie. 1). 

Referring to Fig. 1, *

* =  r  cos p, y =  r  sin p, z,

2. Racial

=  io r  - f  ay- -f- az .
The equilibrium equations are

from which g, =  1, g . =  r», g3om which g, =  1, g . =  r», g3 =  1, A =  r, 
dV =  r dr dp dz, ds2 =  dr* - f  r3 dp1 dza. 
Tho equilibrium  equations are



Static and Dynamic Equilibrium Equation!

where R, B, Z arc the projections of body forces on the
r. P. * axes.

4. Spherical co-ordinates
aL = r = spheres,
a 3 =  P =  planes through the Oz axis, 
a 3 = a =  cones with vertex at the point 0  (Fig. 2). 

Referring to Fig. 2,

i  =  r  sin a  cos p, y =  r sin a  sin p, z = r cos a, 

from which
Si =  1. g, =  r* sin* a, g3 =  r*. A =  r* sin a,
dV =  r* sin a  dr dp da,
ds* =  dr* +  r* sin* a  dp* +  r* da*.
The equilibrium equations are
anr 1 ORf, | l dRq
Or ' r sin a dfi r 3a

Z

Z

+
2/fr - f l |> - /!„+ /?„  co la

!+ * - o( - p£ )



Ck. 1. Theory of Slrett

9Br , 1 *00 , 1 <W„ , 3Br+2Ba cot a  ,
T T  +  rsm a  ap + ~ - f e ~ + ---------;----------+

+  5  =  0 ( = p — ) ,  (1.1c)

II. SURFACE CONDITIONS

boufndary conditions, which arc valid for every 
point of the surface of a body with normal v, aro of the form

X. =  X xl +  A >  +  X>,

Y .  - Y J + Y ^  + Y * ,  (1.2)
Zv =  z xl + Zym + z,n,

whore I =  cos ( i, v), m =  cos (y, v
= 1.' ® (a. v), P -1-

„ n h°( inrlT nl b?undary con<tilions, which aro valid for 
a part of the surface of a body (usually a piano), specify



that the sum of stresses acting on the surface is equal to 
the external forces (Problem 5.3).

The normal and tangential stresses on a surface element 
with normal v are, respectively, 

av =  X xP +  +  Z.re* +  2 X ulm +  2Yzmn + 2 Z jil,
(1.3)

t v =  \/X% +  Y% +  Zl -  oj.
The total stress is

pv = 4

III. STATE OF STRESS AT A POINT
The principal normal stresses alt a,, as at a point are 

determined as the roots of the cubic equation 
o* -  y ,a2 +  J 2a — J 3 =  0, (1.4)

where Jt are the invariants (quantities independent of the 
choice of co-ordinate axes) of the state of stress, respective­
ly, oqual to

Ji = X z + Y„ +  Zz (Iir + B 9 +  Zt , etc.),
/ ,  =  X xY v +  X xZ z +  Y„Zz — XI - Y l - Z i ,

IX x Y x \ZX I (1.5)
Xy Yy Z y \.

X z Y z Zt I
The invariants of the state of stress are expressed in terms 

of the principal stresses as
J l  =  01 +  CT, +  0„  / ,  =  0!®, +  0!0,  +  0, 0*
/*  =  010 ,0a. (1.6)

The principal shearing stresses are determined by the 
formulas

*n =  ±  T  (ffi -  <**). x ,, =  ±  -  (a. -  a,),

Xai =  ± y ( 0 » -  ®i).
(1.7)



Ch. 1. Theory o/ Streti

The values of the normal and shearing stresses on any planes 
passing through a given point lie on the shaded part of the 
<r„Tn plane (Fig. 3a).



If a , >  ot  >  0], the extreme values of the shearing 
stress are determined by the formulas

The planes on which the extremo shearing stresses nre 
acting are shown in Fig. 36.

PROBLEMS

1.1. W rite the equilibrium  equations for an infinitesimal 
parallelepiped isolated from a body acted on by the forco 
of attraction of a mass M  located a t a point q, £ (Fig. 4).

The mass of the parallelepiped is dm  =  p dV, where 
dV =  dx dy dz.

The distance between the masses dm  and M  is

According to New ton's law, the force of attraction 
acting between the masses dm  and M  is

(1.8)

Fig. 4

r -  vTe -  *)■ +  (q -  yy  +  <c -  *)*•

dP =  k ^ ^ L  =  k ^ d V ,

where fc* is the gravitational constant.



Ch. 2. Theory of Stress10

The projections of the force dF on the co-ordinate axes 
are

dFx =  k * ^ d V  cos ( r , x) =  A2 (£ -  x) dV , 

dFy =  dV cos (r, y) =  (t| -  y) dF,

dF, =  ** -£ j-  dF cos (r, Z) =  k* -!—  (£ -  z) dV .

Substituting the values of dFx, u. 2 in Eqs. (1.1a), and 
cancelling out the element of volume dV, we obtain

- 3T  +  P — O i - J r t  =  o .

- i r + - d T + - a r + p -

1.2. W rite the equilibrium equations for an infinitesimal 
parallelepiped isolated from a body tha t is located on the 
surface of the earth  and is subjected to the gravitational 
a ttraction (Fig. 5).

m(x.y,z)-

[ r^ M ( o .o , r )
Fig. 5



Problems

Assuming (£ — x) =  (t) — y) =  0 and (£ — z) ^  r 
(Problem 1.1), we obtain

dFx =  dF„ =  0, dFt =  p - ^ - d V  =  pgdV,

where g =  k'M /r2 =  980.616 cm/s2

K2 =  6.67 X 10 cms/g -s2

M  =  5.98 X 10" g 
r =  6.3783 X 10* cm 

Equations (1.1a) become

=  acceleration of 
gravity ,

=  gravitational con­
stan t,

=  mass of the earth, 
=  radius of the earth.

dx ^  Oy ^  dz u ’

- + - lU -  + £t  +  9S =  °-

1.3. W rite the boundary conditions, calculate the stresses 
and strains for a body A BCD of small thickness th a t is

acted on by a compressive load of intensity p  normal to 
the contour (Fig. 6). Assume no body forces.



Ch. 1. Theory of Slrets

According to Eqs. (1.2),
X v =  X z cos (x, v) +  X„ cos (y, v),

y v =  Y x cos (x, v) +  Y v cos (y, v).

The values of the cosine must be taken for positive 
values of dx and dy, i.e., for the section AB:

cos(x, v) =  ̂ -  (fourth quadrant), 

cos(y, v ) = — (third quadrant).
The boundary conditions become 

—p cos (x, v) =  X x cos (x, v) +  X y cos (y , v),
—p cos (y, v) =  Y x cos (x, v) +  cos (y, v)
or

The state of stress in the body is characterized by a 
stress system satisfying the equilibrium equations and 
the boundary conditions:
X x = Y y = - p ,  x„ =  y x =  0.

The strains are

For a body of arbitrary shape we obtain 
X x =  Yy =  Zt =  - p ,  Xy = Y , = Zx =  0,
««  =  =  - p /K ,  exy -  =  0,
0 =  - 3  p/K,

whore K =  E/( 1 — 2a) is thrico the bulk modulus.

1.4. Write the boundary conditions for a triangular section 
of small thickness to which a load a =  yu is applied alone 
the line OB (Fig. 7).



Problems

Along the line OA (x = y tan p ) : 
cos (x, v) =  cos (360 — P ) =  cos p ,
cos (y, v) =  cos (270 — p )  =  —sin p ,
X v =  Y v =  0, and the boundary conditions become
X x cos p -  X„ sin P =  0, Y x cos p -  Y„ sin p =  0.

Along the line OB (x =  0): 

cos (x, v) =  cos 180° =  —1, cos (y, v) =  cos 90° =  0,
Xv =  yy (the load coincides with the positive Ox axis), 
Y v = 0, and the boundary conditions are 
X x ■= - y y ,  Y x =  0.

1.5. Examine what conditions are satisfied by Maxwell’s

/' ' ~ r r

Fig 7

e lec tro static  stress system

1 0U QV 
in at dx •



Ch. 1. Theory of Slrett

Answer. (I) The system is balanced when

" M £ + £ + £ ) i /= u .
(2) The system is in equilibrium with the body forces

1.6. In the absence of body forces the stresses can be ex­
pressed in terms of throe stress functions.

Check the following stress sysloms by substitution in the 
homogeneous equations (1.1a):

(1) Maxwell's systom (1870)

Y  - 1 0 I J,f» I d*q>» <J°«Pi \
* I  *  \  #1’ T  Oi* Ox* ) •

y  ________________. (Pip, 0*fft x
-l^l/ v +  ~~dOr )-

The indicated functions are determined from the cqua- 
ons 111. 21:

(2) Morern’s system (181)2)*
X  =  _£!£•_ Y  Z

1 OxOuOl’ 1 V Oudzdz'Ox dy di Yv ~  o ^  , z t =  c>a<P3

-^-X . + -£ rX i + [ -£ r  + (o - 2 )  V» |y,3= 0

[ ^  +  ( o - 2 ) V > J x ,+ ^ - - / , T ^ - X 3 . 0 .  

+ [ - ^ -  +  (a - 2 ) V 2J  x* +  -firr X j =  0 ,
& 0* I 0> .

Theory 
p. 314



Problem«

and

( - £ - l-aV, ) « P , - ( ^ + ^ - ) ( q . t I <pJ) =  °. 

( - S ’ 1 oV 2) T * -  (■£■ +  ■&■) <Tj I' 9 .)  =  0, 

{ &  '■ aV2) 9 3 - ( ^ -  +  -^ - ) (< P .+ 9 i) =  '>.

1.7. Lamp’s problem (1859) 111.
For plane stress, derive the equilibrium equations in 

Lamd’s curvilinear isostalic co-ordinates (curves coinciding 
at each point with the directions of the principal stresses 

and a.).

Let s, be an isostath coinciding with tho direction of 
tho principal stress a,, nnd lot s, bo an isostath coinciding

with a s; p, and p. are the radii of curvature of these 
isostalhs (Fig. 8).

By isolating a plane element ABCD  by two pairs of 
infinitesimally close isostaths, and setting up the equi­
librium conditions for it, we obtain

Fig. 8



Cl,. 1. Theory o) Sires

where Si is the projection of the body force on the direc­
tion dst.m

1.8. The principal stresses at a point M  of an elastic body 
are: a, =  50 N/cm2, a . =  —50 N/cm2, a3 =  75 N/cm2.

Find the total stress pv, the normal stress ov, and the 
tangential stress tv on a plane equally inclined to the prin­

cipal axes (Fig. 9).
The problem is solved by using Eqs. (1.2) and (1.3). 
Answer. p v= 59.5 N/cm2, av=25 N/cm2, t v=54.1 N/cm2.

1.9. The stresses X r, Y „, Zx, Y x, and X v are acting at 
a point of an elastic body (Fig. 10). The stresses Y . =  Zx=0.

Find the principal normal stresses a, and the stresses 
on a plane parallel to the z axis whose normal makes an 
angle a  with the x  axis.

Use Eqs. (1.4) and (1.3) to solve the problem.
Answer.

— cos2a-|- Yy sin2a  +  sin 2a,

Tv =  Y ( ^  — ̂ x)sin2a -f- X v cos 2a,

7 A _ (X.tH-J',;) f  / Xx—Y„ v2Zv =  0, =  ±  y  ( ^ - ^ )  + X [. *

* /° th r^ a31n.S„ 051uili,l>ri,1,piequations in isoslatic co-ordinates for 
a mroo-dimcnsional problem, soo tho monogranh 1. p. 42.



Problems

1 10 The stresses at a point of an elastic body are: X x =  
=  50 N/cm*, Y u =  0, Zt =  - 3 0  N/cm*, X v =  50 N/cm», 
y  =  —75 N/cm*, Zx = 80 N/cm*.

Find the principal normal and shearing stresses.
Use Eqs. (1.4), (1.5), and (1.8) to solve the problem.

Answer. CTj =  99-3 N/cm*, a2 =  58.8 N/cm*, o3 = 
=  —138 N/cm*, Tmai =  118.6 N/cm*.



Chapter 2

THEORY OF STRAIN

I. STRAIN EQUATIONS IN ORTHOGONAL CO-ORDINATES

. _ 1 <>Uh , -CT 1 dVgh
hh Vgh 2a Yghfv 3av

ehv= ] / r 7 7 a 5 r ( y = ')  +  V  ̂ t o ^ [ ~ y ¥ ) ’

where ehh =  linear strains, 
eAv =  shearing strains.

The dilatation is

^ =  ^ e hh =  \ \ ^ { V e ^ x ) - \ - ^ { V g ^ l u - 2  +

+  (2 .2)

The components of elementary rotation are

“ • = w z z  [ - s i r (1V 7iUs]- i ( v 7 iU *]] ■

= i v b r  (2.3)

0,31“  w t ^_ [■̂ ( - i k ' ^ u ' }]  ■

Note tha t on the basis of formulas of the calculus of 
vectors (div rot u =  0) the components of rotation identi-



Strain Equations In Orthogonal Co-ordinates 25

cally satisfy the equality

(Vgaga wi) +  {V  gagi <ot) + (V gigt">3) = 0.
For tho strain com patibility equations 

co-ordinates, see [31.

2. Rectangular co-ordinates

Co-ordinates measured in terms of displai 

6x =  it*, 6 y =  uy, 6z =  it,.

The strain equations are

(°x ~  2 _ ' dz ) ' 2 \ B z  Ox

The strain compatibility equations arc
a5* , ,  <r-c,„.

(2.1a)

(2.2a)

Bx ' e» " ~  By * dz ’

The components of rotation arc
3Uy J_ / dux dut

(2.3a)



Ch. 2. Theory of Strain

The first group of Saint-Venant’s identities expresses the 
continuity of curvatures of deformed fibres of a body, the 
second group expresses the continuity of relative angles 
of twist [41.

For a plane problem in rectangular co-ordinates, only 
the first equation of (2.4a) will remain.

3. Cylindrical co-ordinates

Co-ordinates moasured in terms of displacements: 
6 r  =  ar, 6p =  u 9/r, 6 z =  u c.
The strain equations are

The dilatation is

(2.2b)

The components of rotation are

^ - = 2  

=  "2T [ l 7  a jf]-

(2.3b)



Strain Equations tn Orthogonal Co-c

The strain compatibility equations are

, 1 1 <>',1 
+  r3 e>P* +  r dr

J _ ^ £ r r + J__£_ <>'rr _  1 & ("Br)\_& t„  ,_L _£_  / -a def» ] derr .frrr _  1 (rgpr)

,r-er: <r- («„,)a* (re#r) =  a r  _  a(r«M) i
ap- Sz I. rr Sr y

For a plane problem in polar co-ordinates r and P, only 
the third equation will remain since erz =  ePl =  etl =  0, 
and the other strains will be functions of r and p.

4. Spherical co-ordinates

Co-ordinates measured in terms of displacements:

61- =  u„ 6p =  u p/(r sin a), 6a =  u jr .

The stra in  equations arc

-|-ua cota),

(2.1c)



The dilalalion is

Ch. 2. Theory of Strain

0 m + 7i ^ [ £ -  sin a> + w l  (2-2c)
The components of rotation are

“ *■=  W n rs  [ - J r  ■~  - k  (“" sin a) ] •

“ •=■5^ [ - S r — F < ru«>]* <2-3c)

“ « =  2 t 4 i t  [ £  (ru» sin “ ) ■- ■̂  ]  •

For the strain compatibility equations, see 131.

II. STATE OF STRAIN AT A POINT

Tho principal strains elt e3, e3* at a point arc determined 
by three roots of the equation

| e»x 2 (eyy — e) eyi | =  0. (2.5)

Three real roots of tho cubic equation (2.5) give three 
principal extensions «„ e2, e3.

Determinant (2.5) in expanded form is 
<?3 — 7,c* +  I 3e — 13 =  0, (2.6)

v here
=  exx H- eyy +  eIZ =  c, e. +  e3l 

h  -f eyyeIZ +  eltexx -  (e;.y -|- i-yt -|- e‘,)M =
=  -i«2 e.e3 +  e3ei<
13 =  exreyyt ls -b exyeytszJA -
-  + eyye'lx +  ette%)/4 =  (2.7)

♦ For tho principal directions (7, 2, 3) the shear components arc



Cesaro's Formulas

/ ,  are llio invariants of the state of strain a t the given point.
The direction cosines of the principal strains et are deter­

mined from the equations
2 (c.t.t — e,) I, +  exvm, +  exzn, =  0,
euxh +  2 (e„„ — ei) m -f- eUIni =  0, (2.8)
czxlt +  «n/TOi +  2 (ezz — et) n, =  0 

with the relation 
/? +  «? +  «? =  1. (2.9)
l'lie extension of a line element whose direction is defined 

by the cosines I, m, and n is determined by the formula 
e =  exxl2 +  euum- +  e^n 1 +  eX!/lm -f evzmn -|- ezxnl. (2.10)

III. CESARO'S FORMULAS [1]

The determination of the displacements it*, uv from 
Gqs. (2.1) will bo given for the case of rectangular coordi­
nates (formulas (2.1a)l

=  “ *o +  <»»o (zr — z0)/2 — <i)z0 (yt — y0)l2 -f 

+  j  (Ux dx +  Uv dy +  Uz <fe),

Uyi =  Ugo +  (ol0 (a?i — x0) — o)x0 (Z| — z0)!2 -j- 

+  [ {Vx dx +  Vy dy +  Vz dz), (2.11)
A/iMo

=  u,o +  co*, (yx — y0) — coy0 (xx — x0)l2 +

-I- j  {Wx dx +  Wy dy +  W t dz),
M|M0

whoro

(2.12)



Ch. 2. Theory of Strain

Ut = eJ2-Y(yi-U) [ ^ - - i r ) l 2 +  

+  (z» - z) ( ‘̂ f “ 2 l t a ' ) / 2‘
T hB quantities F „  V„ Vt and W „ W„, W z arc obtained 
from ̂ (2 12) by cyclic permutation of the letters x, y, z. 
ThcTsubscript 0 refers to the point Af0, and the subscript 1 
to the point M v

PROBLEMS
2.1. The following displacements are given:

(1) corresponding to Maxwell’s stress system

2Gu, =  —-(X a-X s-X .).

2Gu„ =  (X3- X 1- X 2).

(2) corresponding to Morera’s stress system 

^ u* ~ d fd i I***' — 0 (Vz +  Ts)].

Eut  =  l«p2 —  o ((p3 H- c p i)],

£ u * =  a 5 j ; f<P3“ a(<pl' ," ,p2)l
(see Problem 1.6);

(3) u z =  —xzla, uy =  axyla, u x =  U2 +  a (z2—i/2)l/(2a), 
where a is a constant.

Find the strains and show that they satisfy the strain 
compatibility equations (2.4a).

2.2. Saint-Venant’s problem (1855).
A cylindrical or a prismatic bar with generators parallel 

to the z axis coinciding with tho line of centroids of cross 
sections is bent by terminal couples M  =  E Iyla, which 
lie in the xOz plane (Fig. 11a).
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Find the state of stress and strain. 

Assume

where a is a constant, and the remaining components of 
the stress tensor are zero. The assumed stress system 
satisfies Eqs. (1.1a) in the absence of body forces and

msM  (a)

the boundary conditions (1.2) on the lateral surface. 
At tne end sections wo have

M  =  ^ SL= ~ \  Z tx d F =

from which /„  =  j  j  I s dx dy (the moment of inertia

of the cross-sectional area with respect to the y axis), 
ill© moment of the sJpofleAfl _ —.---------------3 about the i  axis is zero

since the x  and y axes are assumed to be principal axes. 
The resultant vector of the stresses j  ^ Z t dx dy is

zero since the Oz axis coincides w ith the line of centroids.
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The strain components are, by Eqs. (3.1),

(a)

The strains obtained satisfy the com patibility  condi­
tions (2.4a). By integrating Eqs. (a), we find

The line of centroids of cross sections is displaced 
according to the law u x =  z2/(2a), and for large values 
of a it may be considered a circumference of radius a =  
=  E IU/M  centred at the point x  = a, z =  0 called the 
centre of curvature.

The distortion of a cross section in the form of a re­
ctangle is shown in Fig. 116.

2.3. When a concentrated force P  acts on the half-space 
z^O , the displacements are obtained as (see Problem 4.4)

R  =  V x2 +  y2 +  z2.

Find the strains and see whether they satisfy the strain 
compatibility equations (2.4a).

2.4. Calculate the dilatation for the following cases of 
plane orthogonal co-ordinates: parabolic (confocal a , and a ,  
parabolas), elliptic (confocal hyperbolas and ct2 ellipses).

ux = -^ - \z 2 +  o (x 2- y 2)),

where
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For a piano problem, the d ila ta tion , according to 
formula (2.2), is calculated by the formula

0 =  2  «** =  4 "  ( V *  “ *) +  L ,  (V  * ' ) -

where

g k =  ( * k Y  +  ( S i Y ' A = l / ^ ,  d V - A d a i d a *
ds2 =  ds’ +  dsJ =  gt da* +  g2 da\.

By using the complex expression, we assume 
oti +  ia , =  f  (x +  iy), 
where /  (...) is an analytic function.

Fig. 12

Parabolic co-ordinates (Fig. 12): 
ai +  »<** =  V 2 (x -j- iy), ax =  Y r  +  x, a, 
where
r =  Y x*  +  y*
is the distance from the focus (x =  y =  0), 

X =  -  , 0 ^ a i < o o ,

V r - x .

y = ± a ict2, 0 < O 2 <  oo, . 
g i - g 2 =  a j  +  a ’,

A =  V (a? +  a*)2 --= a* +  a |,

3 =  a f+ a l  V  “ • +  “ » “ i +  ̂  V a ? +  d\  “2 1 •
3-0073.
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Elliptic co-ordinates (Fig. 13): 

o, -f too =  arc sin (x +  iy)/a, 

sin =  (s, — s„)/2a, cosh cc2 =  (sj +  st )/2a, 

where

=• V  (x +  a)2 +  j/*, s2 =  V (x — a)2 — >/' 

are the distances of the point M  (x, y) from the foci lying

on the x axis a t the points x1 =  —a and x2 =  a, 
x  =  a sin Oj cosh a 2, <  2n,

y =  ±  cos ctj sinh a 2l 0 ^ a 2 <  oo, 

gi= gt=a*  (cos* aj+ sinh*  a 2)=a*  (cosh* a 2 — sin* a ,), 
A =  a* (cos* a ,  +  sinh* a 2),

0 =  «Mcos=a1+sinl.*as) ( .£ [  (Vcos*a, + s in h * a 2n,) +

+  ̂ ( K c o s * a ,  +  sinh*a2a2) J .



Problems

By adding to the co-ordinates a ,  and a t a th ird  coordi­
nate a .  =  z independent of them, we obtain, respectively, 
space parabolic and elliptic cylindrical co-ordinates.

2.5. Find the values of displacements uu  u 4, and u 3 for 
which the components of rotation are zero.

By equating expressions (2.3) to

= V s l to , 3si ' '  V s-.3a*

>, we find

_  VTs3“ s ds* ’
Thus, the rotation vanishes (o)x =  co2 =  w3 =  0) when 

the projections of the displacement are partia l derivatives

Fig. 14

with respect to the arc lengths of the co-ordinate lines of 
the single function G>, the displacement potential.

In the case of rectangular co-ordinates (g1 =  gt  =  g3= l )
am _  ao

dx • Uy dy ’ U1 dz *

2.6. A rectangular plate of thickness h is bounded by planes 
z =  ± h l2  and bent by moments M x and M v uniformly 
distributed along its  edges (Fig. 14a).

Determine the values of the moments for which the cur­
vatures in the xOz and yOz planes are positive, i.e ., the 
centres of curvature lie in the positive direction of the z 
axis.
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Assume 
X x =  Eaz, Y y =  Ebz,
where a and b are constants, and the remaining compo­
nents of the stress tensor are zero.

The assumed stress system satisfies Eqs. (1.1a) in the 
absence of body forces and the boundary conditions (1.2) 
on the free planes z =  -±kl2.

By integrating the strain equations (2.1a), we obtain 
the following expressions for displacements:

ux = (a — ab) xz, uv =  (b — aa) yz.

The displacements (a) satisfy the com patibility equations 
(2.4a).

According to the equations (a), each plane z =  constant 
is bent with curvatures in the xOz and yOz planes equal, 
respectively, to (ab — a) and (aa — b).

Assuming R x and R z to be the radii of curvature 
(Fig. 14b), we obtain

The intensity of bending moments is

M x =  j  X xzd z=  - D i i /R t+ a /R i ) ,
-M2

M2
My =  f  YyZdz=  —D (IIR Z +  a/Rt),

-M2

where D =  is the Dexural rig id ity  of the plate.

2.7. Find all components of strain for a deformation of 
a body symmetrical about the origin of co-ordinates 0 .
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I! the deformation i9 symmetrical about the origin of 
co-ordinates, the displacement uR of any point is directed 
along the radius vector R  and is a function of it. We thus 
have (Fig. 15)

ux = ^ - x  =  f ( R ) x ,  tiy -  -^ L y  =  f  (R )y , ut =

=  ^ t *  =  f (R ) z ,  

where

R = V x *  + ,j* +  z \  f ( R ) = ^ - .  

According to Eqs. (2.1a) we obtain

_  2yz d f(R )

2.8. Find all components of stra in  corresponding to  a rec­
tangular co-ordinate system for a deformation of a body 
symmetrical about the Oz axis.

Fig. 15

ll?e Projection of the displacement on the xOy plane 
be denoted by ur, and the projection on the Oz axis by u t .
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Because of the axial symmetry, ur and u , are functions 
of r  and z, where

r = V  x* +  y* (Fig. 16).
The displacements are 

ux -  u,xlr =  f  (r, z) x, uy =  ury h  =  /  (r, z) </, 
uz ut (r, z), 
where /  (r, z) =  Up/r.

According to Eqs. (2.1a) we obtain 
e „ - f ( r ,  ;) +  ** a/(r' z) , ^  _ 2 x y d/(r, z)

e „ - n r ,  „  +  +

p =£!i£ P _ _ a /(r , z) , <?Ur *« * • x * + *. r •
2.9. At some point of a body 

exx =  0.001, evy =  -0 .0005, e „  =  0.0005,
«*„ =  0.003, eyt =  0.001, erl =  0.0008.
Determine the principal strains and their orientation 

with respect to^the Ox, Oy, Oz axes.

Fig. 16

The problem is solved by using Eqs. (2.5) to (2.9).

2M0. For the case of plane strain, when u t =  0, u =  

and thei r orien tat ion. V)' determine the principal’strains
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Answer. One of the roots of Eq. (2.5) is zero, the other 
two aro determined by the quadratic equation 
es -  (exx +  eyy) e +  exxeyy -  4„/4 =  0.

One of the three principal strains coincides with the Oz 
axis, the other two lie in the xOy plane.



Chapter 3

BASIC EQUATIONS OF THE THEORY OF ELASTICITY 

AND THEIR SOLUTION FOR SPECIAL CASES

I. ORTHOGONAL CURVILINEAR CO-ORDINATES

1. Direct and Inverse forms of Hooke's law

(3.1)

where

/rh =  lO +  2Gehh, / / v =  Gehv. (3.2)

2. Equations in terms of displacements

(X ■ I 2C) / I f  J j —  2C [ g -  ( V f 3<o3) -  JL  (1/ £c„2) | -!-

+  V go* ff t = o,

(H -2 G)

+  ^  ^2  =  0,

+  K ^ i? 2 / /3 =  0, (3.3)

wher^w, are determined by formulas (2.3), and 0 by formu-



Rectangular Co-ordinates

). Equations In farms of stresses

Three equilibrium equations (1.1) and six strain  com pati­
bility  equations 13] expressed in terms of stresses according 
to formulas (3.1) constitute a complete system of equations 
in the solution of problems in terms of stresses.

II. RECTANGULAR CO-ORDINATES

'..-wir.—SwO)- « . . - 4 ( 3 - i * )
C ,,=  2 c ( Zl I + F 6 ) ’

X , - M +  2 c £ jL * * ,  X , . C ( ^  +  ̂ ) ,

y . - l O  +  K ^ L ,  r , - G ( %  +  % ) ,  (3.2a)

Zz =  xe +  2 G ^ ,  z xe=6 ( ^ + ^ 2 ) t

wliero 0 is determined by formula (2.2a).

2. Equations In terms ol displacements

a  : 2 G ) ^ - 2 C ( ^ - ^ )  +  x = 0 .  

p . - , 2 C ) | . - 2 C ( ^ - f e )  +  y » 0 .

(». +  2C )f - 2 C ( ^ - ^ . ) . ) Z - 0

• An nIicn.nliv. fonn i. . . . — °tY,j +  Z:)\. nlr
** An nllernolivo form is
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or

GV*Ux +  (X + G )— +  *  =  o,

G V ^  +  ( * + G ) f  +  y== 0,

GV2«x +  (X +  G ) - J + 2  =  0,

where 

V2( . . . )  = | » ( - >  
1 +  dir w  •

Equations (3.3a') may be represented

( l - 2 a ) V 2«x +  f + ^ X  =  0,

( l - 2 a ) V 2u„ +  f  +  —  ^  =  0,

( l - 2 o ) V 2«: + - |  +  1- ^ Z  =  0.

(3.3a )

(3.3a')

Three equilibrium equations (1.1a) and six compatibility 
equations, viz. the Beltrami-Micholl equations:

v*z +  J _ i ! i _ _ 2 i 5 . ___________+ ^ -  + — ^V ^ I +  t+ a d 2 *  Z 92 l - o  \  9 i +  9y +  92 } •

v * x „ + - ! - * ®  =  _ ( £ * + i L \  (3.4a)
y  'J ^ i  +  adxdy \ dy ^  dx ) '

In dynamic problems, instead of X, Y , Z on the right-hand sides 
of the equations wo must have, respectively,



Cylindrical Co-ordinates

w . + r f a B - - ( £ + £ ) •

™ - + r b  * £ - = - ( £ + £ ) •

where 0  =  X x +  Y u +  Z z.
When the body forces X , Y , Z  are constant, the right- 

hand sides of Eqs. (3.4a) are zero (Beltram i’s equations).

III. CYLINDRICAL CO-ORDINATES

1. Direct and Inverse terms of Hooke's law

2g ( Rr r + ^ e ) • er» =  - r flP.

ef>3= ~2G ( fil » ~ t+ 5 e ) > (3.1b)

=  2 ^ ( ^ - T T - a e ) ’ etr =  ± Z r.

Ftr =  X0 +  2 G ^ L ,  R ,=
( * ) ] •

- ” + ■ £ ( 3 ? + * ) - , B , . G ( % + ± duz \
w ) ' (3.2b)

Z 2 '=  *0 +  2 G - 2 - ,  Z T =
° ( - S l + - 5 +

where 0 is determined by formula (2.2b). 

*■ Equations In terms ot displacements

p. +  2 C ) i » - 2 C ( » t - ^ )  +  s , 0, (3.3b)



v,B r' ,* r b s -? ” 4 - 3 f - 7 r =  ~ 7 T '

v'z“s + r = 2 5 7 ^  +  ^ " ^ - 7 r =  —£ •  (3-3b')

v z ,t i+ r = 2 5 l r =  _ T -
where V *(...) is given by formula (4.1b).

1. Equations In toms ol stresses

Three equilibrium equations (1.1b) and six strain com­
patibility equations:

* * , + £ < « , - * i - ^ T + r b l ? - ” 0,

n + 7 ( i f r - S () + i |  +

+  ( ^  +  T  ap-) 0 °-

? 2ZH  r j ^ l £ r  =  0. (3.4b)

^  +  0.

* * * •  +  t i  7Wo= +  4 ISjjT— pr =  0, 

v2Zr +  r |^ - — ^  -o ,  
where 6  =  flr +  * , +  Z,.

<?rr =  4 - ( ^ - i — 6 ) ,  e* = ± R t , 

e»  =  i ( ^ - r ^ 0 ) .  «Ha =  - f i a ,



Spherical Co-ordlnatet

e a a - 2 a { Aa 1 + a 6 ) ’ e* * - ^ Ar' 

Rr = Xe +  2G -^f-,

B» = M  + ̂ -  ( i i7 5 - ^ - + « r  +  ^ c o l a ) ,

fi« =  f  ( * r - 1' “pco 1 a + i l k - ^ ) •

wliero 0 is determined by formula (2.2c).

(3.1c)

(3.2r)

(X +  2G) /• sin a  — 2G [  - - ( w „  sin a) j  +

+  rs in a /f  =  0,

(X +  2 G ) J ^ ^ - 2 G [ - ^ - ~ i-(r<oa) ] + r B  =  0, (3.3c) 

(X +  2C) sin a  £  -  2G [ ± -  (ra* sin a) -  +

+  r  sin a/1 =  0,
where (or, t o a n d  <i>a are determined by formulas (2.3c).

For an axially symmetric problem, the strains are inde­
pendent of the p co-ordinate, u 0 =  0, and, in addition,

wr =  <oa =  0, cap =  (d;
Eqs. (3.3c) become 

(X +  2G) r sin a ^  +  2G (<o sin a) +  Rr sin a  =  0,

(X +  2G )-g—  2G -|r (r(o) +  rt4 =  0,
,(3.3c')
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where

0 = ̂ ( r2“'>+̂ ^ (““Sina)’
“ = w l i £ - i (rUa)l

' For an alternative form of the equations in terms < 
displacements, see the monograph [5], p. 141.

3. Equations In terms ol stresses

Three equilibrium equations (1.1c) and six strain compa­
tibility equations [3] expressed in terms of stresses according 
to formulas (3.1).

PROBLEMS

3.1. Write the basic equations in terms of stresses for an 
axially symmetric (axisz) problem in cylindrical co-ordinates. 

According to Eqs. (1.1b) and (3.4b) we have: 
tho equilibrium equations

» ,  +  » L + w . + f l _ 0i

the strain compatibility equations 

V**r - l . ( f l r - f la )  +  ! ^ ^  =  0, 

V’tfa +  £  (flr -  fiB) +  - g - =  0

where
V2( )_ *(..■) . l 9(...) a»(-.

' 1 dr* +  r dr +  dr*

e = f?r +  +  zt.
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3.2. Write the basic equations in terms of displacements 
for an axially symmetric (axis z) problem in cylindrical 
co-ordinates, and find their solution.

Since the problem is axially symmetric, it follows that 
the displacements and strains are independent of the 
angle P and, in addition,

................................ °*
Equations (3.3b') reduce to

R
~  G ’ w

, 1 I Pill , Pur , t dur \ Z 

where

V • • • dr- ^  r dr ^  dz3 •

If the body forces have a potential II,

and Z =  rjj , the particular solution of the non-homoge-
oeous equations (a) is 161:
-  i dd> — 1 dd> 

r ~  20 dr ' Ul~  2G dz • (b)

where (D =  O (r, z) is determined by substituting the 
expressions (b) in the equations (a), giving the equation

v 2<D=^i— n .

The stresses are determined by formulas (3.2b) and 
are equal to

i ao
r dr

Zr =  - 3*X> 
drdz •

(C)
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The general solution of the equations (a) in generalized 
Ncubcr’s form is

ur = W l F \F +  4(l-a)q>], ^ - B - i r P  + W  -a)q,|.
where

V2V2F =  0, V2(p =  0, V2F =  4 - ^ r .

The stresses are

+  ( \ - o ) J L  j  v 2F d z 2, (d)

Zt = W — f £ ,  /?t =  Zr

The answer is the sum of the solutions (c) and (d); 
without changing the notation for the stresses, we obtain

=  F) +  V2F + l- ^ - L  \ v 2f ^ 2 +  —  11,

B » =  7 - ? {<S>~ P) + V 2f  +  ( l - a ) p  j  v 2/ ’rfz2+ — n ,

n,

►For the same conditions =  <or =  ce. =  0, 7? =  ^  , 

2  =  . by using Eqs. (3.3b), determine 0 =  0 (r, z)
and Up =  a) (r, z).

Equations (3.3b) become
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where

From the first equation of (a)

By differentiating the expression (b) with respect to 2, 
and substituting the result in the second equation of (a) 
differentiated with respect to r, we find

and separating the variables, we obtain two equations

where a  =  pr, p is an arbitrary number.
By solving the resulting equations, we find, according 

to (c), that to is equal to 
(o =  /fj (a) (Ap cosh pz +  Dp sinh pz) 
and to the corresponding sum of the solutions over p, 
where 7n (a) =  E PJ 1 (a) +  FpN^ (a) is the cylindrical 
function of the first order; J x (a) is the Bessel function 
of the first kind of the first order; (a) is the Neumann 
function of the first order; A v, Bp, E v, Fp are arbitrary 
constants. According to the equation (b),

Assuming in the last equation 
(0 = H (r )Z  (*), (c)

Kp (Ap sinh pz +  Bp cosh pz) Z 1 (a) — x+2g R,

from which
0 =  — A (A,, sinh pz +  Bpcosh pz) X

= K(Ap  sinh pz +  Bp cosh pz) Z„ (a) —

- O T ) i  *<*“ + / ( ’).
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where Zt (a) =  EPJ„ (a) +  FPN 0 (a) is the cylindrical 
function of zero order.

3.3. Write the basic equations in terms of displacements 
for a polarly symmetric problem in spherical co-ordinates, 
and give their general and particular solutions.

Since the problem is polarly symmetric, it follows that 
all quantities depend only on r, and, in addition,
“ o =  ttf» =  Mr =  0>s =  C0o =  0.

The dilatation is, by (2.2c),

0 - T T  +  2 - £ .
Thus, there remains only the first equation of (3.3c) 

which assumes the form 1

where
n _ H
H{ ~ T + 2 G *

The general solution of the homogeneous equation

w ( - f c + 2 i ) - 0
is found successively:

inW*Pnh^C.“laJ  ?ol“ tio" of the non-homogeneous equation 
l i  l n  T  f  ln the- form of lhc eeneral solution (b) by

(C)
The first derivative of the particular solution is 

J^  = Ct<r)— ^ C 2(r)
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on condition that

C',(r)r +  -}rC ’t (r) = 0. (c)

The second derivative is

j j L  =  C[ (r) +  — (r ) -  —  C; (;•)• (f)
S u b s titu tin g  (c), (d), and (f) in the equation (a), we 
obtain

C i( / ) - ^ - C : ( r )  +  7?,=0 . (g)

By solving the equations (e) and (g) simultaneously, 
we find

C, (r) =  -  j  4 s- (r)=  j  - Y -  dr. (h)

Substituting the expressions (h) in the equation (c), we 
obtain a particular solution.

3.4. Lamp’s problem (1859) 15].
Determine the displacements and stresses in a closed 

spherical shell loaded internally (r =  a) and externally 
(r =  b) by uniformly distributed pressures {pi and p9).

According to the equation (a) of Problem 3.3,

u, =  C,r +  ■£..

The d ila ta tio n  is

° = ^ r  +  2 j r = ^ - i - ( ^ ) = 3C<-

The stresses are, by (3.2c),

Rr =  M) +  2G - ^ =  (3X + 2G) Ct — ~-fC2t 

=  =  XO +  ~~~ Wr =  (3X +  2G) Ci +
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The boundary conditions of the problem are: when r= a , 

Rr =  — pi; when r = b, Rr = —Po-i 

By satisfying the boundary conditions, we obtain

l Pi“3 — Po<>3 
' 3J. +  2C •

I a^(P l-Po)

During the deformation, the sphere retains the same 
shape.

3.5. Lamp's problem (1852) [51.
Determine the deformation of a sphere of radius a due 

to the mutual attraction of its particles.

Each unit volume of the sphere is acted on hy a radial 
force R = —pgr/a, where g is the acceleration of gravity 
at the surface of the sphere (Problem 1.2).

The equilibrium equation in the presence of the radial 
force is of the form (Problem 3.3)

By using the results of Problem 3.3, we obtain the 
gcnoral solution of the equation (a) in tho form

For a solid sphere C« =  0.
A particular solution is taken in tho form

=  Bf3- (b)
Substituting the solution (b) in the oqunlion (a), we 
obtain
D_____ Pft

10a(*. +  2G) >
and tho displacement is equal to 
.. r  , Pgr* 

r 1 ^  IOo(X +  2G) •
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Since the surface of the sphere is free from stresses 
(/?r „ =  0), we find, finally,

1 pgar / 5?. +  6G __ r=_\
« r = ---- (O' 2G V 3J. +  2G or ) •

It is interesting to note that the radial strain insido 
a sphere of radius a ^ ~ °g is a contraction, and 
outside the sphere it is an extension. Thus, significant 
initial stresses are induced in very large bodies due to 
the mutual attraction of particles.

3.6. Write the basic equations in terms of displacements 
for an axially symmetric problem in spherical coordinates, 
and find their general solution.

Since the problem is axially symmetric, it follows that 
all quantities depend on r  and a; in addition, u R =  o)r =  

=  we =  0, and Eqs. (3.3c) reduce to

(X + 2G) £  + 7J^ r  £  (ra>fl sin a) +  R =  0,

(>. +  2G) —  -  2G -£r (rwp) +  rA =  0, 

whero, according to (2.2c) and (2.3c),

* = -±r~~(r'-ur) -i-7 ^ - ^ - ( « a S i n  a).

W|,=-f  [ -^ r(™ a)].

The equations .arc homogeneous when H —
oo ( a’ a / • \ t\ ^  i/- (co si n a) =  0, -r— =

where
« =. » (.)„,
Assuming

K 2G 
X-|-2G ■

0 = K ~ ,  tt) (I
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the second equation of (a) is satisfied identically, and 
the first equation is

Assuming in the last equation 
O =  R (r) A (a),
and separating the variables, we obtain two equations

wliero k  is an arbitrary number.
By solving the resulting equations, wc find

(1) =  (A ,/1*1 +  5 ftr-*) lEhP h (p) +  FhQh (p)],

where p =  cos a , P h (p) are Legendre’s functions of the 
first kind, or Legendre’s polynomials*; Qh (p) are Le­
gendre’s functions of the second kind (see Chap. 4 and 
(71); A h, B h, E h, Fh are arbitrary constants.

According to the formulas (b), 0 and wp are equal to

and to tho corresponding sum of the solutions over k .

3.7. Michell’s problem (1900) 151.
Find the stress distribution in an infinite cone a  =  a „  

with a force P acting along its axis a t the vertex (Fig. 17). 
By symmetry about the z axis,

Equations (3.3c) in the absence of body forces lake the 
form of tho equations (a) of Problem 3.G.

- g - -  *(*+.! !  fl =  0| - g + c o t a - ^ -  +  fr(/c -|1 )A  =  0,

0= K-^r = K[Ah (fc+l)rk-/?llAr-<*+'>|x 
x [£*/»» (p) + /W*(|i)l.

= -(/l*i* + fl*r-*-«)[£*/,i(p) + ̂ *« 001

lip =  A p =  /?„ =  0, to,. =  coa =  0.

If A.' is an integer.
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The solutions of the equations (a) of Problem 3.6, in 
which the displacements are inversely proportional to the

radius r, are as follows:

(1) “ r
P cos a

^  4jiG r ’
X +  3G F s in a

ua 2(X,+2G) 4jiG r 1

/?r
3X+4G F cos a
X +  2G 4n r> ’

(2)

0 -  R G F-la -  o p -  X+2G 4„

R  _ _ g ____
a ~  X +  2G in  rs

(a)

=  —  T + ^ T *

flo =  2 C F ( T T ^ ) -
where F  and B  are arb itrary  constants.
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The boundary conditions of tlio problem A a =  f t a =  q 
when a  =  Oj reduce, after cancelling proportional terms 
to a single equation of the form *’
___ l F , 2B
J.-I-2G 4a ^l-j-cosO| ’ 

giving

The second condition for the determination of F is 
obtained by forming the sum of the projections on the 
axis z of the cone of the force P and the stresses on a spher­
ical surface centred at the vertex of the cone. It follows 
from the last condition that

P = 2T rT 2Gj[X(1 _ c o s3 a ‘) +  ( ; (i - cos a i )  (I -!- cos2 a,)]. 
When a , =  ji/2, we obtain a pressure at some point on a 
body bounded by a plane.

3.& By using the results of Problem 3.2 determine the 
displacements for an axially symmetric problem in cylindri­
cal co-ordinates.

According to Eqs. (2.2b) and (2.3b), 
n -  -L <r"r) , <?«.• 9 Hur 0uz

r °r 1 2(0=~d f— or- (a)

( a ^  w o ^ b ta T n '118 U“  dis,)lacem cnt u* from  Hie equations 

I , <r-»r oo o<*
O r \ r  Or S * -  =  S T +  * ^  . (b)

form 86" 0™1 S° Iu tion  of tho etl» « ti°n  (b) is taken  in  the

ur = R  (r) Z  (z). (c)

lioSnUbf £ ilUamie  th ° CXI?rcssi01n (®) in  the hom ogeneous cqua- 
equations SC pa,al,nK tlle v a riab les , we o b ta in  two

=  .0 ,  (d)
whero a  -  m r, m  is an a rb it ra ry  num ber.
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The equations (d) have the solutions 
Z ■■■- A cosh mz B m sinh mz, 
ji  ■= Zt (a) =  GmJ ! (a) +  IlmNt (a).

A ccording to  the  eq u a tio n  (c), ur is equal to 

ur =  (A m cosh mz +  R m sinh  mz) \GmJ l ( a ) + / /myV,(a)l 
and to  the  co rrespond ing  sum  of the so lu tions over m.

A ccord ing  to  th e  second homogeneous equation  of (a),

=  m  (i4„,sinh mz +  B cosh mz)Z, (a),

from which u t is equal to

u . =  —{A m sinh mz +  B m cosh mz) \GmJ 0(a )+ llmN 0(a)\ -f

+  /W
(see (71) and to the corresponding sum of the solutions 
over m.

To find a particular solution, wo substitute the values 
of 0 and to from Problem 3.2 ^  in the equation (b). 
After some rearrangement, we obtain

whore

— I -1- - ^ ~ - =  (Av sinh pz +  B pcosh pz) Z, (a)*,

(e)

Z, (a) -  IF,]IJ 1 (a) +  FpNy (a)], 

A„ =  ( 2  -  K) p A p,

BP =  (2 -  K) pBp, a  = pr. 
Assuming

ur =  B  (/•) (Av sinh pz +  Bp cosh pz),

where B  (/•) is an unknown function of r, and substituting
in the equation (c), we obtain

( t l

The body forces H and Z are takon to bo
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A particular solution of the equation (f) is taken in the 
form

R ( r ) = — k Z»(* **)*-
The displacements are Anally

«r =  +  («)) Mm cosh ;nz +  flm sinh mz)—

-  2  [EpJ° (®)+  F^ ° (a)1 (A" sinh pz +  B ” cosh pz)'

where Ap and B p are determined by the formulas (e). 
According to the second equation of (a),

u- = ] ( 2(° - - S L) d r + / ( z ) =

=  2  [GmJo (a ) +  («)1 (/lm sinli mz -f 13m cosh mz) +

+  7  { j f  c o s h  pz +  Bp s i n h  Pz) X

x[A ’„y ,(a ) -i-F p N iia ))-

- 2 ( A pcoshpz+ Bp sm hpzU E„J0(a )+ F pN0(a )\Y *+ f(z).

3.9. By using the results of Problem 3.6, determine the 
displacements for an axially symmetric problem in spherical 
co-ordinates.

According to Eqs. (2.2c) and (2.3c),

0 ~ - p r - ^ r  (r2ur) +  y. J , ,  a  -jjj- ( ru a sin  a ) ,

,o top =  | (rua) j

* In sooking a particular solution use is made ol the formulas

z ; = -z „  z;=z0— —z,.
** In deriving these expressions use is inado of tho formulas

aZ0(a)da = aZi (a).
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=  2r3o),

00
where
Ur =  rzUr, Ua =  rua. (b)
For the homogeneous system (a), by taking

„ 0 O r, 0 O
(c)V ' =  r2H F ’■ ^  =  1 5 - -

we identically satisfy the second equation of (a), and 
the first equation is

w ( r i i » )  + i ^ w [ i t o s i n a ) = 0-
Assuming, in the last equation, 

tf> (a, r) =  Ft (r) A (a),
and separating the variables, we obtain two equations

i r { rlJ i r ) - n(‘n + i '>R =  0'

^ J . Co t . a ^ . - f - „ ( „  +  i)A  =  °.

By solving these equations, we find 
(D =  (6>>‘ +  D„r-n- ‘) [EnP n (p) +  FnQn (p)|.
According to tho equations (b) and (c), 

ur =  i t  =  -gL =  [ c , - D n (n + 1 )  r-"-* X

X [ ^ , P n (p )- |-F n<?M(p)], (d)
„ ... Ua 1 0<D 

“ ' r ~  r da
=  (C „r"-‘ +  Dnr-"-i) 1 E„Pn (p) -'r F nQ'n (p)|. (e)

For the non-homogeneous system (a), according to (b) 
and the results of Problem 3.6, wo have

2r’<o =  _  2 +  Bhr-h**) {EhP'k (p) +  FhQ'h (p)I,
r2Q = K \A h (AH-1) rh* * -B hk r h" )  [EhPh (p )+  P*Qk (ril-
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By taking a particular solution in the form

ur = r2-f r  + j  2,'a<l) da' Uâ S-’
where

j  2r3o) da -  - 2  (Akr"^  4- Bkr h'*) | Ehl \  (p) +  FkQk (p)|,

we identically satisfy the second equation of (a), and the 
first equation is

=  I W k  (11) !- W k  (101, (s)
where

A„ =  lK(fc +  1) +  2 ( i  +  3)1 id*,

By =  -  IKk +  2 (k -  2)1 Bh.
Assuming

<D (a, r) = R (f) |EkP„ (p) +  EkQk (p)],

and substituting in the equation (g), wo obtain, after 
some necessary cancellations,

IF  ( r* "̂ T ) ~  * (* t  !) H -= A r k,i + Bkr-k>\
from which

(D =  [A „ r^  +  Bkr-»") [EkPk (p) +  FkQk (p)|. 
where

=  2^F + 3f I*  (* + 1 ) +  2 (A4 3)1 Ak,

** =  2(2*-1 ) [Kk +  2 (*“ 2)1 Bh.
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A ccord ing  to  th e  fo rm u las  (b) and (f),

=  {[(A +  2) A„ + 2Ah] rh*1 -  [(A - 1 ) Bk +  2Bk\ r^} x

x [£ /A ( iO  I ^/.CUp)]. <h>

«0 =  2 ±  =  4- W  =  ^ '  +  ̂ r - k) lE hPU \i)+FkQ-k (p)]. (i)

The final values of displacements are obtained by 
adding together the expressions (d), (e) and (h), (i):

ur =  2  [ O r - *  -  Dn ( » + 1) r~n~2\\E nPn ( p ) + F n <?„ (p ))  +  

+  2  {[(A -f 2) A„ +  2Ah] r*« -  [ ( A - 1) ffk +  20*) r*} x  

x [£ » JM p )+ * * G k (P )].

ua =  2  + D„r-n-2) I EnPn (H) + FnQ’n (M-)I +

+  V (Z hr**i +  Bhr-h) [EkP ’h (p) + FkQk (p)]. (j)

If the numbers n  and A are of the same nature, the 
results of the solution (j) may be represented by a single 
sum; in this case we obtain

ur =  2  [«n»'n*1 +  Kr~n +  C„nrn- ' -  Dn (n +  1) r— *| X 

X[EnPn ( p )  +  FnQ„ ( p ) l ,  

ua =  Y  (.d „rntl - ! nr -n +  Cnr"-* +  D „ rn X

where

«n =  (n +  2) A n -  2An =  [K (n +  2) +  2 ( n - 1)1 Aa,

b - l(« -l) In t-20n)= 272̂ ) ^ (R- 1) +



Ch. 3. Basic Equations of the Theory of Elasticity

+  2(« +  l)J B„,

= W + r [K (n + 1 )+ 2  ( a + 3)1 /l-

Here A„, Bn, Cn, Dn, E n, Fn are arbitrary constants.
If the origin of co-ordinates (r =  0) belongs to the 

body under consideration (internal problem), the con­
stants Bn and D„ arc zero; if r-*- oo (external problem), 
the constants A„ and Cn are zero; if the poles (a =  0 and 
a  =  ji) belong to the body, the constant F„ is zero.

3.10. Neuber’s problem (1931) 18).
Determine the state of stress in a sphere of radius a com­

pressed by forces P  applied at the poles (Fig. 18a).

When external loads are given on the surface of the 
sphere, where r =  a (internal problem), we have 

£ t / f r =  a (a ) , A r = x (a). (a)

These functions must be represented by series
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where the coefficients are determined by tho formulas

{— p  when 0 <  a  <  e and a  — e <  o  <  a, 
0 when e <  o  <  n — e;

t  (a) =  0.
Let us break the normal load into two component loads 

a (a) =  a*1* (a) +  o'*1 (a),

f  — p  when 0 < a < e ,
°  | 0 when e < a < n ;

f — p  when ji — e < a < J i ,  
°  ^  ~  I 0 when 0 <  a  <  a  — e.
Consider the first case of loading

a“ > (a)=  ^  a‘"P„ (cos a),

where, according to the formulas (h),

o (a) P„ (cos a) sin a  da,

In the present problem

so that

=  (2n +  1) P n (cos a) =   ^

=  — f  {(/’„+, ( l j - ^ n + i  (cos e ) J -  

( ! ) - /> „ - ,  (cose)]} =

i£s=L  Ie :

=  — £-[Pn- , ( c o s e ) - P n+,(cose)|.
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The'area, over which the uniform load p  is distributed 
when the angle e is small, is approxim ately equal to n a V  
(Fig. 18t).

By applying a lim iting process, i.e., le tting  e->-0 
and pjiaae® -► P, we obtain

a .i>=  P .j Pn-i ( c o s e ) - f n .  (cose) _  P (2« +  l)
" 2nnJ ê0 es ■

Similarly, for a concentrated force at the pole a  — n 
we have

* * + ' r . ( - 0 —
Thus,

( 0 when n 1, 3, 5, . . .
On —= 0»P “I- Ol,a’ rT̂  X P

1 - - 2^ ( 2w +  1) when n 0 , 2, A, . . .  

and the load is expressed by the series

°  (“ ) =  2  a »Pn (lO ^  — T S  P P  P" 0*).

which diverges a t the poles a  =  0 and a  =■ n, and con­
verges a t the other points.
_ For the solution of the problem we must have an expres­

sion for the stresses in terms of Legendre’s polynomials. 
For this, we use the results of Problem 3.9 and formulas 
(3.2c)

/fr =  X0 +  2 S  f(n -!- l) (2Gan ;

+  KXAn) r" +  2Gn ( « -  1) Cnrn~*} P n (p),
(c)

=  S  ^  I(fln +  nA„) rn +  2 (n — 1) Cnr " '2| P'n (p).
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To determ ine the arb itrary  constants A n and C„, we 
the equations (a):

(rt + 1 )  (2Gan -h K IA„) an +  2Gn (n — 1) an~i Cn =

C2'i +  l)P  
— 2na- ’

(a„ +  nA„) +  2 (re - 1 )  a~2 Cn =  0.

By solving the equations (d), we obtain

An =
(2n +  3) (2/i +  t) Plnan+-G 

=  _  4 {K (n +  l) a+ 2  (/i +  3) (1 — n) — (2n +  3) [(/i +2) —2 (// +  1) o|) •

r  — an +  nAn ___ (l +  /Qg-/ln
2 (k — 1) 2 ( l - / i ) ( 2 » + 3 ) |A lB  +  I j  n

+  2 (re+  3) ( r e + 1) — 2 (2re +  3)J.

In carrying out the calculations use has been made of 
the fact th a t

a =  2(X+G) •
For the technique of calculating the series (c), see 

the monograph [6 ], Chap. VI.
When /• =  0, the only non-vanishing terms are those 

corresponding to the coefficients >40 and C2, and it is easy 
to calculate the stresses a t the centre of the sphere.



Chapter 4

GENERAL SOLUTIONS OF THE BASIC EQUATIONS 

OF THE THEORY OF ELASTICITY.

SOLUTION OF THREE-DIMENSIONAL PROBLEMS

Since various forms of the general solutions of the basic 
equations involve harmonic, ty, and biharm onic, cp, fun­
ctions, we shall consider the solutions of the harmonic 
and biliarmonic equations.

I. HARMONIC EQUATION (LAPLACE'S)

1. Orthogonal curvilinear co-ordinates (Lame's)

+ T S T  (VW-k)+

where A =  I gig^jj.
By applying the method of separation of variables, we 

obtain the standard forms of the solutions of Eq. (4.1):$ = $1 (<*i) (a*) (a3).
$  =  2  1>i (a i) ^2  («4) ’fa (a 3)- (4.2)

2. Rectangular co-ordinates

v*u,=  * * + - * ! ! + i ! L - oy W dx* +  dy* +  as* * (4.1a)

♦  =  X  (X) Y  (y) Z  (z). (4.2a)
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S u b stitu tin g  (4.2a) in  (4.1a), we obtain

i <p x  , _L j!!2L -i 1 * *  o
Y dy* ^ Z dz*

or, after separating the variables,

_ g _ _ a2X =  0 , W K - 0 , - g ~ ^  =  0

w ith fl« +  b* +  c* =  0 .
By using the  la s t equations, we obtain the standard 

forms of the so lution
v|) =  e±axc±bue±,z =  e±ax±bv±cz (4.2a')
and a num ber of special cases: 

t  — S  H m , n) e± Vmt+n*-z (sin m x + cos m i) x

X (sin ny  +  cos ny)

when a — im , b =  in , c =  ± V  m2-\-n2\

(4.2a')

*  =  2  *  («. b)«=•=“« = * I?* ( V t f T P Z ) (4.2a')

when c — i [ ' a2+  &.
The m ost general expression for a harm onic function is (91

=  j  /  [(a: cos a  +  y  sin  a  +  iz), a l  da,

from which various p articu la r solutions can be obtained.
Of in terest is a p articu la r solution of Eq. (4.1a) in  the 

form

*  =  [ ( * -  a )2 +  (p -  b)2 +  (z -  c)2]1/2, 

where a, 6 , c are constants.

3- Cylindrical co-ordlnata

*  =  R  W B  (p) z  (*).

(4.1b)

(4.2b)
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Substituting the if vnluo (4.2b) in Eq. (4.1b), we obtain

It r dr V d r  ) 1 r- B d(J- ^  Z dz> U 

or, after separating the variables,
J _  &z_ __ m2 l  d*B _  2
Z di* m  ’ B dp* P '

«2i £ + aJ£ :  + (*2- p 2) x  = o,

where a  =  mr, m, and p are positive integers.
By solving the last equations, we find 
Z = A m cosh mz +  B m sinh mz,
B  =  Cp cos pP -(- Dp sin pP,
R  =  EpJp (a) +  FpNp (a), 

where

is the Bessel function of the first kind of the p th  order

is the Bessel function of the second kind of the pth order, 
or the Neumann function.

Formula (4.2b) is finally 
*('-, P, 0 =  S  M nl, pJ„ (mr) +

+  Bm, pNp (mr))!;In (pP) ,^ 1,1 (mz). (4.2b')

•• Spherical co-ordinates

^  sin*« I f?  ]  =  ^ ' (4.1c)
where 

)  =  R ( r ) B  (p) A (a) (4.2c)
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is a spatial spherical function (see below).
Substituting the i|> value (4.2c) in Eq. (4.1c), we obtain 
1 d ( .2 dH_ \ , 1 <PIi i d / dA . \

~jT dr \ dr ) ' Ii$\n-a <Jfl2 /tsinci da \ da sinaj -  U
or after separating the variables,

i <r-s r _m2

where m =  0 , 1 , 2 , . . .  is an integer, n is any number. 
By solving the first two equations, we find 
R (r) =  A nr” B (P) = C mcosmp-f-Dmsin /«p.

The third equation, on putting cos a  =  p, reduces to 
an equation for Legendre’s associated functions

The standard forms of the solution of the last equation, 
when m  --- 0 (symmetrical problems), n is an intoger, and 
—1 <  p <  1 , arc as follows:

A (|i) =  EnPn fo) +  FnQn (n),
where

are Legendre’s functions of the first kind, or Logendro's 
polynomials,

<?n (p) =  \  P„ (it) In f ± J -  2  T  *V« W  Pn-k (p)

are Legendre*3 functions of the second kind.
The consecutive values of the above quantities are

/,o ( p ) = i ,  f t ( p ) = 4 ' i , iw '

P ‘ (p) =  p, <?, (p) =  P\ (p)C >o(p)-i,
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P2 (H) =  T  (3n2- 1), Qi 00  =  P2 0 0  <?o 0 0  -  4  I*'

P3 (p) =  -  (5p8 —3p), <?, (I*) =  P3 (p) <?0 00  -  4 ^ - - 1-,

Continued in [7].
When re >  m  are integers and —1 <  p <  1,

A 00 = En. mPn. m (|i) +  m<?„ . m (|i),

are Legendre's associated functions of the fust and second 
kind of degree re and order m.

In particular, P „ i0 (p) =  Pn (p).
The consecutive values of the above quantities are
P ,, , 0 0  =  1/ 1^ ,

P i . , oo =  3(X V 1 -  n2, P i. 2 00 =  3 (1 -  p2) ,

p ». I 00  =  4 (fy2 — 0  V 1 — |A2, P3. i  (|X) -- l-'ip (1 — |X2),

p 3. 3 (fx) =  15 (1 — (X2) Y  i — (X2, etc.
Tables of these functions for re =  1, (1), . . 10 and

m =  0, (1), . . 4 are given in [101.
When m  is an integer (0, 1, 2, . . .), re =  v is a complex 

numbor, so tha t v (v +  1) =  1 ±  bi, where b is a given 
number, and when — 1 <  p <  1 , we obtain

A  (p) =  E vmP vm (p) +  FvmQvm (p), 
where P vm (jx) and Qvm (p) are Legendre’s associated func­
tions of the first and second kind of complex degree v (v + l)  — 
=  1 ±  6i and order m. The technique for tabulating these 
functions is givon in [11]. Formula (4.2c) is finally

=  (/Li,'n +  Bnr~n~l) (Cm cos mp -(- Dm sin nifi) x

where

X l£»m P .» (l0 +  *■.»$■,» G0 1 - (4.2c')
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Every homogeneous function F„ (x , y, z) of degree n in 
co-ordinates x, y, z, for which the condition v aF„ =  0  is 
fulfilled, can be represented as a spatial spherical function 

Fn (x, y , z) =  rnY n (a , P),
where)

Y n (a , P) =  A  (a) B  (P) =  \EnmPnm (cos a) +
+  FnmQnm (cos a)] (C m cos mp +  D m sin mp) 

is a surface spherical function.
For sym m etrical problems (m =  0),
Y„ (a) — E„P„ (cos a ) +  F„Qn (cos a).

5. Additional solutions

A dditional so lutions are obtained by combining already 
known solutions:

(a) linear com binations

(b) derivatives w ith  respect to parameters
dVh .
Ok ' Ok3 ’ Ok dm ’ ’

(c) in tegrals w ith respect to a param eter with a weight 
function dependent on it

(d) derivatives and indefinite integrals with respect to a „  
®2, a 3 if Laplace’s differential equation does not contain 
explicitly  the co-ordinates cti, a . ,  a 3 (for example, the 
equation in rectangular co-ordinates)

II- biharmonic equation

W cp  = 0.
Particular solutions:
(a)
9  =  Xl|>, z ^ ,

(4.3)

(4.41
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Oz- '

(b) any polynomial ol degree not higher than 3; 
c) polynomial of any degree with specially selected 

coefficients, which satisfies Eq. (4.3).

M. BOUNDARY VALUE PROBLEMS FOR THE HARMONIC 
AND BIHARMONIC EQUATIONS

The boundary value problems for the harmonic and bihar- 
monic equations are treated by F. G. Tricomi in 1121, 
Chap. IV.

Of great importance for the solution of elasticity problems 
are the boundary value problems for elliptic equations 
[V*»|> =  0, =  F (x, y), v V 2̂  =  01; the Dirichlet,
Neumann, and mixed problems.

Determine a harmonic function if in a closed region D 
from its known values on the boundary C of the region.

It has been established that for every region whose con­
tour has no discontinuities and has a completely defined 
tangent everywhere and also a curvature permanently vnrying, 
except for a finite number of points of discontinuity of the 
first kind, the Dirichlet problem with continuous data on 
the contour can be reduced to a Fredholm integral equation 
of the second kind, with a kernel continuous everywhere 
112], of the form

11(1) - / . ]  A (6, i])p (n)</q — /(U ,

X - 1/ji, 0 ^ 5< 1,

encl r t ^ by’ With thS conditions specified above, the cxisf 
ch lc t^ roX n 'f ■r°VC,d f®r 1,arm°nic functions and the Diri" 

o L ‘o7  . ? ,S f .1' ’0' 1 by nsing integral equations, 
chlet nrohlom1!!0 U'1lpo,'lanl methods of solving the Diri- 

P n a piano is tho conformal mapping method
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based on the fact th a t this mapping transforms Laplace’s 
equation into itself ([121, Sec. 4.1). Almost all efficient 
methods of solving the Dirichlet problem, found up to now, 
are realized by means of conformal mappings transforming 
a given region D  into a circle or a half-plane, the two cases 
in which there are explicit formulas for expressing a harmon­
ic function assuming given values on the boundary C of 
the region.

The Dirichlet problem is also solved by expanding the 
boundary value function /  (...) in orthogonal series taking 
into account the nature of the boundedness of the internal 
problem and subsequently determining the unknown coeffi­
cients in these series [see Eq. (4.2c')l. The unknown har­
monic function is

M. P) =  ? o J ] (|'-nP„„1(n)(Cnmcosm P-f

sin mP), (4.6)

when* ii =  cos a , r  <  a, a is the radius of the given sphere. 
The unknown coefficients Cnm and Dnm are calculated from 
the boundary value function /  (r, a ,  (1) when r  =  a:

/ ( a ,  P )=  5], rt"^nm (cos a) (Cnm cos mp +

-|- D„m sin mP), (4.7)

where, according to the orthogonality conditions,

C„o — \ f/p  ̂ /  (a, P) Pn (cos a) sin a  da.

c «« - “ I—  S r S i '  i -  J  (/P j  /  («. P) (eosa) x

cos ;«P sin a  da,
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X sin mp sin a da,
n =  0 , 1, 2 ......... m = l ,  2 , . . . .  n.

If we know the Green’s function g (xB, yB, x, y) — 
= g tp o, P) for a region D, i.e., a harmonic function in 
this region which assumes the same values on the boundary C 
as In r, where r is the distance from an arbitrary point 
P (x, y) to a fixed point P„ (x0, y0), it is possible a t once 
to map conformally the region D into a circle and to give 
an explicit solution of the Dirichlet problem and even of a 
more general analogous problem for Poisson’s equation

V2<P =  F (x, y), (4.8)
where P is a given continuous function; this equation is of 
great importance in problems relating to Die torsion of 
prismatic and cylindrical bars [Eq. (7.9)], the analysis of 
membranes 1131 [Eq. (5.45)], etc. The determination of the 
Green’s function g, however, is often found no less diffi­
cult than the solution of the Dirichlet problem with the 
given values on the boundary C*.

For the solution of the Dirichlet problem ami analogous 
problems (Neumann problem and mixed problems) there is 
a great variety of numerical methods: the finite difference 
method giving a system of five-term difference equations 
(5.37), the relaxation method of R. V. Southwell, variational 
methods based on tho fact that the unknown function 
minimizes the integral

for which the Euler-Lagrange equation is Laplace’s equation

(4.10)

* One of ihc exceptions is
is a spheroor a circle nfr I? an cas« whew the region Dspnere or a circle of radius a centred at the origin of co-ordinates.

important case where the
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Considering further certain functions 

i|> (x, y; cti, <*2. • • •• a n). (4.11)
where a ( are the parameters, we obtain an extremum problem 
for the function J  of n  variables and write down n condi­
tions th a t this function must satisfy

- ° L = J L =  . . . = - — = 0 .  (4.12)

To choose the functions i|>, use can be made of the Ritz- 
Timoshenko method, the Bubnov-Galerkin method, the 
Vlasov-Kantorovich method, etc. (see [13], Chap. 1).

We present some of the results pertaining to the solution 
of the D irichlet problem [141:

(a) region D =  half-space z >  0, 
boundary C =  plane z =  0, 
boundary value function =  /  (x, y),

=  Poisson’s integral; (4.13)
the function /  (x, y) must be such th a t the reflection of the 
plane z =  0 in a sphere lying outside the region D ([14], 
Vol. 2, Chap. IV, Sec. 1) would give a boundary value 
problem with continuous boundary values for the bounded 
region D ' th a t is the reflection of the region D\

(b) region D =  half-plane y >  0, 
boundary C — line y =  0, 
boundary value function =  /  (x),

<4 -14)

(c) region D =  sphere of radius a,
boundary C =  spherical surface (Fig. 19), 
boundary value function =  f  (a , a , P) =  /  (a, P), 

^Mro, a 0, P) =

u _______/  (a , ft) da dp______
[o3 +  rJ —2ar0 cos (a—a,)]3' 2

(4.15)
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=  Poisson'3 form uln;
(d) region D =  circle of radius a, 

boundary C =  circumference,

Fig. in

boundary value function =  / («, a )  =-- /  («).

if (r0, a 0) -  ■ if-1 I («) da______
2<ir0 cos (*-<*„)

nelurmino n harmonic function i|i (to within an arbitrary 
constant) in n closed region D from known values of its 
normal derivative on the boundary C of the region, which 
must satisfy the condition

§ 1 7 (/s
Similarly to Ihc Dirichlol problem, this problem can he 
solved by tho methods indicated above.

In tho caso of a piano problem u.so can be made of tho 
oxlsling relations botwoon two conjugate harmonic func- 
tions, i.c., between tho real part u and tho imaginary
• hirmidns (4 15) nml (4.10) aro gonoralized lo the caso of bnplaco's 

equation with any number a of variables j-,:

(WS. tho monograph |H ), Vol. 2. Clmp. IV, Soc. 2).
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purl v of the same analytic function w =  u +  iv, in the 
form of the Cauchy-Riemann equations

ux =  vy, u u =  — vx. (4.18)

If wo take an a rb itra rily  orientod direction v making an 
angle a  with the x  axis, then

=  « T cos o  + i t .  sin a , rfv T *
and for a direction v ' perpendicular to it ( a - f  n /2) we
obtain

-j£r  =• cos (a  +  n /2) -|- vu sin (a +  n /2 ) =

=  — vx si n a  -f  vv cos a ~ u x cos a  +  uv sin a , 

from which

. (4.19)

Since the tangential direction s and the direction of tho 
inward normal for any closed curve doscribod in the positive 
direction aro related in tho same way as tho directions v 
and v ', it follows th a t if the unknown function of tho Neu­
mann problem whose normal derivative assumes some given 
values I* (,v) on tho boundary is tuken to be v, we obtain

so th a t the boundary vulues of u can be calculated, disre­
garding the non-essential additive constant, by the formula

1 (®) =  j  /* (s) ds, (4.20)

which, by v irtue of relation (4.17), gives a uniquely defined 
function. We next find u by solving the Dirichlet problem 
with tho boundary values (4 .20).

After determ ining u, to pass to v it is only necessary 
to integrate the to ta l differential

=  ~ uu dx +  ux dy.
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and this is accomplished by simple quadratures ([12), 
Chap. IV, Sec. 4.5). . . ,

The Neumann problem occurs, for oxamplo, in the determi­
nation of a stationary temperature field t (i, y, z) in the 
case of a steady-state thermal process that is characterized 
by a special form of Eq. (8.23)

1 F  + - W - 0  (4 -2D
and the corresponding boundary conditions.

We give an example from [15], Problem 131.
Find the stationary temperature t at the interior points 

of a thin rectangular plane OACB (Fig. 20); heat is uniform-

y
, B Z /// / / / / / / / / / / / / / / / / / /X  c

b Z-

H u u u a l
' 0

a \A *

t^ OU£hD ;side 0A  al>d is uniformly removed
rn^rfa th!uS1,due ° B\  The ?ther two sidcs, AC  and BC, are covered with thermal insulation.

thoDesid0etiOe4bL <H nhe <?UaDtity 0f heat DowinS in through

l - L - o .  £ L -
____ Q_ 9t I

*a ’ 9y t_ 6= 0 . 
we obtain

l X̂' y) 2to6 l(tf — f>)*—(*— a)*)-|-C, 
where C is a constant.
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3. Mixed problem (third boundary value problem)

Determine a harmonic function in a closed region D when 
values of the function are given over a part of the contour 
of the region, and values of its normal derivative are given 
over the remainder, or when values of some linear combi­
nation

of the boundary values of the unknown harmonic function 
and its normal derivative dty/dv are given.

IV. VARIOUS FORMS OF THE GENERAL SOLUTIONS 
OF LAME'S EQUATIONS

1. Lame’s equations In vector form

Equations (3.3) in vector form are

where u — total displacement vector of a point,
v  — radius vector of a point drawn from an arbitra­
rily chosen origin of a rectangular co-ordinate sys­
tem [16],

(4.22)

(4.23)

V2m -h t 9g grad div u  =  0, (4.24)

*■ ©elerkln's solution [17, 18]

In vector form:
2Gu  =  2 (1 — a) Va<p — grad div q>.
For rectangular co-ordinates 

q> =  iq>j +  -)- *(p3 =  Galerkin’s vector,

(4.25)

(4.26)



<Pi =  arbitrary biliarmonic functions.
In scalar form:
For rectangular co-ordinates

80_______ Ch. 1. General Solutions o/

2G(uIt u„, «I) =  2 ( l - a ) V 2<pI. 2>3- — L _ , 
where

' dx + dy + d2 ■

The stresses are determined by formulas (3 2a) 
For cylindrical co-ordinates V ‘

2Gur =  2 (1 —a) (cos PV2<p, -f sin PV2<p2) — i i .

2Gut =  2 ( l_ o )  (sin pV2«p, -  cos p v 2cp2) -  

2Guz = 2 (1 —a) V2q)3 — f 

where

r 0r r- a

When r =  constant (shells),

V*(...) =
^  <’P’ +  ~ a?

? 2( . . . ) ; a*... 
~ * r -  + o*... 

1 ? - .

d « te n n in e d by formulas (3.2b).

L EVuation,

(4.25a)

(4.26a)

(4.25b)

(4.26b)
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For spherical co-ordinates

2Gur =  2 (1 — a) (cos p sin aV 2<p, +  sin p sin a V ^ ^ -  

+  cos aV 2<Ps) — 1^-,

2Gun =  2 (1 — a) (sin pV2<p, — cos pV2(p2) —

2Gua =  2 (1 — a) (cos P cos aV 2(p, +  sin p cos aV 2̂ — 

- s i i m V ^ ) - - - ^ ,  

where.
3q>, sinP Off, cospcos a  Ap,

sin a  dp +  r da. +

l L ^ +COs a - ^  +

tp =  cos p s i n a ^ L -

-|- sin p sii i a ^ 4 ;
+  sin P c , ; a  Otf, s

ap

v 2( . . . ) -

4- -L JULll^  cotad
^  r- da-  ̂ r»
When r =■ constant,

V2( . . . )  - 1  ̂ <fi ...

(4.26c)

rs sins a  ^

The stresses are determined by formulas (3.2c).

i. Papkovlch'j (19] and Grodskll's [20] solution 

In vector form:
2Gu =  4 (1 — a) op — grad (rip +  ip0). (4-27)

For rectangular co-ordinates 
VP — iip, +  j \p2 4.  /clj,3 =  harmonic vector, 

ip0 =  harmonic scalar, 
ipi =  arbitrary harmonic functions.
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In scalar form:
2G («,, «,) =  4 (1 -  a) a -  Tx~  • (4'27a)

WxTe stress'!? a i S t e i i J e d  by formulas (3.2a).

4. Neuter's solution [21, 22]

In vector form:
2Gu =  4 (1 — u) tfr — grad F. (4.28)
For rectangular co-ordinates 

*  = +  Ats =  harmonic vector,
rjij =  arbitrary harmonic functions,

v2/? = 2 ( ^  +  - ^  + ^ ) .  (4.29)

In scalar form:

2G (ux, u„, ut) =  4 (1 - a )  if,. 2. a -  0x? Fy . (4.28a)
with formula (4.29).

Solution (4.28) is used in problems of stress concentration.

5. TrotHi's solution [16]

2G(uI , IV „.) =  ^ 2.3 +  z _ ^ _ ) (4.30)

where

V2lt!,=0. -  1 I I ^1]!. i \
Os 4a—3 \ Ox +  dy +  0: ) ‘

Solution (4.30) is used in the analysis of an infinite layer 
and a punch on an elastic half-space (Problem 9.7).

6. Late's solution

2C(u„ u„, „,) = if, 2 , +
T ’ + l - 2 o  I Oy, :

(4.31)
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w here 

V2<|>| =  0, V*Xl.2.3 = a**.x.s
n«, *, X

PROBLEMS

4.1. Lame’s problom for a cylinder (1852).
A circular cylinder of height h, outer radius b and inner 

radius a is subjected to an internal uniform pressure p t 
and an external uniform pressure p 0.

Determine the stresses and displacements for the follow­
ing boundary conditions:

(a) the cylinder is supported by an absolutely rigid and 
smooth plane,

(b) the cylinder is placed between two rigid and smooth 
planes a constant distance apart.

In the case of the axially symmetric deformation of 
solids of revolution, as shown by A. E. H. Love [5], 
Article 188, the stresses and strains are expressed in terms 
of a single biharmonic function <p3 =  tp (4.25b)

R r^  i r  ( ° v 2- -^ -)q > -  R » = B r ^ B t = Z» = 0 ,
(»)

S r i * * * - t i t ) ' p-

where

V2 = J L
dr*
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6 is an arbitrary constant.
It can be verified by substitution that for a given stress 

system two equilibrium equations (1 .1b) and four com­
patibility equations (3.4b) are satisfied if v 2Vaq> = 0.

To find the function <p, it is convenient to assign it as 
a finite power series in the variable z whose coefficients 
are unknown functions of r:

9 (*. r) =  |  fk (r) ** =  / ,  (r) ■ |- /  , (r) z -|- / 2 (i ) z* +

+ ls(r)z) + f i (r) z*.

Substituting this expression in the biharmonic operator

V2V2< p = ( £  + 2 J 1 _ ±  J L  +  ± J L  ■
\ dr* ^  r dr* r* dr- ' r3 Or ~r 

* ^ dr* di1 +  7  drdi* + )  9  =  0,

and equating to zero the coefficients of like powers of z, 
Of the unkndn,fFerr tiai equations for te rm in a tio n  
Euler tvDO anH UDCtl? S / '/ , Those equations a n  of the 
Tho rosuH of ti, ar°f lnte£rable in elementary functions. 

° r°9uU of the '" ^ r a t io n  is expressed by the formulas
/o (?) -  At + B0 In r +  C0r2 D0r* In r +

+ j ( 7 B* + T D i ~ ± A t - C 2) r* -

~  J (S B t + 2DZ) r*ln r +  i  ( C* - 1  D<) r . ln r 

/ . (0  =  ^ 1 +  Zi1ln r +  C1r2 +  A r2 1 n r .|_

+  T ( - f " - C , ) r * - !  D3r*ln r ,

h ^ ~ A* + Bt \nr + C2r* + Dir2Uir +

+  l ( - T - C i ) r ‘ - | V l n r i

M r) =  /la -l-fljln; 
A (r) =  /l< .|. /?4 )n j

■ +  C3r2 -(-Z)irz lnr) 

+ c *r* + D krt ln r.
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For the boundary conditions (a) wo have 
when r = a, R r =  — p h ZT =  0;
when r =  b, R r =  — p 0, Zr =  0;
when z =  0, Z z =  R z =  0;
when z =  h, u z =  0 .

The analysis of the function (p and of the boundary 
conditions allows the following conclusions to be drawn:

(1) the function <p depends on the odd functions /„. 
The even functions characterize a pressure proportional 
to the first power of z;

(2) for Zr =  0 when r =  a and r  =  b, the constants D lt 
B 3, C3, and D a must be zero;

(3) the constant A z does not affect the state of stress 
and strain.

Taking into account the conditions listed above, we
ob ta in

<p (z, r) = (B1 In r +  ^ r* ) z +  A 3z3. (b)

By setting up expressions for stresses and displacements, 
and satisfying the boundary conditions, wo find

I), , . a262, (l-q)(fl,y—
2 (t +  o) (6J—<i’)

A (2 — o) (Ptfr — piar) f. a j p ' b ' - p ^ h
3 3(1 + o)(b*-a*)  • G ( l+ o )  (6»-<j»)-

The displacemenls and stresses are
1 f  (Po — l>l) "-IP , (1—0) (Pgb* Pi"1)

2G (IP — a-) L r ^  1 +  0
o (/i0/)- -pja1) 

G (l + o )  (/,*-<«'-) ( z - h ) ,

Rr |J Po — Pl p0fca — Pi"- 
a- r* b’- — d- '
"■-b- Po — Pl Pgb̂  — P l^

Zz — R z 0.

For the boundary conditions (b) it is convenient to 
take the height of the cylinder to be 2k and the function <p
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according lo the equation (b). The values obtained must 
coincide with the results of the solution of Problem 6.1 
when uz = Zr = 0 and Zz = a (R r +  5 P).

see i i » j.
Determine the state of stress in a rectangular plate bound­

ed by planes z =  ±  M2, x  =  0 , y =  0 , x  =  a, and y =  b, 
simply supported along the edge, and subjected lo a uniform­
ly distributed normal load p (Fig. 21).

Fig. 21

For the solution of the problem, we take, according to 
U4J, one biharmonic function, (p3 =  <p.

(4 25a)*lIS C8Se* ^  ^ ls^ accmeTlis and stresses are, by

K«,-(2(t-o)v<_iJ9,

2- i [ ( 2 - ) V = - i | 9 ,
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where

V2 ( • • • ) = - a ^ i - + - a ^ r - +  ~ 5 i5 - •
The boundary conditions of the problem are expressed

= Y* =  0 ;
as follows:
when z =  —hl2. Z z =  - p ,  X,
when z =  hi2 , Z z =  Y z =  X :
when x  =  0 and x  =  a. X x =  uz =  0;
when y =  0 and y =  b. Y„ =  u z =  0.

The biharmonic function satisfying the boundary condi­
tions (b) for x  and y is, by formulas (4.2a*) and (4.4),

q>= y  ^  \A mn sinh (nz | /m 2/a2-)- n*/b*) 4-

4- Bm „ cosh (jxz Y  m2/a2 +  n2/b2) +
-f Cm ,.z cosh (nz V m2/a2 +  n2/b2) +
+  Dm„z sinh (nz Y m 2/a2 +  nVb2) ) sin mnx/a sin nny/b.

The distributed load p  is also expanded in a double 
series according to the formula

p — 3 1 .2  amn sin mnx/a sin nny/b, 

where

amn=~Zb j  J  p sin mnx/a sin nny/b dxdy.

To determine the arbitrary constants A mn, B mn, Cmn, 
D mn, we use four boundary conditions (b) for z, i.e., 
when z =  - h i 2, Z z =  - p ,  X z or Y z =  0; 
when z =  hi2, Z z =  0, X , or y ,  =  0 [see formu­
las (a)].

The investigations of the work of thick plates [241 
have led to the following conclusion: the engineering 
theory of the analysis of thin plates [51 based on the
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assumptions that etl — evt — exz — 0 and Z t =  0 (hence 
X„ Y„, and X y = Y x vary according to a linear law) 
allows the solution to be simplified for plates with a ratio 
of the smaller size, a or b, to the thickness h equal to or 
greater than three, giving results closely approximating 
the exact values.

4.3. Boussinesq’s problem (1885) [51.
The elastic half-space z >  0 is acted on by a force P 

normal to the boundary plane z =  0 (Fig. 22a).
Determine the displacements and stresses.

The problem is considered as an axially symmetric one 
in cylindrical, co-ordinates with a logarithmic! singula­

rs  ___ \P_

z

Pig. 22

rob lem ^V  in accordance with the$•1, they satisfy the equilibrium
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equations (1 .1b)

« : + « . + ± = £ ! _ 0 . t £ + £ + £ - 0I T ' 1 St +  r u ’ 5r +  St +  r

and the Beltrami-Michell relations (3.4b)

if the function q> is biharmonic [see (4.1b)), i.e.,

v v > . . ( | . + ± i  +  i )  ( $ + i - A + ^ ) _ o .

The problem is solved by introducing the biharmonic
function

<P - <P.1 -  {R  -I- (1 — 2a) [z In (R  -|- z) — i?J},

where

/? =  V r2 +  z2 =  K a:* +  y2 +  zz.

Taking into account that 

—  =  — dn _ 2 R — z = —̂ —

V2|z ln  (/? +  z) —i?] =  0,

we obtain

P
■iitG/f

p
' 2ntf*

[ 2 <1 - « ) + - J ] .

I~(l - 2 a )  P  3r»z |
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(1 —2o)P I _R___ * ) t
WP = -----U  + ! H I
7 _  J £ _ J L

-  -  2nfl» fl3 ’

2nRt R» •
r t j= f l r = f i t =  Zp =  us =  0.

As R -*■ oo, nil displacements and stresses tend to zero. 
When z =  0 and R =  r, we obtain the displacements 

of tho boundary plane 

u ____(1—2o)P_  (14 o ) ( i -2 o ) P

( l - o )  P (1 - a 3) P 
1 2 nGr nEr

The boundary plane z =  0 is free from stresses (Zz =  
=  R z = 0), with the exception of the point R =  0 where 

the stresses increase indefinitely. The latter is due to tho 
presence of the concentrated force P applied at the origin 
and con bo shown by the following calculations.

We cut out from the half-space at the origin a hemi­
sphere of radius R, when R  is small (Fig. 22b), loaded by 
forces in the form of stresses on inclined planes.

Tho projection of the resultant vector of these forces 
on tho z axis is different from zero and is equal to

2 = J { lZr cos (Rr) + Zz cos (Rz)} dF =  cos (R r ) =

=  — s in a =  —rlR,

cos (/tz) =  — cos a  =  — z/R ,

n/2
sin a  cos2 a  da =/>.
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We give the values of the displacements and stresses 
n rectangular co-ordinates x, y, z (see Fig. 22a):

lx ~~ A n f  G/t® (X I- G) R {z +  /?) ]  •
_ _P_\ JH_________ U I

4ji 1 Cfls (X +G ) R (z +  R )]  ’

i p r ** i 1+2,1 il ~  I Gr3 ^  G(X-|-C) / ? J ’

k' P [ f  3;r*z Gz 1 
x ~  2n \  I /?* (X +  G)/?>J

-  r f c  [  /<»(«+2) ~  /?* (/?+ 2)j J } •
 ̂ =  p Cz - I
* 2n \  |. /?® (X +  C) /?® J

" r r s f  — i t- (fl+ ^ r-J ) •

(X G) /?® J X-| 
Gitf(2-f2/f)

" (X-hC) «»(« +  *)*.
- P ( 3y2~ C.V ~|___ C !/ )
2 2a \  I /?<• +  (X +  G )/?*J X-l-G /?® / •

- _ P ([3x2 -  , Gx | ____C i  )
2a \  I. /?» +  (X +  G)/?®J X +  G /? ® J-

4.4. Kelvin’s problem (1848) (51.
A force P  is applied at a point of an infinitely large body 

along the z axis (Fig. 23).
Determine the displacements and stresses.

The origin of co-ordinates is taken a t the point of 
application of the force and is enclosed by a small spheri­
cal region. The problem is solved in rectangular co-ordina­
tes by assigning the biharmonic function 
<P =  cp3 =  A R , (a)
where
R  =  V i 1 +  y2 +  z4,
A is an arbitrary constant.
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According to the formulas (a) of Problem 4.2, wo ]lllv

'4 r [ i F  + Q - A<’)\<

°f *he sma11 ^hore (Fig. 23)

Z~} j  lZ:cos(fl) z) + ZyC03(/i< ,j) + ZiCos(/ti x)ldp=

» . ( * , „
» s ( f l , „  ’ y) y/R ’1----- cos a  =  _ , /  d , _

zlR’ dP==rdpRda\ =
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=  A j  dp j  l(22 +  y2 +  x2)/Rk][(1 - 2 a )  +  3z2/fl»)rR d a  =

= 2nA  j  s i n a |( l  — 2a) +  3cos2a)rfa  =  8n ( l — a) A; 

hence,

A =  P/8n (1 -  a).

The projections of the forces on the x  and y axes are 
zero.

We obtain, finally,
( l+ a ) P  xi _  (X + O P iPR

Ux~  8n£(1 —a) 8nC(X +  2G) dzdx '
( l-i-o )P  jii (X+G)P (PR

U« ~  Sn/.' ( l—o) /I’ — 8nG (X+2G) dz dy •

_  tx-j-op w? /?
~  (>. +  26’) 0z* +  4nCfl '

The slresscs are determined by the formulas (b)

Y  = ___ Pz f  M,J 8.t (1 — o) fl3 L' 1

3 Pxyz
8n (1 — o) R*'
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4.5. Cerruti’s problem (1882) 15).
The elastic half-space z > 0 is acted on by a force T 

tangential to the boundary plane z =  0 (Fig. 24).
Determine the displacements and stresses.

Assuming that the force T is applied a t the origin 
along the z  axis, we solve the problem by introducing

Kig. 24

two bihormonic functions (4.25a)

1)1 =  4 n ( l-o )  +  2 (* ~  °) (1 -  2a) (2 In (fl- 'r z) —  /{)},

^  = 4T in ^ j (1 ~  2a) x In (/? +  2).

Further, according lo formulas (4.25a) we obtain 

« ,= - £ _  ( i± 3C  ( T
4aC U +C + T j T r - - S f T O n r -i- 

u „ = J L i£ .r  i i ..** 7I+6')(fl + 2)T j.

al ‘he point o

J j Xz<ixdy=;T.
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By formulas (3.2a), the stresses are

v  -  T f 3*3 . 0* f  3 **(3/? +  - ) ____ l _ \ \
A x -  ~2n \  R<- "t ' X +  G L/<(fl +  =)s R3(R +  z)3 R? S i  '

T ( -W . Gx r 1 g»(3ff +  ̂ ) 1 11
y v -  I F  \  y?» + H c L f l ( / i+ ! ) ’ r *(r + z)> fl’ J ; -

v r  / 3 i sa , Cy r  l_______^  i3/?+-) n
A y _ ‘2 F \  /»s h X +  G |. «» («  +  *)* J / ’

_  .17’ x~> v  _3T_xyz_ „  3f x-;
“  ' 2n‘ fl* • ' ! “ 2i  fl‘ ’ * 2a /f» •

4.6. M indlin’s problem (1936) [25].
Determine the state of stress due to a force P applied 

inside the elastic half-space z >  0 normal to the boundary 
plane z =  0 (Fig. 25).

Since the state of stress is symmetrical about the z 
axis, the stresses and displacements are determined from

the formulas (a) of Problem 4.1.
In choosing the biharmonic function q> R. D. Mindlin 

proceeded as follows:
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(1) he applied Kelvin’s solution (Problem 4.4) to the 
force applied at the point (0 , 0 , c):

A &  =  A t yr* +  (z — c)’;
(2) to eliminate the stresses Z s and JRZ on the plane z =  0 
obtained from Kelvin's solution and to satisfy the condi­
tion

J 2nrZ,dr = —P fo rz > e

he added five strain nuclei for tho point (0 0 —c\-
(a) force in the z direction ’ ’ '

ARt =  A V r* + (z  +  c)»;
(b) couple in the z direction 

B (z +  e)IRz-

(c) centre of compression in the z direction 
c  In (* , +  z +  e);

(d) line of compression along the z axis from z +  c =  0 
to Z -f C =  —00

0 l(* +  c ) li ,(* 1 + J  +  C)_ flt) .

paraHel^o^ho^^xis61111̂  °f C0mPreS3l0n) with an axis 
PIR,-

obtained „
^ + C U ( f l i + 1 + e H

formulas cl P j 1” 8? ?  Z - *nd "■ th«
of 3teP (2), we obtain th« * di Satl^ ine lhree conditions 
A t =  P/8n (i D"*,n/nthe valu«  of all constants. wax  (1 _  a) (p rob,
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Substituting the values obtained in the formula (a), 
we can find the final value of the function q

- 4 (1  — 2a ) [(1 - a )  z —ac) ln(/?z ^z-r-c )} . (b)

If c->- oo, all terms containing R ,  vanish, giving the 
solution of Kelvin’s problem 4.4 

PR,
^ “ 8n ( l - o ) ‘
If c -*■ 0. the solution of Boussinesq’s problem 4.3 is ob­
tained
<p =  -J r [ 2 a 7 ? ~ ( l - 2 o )z ln ( /? - z ) |.

By using the stress function (b), the stresses are deter­
mined from the formulas (a) of Problem 4.1.

By a similar method [25] R. D. Mindlin solved the 
problem of a concentrated force acting inside an elastic 
half-space at a depth e parallel to the boundary plane 
z =  0, of which Kelvin’s problem (c =  oo) and Cerruti’s 
problem (c =  0) are special cases.

4.7.' Michell’s problem (1900) [5].
Find the stress distribution in an infinite cone a  =  ctj 

with a force S  acting a t the vertex perpendicular to the 
axis of the cone (Fig. 26).

It is necessary to find solutions of Eqs. (3.3c) for which 
the displacements are inversely proportional to the ra­
dius r.

Assume ur and ua to be proportional to cos «p, and Ug 
to sin np.

In this case the displacements are

+  (C  tann -^- +  Dcot"-Y-) co so -f F lann -y - r  H co t"-y  j,
7—0973
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-  (C lan" D COt" -f .) cos a  -  F  urn" -£■ +  H  col" JL '

where

Q =  S ^ P [ yf(n j_cos a ) tan" +  fl (n — cos a) cot" —J ,

-4, 5, C, Z), Z1, H  are arbitrary constants.
When n =  0 or n =  1, the solutions require special
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3X+4G F sin a  cos P 
).+2G  4jiG r*

, G F sin a  cos 0 
f p _ X +2G 4n r»

inp_
b r ~ X + 2 G  4n " 

A ______G _ J

Af =  0 ,

r* 1 +  cosa

Mp
r r  1 + c o sa

/?r =  - A a =  - 2 G -

ua = — cosp, 

£> sing  cos p
r* 1 +  cc

£> sin a  sin p 
r» 1 + c o sa  ’/4# =  —G

b ' - g £ ( 2 - t + ^ )

Uf= — — sinp,

>8 =  0 ,

j COS p.

The boundary conditions ol the problem are: when 
® =  <*1, A a =  R a =  fia =  0, giving three homogeneous 
equations in C, D, and F. From the resulting equations 
it follows that

C =  ( l+ c o s a ,) 2 
8n (k+2G) D. l  +  cos»i p 

'4 n (X + 2 G)r '
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By taking the sum of the projections on the x  axis of 
the force S  and of the stresses on a spherical surface cen­
tred at the vertex of the cone, we obtain

4.8. See the monograph 16], Chap. VI, Sec. 8 .
Investigate the state of stress in a heavy sphere of radius a 

resting on a rigid horizontal foundation.

The acting forces are: the specific weight of material y 
and the reaction of the foundation 
P =  4jujV3
applied at the lower pole of the sphere (a =  n)

According to Problem 3.10, the surface load can be 
represented as

in particular,

3 ' ’ ‘ r“- («)
is of "the form Cî C W6ight With 8 p0tential J1’ E1 - « -8) 

V2u +  7= to S “ d d i v u = - * L = ^ gradrli (b)

potential811 ^  satisfie<* by introducing tho displacement

^ ^ n t d x .  (c)

V2y = i ^ 2o_nW2y -  J ~ 2o 
^  2(1 -a )
The specific weight potential i

u  -  y Z =  yr cos a  =  y rp  / x
>-8-, It is n harmonic function 

Assuming in the general case 
n = 2 rin =  v ,£ nrnPn(t4)i

(d)

(e)



Problems 101

and seeking the solution of the equation (d) in the form
X =  ^ jX n =  2 ^ n r 2n ni

where Fn are unknown constants, 
(1 — 2a) En m n  ■ ■ 

^ ~ 4 ( i - o ) ( 2 « + 3 )  " W ’
and according to (c),
„ _ ± £ X r L „  i  frn  
Ur~  G dr ' W°  G da •

(f)

(g)

(h)

In our case, taking into account the formula (e), we 
find:

displacemen ts

u'  =  'o l r - a i c  r2c03“ • =  -  2 ? (7 - j)6  r2Sina:
stresses

flr = T — r Y'-cosa, Ar = -  (15~^>g|  r s in a ,

Aa ~  lh  = 5\ f ] ° 0) yr cos a.

The surface of the sphere r  =  a must be free from 
stresses everywhere except for the pole (a =  ji). The par­
ticular solution (i) of the equation must be added to its 
general solution (c) of Problem 3.10, summing over all 
positive integers from n =  0 to n =  oo:

(n +  1) (2Gan +  KXAn) a" +  2Gn (n - 1 )  an' 2C„ =

= ( - i r » H i w  (i)

G ( K  +  nA n) +  2 (n - 1 ) arK: n| =  0.

When n =  1 (particular solution), the right-hand sides 
of the equations (j) are respectively equal to 1(a) +  (i)l

= ya — 3 - i 2 (1 — 2a)
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After determining the constants A n and Cn, the stresses 
are found from the formulas (c) of Problem 3.10. For the 
technique of calculating these series, see tho monograDli 
[61, Chap. VI, Sec. 8 .

4.9. See the monograph [61, Chap. VI, Sec. 5.
Investigate the state of stress in a heavy sphere of radius a 

rotating about the z axis with a constant angular velocity co.

The rotation of the sphere about the z axis involves 
centrifugal forces having the potential

Transforming to spherical co-ordinates by means of 
the formulas

and in this case the equation (d) of Problem 4.8 is

x  =  r sin <x cos P, y  =  r sin a  sin p,
and taking into account that 
Pt (cos a) =  P3 (?) =  (3(ia _  1)/2

(see Chap. 4), we obtain

n = - ^ 2+ ^ 2M p ).
The first term corresponds to a 

only on r:
n = n (r),

potonlial do ponding

from which we find, by direct itintegration,

and hence,
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i =  0 ;

Aa =  Bt  =  M  +  2G ^  n (r) +  

r2n  (r) dr, (b)

Ar =  0.
For the surface of the sphere (r =  a) to be free from 

stresses, to the solution (b) must be added the general 
solution of Eqs. (4.8) in the form (Problem 3.9, formu­
las (j)l
Ur =  2A0 (1 -  2a) r, ua =  0,
f?r =  A a =  B„ =  4G(1 +  a )i4 0, A r =  0

with the value of A 0 determined from the relation

n  (°) ~  \  r*n  (r) dr +  4G ( l+ o )  >lo =  0

according to the first equation of (b).
We obtain

The sum of the solutions (b) and (c) gives

= n (r) — n (a) —
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_ J i .  j  r2Il( r )d r] ,

Ar =  0,

Aa =  Bf  =  n  (r) - H  (fl) +

+  ‘_ ^ £ [ J L  j r2Il (r) *• +  ■£? rm  (r) dr j  .

If the first term of the formula (a) is taken into account, 
we obtain, finally,
-■.I. — 2o)r / 3 —q 2 u'»  =  Q,
“ r _  30G* (1—0) \  l + o  ) '

fl<l) =  ̂ - ^ - ( a 2- r 2), A‘” =  0 ,

The particular solution corresponding to the second 
term of the formula (a) is formed by the equations (g) 
and (h) of Problem 4.8 for n =  2 and En =

According to this solution, the stresses on the surface 
of the sphere (r — a) are

21*(1-<J)(6 50)P2’ A “' 14ff(l-0)
To remove the stresses (d), it is necessary to superimpose 

the solution (c) of Problem 3.10 with two constants, A. 
and Ct. The constants are determined from the conditions 
that the stresses Rr and A r are zero when r =  a:
3 (2 Gaz + Kf,A2) a2 +  4 GC2 = --

(1 —2o) y(i)-a- dl>~ (d)

G (a2 -r 2AZ) a2-i-2GC2 = 
where 

«2~ f ( 2* - r l ) * ,

(I —2o) y<i)-a; 
14* rf — o) ’
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4.10. See [26].
To the surface of a circular cylinder of radius a and length / 

is applied an axially symmetric balanced load of the form 
Zz (r. 0) =  U (r), Rz (r, 0) =  f 3 (r). 0 <  r <  a,
Zz (r, I) = h  (r), R z (r, f) =  /* (r), 0 <  r <  a, (a)
R r (a, z) =  U (z). z r (a. z) =  /« (z), 0 <  z <  I,

where ft  are piecewise continuous functions of bounded 
variation on the corresponding intervals.

Determine a biharmonic function <p (see Problem 4.1) 
satisfying the conditions (a).

The function q> is taken in the form 

<p (r, z) =-- z (Ar2 +  Bz2) +  [Ak sinh (p*z) +

+  Bh cosh (n*z) +  C ^ hz sinh (p*z) +

+D hixhz cosh (n*z)] Jo (p * r)+ J : [EkI0 ( V )  +

+  Gi,Xkr I | (Aj,r)] sin (X»,z). (b)

The function (b) satisfies the conditions (a) if
(1) Xfc =-= kn/ l,
(2) the quantities are the roots of the equation

J i (m«) =  0
with the asymptotic formula pj,a =  n (k +  1/4) +  0(ilk),

(3) the functions fx (r) to fk (r) on the interval 0 <  r <  a 
can be represented as series in Bessel functions:

a# +  a*y ° bhJ  I (P*r ) •
(4) the functions / 5 (z) and /„ (z) on the interval 

0 <  z <  / can be represented as Fourier series

T +  S  cfcc°9(XfcZ), ^  d* si" (**z).

(;>) the coefficients in the formula (b) can be represented 
in terms of a (l biy c,, and d( taking into account the for­
mulas (a) of Problem 4.1.
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PLANE PROBLEM IN RECTANGULAR CO-ORDINATES

I. PLANE STRESS

Z, =  Y z = X z = ez„ =  =  0, =  - 1  ( * ,+ y , ) .

1. Equilibrium equations

^ + ^  +  *  = 0 ( = P ^ ) .

o ( = p i S ) .

1. Geometrical equations

(5.1)

3x ew ~  I f  • 

e*v ~  ~W + 1 7  ■

(5.2)

a»* + a** (5.3)
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j. physical equation*

exx = ̂ {X x - o Y u), 

% p - T < y » - oX")*

ew =  l l l + 2L x #.

X , =  T J Sr(e** +  a«i/p).

Y v =  - — (euv +  aexx),

4. Basic equations In terms oi stresses

^  +  ^  +  x  =  o. £ £ . + ^ + r - o ,

5. Basic equations In terms ol displacements

<‘ + < '> - = f c + r 2 £ + < » - ’> £ ] " -  +

+ i » ^ y , 0

________107

(5.4)

(5.5)

(5.6) 

^ X  =  0 .

(5.7)
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or in Lame’s form 

where

e -  du* i 3Uv | i  1+ qdz ^  dy • X+2G +  1 ~  i _ a •

(5.8)

II. PLANE STRAIN

>»=A:t = y I =  o, z J= H X x + Y y).
For the case of plane strain, in all equations of part I 

it is necessary to replace F

a b y a ' =  T r T ’ nnd E by £ , =  j l -_ (5 9)

In this case, Eqs. (5.7), for example, are

[ 2(, - „ , £  +  (1_ & )£ K + £ v  +

+ 2 u ± o m ^ 2o ) x  =  0>

^ -  +  [ 2 ( l - o ) ^  +  (i _ 2a )^ j s +  <5-7‘>
+  J ( l ± aHi - 2aLy==o

nnd Eqs- (5.8) transform into

^ u I +  (X +  G ) §  +  x  =  0 ( =  p ^ f  I '

G V \  +  (X +  G )*  +  r  =  0 (  =  p ^ ) .  (58a)

According lo Eqs. (3.3a) we obtain

(X +  2G ) ^ _ 2f i | .  =  o,
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where
X =  A’,a,/( 1 -  a;), E1 =  El( 1 -  a*), a, =  a/( 1 -  a)

or
X =  £ a / ( l  +  a) (1 -  2a)

(see Notation).

HI. SOLUTION OF BASIC EQUATIONS

1. Solution using stress-displacement functions

Equations (5.7) have tho general solution

ux = 2 V * p ,- ( l  +  o ) £ ( - % . + J * - ) + a lr+b,

u„ =  2V ^ - ( l + a ) ^ ( ^  +  ̂ ) - a x  +  c,

where cp( =  arbitrary biharmonic functions, 
a, b, c — constants characterizing a rigid-body displace­

ment.
The general solutionl of Eqs. (5.7a) is of the form [see 

Eqs. (4.25a)l

^ . ! ( I - , I A - i ( 4 + 4 ) + „ + l ,

By means of the introduced stress function <p (x, y) 
(Airy, 1861) in terms of which the stresses are expressed 
by the formulas

where X  and Y  are constant body forces,* Eqs. (5.6) are 
reduced to the biharmonic equation

V2V2<p -  i S .  +  2 +  i i  =  0^  Sx* dyt +  9y*

* formulas (5.11) are generalized in tho case of variable bo< 
ees Having a potential.

(5.10)

(5.10a)

(5.12)
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The biharmonic function tp (x, y) must satisfy the stress 
boundary conditions of the problem

oxoy as dx% da da ( dx /  '
or, in the case of the second fundamental problem when 
displacements aro given on the contour L, the conditions 

ux =  gi (s), uu =  g1 (s), (5.14)
where g, (s) are given displacements of the points of the 
contour L, which are functions of the arc length s of the 
contour. 6 ue

J- Application oi ■ cemplai variable [27, 28]
For the complex variables
z =  x +  iy  and * 

Eq. (5.12) is
x - i y  (i =  / _ i ) (5.15)

(5.16)
with the general solution

"  T 1** W +  *♦ W +  X (*) +  x(F) j (5.17)
or

i ex
3ns

if (*). Y li\ =  fm » li__ 1. -

(5.18)
expression,

>ns of the complex

«r + '  iy -  ♦(*) +  *<!>' (z) +  x '(2) =

=  (X v+ iyv)d s+ c = +  */* +  constant. (5.19)



tnlntlon of Basle Equation! lii

For the second fundamental problem, conditions (5.14) on 
the contour L  are

2G (ux +  iu„) =  *ij)(z) -  ziPlz) -  x' (*) =  2G (fr+iga),
(5.20)

where x =  -^ rf-  = for Plane stress-

(5.21)

x =  3 — 4o =  for plane strain.
The stress components are found by the Kolosov-Muskhe- 

lishvili formulas
X ,  +  Y„ =  2 [\t>' (z) + J> ' (z)l =  4 Re ij>' (z),
Y ,  -  X , +  2iX„ =  2 [z*' (z) +  x" (*)]•
The components of the resultant force acting over the

finite arc A fi  (Fig. 27) are equal to [(5.13)1

A A (5.22)

* ( * ) * ~ [ * E .

Tho moment of the forces acting over the arc A B  about 
the origin 0 is

- J<*>%-»*.>*- - ]M£) +«{%)]- 
— 4 (5.23)
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Equations (3.3a) for a plane are

(5.24)

from which it follows that 0 and co are conjugate harmonic 
functions of two variables, namely

GV*u,+ (* +  G )-£  =  0, GV2u„ +  (*- +  G ) - J = 0  (5.24')

). Solution by the Initial function method [29]

A piano problem is solved by tho mixed method: the 
unknowns aro taken to bo tho displacements ux, uy and the 
stresses X y, Y„. The required quantities are represented as 
Maclaurin’s series in the co-ordinate y and expressed in 
terms of tho initial functions uj, uj, XJ, and Y y, i.o., the 
valuos of the functions for y =  0 (Fig. 28).

For tho case of plane strain the system of computing 
equations is of tho form

(X +  2G) 0 +  2iGo) = f ( x  +  iy)
(see the monograph [51, p. 204). 

Equations (3.3a') for a plane are

(5.25)

(5.25')

V -  3x> +  ty’ * H d l  •

X„ =  YJt =  G (-^£.

(5.20)
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Introducing, for .shortness, the notation 

u = Gux, v  =  Guy, y„ =  y ,  X V = X ,
d 3 n
a F = a * *T= P ’ 

we reduce Eqs. (5.26) to 

W - - * V  +  X . p V = - ^ aV  +  ± = 2 L Y  

pY  =  — aX , p x ^ - j — a HJ— aY . 

The stresses X x are determined by the formula 

X x = - ^ U i - o ) a U  +  apV].

The solution of Eqs. (5.28) is obtained as 

U =  Lw  (jo +  L v v V° +  LuyY 0 +  LuxX \

V =  L VVU° -!- Lyy  V° +  LyyY* +  Lv.t X0, (5.29)
Y  =  L m V 0 -r I-ryy l'° +  LyyY* +  Lyx X \  
x  =  I'X„U° +  Lx v V° -| L XyY° +  Lx x X°,

where the letter L  stands for linear differential operators, 
which in transcendental form of the operator method are 
given in Table 4.1. 

l o  transform from the symbolic to the real representa- 
•on in the form of infinite scries, it is necessary to expand

(5.27)

(5.28)
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the trigonometric functions in power scries of ay and to 
replace a  by

In plane stress, E  and o must be replaced, respectively, by

E (1 +  2o) 
(1 -t-o)-

Assuming, in the homogeneous equations (5.7),

“ < = (1  'I - a) - £ $ f + a« + b'
r 0‘ *  , (5-30)

we identically satisfy the first equation, and the second 
equation becomes

S + 2w + $ - ° -  <5-3,)
Taking

<P =  <P {y)':olkx, 
we find

q) =  (A * cosh ky +  B k sinh ky +  Cky cosh ky +
+  D ky sinh ky)lnkx. (5.32)

Honce, for a =  0 
ux = ±  k | A hk  sinh ky +  B hk cosh ky +  Ch (cosh ky +  

+  ky sinh ki/)+Dft(sinh ky+ ky  cosh ky)]^kx+ ay+  b, 
u„ =  k \A hk cosh ky +  B hk  sinh ky +  Ch {ky cosh ky — 

— 2 sinh ky)+ D h {ky sinh ky—2 cosh fcj/)l*o"fcr —

X x =  —Ek2 lAft/c sinh ky +  B hk  cosh ky +

+  Cft (cosh ky +  ky sinh ky) +  (5.33)

+  Dh (sinh ky +  ky cosh ky)\l"lkx,
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y  _  git» sinh ky -f- Bkk  cosh ky 4-

+  Ck (ky sinh ky — cosh ky) —
+  Dk (ky cosh ky -  sinh ky)]^kx,

x  y z =  ±  £A-* cosl1 +  B*k  sinh kV +
-i- Cxky cosh ky + Dhky sinh ky]™*kx.

If Y„ = X , =  0 when y = ±  h, by equating to zero 
the determinant of the boundary conditions, we obtain

4X* -  sinh* 2X =  (2X - sinh 2X) (2X -sinh  2X)=0, (5.34) 

where X =  kh.
For X =  a ±  6i, we obtain two governing equations

O T 2T = ± cos26’ — t = ±  cosh 2a

or, for the value

b — 4- coth 2aV sinh* 2a — 4a2, (5.35)

=  ±  cos (coth 2a \  sinh2 2a — 4a2). (5.36)

Tho graph of Eq. (5.36) is given in Fig. 20. By taking 
2n values of a (b), we can approximately satisfy the bounda­

ry conditions on the sides j  =  c1 and x =  c, at n points, 
lo  satisfy the boundary conditions more exactly, it is 
necessary to expand the particular so lu tion  Him to tho load

„ mtC0Ui?a </sinhi2a-lia*)
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j. RnHe-dlllarenM Johrtton [33]

When using a rectangular net (Fig. 30a), successive diffe­
rences Anq>k are obtained by the formulas

A«¥k _  <fl —«fl 9̂11 —2<ph q>j
~ o T  ~  2 Ax ' 2 Ax • <5x= -  A*1 Ax=

.kfk ~  *»<tk V m -V n  S-V* ^  fyt* =  <pm- 2 n + * n  
ay 2 Ay 2 Ay ' tly4 Ay* Ay*

<y»q>k ^  0y ( 2Ax ) fp  —f r —<To +  (F<; 
Oxdy ~~ _a_ ( <f„, — «fn \  4 Ax Ay (5.37)

aHk Ai'f» _  n«yk—4qv -  'tqn+ q><+ q>.
HZ*~ — AtI -  Ax*

d««rk W11; ct'k—4qm- 4 if n-[-<rp+<pu
ay* "  Ay* Ay*

^(fk „ - - 2<pm — 2<yn — 2(|y -- 2q>j +  <tp +  q', +  <Tr +  <Po
dx* Ax2 Ay2 '

where <pft is the  value  of the function at the point k.

A -bd"
Fig. 30

In this case the harmonic equation (4.21)

VN>k =  0
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lakes the form of a five-term algebraic equation 

a  (ft +  ft)  +  >(>m +  f t  -  2 (1 +  a) f t  =  0 . (5.38)

The biharmonic equation (5.12)

W <P(, =  0

takes the form of a 13-term algebraic equation 

16 (a +  1/a) +  81 tp* — 4 1(1 4- a) (q>j +  <p() -1 

+  (1 +  1/a) f a n .  +  <Pn)l +  2 (cpp +  <p, H- <pr -|- cp0) -j- 

+  a  (<pi +  <P.) +  4 -  to- +  <p„) =  0 , (5.39)

a  =  (Ay/Ax)2, 1/a =  (Ax/Ay)2.

For a square net, Ax = Ay =  h, a =  1, and Eq. (5.39) 
becomes

W f i  =  20<pfc — 8 (9 , +  qp, 4- q)m +  (pn) +  
+  2 top +  <p« +  <Pr +  iPo) +

The harmonic equation v*ft =  0 takes the form

The stresses at the point k are determined by the formulas

+  <Pi +  <P» +  <Po +  <Pu =  0. (5.39')

A*V*ft =  K  +  f t  +  f t  +  if, _  4f t  =  0 . (5.38')

* t**5 Ajj (5.40)

X„ =  Y x ----- -  =  Wo-r<T,)-(.pn +  cp,)
dxd,J 4 At Au--------

In setting up equations for tho nodes
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duce the values of the function 9  a t the nodes on the contour 
and at the nearest nodes outside the contour.

The values of the function 9  at tho nodes on the contour 
are determined by the extrapolation formulas

9 x = « P rf 2Ax ( - ^ ) ( , 9j, =  9„+ 2A y  ( -1 ^ ^  (5.41)
(see Fig. 306).

PROBLEMS

5.1. A rectangular parallelepiped of great length (u x =  0— 
plane strain) is subjected to a uniform pressure —p  and

supported by an absolutely rigid (ux — 0) and smooth 
(Y x =  0) foundation (Fig. 31).

Determine the stale of stress and strain.

The solution of the homogeneous equations (5.7a) is 
taken in the form (5.10a) assuming 9 , =  0 and 9 S =  9

,  Q

Fig. 31

y

u'j =  [ 2  (1 - a )  —  +  (1 - 2o) -^r J 9 - « x  + 1

The stresses are determined by the formulas
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We assign the function (p in the form of a third-degree 
polynomial
<p =  Ax3y +  By3,

where A and B are unknown coefficients.
According to (a) and (b), the displacements and stresses 

are round by the formulas

ux = —2Ax + ay + b,

u» -  2 |2 (1 — CT) A + 3 (1 -  2a) B] y  _  ax + c,

The boundary conditions of the problem are: when 
* =  =  Y x =  0 ; when * =  h, X x =  - p , Y x =  0;
when y =  ±b< Yy =  X „ =  0 

According to the boundary conditions, we obtain
a (J —a2) d

-  Y x 0.

«s identical with the solution by
of materials.
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5.2. A narrow rectangular beam (6 =  1) is supported at 
the edges x  -- ±1/2  and bent by a uniformly distributed 
load of intensity q (Fig. 32).

Investigate the state of stress in the beam.
The supporting conditions are realized by the end 

shearing forces, which are the resultants of the shearing

Fig. 32

stresses Y x and are equal in magnitude to reactions that 
would arise a t the points of support A and B. The problem 
is solved in terms of stresses by assigning the stress func­
tion in the form

<p(*.

satisfying Eq. (5.12).
According to (5.11), the stresses are

* » = - § F = d ( * * - T  y2) y + ky'

r " =  4 £ = ( 4  ? + •> )» + * '

The boundary conditions of the problem are: when

y =  -M 2 , Y„ =  - q ,  X„ =  0; when y =  M2, Y v = 0,

— 0 . These boundary conditions are exact, or local 
(for each point of the corresponding portion). When x  =
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=  ±112, we have

(1) yv*= |  x xdy = 0, (2) M ,=  ]' X xydy  = 0,

(3) f y , « & = - 4 -

These are approximate, or integral, conditions, which are 
justified by Saint-Venant’s principle.

According to conditions (1) and (2),

-d h 3/2A -  bhl2 +  a ------q, dhVA +  6 0 ,
dh3/ 24 +  66/2 +  a =  0;
hence, a =  —q/2, b =  3q/2h, d =  —Gqlh3.

Conditions (1) and (3) are identically satisfied, as can 
easily be verified by substitution.

According to condition (2),

where I z — 63/12 is the moment of inertia of the beam. 
The stresses are, finally,

X* = 277(t ^ - i J!) i' +  % -

Y' ”  +

I3y the formulas of strength of materials,
A * = Cl =  -i-ii. u _  _9_ / I* .v

where M , is the bending moment,
YV =  Oy =  0
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(tho longitudinal fibres do nol press on one another later­
ally),

A > --y , =  i  =

where S 'ut is the static moment of the cut-off part of the 
cross-sectional area of the beam, Q is the shearing force. 

The X x and Y y diagrams are given in Fig. 33.

Fig. 34

Fig. 33

► A thin rectangular plate (6 =  1) is subjected at the 
ends to a load p =  2ky, which reduces to bending couples 
M* (Fig. 34).

Investigate the state of stress in the plate by assigning 
the stress function in the form 
<P =  /ij/a,
where A is an arbitrary constant.

The boundary conditions of the problem are: when y =  
=  ± h /2 , Y u =  X y =  0; when x =  ±1, Y x =  0, X x =  
=  2 ky.

Answer.
Y y ^ X „ =  0 ,
v 9 . 12MZ .UtA * 2«!/ =  — y — -77 l/>
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where / .  =  h3/12. This result is known from the course 
in strength of materials.

5.3. Zhemochkin’s problem 134].
Analyse a deep and narrow (6 --= 1) beam of depth h 

having an infinite number of spans of equal length 21 and

supported by columns. A load of intensity q is uniformly 
distributed along the top of the beam (Fig. 35).

For the assumed infinitely large number of spans all of 
ln ><lonticaI conditions, and it is sufficient to 

I r ^ n S  °? V °n  Span- Tho a c t io n s  at the supports 
t l  i /  ng ° aX°S °f the columns «nd are equal

tho 'nx isO ? 1. ? 868 iX f-and m ust be sym m etrical about mo axis Oy, the solution is sought in the form of » tri

n r a g r ^ r n r n ? 1̂ 8- U ^  X
dU ons on iL  ro...8 6 tr,«®no“ etriC scries since all con-

The stress function is assigned in S e  form 
«P (*, y) =  A tx3 + A«xy +  A 3y* +

+ £  cos «  (Cln sinl, ay -  Cjn cosh ay +  C3ny sinh ay 

+  CinV cosh ay),
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where 

a  =  null- (a)
It is obvious that the function cos (as) is unaltered 

when the quantity  21 is added to the argument x, since

The last equality shows that in the next spans all 
quantities defining the state of stress are repeated and 
all spans are in identical conditions.

The boundary conditions of the problem are:
(1) when x  =  0 , I, X y =  0 by symmetry;
(2) the sum of the stresses Y y within the limits of a 

half-span must be equal to the load within the same 
limits, i.c.,

(3 )  when ij =  0, X y =  0;
(4) when y =  0, Y y =  0;
(">) when y =  0, x  =  0, 21, Y y -► oo since the reaction 

is assumed to be a concentrated force;
(fi) when y =  h, X y =  0;
(7) when y =  h, Y y =  —q.
For the chosen stress function (a), the stresses are deter­

mined by the formulas

cos [ ,l?|(J + 2i> j  =  cos + 2njt) =  cos ax.

=--2A3 +

+  ^  acosa ila fC iB S in liay -fC jnC oshap-f-

+  C3ny sinh ay  -|- Ckny cosh ay) +  2 (C3n cosh ay +  

+  C4n sinhay )|,
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ix (Cln sinh ay-rC in cosh ay-f

+  C3ny sinh ay + Ct„y cosh ay), (c)

x u= Y x = - J ^  = A2+

+ 2  ® sin cw [a (Cln cosh ay +  C2n sinh ay +

+  C5n !/ cosh ay +  Ctny sinh ay) -|- C3n sinh ay  +
+  C«„coshay]. ^

From the boundary conditions (1) it follows that 
A t =  0.

From condition (2) (see the formula (h)l,

SiD al (C ,n sinh aV +  C2n cosh «J +

+  C3ny sinh ay +  Ctny cosh ay) =  | sin al =  sin nn =  0 I =

r 2^ — *  whence,
A 3 =  —q/2.

™ 5 S IIU“  l3»’ b* “»  to m .l. m  tor » -  0.

b2  a  sin ax  (aC,„ +  C4n) =  0; 
hence,

aCIn +  Cin =  0.

F |» »  — Hi™ ,4) . „ d u »  „ d „  ( o l |o ®

9 + 2  “ 2C,n cos ax =  0 ,
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from which, by expanding the load on the interval

0 <  cur <  2 ji

in a series in cos cur

q=  — ^  2gcosax, 

we obtain

cos ax  (2? — a zC2n) =  0 , 

and hence,

C3n =  27/ a 2. (g)

When x =  0, 21, the expansion formula is not valid, 
but the stresses a t these points are infinitely large [bound­
ary condition (5)1.

From condition (6) and the formula (d) it follows that

2  a  sin ax [a (Cln cosh aft +  Cin sinh ah  +  C3nh cosh ah  +

+  Cinh sinh ah) +  C3n sinh ah  -j- 6\„  cosh ah] =  0.

By equating to zero each term in the sum, and replacing 
Ctn and C3n by the formulas (f) and (g), we obtain

® ( Cln cosh a f t+ - ||- s in h  a h +

+  C3nh cosh aft —aC|„A sinh aft) +

+  C3n sinh aft —aC,„ cosh aft =  0 ,

and after rearrangement

— a V lBft sinh a  ft -|- C3n (aft cosh aft +  sinh a  ft) =

=  —— sinh a  ft. do
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From condition (7) and the formula (c) it follows that 

? +  V a 2 cos ax(Ci„ sinli ah -f- C,n cosh ah  -f

-l c 3nh sinh ah +  Cknh cosh ah) =  q,
from which, with the formulas (f) and (g), we obtain

C,„ (sinh ah -  ah cosh ah) +  C3nh sin h ah  =  — cosh ah.
(i)

Checking of the stresses X x a t any vertical section 
shows that

Xxdy = 0 for A3 = 0 |see the equation (i)J,

i.e., the equilibrium condition X  =  0 is satisfied.
By solving the equations (h) and (i) simultaneously, 

we obtain the values of the remaining unknown coeffi­
cients in the formula (a)
„ 2q afi+sinh ah cosb ah ...
t , n = ~7E5-- ,inh* a*-#*** ' W2 q sinh8 ah

a sinh2 aA —a!/i* (k)
An analysis of the numerical coefficients in the formu­

las (j) and (k) in the case of a beam of sufficiently large 
depth (h >  I) allows us to assume simpler expressions 
for tho quantities Cln:
Cln at - 2 7/o3, Ctn =  2q/a*, C3n ~  -2 q /a , C,n ss 2qla. (I) 
Taking into account the formulas (1) and the relation 
cosh ay — sinh ay =  e-“i/,
we finally obtain the following expressions for the stresses:

X* =  — 2q ^  cos ax  (1 — ay) e~av,

1 „ ----- q — 2q ^  cos ax  (f — ay) e~av,

= Y x ~  —2 q 2  ay sin axe - a».

(m)
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The series in the formulas (m) converge very rapidly 
for all points except for those near the lower edge of the 
deep beam (for small y).

The calculations carried out for a deep beam with 
h  =  21 and 6 =  1 are given in Fig. 36.

The displacements are determined by integrating 
Eqs. (5.4)

° £ = ^ x x - o Y y), £ - 4 (y , - ® x , ) ,

dux duv 2 ( l +  o) v

giving

u * =  T - { - y - +  2  ~ - s i n o a : [ ( l + o ) a y — ( l - o ) ) e ~ « i ' |  +

+  Fi(v),
0—007S
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Uy =  { _ i +  2  -S’ C0S 1(1 +  0) aiJ +  21 *"*"} + 7'2 (*),

where Px (y) and P2 (x) are some functions satisfying the 
third relation of (n) and the deformation conditions.

The presence of concentrated forces introduces indeter­
minacy into vertical displacements, and the origin can be 
considered fixed only in relation to the horizontal dis­
placements ux.

Assuming, by convention, that when x  = I and y =  0, 
tho displacements ux and uu are zero, we can determine 
tho arbitrary functions F t and compare Iho displacements 
of the other points with the chosen one.

Then

F ; (;/) =  -  oql/E, F2{x)=  -  2  T  cos a l< (°)

as seen, the values given by (o) also satisfy the third equa­
tion of (n). When x  =  0, u x =  — aal/E\ when x  =  21, 
ux =  aql/E.

If the supports are immovable and the beam cannot 
oxtend freely, instead of the condition

{ X x dy =  0

it is necessary to prescribe the condition th a t ux =  0 when 
x  =  0 .

The basic equations remain tho same, but the coeffi­
cient A s will be different from zoro and

%x= — oq — 2q 2  cos a x  (1 — ay) e~au;

the remaining stresses are determined from tho formulas
M -  .

The X x diagram a t tho m iddle section for the case 
immovable supports is shown in Fig. 36 by a dashed nn«-
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Id this case the stress X x is equal to q (1 — a) when 
y =  0 , and the beam undergoes an additional uniform 
compression equal to aq.

5.4. Levy’s problem (1898) [5).

Fig. 37

Determine the stresses in an infinite thin wedge due to
a fluid of specific weight y  and the specific weight of the
wedgo material p  (Fig. 37).

Tho stress function is taken in the form of a third- 
degree homogeneous polynomial 
<P (*. y) =  as? +  bx*y +  czy* +  dy9, 
where a, b, c, d are constants.

The boundary conditions of the problem are: when

y =  —x  cot <x or x  =  —y  tan a,
— X x cos a  — X y sin a  =  yy  cos a ,

—X v cos a  — Y v sin a  =  yy  sin a ;

whon y =  x  cot P or x  =  y  tan P,

X x cos p — X v sin p =  0, X u cos p — Y y sin P =  0,

where tho stresses are determined by formulas (5.11) 
with Y  =  p  and X  =  0.
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By solving the equations expressing the boundary con­
ditions, we obtain

-  y (2 -  3 tan a  tan P -  tan2 a)),

» - t [  ■ - 6* 1|U"1 P *>]  ■

The stresses are determined by formulas (5.11):

X< =  0 = 2 «  +  6 dy, Y y = ^ -  = 6ax-i-2by,

*y = Y x = ~ - ^ - P x =  - 2ctf“ (2fc-l-p)ar.

Livy’s solution leads to a linear distribution of normal 
and shearing stresses, and can be used in the design 
of dams.
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The solution is broken down into three steps:
(1) Assume the stress function <p for the triangular 

section AOB  (see Problem 5.4).
(2) Set up the stress functions q>x, q>2) <p, for the tri­

angular section AOB  subjected a t the vertex 0  to a hori­
zontal force P v, a vertical force P x, and a moment M, 
respectively,

<*>3— 2 (s in  p —pcos P) ( **+!/> C°S^ '

+  2 cos Parc t a n - j ) .

(3) Choose the values of the forces Py, P x, and the 
moment M  so that the stresses on the plane CD, given by 
the sum of the values of steps (1) and (2), will reduce 
to the force system prescribed on this plane.

According to Problem (5.4), with x  replaced by y, we 
find

P cot p ,  p ,
<p = JL-£J L y3— j y  x -
The gravity forces produce on the plane CD the forces 
(see Fig. 38)

=  0 , 5 x =  - ^ - ta n p ,

Sinco no external forces 
it follows that
y * = o ,  px -(- s x = o, 2 y = o ,  Pv= 0,

S W o ,  =  0 , />x ^ L ^  +  A /+ 5 x i ^ l P  =  0 ,

from which we obtain

P x =- -  ta n  P, P„ =  0 , M  =  tn n 2 p .

=  - ^ - t a n 2p. 

applied to the plane CD,

The stress function for the trapezoidal section is 

 ̂(*. y) =  <Pr +  q>» +  <P8.
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and the stresses are determ ined by the form ulas

p  Determine the stresses in an infinite trapezoidal section 
A BCD due to a fluid of specific w eight y  (sec Fig. 38) 

The stress function q> for th is case is

9 =  — (2y® cot p —3y2x  cot p +  2yx2 +  jr3) .

5.6. Kolosov’s problem (1910) [27].
An infinite plate is weakened by an e llip tica l hole and 

subjected to a uniform extension w ith stresses p  directed at 
an angle P! to the x  axis (Fig. 39).

Fig. 39

Investigate the sta te  of stress.

DlaTnheezr6i ^ V UtSid0 e l,iPlical hole in the complex 
the unit l-y  m apped onto the region outsideXp^rrn%rples pla"e * - *+*" *

(a)~  /  (£) =  C (£ +  m /£ ),
where 0 ^  ^  1( c >  Q

an elfips^contred lu h e " ! !  — 1 1 =  1 corresponds to
the semiaxes 8t *^e 0rigin *or t h° 2 p lane and having

a -  c (1 +  m), b =  c ( i ~ m \ (b)= c (1 -  m).
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According to  the form ulas (b), 
e =  (a +  b)/2 , m  =  (a — b)/(a +  b). (c)

W hen the axes are ro tated  through the angle plt the 
re lation between the stresses is, by formulas (1 .5 ) and 
(1.3),
A',, +  Y Ul =  X x +  Y y,
Y Vl - X Xt +  2iX y, =  e2,P. (Y v - X x - 2 i X v).

Since a t infinity

x ^  =  p , y <~ ) =  x ^ )= o ,
it  follows th a t
X x +  Y y =  p , Y y - X x +  2 iX u -------

According to  form ulas (5.21), a t infinity 

4 Re ip' (z) =  p , 2 [zi|>* (z) +  %" (z)] =  —pe-2'3i. (d)
For the ellip tica l hole, by (5.22) and (5.19),

Fx +  iF y =  0,
_____    (e)

i|> (z) -f zip' (z) +  x ' (z) =  0 .
W ith the help of the form ula (a) we find

v  (z) =  *  [/ a ) ]  =  ih  ( a  
x (z) =  X [/ (£)] =  Xi (£)•
Then

<*♦ d d£ *,'(?)VK dz d; dz ~ r (0 ’
Y' !z\ _  *X _ d x , d£ (p
x w — * — 3 T *  — n t T '

w  _  <* r  (o i «  <pk£)/' (d /*(p  / n
*  ^ - d T L T l E r J  * -  i r l u i 5 • (f)
v* (z\ -  ±  r  *LKLl x i r o n D - x i r o n o* w dC L /' (?) J * _ l/' (OP

S u bstitu ting  the expressions (f) in formulas (5.20),
(5.21), (5.22), and (5.23), we obtain

ux +  iuy =  (£) -  i ± 2  [ ; p ^ i T ( 0  +  x H S ] . (g)
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y ,j -  x x+ 2ix y= -fyr-jp i/  (o  r ,  (0  /' (0  -

-TIT) (9 /' (0+ r.; (0 /' (C) -  y.; (0 1" (£)1,

For the stresses to be single valued, the functions 
<|>; (£) and xl ( 0  must be of the form

'Pl(0  =  x; ( 0  =  J o ^ ? - n- (I)

It is seen from the equations (e) and (i) that the follow­
ing relation holds on the circle | £ | ~  1 :

7 ^ . ( 0  +  / ( C ) ^ 4 - x [ ( £ j = 0 ;  (k)

also, for the conjugate functions

/'(OMQ+7(0'p;(?)+y;(C)=o. (k')
By integrating the formulas (j), we ohlnin

♦i(5) =  ^*t +  i 4 , l n t + 2

x; ( o = »oC+ « ,  in c + s

(i)

where A and B are complex constants characterizing # 
ngid-body displacement.

Substituting the expressions (1) in the formula (g)> 
we find the condition for single-valued ness of displace­
ments, viz. that the coefficient of In £ should bo zero:

(3 -  a) /l,  +  (t +  a) g j  =  o. (m)
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For | fc | =  1 wo have 

f  ({) =  e ( l - p ) = c ( l - n M' » ) 1

7 (0 - c ( ? + - ^ ) = c ( e - if-f me*),

* ©  =  4 *  +  * . ln?  +  2  ‘t S 1  =
n-2

=  7f0e - il » - t / l tp - 2  I ne « " - ') P ,

(t) =  J / n « inP, 

x; ( 0  -  /V *  +  i/*,p -  2  ^  s ne' <1 - n)p.

Substituting these expressions in the equations (k) 
and (A:'), and equating the coefficients of! f) and ei"0, we 
find

c J , -J- /i, =  0 ,

— c/l2 -! -|- cmA0 + B0 =  0,

Ci4, -f-cm/lj— y -  =  0 , (n)

cA0 -i-cmA2 +  cA0 -|- mAt — Bz — 0,

— cmA0 -|- c/l2 -|- cinAi —-y- =  0.

When n ^  3, A„ =  0; when n > 5 , B„ =  0. According 
to the formulas (d),

/l0 =  4 r-. B o -4 • u 2 

By solving the first equation of (n) simultaneously with 
tho equation (m), we obtain A, =  B^ =  0. By solving
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tho remaining equations of the system (n), we find

= &*■*),

B2 =  (1 +  m2- 2 m  cos P,),

fl3 =  0 , # * = - ■ ^ e 2i »■.
The required functions are

X' (0 =  -  e -W ‘ +  ^  (1 -  >n2 ~  2 m  cos 2(i,) f * -

_ M e2.H -4.

From this, according to the formula (h), wc obtain

*«  +  y ,  =  1 +  m‘- ’>m~cos 2p 11 -  m» -  2 cos 2 (P, -  P) +

+  2m cos 2p cos 2 (P, -  P) -  2m sin 2p sin 2 (P, -  p)J.

Tho maximum stress occurs a t the end of llic semimajor 
axis (P =  0) for pt =  n/2. At this point, X x =  0 and

x r „  =  p -

Taking into account the formulas (c), we obtain, finally, 
max Y v ■--- p (1 +  2alb). (o)

Tho oquation (o) expresses tho results of Kolosov’s 
problom.

► Whon m =  0 and pt =  0 , the solution for a circular
holo is obtained; this is Kirsch’s problem (see Prob­
lem 6.7). 1 v

► Find tho law of stress distribution in an infinite plate
weakened by a square hole and subjected to an extension 
in two directions; the tensile forces a t infinity =  
_  V"1 o~ ^ Ul ~  ® aro inclined to the x  axis a t an
angle px. Map the square holo in the z plane onto the
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u n it  circle in the £ plane by the mapping function

z - c ( t “ T ?3) -  (p)

whore c =  3a/5, a is the length of tho side of the curvi­
linear square (Fig. 40).

\y

The equations of tho contour are obtained from the 
formula (p) for | £ | =  1 :

x =  c (cosp — cos3p) , j/ =  — c (sin p +  -^-sin 3p)

(see tho monograph [371, p. 64).

5.7. See the monograph [281.
Solve tho first fundamental problom for the half-plane 

j / ^ 0 .  On the boundary of tho half-plane (axis Ox) are 
applied normal Y„ =  N  (x) and shearing X v =  T  (x) 
stresses, which are continuous and satisfy, for large | x  |, 
the conditions N  =  0  (ilx), T  =  0  (1 lx).

By adding formulas (5.21) togothor, wo obtain

Y u +  iX u =  M>' (z) +  M +  X* W.
and hence the boundary condition may be written in the 
form

N + i T  =  (D (I) +  W Jt)  +  SD' (t) +  i[) (f),

or, what is the same thing,

N  - i T  =  W & )  +  <D (0  +  t®5!* ) +  ’TU). (a)
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where, for simplicity, we have written

f  (t) =  <D (t), x" (0 =  *  (*)•
For the case when the functions (a) are holoniorphic 

and vanish at infinity, it is proved ([281, p. 361) that
they are equal to

® (*) = _ _ L  F *L=H-dt,
2n( J i - i  ' (b)

(z)
\ 7 N + IT 1 7 N  — iT ,

- s n  ] — d t+ m  j  T = # t d t ' (c)

Michell’s problem (1902) is solved in a sim ilar way 
([281, Sec. 93a).

Determine the state of stress in the half-plane i/^O  
when the segment —a ^ t ^ a  of the axis Ox is subjected 
to a uniform pressure p  (Fig. 41).

y

In the case under consideration T  =  0; N  =  —p  when 
— and N  =  0 for the other values of t. 

According to the formulas (b) and (c),
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The expression In —-- is ihe incromenl of the function 
Jn(z — I) when t varies continuously from —a lo +  a: 
z - t  =  re‘P; In (z —t) =  In r— ip, In ^  =  In - 1 (P, -  p 2) .

The stresses are determined by formulasJ(5.21):

X x +  y„ =  4 Ho (D (I) =  -  i f .  (P, -  P2), (d)

Y v -  X x -I- 2iX u =  2 lid)' (z) +  i|) (2)] =

2pg s — z _  4 pay \p a y  (z2 —a2) _

hence,

* , =  — £ - ( P . - P i )  +
2 pap (a2 —y2—a2) 

n Kl4 +  !/2—a2)*+4a2p2l • 
2 pay (i2 — y2 —a2)

X,

(f)

Assuming z2 — a2 =  r 1r 2e - i(P<+P«) in the formula (e), we 
obLain

Y tt- X x -i 2 iX u =  _ I f f i f ei(e.+P.), («')

and taking into account the formula (d), we find

r » -  — f  d » . - ■ (O

x v=  - 2pa-ysinr(p; + p , ) .

The stresses are continuous up to the boundary. At the 
points t =  ± a ,  the stresses cease to be continuous, remain­
ing bounded \y =  — rx sin =  —r4 sin P2).

The displacements are continuous up to the whole 
boundary (including the points t =  ± a ) .  When | z | -*■ 
-*■ the displacements increaso as In | z |.
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^  Determine the state of stress in the half-plane y ^ .0  
when constant shearing stresses are applied on the seg­
ment —a < f < a  of the axis Ox.

5.8. See the monograph [38], Chap. VII.
A rectangular strip along the x  axis (y =  0 and y =  h) 

is placed between absolutely rigid and smooth planes;

V//M Y /////////////////////A & & .
Fig. 42

arbitrary (static, geometrical, or mixed) conditions ore 
specified at the ends of the strip (x =  0 and x =  I) (Fig. 42).

Determine the state of stress and strain for the case of 
plane stress (6 =  1).

When y =  0 and y =  h, 

uu =  x u =  0 - (a)
In this case, for the initial functions we havo 

u* =  X l =  0 .

By satisfying the boundary conditions (a) when y =  h, 
we obtain a systom of two differential equations of infi­
nitely high ordor in the unknown in itial functions 
and y j:

[(1 -  o) sin (ah) -  (1 +  a) ah  cos (ah)] u° +

+  T  [ ( 3 — ° ) — (1 +  a) h cos (ah )]7 “ =  0 ,

(b)
-  2 (1 + o ) a  [sin (ah) +  ah cos (ah)| +
+  [(1 -  a) sin (ah) -  (1 +  a) ah  cos (aft)] y » =  0 .
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Introducing tho solving function F(x) by the formulas 

Ux =  sin (ah) -  ah  cos (ah) JF,

(c)
Yy  =  2a [si n (ah) +  ah  cos (ah) | F,

we identically satisfy the second equation of (b), and the 
first equation becomes
[sin® (afc)l F =  0. (d)

The solution of the equation (d) is taken in the form 
F  =  Ce“x. (e)

Substituting tho expression (o) in the equation (d), we 
arrive a t the equation
sin* (kh) =  0 , (f)

from which 

k  =  lcn nnlh,

where n is any positive integer.
Thus, tho general solution of the equation (d) is

F  =  A n cosh (knx) +  Dn sinh (knx) +  C„x cosh (fc„s)+ 

+  Dnx  sinh (knx), (g)

where A n, Bn, Cn, D n are arbitrary constants.
Tho general solution does not incorporate the elementary 

solution in terms of polynomials corresponding to the 
zero roots of the equation (f).

To find the elementary solution, wo represent the equa­
tions (b) as infinite series and separate the first terms in 
them

— 2 o a ii;- |- ( l— (T)yj =  0, 2 ( l+ a ) a * i4 H traYJ =  0. (h)

We obtain, from the equations (h),

“£ =  — 0„x-M o, YJ =  o/i0i X S =  B0. (i)
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By using the expressions (i), (c). (g), and (5.29), we arrive 
at the following formulas:

a , =  A0+ Box- S  (■- D" h {*" sinh <k>'x) A" +

+*„ cosh (knx) B„ +  [ cosh (fc„x) + knx  sinh (knx) ]C „+  

+  sinh (knx)+ knx  cosh (fc„x)] Dn } cos {k„y),

uu =  ^  ( -  l)n h { kn cosh (k nx ) An + kn sinh (knx) Bn +

+  [ T + F  sinl1 +  knX 00911 ]  C"

+ 1̂ |± £ . cosh (k„x) +  fc„xsinh(Anx) j  £>„} sin (k„y),

y„ =  o/?0 +  2 2  ( — i)n k nh{kn cosh(knx )A n +  (j)

+  kn sinh (k„x) fl„-|-[3 sinh (k„x) +  k„x cosh (knx) I C„ f  
4-13 cosh (knx) +  knx  sinh (A„x)[ Dn) cos (k„y).

X x =  Bt — 2 2  ( — 1)" knh {k„ cosh (k„x) A n +

-)- kn sinh (knx)B„ -|- [sinh (knx) + knx cosh (lc„x) K '„ I- 
+  [cosh (knx) +  k„x sinh (/c„x)| Dn) cos (k„y),

^v =  2 2  ( — l)n k nh{kn sinh (k„x) An +

+  kn cosh (fc„x) B„ +  (2 cosh (knx) +  k nx sinh (A:„x)| Cn |- 
4- [2 sinh (knx) +  knx cosh (fcnx)[ D„} sin (k„y).

With tho help of the arbitrary constants i40, B 0, A n, 
Bn, C„, Dn (n =  1, 2, 3, . . oo) wo can satisfy any 
boundary conditions on the sides x =  0  and x =  I.

The formulas (j) arc generalizations of tho well-known 
Filon [391 and Ribicre 1401 solutions (seealso [11, Chap. X).
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Solve a sim ilar problem in the case when ux =  Y „ =  0 
for y =  0 and y  =  k  (see the monograph 138), Chap. VII).

p. Solve a sim ilar problem in the case when Y v =  X v =  0 
for y =  0 and y =  h  (see [41]).

5.9. See [421.
A thin rectangular strip  (6 =  1) is loaded by a force 

equal to unity  a t the point x  =  c, y =  h. The edges of the

strip ( i  =  ±1) are clamped (ux =  0 throughout the depth 
2h, uv =  0 when ij =  0) (Fig. 43).

Formulate the boundary conditions of the problem.

The concentrated force a t the point x  =  c may be repre­
sented on the interval — as the lim it of the 
function

as e -v  0 ; tho product pe remains finite and is equal to 
unity.

Taking into account the expression (a), we replace the 
force by the trigonom etric series

Fig. 43

10-0973



n ,  a. Plane Problem In Rectangular Co-orillnatet

The boundary conditions on the longitudinal edges are: 
when y — h,

^ 4 + t 2 c0ST c0ST + T  S  s in - T 1  s in n- T  .

X„ =  0;
when y =  —h,
Y ll = X y =  0.

The boundary conditions on the lateral edges (x = ± I ) 
are: ux =  0 for - h  <  y <  h\ uy =  0  for y =  0 .

The solution of the problem using the homogeneous 
boundary value solutions is given in [421.

5.10. See [431. „
Analyse a square deep beem loaded according to Fig. 44.

Let us calculate the value of the stress function on. the 
contour.
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Portion 1: 

r v =  - 0 -  =  ° . 1 7  =  c<. 'P =  c, x + c 2.

Assume cx =  c2 =  ca =  0.
Portion 2:

Y„ = - j £ = - /iP’ - g - = - 4 p s + c * ,

(p =  — 2px2 +  cix  +  cs,

At the boundary of portions 1 and 2 the values of the 
function and its derivatives must coincide, and hence

— 4px c* | *=0.41 =  0, - | -  =  Co =  0,

— 2pxz + ckx  +  cs |*_o.u =  0 .

Consequently, c4 =  1.6pi, cb =  —0.32pi*. and for por­
tion

c p = -2 p x 2 -f - l .6 p fx -0 .3 2 p P , -g- =  0.

When x  =  II2, cp =  0.72B, where B =  pP/36. 
Portion 3:

X, O-tf
w 0 , —  =  c7, q> = c7y + c a.

From the equality  of the boundary values for portions 
2 and 3 we have
e7 =  0, c8 =  (—2pxa +  1.6plx  — 0.32pP)s. a.t i, 
c0 =  (—4px +  1 .6p/)*=0.si;
hence, c8=  —0.02pP , c8 =  —0.4pf, and for portion 3 

q*" — 0.02pP =  —0.725, - J = - 0 / i p Z ,  - J  =  0. 

10*
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Portion 4:
v  —^ 2.^=0  ~ -C io <  q>---C(o* I cn.
I n ~  dx* °x

v _ _ * L  =  0, -?- = eu .
J' t ~  Ozdy Sy

From the equality of the boundary values for portions
3 and 4 we have
Cu =  0 , cl0 =  —0.4pi, (c10x +  Cii)i-o.5/ — —0 .02pP;

hence, cu  =  0.18pP, and for portion 4

q>= — 0.4plx-r-0.18pP, - ^ = - 0 . 4 p f ,  -0- =  O.

Portion 5:

£ - - » » + « » ■
9 =  — 0.5px*+CtjX +  C|*,

x » = S = o ’ - ? = c '5-
From the equality of the boundary values for portions

4 and 6 we have
( - p x  +  =  -0 .4 p i,
(—0.5px* +  eltx +  =
=  (-0 .4p lx  +  0 .18pP)_0.4l;
hence, cls =  0, cu  =  O.lOpP, c,» =  0, and for portion 5 

9 =  —0.5px*-)-0.10pl2, - |L = - p x ,  ■§- -0 .

When x =  0, 9  =  3.65; when x =  1/6, 9  3.15; when
x — 53, 9  =  1.65.

The values of the function 9  outside the contour are 
obtained by formulas (5.41): 

along the lower edge

9» =  9 „  +  2b y  (-22.) # == 9„

unca (dip/fy), =  0, where 9 „ is any lowor value of 9 
lor the inside nodal points adjacent to tho contour;
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along the lateral side

<px =-q>i*h2Ax (* ^ ’) ( =  <Pi +  2 -j-(— 0.4pl) =» 91—4.85,

where q>i ie any lateral value of 9 inside the contour; 
along the upper edge

where <p„ is any upper value of <p inside the contour.
The contour values of 9 and the values outside the 

contour are given in Pig. 44.
By applying Eqs. (5.39') to individual nodes, we find: 
node 1

20<Pi — 8 (3.65 +  94 +  9t +  9») +  2 (9, +  3.1 5  +
+  3.15 +  95) +  97+  9i +  9s +  9» “* 0.

219, -  169* +  29s -  8f« +  +  % =  -16.45;
node 2

209, -  8 (3.15 + 9s + <P» + *1) + 2 (9. + 3.65 + 
+  1.65 +  9«) +  <P« -  0-725 +  9. +  9* =  0,

- 89, +  229, -  89, +  2Vl -  89, +  q>s =  -15.125,
etc. (for all 15 nodes shown in Pig. 44).

By solving the system of 15 equations, we obtain 
9, =  3.3565, 9,  =  2.8855, 9* =  1-4825,
9« = 2.9065, 9» =  2.5125, 9. =  13115,
97 =  2.3065, 9g =  2.0245, 9, = 1.0975,
9,« =  1.5315, 9„  -  1.3815, 911 -  0.8005.
9 ,s -  0.6345, 9,4 =  0.6085, 9u *  0.3965.

The graphical representation of the surface showing 
the stress function 9 is given in Fig. 45.

The stresses are determined by formulas (5.40); for 
pxample:

or

or
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point I
” » - - 0 . 5 0 p  ( c o m p * ™ ,,

point 1
x , =  (3.600 -  2 x  3;356 +  2.885) ^ = _ 0 2 0 7 p  (compression); 

point X I I I
„ \ t n  (0.634 —2 x 0  +  0.634) H , .. . ,X* 1 = ' --------------------  — = 1.27/) (tension).

The diagram for the normal stresses X v on the section 
coinciding with the y axis is given in Fig. 44.

In solving the linitc-differonce equations extensive 
use can bo made of tho modern computing technique.



Chapter 6

plane  pr o b l e m  in  p o l a r  c o -ord in a tes

I. PLANE STRESS

Zz =  Zr -  =  ezr = e*  =  0, e„ =  - - § -  (Rr +  Bfi).

The equations of this chapter are obtained as a special 
case from tire corresponding equations in cylindrical co­
ordinators (1 .1b, 2 .1b, etc.).

1. Equilibrium

^  + ~ »+ * _ o ( = p - 2 ^ ) .
(6 .1)

I. Geometrical equations

1 du» , Ur
r ap +  r ’

e „ — 1 a,'r | __

1 O f  0ew  \ 1 ifierr 0er
~ ~ r  \ r  — ) +  T ~ W ------Tr

& (rerf) 
dr 5p

(6.2)

(6.3)
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3. Physical equations

(flr-oflp), e» = - j ( B t - o R r),

M _ 2 J !£ 2L * .

R r =  - j i ^ r (e"  +  ae» ) .  =  i - c r J ^ a<’rr ’̂

/?® =  2(l +  o)erS-

4. Basic equations In terms ol stresses

w + j . ^ . + £ ^ ! + r , o,

^ - t t + ^ + s - 0'

where

»(■••! . 1 « ■ (-)

(■£■+ t  w  + h £ ~ w )  +

r =  e' (t =  In r),

(6.4)

(0.5)

(6.6)

(6.7)

3 = 0 .  

to the

(6.8)
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Eqs. (6.7) can be reduced to equations with constant coeffi­
cients

( - £ - ■ - 1 + ^  w ) Ur+  ^ ) “»+

+  - T 2- e" f l (t) =  ° . (6.9)
a / i + o  a . 3—o \ „ . /  a» . , 2 a* v

ap ( 1 - o  a/ +  l —o ) +  ( op * i - o  ap*) “* +
+  2 0). e2lB  (<) =  0.

II. PLANE STRAIN

ezz =  eZT =  erf) = Zr =  Z fi = 0, Z , =  a (f?r +  f iB).

For the case of plane strain, it  is necessary to replace in all 
equations of part I,

a 6y o-1 -  1 ^  p , and E  by E t - .

III. SOLUTION OF BASIC EQUATIONS

The solution of the homogeneous equations (6.7) can be 
taken in the form suggested by B. G. Galerkin:

ur [ d  +  CT) i r  -  2 <cos PV*q>, +  sin pv 2<p2) j  +
- fa s in f l  + b c o sp , (6 .10)

u»~- ~  W  p T 1  -§j—  2 (sin PV*«p , -  cos p V*q>2) J +
+  a cos P — 6 sin P +  cr,

where q>f are arbitrary biharmonic functions,

id =  c o s J i l l  . - - - a  I C0SP 
T ' Or r ap ar "r  r ap 1

a» b, and c are constants characterizing a rigid-body dis
placement,
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The general solution (R =  B =  0) of Eqs. (6 .6) with the 
help of the stress function <p (r, P) is obtained by taking 
the stresses according to the formulas

_ d I 1 *P \ _  1 *p 1 Ftp
Br = R»= -■af l TTr; — W

(6.11)

When the stresses are given in the form of (6.11), tho 
system of equations (6 .6) is reduced to tho biharmonic 
equation

^ = ( P -  +  T ¥ 4 i ) 2<f =  a  (6 -12)
A wide class of biharmonic functions cp is obtained from 

harmonic functions i|> by means of transformations 
<p =  np cos p, rip sin P, r*ip.
Of the known particular solutions of the biharmonic 

equation (6 .12) we mention the following:
<p (r, p) =  A0 * + B0fi + A In r +  In r  +  Cr* -{- Drffifc  +

+ [(/l1r*+fl1r* + Clr-' + f)1rln/-)*“nsp «**] +
+  3 (Amrm +  Bmrm+2 + Cmr~m +  Dmr~ »■+-)j ‘> tp +

+ mJ £  3 rm lAm cos ;« p  +  Bm sin m p  +

+  Cm cos (m -  2) p + Dm sin (m -  2) p|. (6.13)

. . ‘V v f S  - - r  |,robl“ s’ “  » ' E»- <6-,2>

+  T r l f  =  0 (6.14)

Tlic quantities A 0 and A, do nr 
>, 1,0 omitted. 1 "f

va 1 ued^d^spUce mentsq in^Eq .°(6. 1°3

affect the stale of stress and

a closed ring to obtain singlc- 
it is written for plane stress.
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whose general solution is 
<p =  A In r +  Br2 In r  +  Cr2 +  D. (6.15)
The stresses are determined by the formulas

=  T - S - =  4  +  5  +  2 ln 0  +  2C,

B» = - ^ - =  — -^- +  ^ (3  +  2 1 nr) +  2C, (6.16)

Br = R »  =  0 .

2. Application of a complei variable [27]

Referring to Fig. <46, we have
ux =  ur cos P — u„ sin p , uv =  ur sin P +  cos p ,

(6.17)

from which
ux -r  iuy =  ur (cos P +  j sin P) +  iu B (cos P +
+  i sin P) =  (ur +  m„) e‘».
For plane stress, according to conditions (5.20) we find 

ur +  iuf l = e - i P { ± ^ - ^ ( Z) _

Iz lp lij - |- 7 ( 5 j |} .  (6.18)

Substituting z — r e and z =  re- '!' on tho right-hand 
side of formula (6.18), and separating the real and imaginary 
parts, we obtain expressions for ur and u 6 in polar coordi­
nates.
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According to the formulas
R, =  Xx cos* P +  Yf  sin* 0 +  X„ sinf2p,
Bt =  Xx sin* p +  Y ,  cos* p -  X ,  sin 2p,
■ffj =  (lrr — Jf*)sinp cos P 4- X 9 (cos* p — sin* P), 

ire find the relations 
R, +  Bt  -  X x + Y„
Bt - R r + 2lRt = ( X , - X x + 2iX y) c*‘P, 

rrom which, taking into account (5.21), wo obtain 

R, +  Bt  =  2 1$' (*) -f if' (2)) =  /,Re (2)t (g jgj
B , - R r + 21R, -  2 [^* (2) +  (2)1 (6.2QJ

By subtracting (6.20) from (6.19), we find 
Rt -  iR t =  If' (x) +  (*) _  (j) + y- (.jj eJ,p_

(6.21)

“r - 4 ( ^ 4 / . +

+ ( - £ - ~ i + t~  /a r  a sin P +  b cos p,

+  T ^ - ) / i  +  acosP — bsin p  , Ce\

(6 .22)

where U /,(P . <) are functions satisfying the equation

form: "  so,ution 0* Eq. (6.23) may be taken in the

!°r “ Ww*Reshaped region
t *  & (P)
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from which
/  (P. r ) =  rk I-4 * cos (* — 1) P +  B k sin (ft — 1) p +
+  Ck cos (k +  1) P +  D k sin (k  +  1) §1; (6.24)
for an unclosed annular region

/ = r ( 0 S £ * p .

from which

/  (P. r) -  (Akr»"  +  +  Ckr*~' + Dkr-*"fl*  ftp, («.25)

where k  is an undetermined parameter, A k, B k, Ck, Dk are 
arbitrary constants.

The displacements are: 
in the first case

ur =  - ^ - [ ( l + o ) f t - ( 3 - a ) l { ( f t - l ) [ f l * c o s ( f t - l ) p -

— 'Ia sin ( f c - l )P ]  +  (ft +  l)[£>k cos(ft-h l)P  —
— Ck sin (ft + 1 )  pi) +  a sin p -I- ft cos p,

— tt {(*—1) l(t +ff)ft-l-(3 —o)IM*cos(fc —1)P +
(6.26)

+  Bk? tn (ft — 1 )PI t-(ft +  l ) ((1 +  a)ft —(3—o)] x  

X [C* cos (ft +  1) p -f Dk sin (ft 1-1) P)} -|- 
+  a cos p — ft sin p — cr; 

in the second case

ur -  ±  |  {(1 +  o) (ft -  2 ) Akr*« -  ((1 +  o) ft +  4 11) / - '  +

+  I (1 I- a) ft -  4) C *r*-‘ -  (1 -|- a) (ft +  2) 0 kr * * ‘)S8 ftP +

+  a sin p +  ft cos p,

“« = - | { l ( l + o ) H 4 ]  Ak»*♦• -|-1(1 +  a)ft +  41 x  

x  Bhr-k- ' +  [(1 -|- a) ft -  41 C*r*-' + 1 (1 -I- a) ft -  4] x 

X D*r'*+*}*!," ftp +  a cos P — ft sin P — cr.

(6.27)
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Furtlior, formulas (6.5) arc used lo set up expressions for 
stresses. Thus, for the first case 

Br -  Gkrh~' {(1 -fa ) (£—3) (A— 1) [Bh cos ( k - 1) p _
- 4 , s in (k— 1)PJ +  (A-f f ) ((1 - f a ) A - ( 3 - o ) J  x  
X(Z»Acos (A-f 1)P -C *  sin (A-f 1) P)},

Bf = — GA(A-f 1) r**1 {(1 +  a) (A — 1) x  
X \Bh cos (A— 1) $ — Ah sin (A — 1) p] -f (6.28)
+1(1 +  a) A— (3— a)) \Dk cos (A + 1 )  p — Ck sin (A-f 1) pj}) 
Br = B f=  — CAr*-' {(1 -f a) (A -1 ) 2  }Ah cos (A -  1) p +
+  Bk sin ( A - 1) pj +  (A + 1) ((1 + o) A -  (3 -  o)| x  
X [C* cos (A - f 1) p -f Dh sin (A -f 1) pj}.

Having the values of displacements (6.26) and (6 271 
and of stresses (6.28), it is possible to formulate any boun­
dary value homogeneous solutions.

6.1. Lame’s problem (1852).
nreAJu°reg n 0l1InT cy,in(ler .is subjected to a normal external 
pressuic p° and a normal internal pressure n, uniformly 
distributed over tho lateral surfaco (Fig /J )  >

Find the stresses and displacements.

In view of polar symmetry and two boundary conditions

* -  =  ~Po (.)
we take the stress function (6.15) in the form 
<P =  A In r -f  Crl*.

According to formulas (6.16), the stresses arc 

n ^ ~  + 2C, Bn 2C, B ^. Br 0 .

By using the boundary conditions (a), we obtain
/ ) - fL*fcl(P .-P /l >r — f P t — PPn

For a so,i(' cylinder, 9 =  Cr*, n r =  B
-P o . Pfl =  Br =  o.
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from which

l i r =  -p L a i  [ “2Pi ~  b2P» +  (Po -  Pi) J ,

Bfl =  bt '_ a* f a*P* - ^ P o — 2̂ -  (Po -  Pi) ] •
To determine the displacements ur (ufl =  0), it is 

necessary to integrate Eqs. (6.4), with Eqs. (6.2) and

Fig. 47

relations (5.9). Equations (6.4) for the given problem 
nrc of the form

E t ^ - =  R r -a tB n ,  / i , - ^  =  B f> -o ,R r. (b)

From the equations (/;) wo obtain

Ur =  27T(J - ,r -)  [ - 2a) (aiP‘~ l>2Po) r +-— L (Pi ~  Po)] ■

6.2. Golovin’s problem (1881) 144 , 45].
A fla t circular bar of outer radius b and inner radius a 

with a section in the form of a narrow rectangle (6 — 1) 
is bent by moments M  applied a t the ends (Fig. 48). 

Determine the stresses and displacements.

In view of the fact that the stresses arc independent 
of the polar angle p, we take, according to formula (6.15), 
the stress function in the form <p =  A  In r +  In r  +  
+  C r\
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The boundary conditions of the problem areb b
R ,-u = 0, Rr-b  =  0, dr =  0, j  B 9r dr =  M. (a)

By writing out in full the equations (a), we obtain 
Ala2 +  R (1 +  2 In a) +  2C =  0,
Alb2 +  B (1 +  2 In b) +  2C =  0, (b)

A In +  B (b2 In b — a2 In a) +  C (b2 — a2) =  M.

The third condition of (a) is satisfied if the first two 
are fulfilled.

We solve the equations (b):

•4 - - T “w ' n T .  s - ~ 2"

C ”  TT I*1 ~  +  2 ( f  In 4 — In a) |, 
where
N  = (b2 -  a2) -  Aa2b2 ln* ± .

The stresses are
R _  / a»4» l

r~ ~ 1 T { - 7 T-ln 7  +  62In - l  +  (I2 in i . \

B»— _,1£L l  a»i» , b r r
N \ “ T  ln 7  +  i 2 In T  +  a 2 In 1  +  fli )  ,
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The approximate solution by the formulas of strength of 
materials, where the stresses B vary according to a hyper­
bolic law, is in good agreement with the foregoing exact 
solution.

To determine the displacements, it is necessary to 
integrate Eqs. (6.4):

^ T = t { A + V  - ° ) ln r + 1 - 3ol B + 2 ( l - o ) C} , 

T l f  “T  =  T  { A +  ~ a) ln r + 3 - a > *
X B I 2 (1 —a) C), (c)
1 dur , dug u» — Q
r ap dr r

We integrate the first and second equations of (c)
successively

ur =  y -  { A +  12 (1 —a) In r - 1  - a )  rB +

+  2 (1 — o) » c}  +  /,' (P),

n* =  4 f rP - M P ) +  /*(»•)•

Subsliluting the values of displacements thus found 
in the third equation of (c), we obtain two equations

/;(»■ )-- M r ) - o ,  r » (P )+ / .(P )= o ,
from which
/, (P) -= b sin p — a cos P, / s (r) =  cr.

The displacements are finally 

u r = - i -  |  —1 ± 1  /i +  [2 (l — o) In r —1 —a )rB  +

+  2(1 —a) rC j + a s in  P +  hcosP,

"p i-p +  acosp  —bsin p + c r

lcf. formula (6 .10)].
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To determine the arbitrary constants a, b, and c, it is 
necessary to fix the bar so as to eliminate its motion as a 
rigid body; for example, to assume, a t the point 0 lt

The displacement Up is made up of two components: the 
displacement and the rotation of the section through an 
angle 4Bfi/E about the centre C as a rigid body. Conse­
quently, in pure bending the cross sections remain plane 
(Bernoulli’s hypothesis).

6,3. Michell’s problem (1900) [451.
Determine the state of stress in a thin (6 =  1) infinite 

wedge of angle 2a to whose vertex is applied a force P 
making an angle 0! with the axis of the wedge (Fig. 49).

We assign tho stress function in the form 
cp =  Arp sin 0 +  Brfi cos 0.

The boundary conditions of the problem are: when 
P a ±<XJ- 5 e — Afl =  0; when r 0, Y. X  =  T! Y  =  0.

According to Eqs. (6 .11), the s t r e s s  are *
Rr =  (2/1 cos 0)/r _  (2B sin 0)/r, R =  R  =  0.



Problems 163

Thus, tho boundary conditions on the sides of the wedge 
are satisfied, and the conditions for determining the arbi­
trary constants are

2  X  =  j  /?,. cos ?/■ </? +  /> cos ?, =  (),

2 * -  j  R r sin pr dp +  f  sin ?! =  0,

from which
2P cos p, _  2Pr

2a - |- s in 2a  2a + s i n 2a  ’

We obtain, Qnally,
R  _  2P I cos p, cosP sin p, sin P \

r " '  r \  2oc +  sin 2a ^  2 a - s i n  2a /  ■

As r 0, the stresses R r oo since it has been as­
sumed that the force is applied a t the point.

When the angle 2a is small, the stresses determined by 
the formulas of strength of materials arc close to those 
obtained in the problem considered.

► Determine the state of stress if a moment M  is 
applied to the vertex of the wedge (see Fig. 49).

H int. Take the stress function in the form cp =  A? +  
-h B  sin 2?.

A nswer.

Hr si n 2p, -  0, R» =  -J- (cos 2p -  cos 2a),

where C is determined from the condition
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and is oqual to 
C =  M (sin 2a — 2a cos 2a).

► Determine lliu slalo of stress in a thin infinite wedge 
of angle a  with a uniformly distributed vertical load of 
intensity q applied over the inclined face (Fig. 50).

Hint. Take the stress function in the form ism (0.13)] 
V =  r2 (A2 cos 2p +  R, sin 2p +  C3p +  D„).

Answer.

n ' = ~»inacos2Q' »n=  -Sin^p,

Br =  ftfl ~  -jJ n a- sin 2p.

of tl<̂  ° f  ̂ thin infinite wedgeof angle a  for two loading conditions (Fig. r,0):

v c i ! L f efaPce;SSUr0 ° f " ° f SpCCif,C ^  * on the
(2) the specific weight of the wedge material g.

tse^(6.13"]b0tl' CnSCS Uke 11,0 slress Unction i
<P =  r* 14 .  arte Qfl i n  . . _

the form

P D 3 sin P),
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determine the stresses by formulas (6 .11) and, to take 
account of the action of the specific weight, add to the 
expressions obtained the particular values of the stresses 
by the formulas

/?r =  —gr cos P, B fi =  — gr cos P, 7?p =  B, =  0, 

which are derived from the equilibrium equations (6 .6) 
when
R  =  g cos p, B  =  —g sin p.

6.4. F lam unl’s problem (1892).
Determine the state of stress and strain in the elastic 

half-space loaded by a concentrated force P perpen­
dicular to the boundary x  =  0 (Fig. 51).

, B, = R t = B r ~ 0 ,

i.c., ihe case of an elementary radial distribution of 
stresses (Michcll, 1900).

On any circumference of arbitrary diameter D tangen­
tial to the boundary line at the point of application of the
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force (see Fig. 51) we have 
D =  r/cos p, R r =  —2PlnD =  constant.

The principal shearing stress at all points of the cir­
cumference is
Tmax =  \ Rr — |/2 =  P/nD =  constant;
hence, in the photoelastic analysis of plane models, similar 
circumferences (isobars, i.e., lines of equal stress) show 
on the screen near the points of application of forces.

Equations (6.4) for plane strain are 
0ur _  2 (1 — o*) P cos p

1 0u» 2a (l +  o) P cos p 
r dp — Jl E r (a)

l  dur “a _ .
r ap +  dr ' r ~ U- 

By integrating tho ft ret and second equations succes­
sively, wo obtain

s r . - i < ^ c o s p i „ r  +  f(P ),

u^ i ^ ^ s in p + ^ K sinpii
■ - / ( P ) + / . l > ) -

To find the unknown functions /  (P) and /, (r), we sub­
stitute the values of displacements in the third equation 
of (a), which after some manipulation becomes

r  (w+f si« p= /. ('•) -  '•/; ('•)
and breaks up in two equations

r  (P) +  /  (P) =  -  2 (1 +  q^ ~ :!g)/> s in  p.

f\ (r) — ~  fi  (r ) =  o*.

Equaling both sides of the equal ion to zero and not to an arbitrary 
constant is duo to the fact that this constant docs not enter into 
the expression for displacements.
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The unknown functions are 

/  (p) =  C, cos p +  Cz sin p +  JL+°) -  *> P p cos P| 

lt(r) = Cir.

The displacements are finally

—  p .m p +

+ \C ,+  J a » n - C lr tg | ,  ..

- c , t »s p - [ e , - ^ l ± 2 i ] > i » | ) + c ^

To determine the arbitrary constants Ct, it is necessary 
to fix the half-plane so as to eliminate its motion as 
a rigid body; for example (see Fig. 51), when p =  0, 
u 0 -  0 ; when r = h and P =  0 , ur =  0 .

In this case [451
C1 =  C3 =  0,
^  2(1—o*)P

- aE
In fc -  « + * * - * >  P

and ;he displacements are determined from the formulas

2 (1- 0) PC0&P/- 
The points of the boundary line (P =  ±n/2) have the 
displacements

«r|(>

K>ln-±»
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Referring to Fig. 51, tho stresses on planes parallel to 
the x  and y axes arc

X x = R r cos2P - x*
(*s-h»s)‘ ""

>P_ cos3 p

Yy = R r sin2 p =  - j £ -  

Y x — X y=  - y -  sin 20 =

x y 2P cos p .
(z’+ j ,3)3 ~  n

* (**+0s)s ~
2 P cos* p sin P

±

► Determine the stresses in the half-plane due lo a mo­
ment (seo Fig. 51).

Answer.

R r =  —--^ - s in 2p, Bfi =  0,

f lp = f lr =  l i 7r cos2P 

(see Problem 6.3).

► Cerruti’s problem (1882).
Determine the stresses and displacements in an elastic 

half-plane loadod at the origin by a force T  directed along 
the y  axis (see Fig. 51).

Answer.

Ur ~  [ 2 1,1 T sin P ~  0  - °) P cos p j  ,

Up = ~n8E [ ( 1 + <J)cosP —2 In A cosp _ ( 1 _ CT) p s in pj

6.5. H ertz’s problem (1883).

b y ^ r S ' c ^ P  nnf® °f Stre!?.in a circular disk compressed Dy two foices P  not passing through the centre (Fig. 52).
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The problem is solved by superimposing three states 
(111, P- 522):

(1) the point A is a pole from which a radial com­
pression emanates producing the stresses

(2) the point B  is another pole from which a radial 
compression emanates producing the stresses

(3 ; lo the disk is applied a uniform all-round tension p 
for which
R r3 — Bfo =  p, =  0

(sec Problem 6 .1).
When all three loads are acting simultaneously, the 

stresses a t the point C uro

R r |  - j-  cos Pi cos*0 | +  cos p2 cos- a 2) ,

== p — ( - L cos p, sin2 a ,  +  y - cos p2 sin2 ota),

P

Fig. 52

P

y -  cos p2 sin Oj cos a 2 j .

i cosai —
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Taking into account that 
a , +  p2 =  ji/2 , a ,  +  p, =  n/2 , 
rj =  d cos a , =  d sin p2, r2 =  d cos a 2 =  d sin Plt 
where d is the diameter of the circumference, we obtain, 
finally,

Rt = B r = 0.
For the circumference ABC  to be free from radial stresses 

R r at all points, except at A and B, we have to put

where sin (P, +  p2) is a constant.

^  Determine the state of stress in a circular disk com­
pressed by two forces P passing through the centre of the 
disk, and construct the normal stress diagram at a dia­
metral section perpendicular to the forces (see Problem 
3.1).

6.6. See (46).
Determine the state of stress and strain in a hollow cir­

cular semicylinder of large length, resting on an absolutely

rigid (Uf =  0) and smooth (R ff =  0) foundation, due to 
a hydrostatic load q =  y (h — b sin P), where v is the spe­
cific weight of the fluid (Fig. 53).

^  =  P - ^ 5 - 9in (P* +  P2)’
#S =  p — jg- cot Pi col p2 sin (Pi +  p2),

sin (p! + P 2),

Fig. 53
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Wo assign the stress function in the form of (6.13)

(p - A^r2 +  Bo In r ■+■ 2  Bmrm*2 +

-I- Cmr~m +  Dmr~m*2) cos m§. (a)

The boundary conditions of the problem are: when

r =  b, Br =  —y (h — b sin P) and Br = 0; when r = a, 
R r = 0 and Br =  0 ; when p =  0 or ji, =  0 and 
ufi =  0 .

Expanding sin P on the interval 0 ^  P ^  n by the 
formula

2 4 -CT Q3'"P
SlM " 7  IT  2 j  (m _i)(m  +  l) •

m-2. 4----

and assuming the stresses by formulas (6 .11)

B r = 2A0 +  - ^ —  ^  lm ( m - l M mr”-*4-
2. 4__

+  (m — 2) (to + 1 ) Bmrm +  to (to + 1 ) C 4- 
+  (to -i- 2) (m — 1) Dmr~m] cos mp,

B » = 2 / l „ - - § - +  2  [to (to— 1) i4mrm'* +

+  (to +  2) (to + 1 )  Bmrm +  m (m + 1) Cmr m-% +

+  (m +  2) (to— 1) £>mr 'm] cosTOp,

R6 = B r =  §  T O [ ( T O - l ) / l n,r ,n- ’ -MTO +  l ) f l mr ,n -

-  (TO +  1) Cmr“m“a — (m — 1) Dmr-m\ sin to?,
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wo obtain the values of all arbitrary constants in I 
formula (a) from the first four boundary conditions 
a Y<2fc-Jl/.)Jr „  V (2b —nh) a-b-

A° ------ 2 (**_«* *) ' -------- «----------- <

Am =  (m + 1) [toC —(m — 1) Z)J

Bm = - ^ ( m - l ) [ m D - ( m  +  l )  Cj ,

0 m=  — (m +  1) Da~"'*lam*t, 

where
a  =  bla,
A =  ji (Cj9 — mAD) (to — 1)* (m +  l)3,
A =  (m — 1) a 3 — (m — 2) — a-., ("+Di 
B = m3a -3 -  (m -  2) -  (m +  2) a - 3"1,
C =  —(to — 1) a -3 +  to — a-«™+'>,
D =  - m o -3 +  (to +  1) +  a - 3m.

The displacements are determined from Eqs (0 4) 
with (6.2). By integrating the first two equations of (0 .4) 
and equating to zero the arbitrary functions*, \vu find*

£,wr =  2 (1 -  a,) A0r -  (1 +  a,) S s .—

— S  {(1+ a i)w-‘4mrm~I+lM  — 2 + a ,  (m+2)J Bmr ‘“' —

-  (1 + o .) inCmr~m~l -  [m + 2 + a , (to -  2)] D„r-"**) cos mp,

E,Uf> = 2 {(1 +  a) TÔ mrm- ‘ +  [(l -|-a,)TO+4 )

+  CT|> mCmr-m-1 -I-1(1 + 0 ,) m - 4 1 sin ,„p.

* The Hurd equation of (0.4, , r8 =  J i l i + f i L  Rf ^  ^  ^
function in tho form (a) is satisfied identically.
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Thus, the boundary conditions in ft arc satisfied.
In the case of a uniform external pressure p 0 and a 

uniform internal pressure p t on the semicylinder, pro­
vided that p„b >  p ta, the well-known solution of Lamp’s 
problem is obtained.

► Find the state of stress and strain in a solid semicylinder 
(a =  0) of radius h, resting on an absolutely rigid and 
smooth foundation, due to a hydrostatic load (Fig. 53).

Hint. Take tho stress function in the form

«P =  A „r» +  |  (A mrm + B mr«*) cos mp.

r
P x  Fi* 34

► Investigate the state of stress in a thin (6 =  1) circular 
ring extended by two forces P (Fig. 54) (see the monograph 
111, p. 512).

flints. (1) Replace the concentrated force by a uniformly 
distributed load q = PI2ab in the portion 2ab, where a  
is a small angle.

(2) Assume the stress function in the form (a).

6.7. Kirsch’s problem (1898).
Investigate the state of stress in a thin (6 =  1) uniformly 

extended rectangular plate with a small circular hole 
(Fig. 55).
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The stresses caused by the small holo are local stresses 
rapidly decaying with the distance from it.

The stresses in u solid plate can be determined in 
terms of the stress function

<p0=4- py2= t  pr% 9in2 p= t  pf2 (1 “  cos 2P)
for which

In using the stress function q> for the solution of the 
present problem, the resulting stresses for large values 
of r must be the same as with the function ip0.

According to formulas (6.13), we assign the stress 
function in the form

9  =  A In r  +  flr* In r  +  Cr* +
+  (/lsr» +  B2r* +  C .r-J +  D t) cos 2p.

To avoid increasing stresses with increasing r, wc set 
B = B2 = 0, and to obtain the same stresses for large 
values of r as with the function 9 0, it is necessary that 
C =  pi4 and A t  =  —piA. Thus, the stress function is 

9  =  A In r  +  pr*/4 +  (-p rV 4 +  C2r -a +  D 2) cos 2p,
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and the stresses are
B r =  Ah* +  p/2 -I- (pl2 -  6C M  -  W Jr*) cos 2p.
B fi =  - Alt* +  p/2 +  (—p/2 +  QCz/r*) cos 2p,
R fi = Br =  - ( p /2  +  6C2/r* +  2ZVr») sin 2p.
The arbitrary constants are determined from the con­
ditions: when r =  a, R r = Br =  0*.

On setting up these conditions, we obtain 
i4 =  —pa*/2, C2 =  - p a ‘/4, D a =  paV 2.
The stresses are finally

Sinco the body is not simply connected, it is necessary 
to check the single-valuedness of displacements. Calcula­
tions show that the displacements are single valued; this 
proves the validity of the solution.

Figure 55 shows the diagram: when p =  ± n /2 , 
B fi — 3p; when P =  0 or ji, B fi =  —p.

Tims, an increase in stresses (concentration) occurs at 
the edge of the hole.

If the width d of the plate is not very great compared 
with the diamotcr 2a of the hole, but still greater than 4a, 
the maximum value of /?p can bo determined by the 
formula

max //„ 3pdl(d -  a).

6 .8 . Michell’s problem (1900) 15).
Determine the state of stress in a thin (6 =  1) circular 

heavy disk resting on an absolutely rigid horizontal plane 
(Fig. 56).

* It follows from Eqs. (6.11) that we can also set up conditions for

Bt = Br = — -  ( l  — 7r - + - 7 r )  sin2p.

the function <p: when r a, q> =  0 and
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The force at the point of support of the disk is 

P =  n/f*v. 
where y  is the specific weight of material.

Fig. 50

The problem is solved by superimposing 
(1) the point A is n pole from which n radial 

emanates producing the stresses

two states: 
compression

. i ^ i = _ i ^ L CoSp, o,Rr ---. ■

and the stresses at the edge of the disk tr 
are (Problem 0.4) k

R r =  — yR , X x — — y R  cos2 p, Y y =  _  v/f si

* , =  - j £ - s i „ 2P;

2/? cos P)

(2) U 
to add

' eliminate the stresses thus found it is 
the system of stresses

* . — ■f t - * , .

determined by the stress function 

9  =  " f  [ i r  +  R  (**+ W!) ~  U2x  j .

ocessnry
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Noting Hint y =  r sin p, x = H — r cos p, it is easy 
to obtain stresses a t the edge of the disk (r =  2R cos P), 
which aro reciprocal to those indicated in part (1).

At cnch horizontal section there is a radial pressure 
acting in the direction of the point A and equal to

JL. (4 /i2 cos2 p — r2).

6.9. See 1271.
An infinite plate is weakened by a circular hole with known 

stresses B r and B r applied on the contour of the hole for 
z =  ae'P, where a is the radius of the hole.

Investigate the state of stress.
The analytic functions i|>' (z) and %" (z) of solution

(6 .21) must be expanded in power series so that they will 
be finite when r =  oo. These functions are of the form

1|>' (Z) -  2  A nZ-'\ t"  (z) =  J i # B nz -n, (a)

where A,t and Bn are complex constants.
It is seen from formulas (6.19) and (6.21) that the stresses 

at infinity are determined by the constant B 0 and the 
roal part of the constant A 0. The imaginary part of the 
constant .-10 does not affect the slate of stress.

By integrating (a) with respect to z, we find

i|i (z) — A„z +  A , In z — ^  -----

%' (z) ^  -i B, In z -  2  +  C2’
»—2

where C, are complex constants.
Taking into account the relations

Y V )  -  2  T lz )  = B *  +  Bi 1" 2 -

2—0073
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from formula (6.18) we obtain

ur + iufi — e -w [ - lj2 -  ( a 0z +  A 1 ln z — 2  '^ ”1 |---- f-C ,)-

- i ± 2- (£ *  +  »■* 2

- i ± ^ ( / 7 0i-|-/7 ,ln 'Z- 2  +  (b)

Sotting 2 =  re'f* gives In z = In r ip.
This function is not single valued in p. The increment 

of ur +  iUfi on passing once round the hole is

2 n U - * ( ± ^ - A t +  - ^ / 7 . ) ,

and the condition for single-valuedness of displacements is 
(3 — a) A y +  (1 +  a) 7ix =  0, 
from which

Since Lho stresses R r and Br are given at r =  a , the 
expression (Rr — iBr)r̂ _a can be expanded in a complex 
Fourier series (471

(R r-iB r)  r-« =  n 2  Cnj+ ,  (d)

whore tho coofficionts Cn are determined by the formula

c„ = 5rj ifl , (P)-fl,(P)i ,-.dp,

n =  0 , 1 , —1 , _  2, . . .

Substituting tho series (a) and (d) in solutions (6 .21), 
and taking into account tho conditions on the contour
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(r =  a), we find

2  c »ei"f = S  ^ e‘ ,nS+ S  i r e‘B|1+

+  S # e- ' " ' - 2  =

- 2  [ ( ! + « )  > * - - > ] - ? -

_  ̂  e‘» -  V 2P -I- S  4 s- e'nl> ■ (e)

By comparing the coefficients of like powers of einf> 
on both sides of the equation (e), we obtain

/ ,  +  I o - ^ C o ,  4 — 4 = C „

4 - - tfo - c 2, 4 = c " i°Tn> 3- (f)

l± iL /l fl_ ^ -  =  C .n for n > l .

Noting that A 0 +  A 0 and B„ characterize the state of 
stress a t infinity, we consider them known. The magnitude 
of the imaginary part of the constant A 0 corresponds to 
the displacement of an absolutely rigid body (b), and 
it can be taken to be unity. The constants are determined 
by the formulas

At)+ A t = 2At , A, =  —' 3^ °  Bi [seo formula (c)]. 

Further, from the equations (f) and (c) wo find

B % =  2A„a2 -  C0a \  A i =  B„ai +  C**; 
for 3
Bn =  ( n _ l ) a M n. J - a nC.n+s, A n = Cna”.
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The complete solution of the problem is possible if the 
stress distribution along the circular contour und the 
conditions at infinity are given.

^  Determine, by using the method considered, the state 
of stress and strain in a wide plato weakened at the middle 
part by a small circular hole of radius a and subjected to 
a uniform extension with stresses p directed along the x 
axis (Fig. 55).

Answer. (1) For the stresses, see the formula (b) in 
Problem 6.7.

(2) The displacements for (7, =  C2 =  0 arc, by the 
formula (b),

u» ~  ~  Pt2ErCT> ( T+TT2g2 +  r2 +  ~pr) sin 2p.

► Find the stress distribution in an infinite plate with 
a circular hole if R r = —p and Rr =  0 at the edge of the 
hole (r =  a). The stresses at infinity are zero.

<!>'(*) =  0, %’ (z)= p a V z\
Rr =  —pa2/r*. B „ =  paVr1, Br =  R fl =  0,
“r =  pa2 (1 +  o)/Er, Up =  0.

► the stresses in a thin circular ring of outer radius b
and inner radius a compressed across the thickness by two 
forces (Fig. 57).

For the solution, see 148J.

6.10. See (49).
Find the homogeneous solutions for a thin wedge fixed 

at a finite number of points of the base if the following 
data are given (Fig. 58): the wedge is acted on by a fluid 
of ̂ specific weight y, a  =  n /6 =  0.524, 6 =  ji/12 =  0.262,
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To obtain a particular solution satisfying the non- 
homogeneous boundary conditions on the faces OA and 
OB, we assume ft =  2 in Eqs. (6.26) and (6.28) and, to 
simplify the expressions, take ct =  0 .

Fig. 57

Fig. 58

The arbitrary constants of the particular solution are 
determined from the conditions: when P =  a , Bp = 
=  —yr cos (a -(- 6) and B p =  0; when P =  —a , Bp =
=  Bp -  0 .

The general homogeneous solution is obtained for the 
homogeneous boundary conditions on the faces OA and 
OB: when p =  a, B n =  B p =  0; when P =  - a ,  -
=  /?,, 0 , which in expanded form give four equations
(ft -  1) sin (ft -  1) a A h -  (ft -  1) cos (ft -  1) *B k +
+  (ft -  3) sin (ft +  1) aCk -  (ft -  3) cos (ft +  1) aDu =  0, 
(ft — l )2 cos (ft — 1) a A h +  (ft — 1)* sin (ft — 1) aB h +
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+ (k — 3) (fc +  1) cos (k +  1) aC„ +  (k -  3) (k +  1) x 
X sin {k +  1) aDk =  0, (a)
(k -  1) sin (k -  1) a A k +  (k -  1) cos (k -  1) aB k +
+ (k — 3) sin (k +  1) aCu +  (k — 3) cos (k  +  1) aDh=0,
0ft -  1)* cos (Jfc — 1) a A h — (k — 1)* sin (k -  1) aB k +  
+  (k -  3) (k +  1) cos (k +  1) aCk -
— (k — 3) (A: +  1) sin (k +  i) aD k =  0.

In order to have the constants A k, Bk, Ch, and Dk 
difTcrent from zero, the determinant A (k) of the system 
(a) must be zero. By expanding the determinant, we 
obtain a transcendental equation for determining k
sin 2ka =  ± k  sin 2a. (b)
Setting 
k =  a ±  lb,

substituting in tho equation (b), and separating the real 
and imaginary parts, we obtain equations for deter­
mining a and b:

sin 2oa cosh 26a =  ± a  sin 2a , cos 2<ia sinh 26a =
=  ± 6  sin 2a, or, for the value

a =  ±  C03i>,|12gC  ̂ V s in h 2 26a — 62 s in2 2 a , (c)

tos^j— ^(eoih |2 6 a |  ^  s in h 2 2 /x x - 6 2sin2 2a) a  -

h'or tho numerical vuluos of tho problei 
tho equations (d) and (c) arc

(d)

(a =  0.524),

a -  ±1.155 colli 11.056 | [/sinh3 1.056 — 0.7563, (e)

cos 1.21 (coth | 1.056 | l/sinh3 1.056 — 0.7562) =
=  ±0.86G6/sinh 1.056.
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The graph of the equation (f) is shown in Fig. 59. The 
values of some of its roots are given below:

For the set of the parameters k m =  am ±  ibm found from 
the equations (a) and (f), the corresponding constants are 
determined by the formulas 
A k = FhA, (k), B„ =  F„A. (k), Ck =  FkA3 (k),
D„ =  FhA, (*),

where A/ (k) are the cofactors of the elements of a row or 
column of the determinant*; Fk are arbitrary propor­
tionality factors.

By taking any finite number of terms in the general 
solution, it is possible to satisfy the boundary conditions 
on the supporting plane AH  a t any finite number of 
points.

The numerical calculations for an elastic wedge on a 
rigid and an elastic foundation by the foregoing method 
using computers aro given by N. E. Borisov in |50, 51].

* l'or .simplicity, the subscript m on k is omitted,

±

Fig. 59



Chapter 7

TORSION OF PRISMATIC AND CYLINDRICAL BARS

I. PURE TORSION OF BARS OF CONSTANT SECTION

1. Assumptions

In solving problems of the pure torsion of bars use is 
mndo of Saint-Venanl’s semi-inverse method assuming 

X x = Y y = Z : = X a =  0, 
whore z is the axis of a bar.

2. Basic aquations

With the assumptions adopted, the computing equations
aro:

Static equations Iscc (1.1a)]

(7.1)
Boundary conditions [(1.2)] 

on the lateral surface 
Zx cos (v, x) +  Z„ cos (v, y) =  0, 

at the ends (z =  0 and z - I)
(7.2)

J J x , r f ^  =  0 , j  j V. dF =  0 ,

j  ] (Y .s  — A',//) dF
(7.3)

where M. is the torque.
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The geometrical equations (2.1a), with (3.1a), take the 
form

and Eqs. (3.4a) become
v 2y t =  0, V 2X, =  0. (7.5)

3. Solution of problems by means of Prandtl's function (1903)

The stresses are expressed in terms of the function (I) =  
=  <J) (x, y) by the formulas

X, y ,  =  Zu dip
dx (7.6)

According to Eqs. (7.5),

V2fD -  C. (7.7)

By integrating Eqs. (7.4), we find, omitting terms repre­
senting rigid-body displacements of a bar,

ux — —ayz, uv =  axz , u z =  u z(x, y), (7.8)

where a  is the angle of twist per unit length of the bar.
From the last two equations of (7.4) we obtain the values 

of the shearing stresses

X« - 6’ ( - & - “ »)■ I V  g ( ^  + *x ) ,  (7.6')

and, on comparing Eqs. (7.6) and (7.6'), we find Poisson’s 
equation (4.6) for P randtl’s function

V*d) = = - ^ - u ^ ® ^ - 2aC, (7.7'),)T- ' f)lj-

from which, by Eq. (7.7),
C -= —2aG.
The relation between the displacement u z and the stress 

function <D is determined by equalities (7.6) and (7.6')
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from which it follows that

- f r - w  +  T T T -  W = ~ a x ~ T ^  (™ )
and

V V  =  0.
Equations (7.9), with (7.7), are always integrable [see 

Eqs. (4.17) to (4.21)1.
The quantity ut characterizes the warping of the cross 

section, i.c., its distortion out of the plane during the 
deformation of the bar.

4. Properties of Prendtl's function [1]

From Eq. (7.2) (Fig. 60) it follows that
am dy a n  dx <w> n
dy ds ' dx ds ds ’

and hence on tho contour of a solid bar wo have 
CD (x, ij) -  0. (7.10)
Tho shearing stress at any point in the section is dirocted 

along the lungont to the lino <D =  constant passing through

Fig. 60

TSTi ■

this point and is proportional to the 
along the normal to this line

rate of change of (D

By the shear circulation theorem (R. Bredt, 1896), 

§  Sz ds = 2aJGF<s>y
<lh*C

(7.11)

(7.12)
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where Fq> =  §  h ds/2 is the area of the solid section 
o>-c

enclosed by the curve under consideration.
By the third equation of (7.3),

M t =  2 j  F<s> d<S> =  2 [ J (D dF, (7.13)

where dd> =  S t dv is the differential of the stress function
(7.11), F is the cross-sectional area (including holes).

II. PURE TORSION OF CIRCULAR BARS (SHAFTS) 
OF VARIABLE SECTION [361

In the case of the torsion of a shaft of variable section 
(Fig. 61) the problem is solved in cylindrical co-ordinates 
under the following assumptions: 

ur =  u : =  0, =  up (r, z), (7.14)
R r / i p =  z t =  R z =  0. (7.14')

2. Basic equations
Under the above assumptions, (7.14), the computing 

equations arc:
Geometrical equations l(2.1b)l
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1 dur dug lift dug up
e' ^ T ~ d f  + ~r-----~  = ~ r--------

1 dut dug dug
e»«= T - f lp - + - a r = - a r -
Equations of Hooke’s law

B’- = Rg = G { ^ r - — ) ,  B* = z o = G ^ r -  (7.iG)

Static equations [(l.lb)l
In the nbsonce of body forces, there is only one equi­

librium equation left:

'w - + I d r + — = 0’

and the remaining equations are satisfied identically.
Tile last equation can be written in the form

- L (r*Br} + ± (r> B I) = 0 (7.17)

and satisfied identically by introducing the stress function ib 
by the formulas Y

L i *  B. = -1- £ ± (7.18)

w f e “ lvi,,i! EqS‘ (71(: ) and <718) or the fifth equation of 
- simultanoously (the remaining strain compatibility 

equations are satisfied identically), we obtain

(7.19)r a T + f e T = 9 -

re<m, I inn if®™-1 SUrraC0 Vs f,oc from external forces, the resulting shearing stress is directed along the tangent to

normal" v^is zem l n ' t r  SeCli°n’ a,nd itS ^ roiuction <>n Uwnormal v is zero. In this case we have 
B, cos (v, r) -f- B , cos (v, z) =  0,
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whore
cos (v, r) — £ ,  cos(v, 2 ) = - - ^ - .

Taking into account formulas (7.18), we obtain
<hf d=_, =  =  o
dz ds Or ds ds *

from which it follows that on the contour 
if =  constant, (7.20)

and at the ends (z =  0, z =  /)

=  J j  Btr (IF =  j  j  Bzr2 dr dp =  2n j  r2/?, dr =

-2nj §  f/r̂  2wf|u, (7-21)
where a is the radius of the cross section under consideration, 
determined by the equation of the generator.

If the lateral surface is acted on by a load p, thon

, _L±LiL=_D
r- dz ds 1 r* dr ds

from which

and instead of formula (7.20) we obtain

s|> =  — j  r2p ds. (7.22)

3. Solution ol the differential equation 
for the torsion of a shaft [521

There arc several possible forms of solution of Eq. (7.19). 
In  terms of power functions 
Assume 
if =  r"zm. (7.23)
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Substituting the value of *  in Eq. (7.19), we find n =  4

(7-24)

and the stresses become
Br= _ JL (C r*  + D), B 2 — ACr(Az + B). (7.25)

shaft. In this case 
\J> =  Cr*, Br =  0, B z = ACr, 

and, from formula (7.21),
C = Afj/2na‘.
In terms of Bessel functions 
Assuming 
* =  n  (r) Z (z), 

where R (r) is a function of the variable r, and Z (z) is a 
function of the variable z, and substituting in Eq. (7.19), 
we obtain

where X is some number.
Equations (7.26) have the following two solutions 1531: 

=  (A sinh Xz +  B cosh Xz) [Cr2/ 2 (Xr) +  Dr'-Y2 (Xr)l,

i|> =  {A sin Xz +  B cos Xz) [CrJ/ 2 (Xr) +  Dr^K^ (Xr)], (7.28) 
where J t (Xr) and Y2 (Xr) are the Bessel functions of a real 
argument of the second order of the first and second kind, 
respectively; / 2 (Xr) and K 1 (Xr) are the Bessel functions 
of an imaginary argument of the second order of the first 
and second kind, respectively. The stresses are determined 
by the formulas 

Br =  -X ' (A cosh Xz + B sinh Xz) [CJ„ (Xr) +  D Y 2 (Xr)l, 
B t = X  (A sinh Xz +  B cosh Xz) \CJl (Xr) +  D Y X (Xr)] (7.29)

= 0, -g -q iX 2Z =  0, (7.26)

(7.27)
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and
B r =  - X  (A cos X z - B  sin Xz) IC /2 (Xr) +  D K a (Xr)],

=  X (A sin Xz +  B cos Xz) IC/, (Xr) +  D K X (Xr)], (7.30)

where J lt Y i, h< are the Bessel functions of the first 
order.

In  terms of Legendre functions
The differential equation for the torsion of shafts of 

variable section (7.19) in curvilinear orthogonal isothermal 
co-ordinates* is of the form

I f  d l ) + ,0n \r> (7.31)

where g (r, z) and 11 (r, z) are curvilinear orthogonal iso­
thermal co-ordinates in the plane of the axial section of a 
shaft.

The co-ordinates g and 11 in the plane rOz (see Fig. 61) 
are related to the co-ordinates r  and z by the equalities 

r =  Ce* sin ij, z =  C& cos t|, (7.32)

and inversely
£ =  In | /  r2 +  z2, T] =  arc tan r/z.

Assuming
* =  /, (i) u  (ti),

where f x (g) is a function of g, and f t (t)) is a function of -q, 
and substituting in Eq. (7.31), we obtain, with (7.32), 
two equations

T fi—  3 - ^ - - ( » - l ) ( »  +  2 )/i =  0.

^  -  3 col 11 ^  +  (n - 1) (n +  2) / ,  =  0, 

where n is somo constant number.

(7.33)

The isothermal co-ordinates £(r, z) and q(r, z) satisfy the rela­

t i o n s ^ - ^  o n d # - = ^ L .
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From the first equation of (7.33), assuming /,  (£) =  
we find

U (t) = A nei>>+2*+Bnei-''+'X  (7.34)
The solution of the second equation of (7.33) is sought 

in the form
f t  ft) =  sin2 q 7  (cos q) =  (f -  p2) Y  (p), (7.35)

where p =  cos q.
Substituting the valuo of / 2 (q) in the second equation 

of (7.33), we arrive a t the Legendre equation

v |a - l ' ,>4jfJ + l«<» + O-T^ J r -0 , P-M)
from which

1'( l ‘) H l - | i 1) - f 1 (7.37)

where Pn (p) are Legendre functions of llio first kind, or 
Lcgondre’s polynomials if n is an integer.

The first solution of Eq. (7.31) is

fn  ff„e(-"H « |sin4 q 'P^ a(|l) . (7.38)

The second solution is of the form

'  M„e<"+2* |- uj| Sin4 n Jgg j  (Pl ' (7.39)

wl,“re Qn (p) are Logondrc functions of the second kind.
Whon n =  0 and n =  1, the solutions are ohlaiued directly 

*rom the second oquation of (7.33): 
whon n =  0,

/ ,  -  C„ cos q -|- D„ (1 +  cos2 q); 
whon n =  1,

f t  C, I- (3 cos q — cos2 q).
Thus solutions (7.38) and (7.39) are supplemented by 

two valm>s of tho function tj>:
(A0e25 | /yofft) | c 0 cos q -|- D 0 (1 (- cos2 q)|, (7.40)

-= ( V 1 +  « ,) 1C, +  D x (3 cos q -  cos8 q)l.
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In the case of olliptic co-ordinates £ and q, which are 
related to the co-ordinates r and z by the equalities

assuming
11) =  /, (6) / .  (n).

we arrive a t a solution in the form (see the monograph [521, 
p. 92)

ipo =  Mo cosh 5 +  f t  (1 4  cosh21)1 [Co cos t)+  f t  (1 +  
+ cos2q)],
if, =  [ f t  +  f t  (3 cosh I —cosh3 II [C ,4 -f t (3  cost) —

whore p =  cos i], 0 =  cosh | ,
Pn ( . . . )  =  Legendre functions of the first kind, 
< ? „ ( .. .)  =  Legendre functions of the second kind.
If the co-ordinates r  and z are interchanged, i.e., the 

poles of the elliptical co-ordinate system are placed not 
on the axis of the shaft Oz, but on the axis Or, the relation 
between /, z and | ,  q is 

r =  a cosh |  cos q, z =  a sinh |  sin q, (7-43)
and solution (7.42) becomes 

%  I f t  sinh |  | f t  (1 -  sinh21)1 [C, sin q +  f t  (1 +  
-l-si.r-q)!,
i|>, -  1/1, ! f t  (3 sinh 1 4 sinh3|)l |C, -|- f t  (3 sin q -  
— sin:,q)|,

r =  a sinh |  sin q, z =  a cosh |  cos q, (7.41)

— cos3q)(,
(7.42)

where 0 — i sinh | ,  p =  sin q.
13-0973

(7.44)
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problems

7.1. A bar of elliptical section /  (x, y) =  xVa* +  y*/6* -  
— 1 = 0  is twisted by a torque M z.

Investigate the state of stress in the bar.

We assign the stress function in the form 

cb =  A f (x, y) =  A (xVa2 +  yVb* -  1), 
where A is an unknown factor.

194__

.7 ^ 1

?a

Substituting the function cD in Eq. (7.7), we obtain 
2A/aJ +  2 Alb1 =  -2 aG , 
from which

A =  - a G a W (a 2 +  62), 

and the stress function is

a*+ 1>! \
The stresses are determined by formulas (7.(:

(a)

x  _  dQ) 2aCa-
2 Oij a*+b- V'

2a Gb- 
«- +  //- ;

The stress diagrams are given in Fig. 02.
To determine Afz) we use formula (7.13). According to 

the formula (a), the area of the ellipse is

'■•■s ” * ( | - S r ) - « « » ( » - T c r ) .
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wliero, for x  = y = 0,

^iiiiix — aGa262/(a2 -f- b2).
By (7.13),

A/, =  2 j  P(t,d<D = 2nab j  (1 — a>/a>max) rftD =

=  n abQ mni =  n a  Ga3IP/(a2 +  IF).

The maximum stress occurs a t the points (0, ± b )  
max X z =  2M z/(nab2).

From Eqs. (7.9) we find

Tims, the cross sections of a bar of elliptical section do 
not remain plane in torsion, but transform into surfaces

whose horizontals are equilateral hyperbolas having the 
axes Ox and Oy as asymptotes (Fig. 63) 111.

7.2. A bar of circular section /  (ar, y) =  x2 +  y* — a* =  0 
is twisted by a torque M z.

Investigate the state of stress in the bar.

We assume the following expression for the stress func­
tion

=  A f (x, y) =  A (x2 +  y* — a2),

y

Fig. 63
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wlioro A is an unknown factor.

By Eq. (7-7)'
U  +  2it =  '2 o G , 
from which 
yl =  —oG/2,
nnd Iho stress function is

The stresses are determined by formulas (7.6):

X = - £ = - « Gy, Y t = -■% ■=<**■

The stress diagrams arc given in Fig. 64.
By (7.13),
M z =  naGo*/2.

The maximum stresses are 

max X z =  max Y z =  M J W P,

where VFP =  na8/2 is the polar section modulus.
All formulas of the present problem are a special ca 

of the formulas of Problem 7.1 when a =  b, i e., wii 
the ellipse transforms into a circle. For a bar of cirCp 
section, uz =  0, according to the formula (b) of 
blem 7.1, i.e., the cross sections rem ain plane in torsi
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7.3. Webor’s problem (1921).
A circular bar of diameter b with a semicircular notch 

of radius a is twisted by a torque M t (Fig. 65).
Find the state of stress in the bar.

The equations of the contours of the section in polai 
co ordinates are of the form
A P) =  '• -  b cos p =  0, f t (r, p) =  r2 -  a2 =  0. 

The stress function is taken in the form

where A  is an unknown factor.
The function <D is zero on the contour. 
In Cartesian co-ordinates when 

r cos P =  x, r  sin P =  y, r2 =  xa +  y2, 

the stress function is

Fig. 05

(D(r, p) =  A - ^ -  =  A ( r a — a2 — br cos P + - ^ - c o s p )  ,

By (7.7),
A =  —aGI2,

and the stress function is
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Referring to Fig. 65, the shearing stresses in polar 
co-ordinates are

By differentiating the function fl>, wo obtain 
R z =  —aGb (1 -  aVr3) sin p,
Bz =  aG |r  -  b (1 +  aVr*) cos p).

Tlie shearing stress assumes a maximum value at the 
point of the contour located at tho root of the notch 
(max B zfo^0 =  — aG (26 — a).

When 6 >  a, it is twice as high as that on the unnotched 
contour (stress concentration at notches).

7A. Saint-Venant’s problem.
A rectangular bar of sides a and 6 (a >  b) is twisted by 

a torque M z (Fig. 66).
Investigate the state of stress in the bar.

<M> 1 0y M  I ___1̂  Ox \ _
r  I f  dx [ r 1% )~

The stress function is taken in the form 
d> = aG (6V4 — y3) -f />’, 
where F is an unknown function.

(a)
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Substituting the expression (a) in Eq. (7.7), we find 
that the function F must satisfy the harmonic equation

£P_
ax'- (b)

and the boundary conditions: when x  =  ±a/2, F =  
=  a G (y2 — b2/A); when y - ±6/2, F =  0.

Following the Fourier method, we seek a particular 
solution of the equation (b) in the form

F (x, y) = X (x) Y  (y).

where X (x) is a function of x, and Y  (y) is a function of y.
Substituting the function F (x, y) in the equation (b), 

and separating the variables, we arrive at the equations

* X .- W X  = 0, ^ -  + X2y = 0, (c)

where X2 is a constant.
In view of the symmetry of the problem the solution 

of the equations (c) is taken in the form of even functions 
X =  cosh Xx, Y  =  cos Xy, from which

F =  23 Ah cosh Xhx cos Xhy.

When y =  ±6/2, F =  0; hence, cos Xhb/2 = 0 and A* =  
=  (2k +  1) nib (k =  0, 1, 2, . . .).

When x =  ± a/2 , F =  a G (if -  6*/4), i.c.,

2  Ah cosh (2* y  ™ cos (2*'+*I ^  =  aC (y2- W4). (d)

The right-hand side of the equality (d) on the interval 
—6/2 -  y 6/2 is expanded in a trigonometric cosine 
series

oc  («/’- -  m  =  2  Bh COS -2 i± ii2 - y, to
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3 W  +  l)*'J d 8aCt»(-1)»

On comparing Ihe coefficients Ah and tik in the expres­
sions (d) and (e), wo obtain

The stress function is finally

<D =  oG ^ —i/2-

8**
n> Z j ~

(_ l ) * c o * i " ± l l2

(2* + l ) » c o s h i? i± i I i i l

The maximum shearing stress occurs at the middle 
of the longer sides, i.o., at x =  0 and y - ± b /2

=  a G 6 | l - i  2
(2t  +  I )J cosli (2* +  Ona

Tho stress diagrams are given in Fig (16
By (7.13),

tanh-B+J)™  -

(2* +  1)‘ ]■

The inGnite series converge rapidly when alb >  1.
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For practical calculations, it is convenient 
formulas
max X z =  MJq^ab1, max Y t =  qt (mux X r),

a  =  M JC ,,

use the

where Ct =  q3Gab? is the torsional rigidity.
The values of the coefficients q, are given in the table.

7.5. Saint-Venant’s problem.
A bar with a cross section in the form of an equilateral 

triangle of height a (Fig. 67) is twistod by a torquo M .. 
Investigate the state of stress in the bar.

The stress function is taken in the form 

(D =  A hr* +  P* — (** — 3xyl)la -  4a*/27).
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It con easily be verified that the function d> vanishes 
on the contour of the section

* = ~ t -  ^ ± 7 3 ± ^ y i r
From (7.7),

A = —aG/2,
and tho stress function (u) is

® [*2 -I- ft2 -  |  (^  -  W )  ^  — J

Uy (7.0), tho stresses are

X ,=  — aG(y h'ixyla), Y, = cUl [ z  — (x1- if)  J.

Tho stress diagrams arc (riven in Fin. 07.
From (7.9),

«, =  ~ ( W -*>)-,
u, vunishcs when x •-= 0 and i  =  ± |/ i j  y, i.e., on nil 
throe porpondiculnrs dropped from the vertices of tho 
trianglo hounding tho cross section to its sides. The linos

it. — constant arc Ihird-ordor algebraic curves whose 
gonornl character is shown in Fig. 08 111.

7.0. Loibcnzon's problem 1541.
A bar with a cross section in the form of a semiring 

(Fig. 09) is twisted by a lorquo Mt.
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Investigate the state of stress in the bar.

Poisson's equation (7.7) in polar co-ordinates is

Let us hnd a solution of the equation (a) satisfying 
condition (7.10) for the stress function on the contour 
<D =  0.

We expand the right-hand side of the equation (a) on 
(lie interval 0 '  (1 < n in a Fourior series

_  2aC sin (2/i + 1 )  P (b)

mill seek the solution of the equation (a) in the form of a

<!>(/•, P) =  S  /„ (r) sin (2n +  l) P- (c)

Substituting the expressions (b) and (c) in the formula 
(n), we obtain an equation for determining /„ (r)

<r-l„ , t d/n (2«+1)» , _____ 8 80 _ (d)
dr- '■ r dr r* ,a  » a,, +  1

By solving the equation (d), we find

/„ (r) = A„r2n+1 +  Bnr~z"~‘ + C„r2, <L>
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where A„ and Bn are integration constants,

C" =  Jt (2n — 1) (2n +  l) (2n +  3)

is a constant in the particular solution.
The series (c) satisfies the condition (D =  0 on the 

straight sections (P =  0 and p =  ji). We determine A„ 
and Bn from the other two conditions
/„ (a) = U (b) =  0.
We obtain, finally,

fn (r) =  Cn^ (p 2-«nP 2"‘, - t „ p - 2n- 1),

k - alb, p =  r/b.

The torsion function (c) is

® (P. P) -  62Hf o (p2- a „ p 2n+l -  b„p -2 - ')  sin (2« f  1) p.

By (7.6),
y  _ 1 /  . a tftf) cos ft \

Honce, referring to Fig. 69,

fl, =  F .sinp  +  X . c o s p - = i i ^i> p rTP •

B. =  Y t cos p -  X, sin P -  ±  *!!.
1 K l> Hn •

We ohlain, finally,
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<2" +  *) \-5T£T  P ~ “"P2" +

+  /'nP"’2<n*1> ]  S' n (2r  +  1) P-

The resulting shearing stress attains a maximum value 
when p =  1 and f) =  n/2(atthc middle of the semicircular 
arc of longer radius).

Determine the relation between the angle of twist a  
and the torque M t.

► Consider the torsion of a bar of semicircular section 
when a =  0 (Timoshenko's problem).

7.7. Foppl’s problem (1905) 136].
A conical shaft is twisted by a torque M t applied to its 

vertex (Fig. 70).

The constant C is determined from Eq. (7.21):_ _______ _
2ji(2—3cosP+cosJ P) •

J  Pig. 70

Determine the shearing stresses.

Any function of the ratio 
2 =  cos B =  conslan t

V  r-+
satisfies Eq. (7.19).

The function i|> is taken in the form
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The shearing stresses are, by (7.18),

Br =  _Cr*/(r= +  z-)V\ Bz =  -C rzH f  +  z2)1

7.a Melan’s problem (1920) 1551.

A shaft in the form of an ellipsoid of revolution is twisted 
by torques M z applied to its vertices (Fig. 71).

Find the shearing stresses.

The elliptical co-ordinates £ and t| are related to the 
co-ordinates r and z by the equalities 
r =  a sinh 6 sin q, z =  a sinh 6 cos q.

The lines q =  constant represent a family of hyper­
bolas, orthogonal to the ellipses € =  constant, whose real 
axis is Oz, and the conjugate axis is Or.

The lines £ =  constant are a family of confocnl ellipses 
with an interfocal distance 2a and a major axis coin­
ciding with the axis Ox (see Fig. 13; in Fig. 71 this is 
the Oz axis).

The function i|> is taken in the form

=  C (2 — 3 cosh £ +  cosh* |).
This function vanishes on the axis of the shaft (£ =  0). 

It is constant on a surface of £ =  constant corresponding 
to some ellipsoid of revolution.
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The stresses are

x>=-0 :IC »»■■■£'  ’ " a’ aiii^ii (cosh1 £ —cos* |)i/i ■
For t) =  n/2, i.e., on the axis Or

7.9. Melan’s problem (1920) 155).
An infinite shaft, having the form of one of the parts 

of a hyperboloid of revolution of two sheets, is twisted by 
a torque M t applied to its vertex (Fig. 72).

Find the shearing stresses.

We assign the stress function in the form 
i|> =  C (2 — 3 cos q +  cos* q),
where the constant C is determined by formula (7.21). 

The stresses are

► Investigate the torsion of a shaft with a lateral surface 
generated by revolving a hyperbolic arc about the con­
jugate axis (Fig. 73).

Hint. Take the stress function in the form 
t  =  C (2 -  3 sin q +  sin* q).

’1o Fig. 72
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7.10. Seo 1521, p. 98.
Investigate the torsion of a cylindrical shaft weakened 

by a hollow in the form of an ellipsoid of revolution whose 
major axis is situated on the axis Oz (Fig. 74).

Assuming in the third equality of (7.42) 

n =  2, A. — C,a*, Bt = 0, Ca =  1, D. —D, 

we obtain

^  ^  {I -  p [ CMh^ - hV ', ,h i |) - f  In tanh -f ]} , (a)

C09ĥ - 3/ ^ - | lntan1' ^ -

The function (a) is zero when r =  0 and |  =  5o. 
on the axis Oz and on the contour of an ellipse in the axial 
section of the shaft. As z oo, the function <|> tends to 
tho value Cr*, i.e., to the solution for a solid cylindrical 
shaft.
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The shearing stresses are

- I " " ” 1' ! ] }

i= ? f 5 S !̂ . { 4 “ ths + D ['

-I- colli g in  la n h -|- j}  .

! 5 - cos’-ii)1

On an inner curved contour (£ =  !»)

► Investigate the torsion ol a cylindrical shaft with an 
elliptical hollow whose major axis is perpendicular to 
the axis of the shaft.

H int. In choosing the function i|> nssume in the third 
equality of (7.44)

n =  2 , A . =  Cta \  /?, =  0, C2 =  1, D , =  D.

► Investigate the torsion of a cylindrical shaft with 
a spherical hollow situated on its axis.

H int. In choosing the function <j> nssume in Eq. (7.38)

n =  2, A.. =  C ,, /i5 =  - C e s*.
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IHIRMAL PROILEM 

It is aaumed t.b.at t.b.e temperature varies over 11 range 
Ia wblch t.b.e elastic coefficients do not ehoDJO; the exten­
aioas are proportional to temperature and oro the same in 
all direcUoas, and hence theshoariagstrninsarc zero during 
the beating of aa element of volume. 81c8dy-stntc and tran­
sieattherm.alproceeseanreconsidered. 

I. SIIADY·STATI fHiiiiMAL NOCiiSS 

A 1teedy-atate thermal process is that in which t = 
= t (:, ,, z) [! a known (unction or position. 

Todetermineastationnrytempernturelield to- t(.:l,II,Z) 
useismadeolthel•eatcoaduction equaUon l!iG] 

V"t = 0 
withthecorrospondingboundoryconditions[scflio:qs. (4.21) 
ond (8.23)1. 

In the desian of lllrqctures on a fro~en soil, where k­
= k (t), the beat conduclion equation ill of tlw form [f171 

~(t.;;) +i,-(k:,.)+*(k-;;)=0, 
whero lc is the Maxwell thermal conducUvity [see •:q. (8.23)1. 

I.SIIIc ........... pl ..... _ 

They liN takon in Lho form of (f.ta) nml (2.1n), (Ub) 
and. (2.tb), (t.tc) nnd (2.tc), depending on Lhe ly)le of co­
onhnate axes. 
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2, Physical «<pieHons
Direct form of Hooke's law: the Duhamcl-Noumunn equa­

tions (1838, 1885)

ezx — -g 1^* — a (Y y -t- Z,)]-\-at,

e„ = ± Y „ (8.1)

e„ = ± \ Z z-< s(X x +  Y v) \+ a t,

whore a  is the coefficient of linear thermal expansion (1/°C),
at is Ihc unit thermal expansion.

Inverse form of Hooke's law
X x =  X6 +  2Gexx -  Kal, Xv = Gext,
Y„ = XG +  2Gevv -  Kat, Y , =  Gett , (8.2)
7Jc =  XO +  2Ge„ — Kal, Zx =  GeIX, 

where K =  2G +  3X = El( 1 — 2a) is thrice the bulk modu­
lus (sec Problem 1.3).

(X G) -|5- -I-Gv2ux — Ka-jJ^ — 0,

(>. \ - G ) ^  + G ^ u u- K a ^  = 0, (8.3)

(> ..i-G )£ + G V *Ul-K a -? L  =  0.

The surface conditions (1.2) expressed iia terms of the
components of the displacement vector u aire of the form

(up + ae £ . ) ! + < ! ( £ + $ * ) «  +

<J ( T f  +  £ ) , + ( “ + a i ,T3L> -  +
(8.4)
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+  (*0 +  2 G ^ f - ) n  = Katn.

From Eqs. (8.3) and (8.4) it follows that the thermal 
problem reduces to the usual clastic problem involving 
body forces

X, Y, Z  = grad ( - K a t ) = - X a ( £  , —  . — ) 
and an external normal surface pressure 

p  =  —Kat.

4. BeHrani-MJdiell equations 

V*X. +  ̂ ^ + ^ | - V * /  +  2C a ^  =  0, 

+  1 0 # 2 "l $ r + ^  * 1  ■■2Ca%  =  0, 

v %  + 2 £ + £ L  *J1 +  v*/ i- 2C.a™  = 0,

V^  + 2 i ^ ^ + 2Ga 0.* a <5x ay Ox 0\j
v»r,+l(*+o *e- +2Gâ _ ,,
v ,z  +  2 ( l± 5 | 2Ca 3H (

A OZOX ' f)z Ox
whore

6* -  X x+ Y y + Z, -  K0- 3 A at,
2(H C ) _  2 2GK E

(8.5)

The solution of Eqs. (8.3) is taken in the form 
“* = Mi1’ + 14“ , u# =  u<‘> (8.6)

where u"» is the general solution, u«> is a particular solution.
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The general solution is assumed according to Chap. 4, 
for example, in the form proposed by P. F. Pnpkovich 
(4-27)

1(1 (u'x', u1", i*i,,) =  4 ( l - o ) i | > li2 , 3 - gJ S - _ ,

where <|)( are arbitrary harmonic functions, 
y  =  jnpi +  ytyt +  2<|>3.
Assuming, in finding a particular solution, 

df_ ap_ aP
K.v gx . »» — dy . ut -  dz ,

we obtain, from E(|s. (8.3), Poisson's equation 
function F

(8.7) 

for the

v2/'’ - 7 W <== 7 = 7 ra ‘- («-8)
from which

aw , „ Ka r US.n.C)^
1 ’ J ’ } ~  4 " (> .+ 2 0  J i / t . - ^ + w - n P + f t - c r -  •

(»-■■))
whore i|, £ are the co-ordinates of an clement of volume 
■IV, V is the volume of the whole body.

The boundary conditions (8.4) are

(a0<1i~ 2 6 '— ) l + G ( —£ -  + —^ ~ )  m +

G { - £ - + ~ i r ) 1 +  ( x0" ’+2G ~ o y ~ ) ro+

+  (x e .. .+ 26 ' ^ ) „ = ^ B- 2G ^ ( ^ )

(8.10)
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Basic conditions

dx dy dz ~ a '
ux = ux (x, y), u,j = Uy (x, y), uz at,

«• <8"’
- X + c ( a -«<).

** =  (*, 0), =  Kj, (x, y), X y = Xy (x, y).
Equilibrium equations
oxx OXy dY 0Y„
—  + —  = 0' — + - 5 T - 0 -  (8.12)
Strain compatibility equation

V2(XX+ Y y ) + £ ~ V H - - ( ) .  (8.13)

si i ,tcgraii,,e Eqs‘ (8i2) a,,(i (8 i3 )’ w° °b|ain th«

X x = >* {U — T) Yy =  dl<t/- 7'> X  =  -  ^  ^

(8.14)
whore £/ is a function satisfying the biharmonic equation

V V *f/ =  0, (8.15)

'  18 ’ function satisfying Poisson’s equution 
2GK*

(8.16)V*T - \ r t ~ t , .
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by integrating, we obtain

20(X +  C)1, , . ± J S . J v V ,b _ (x + c ) ' ^ Z I -

- lG a x  + f,(y),

2 G (\+ G )u„ = ± ^ - [  v n jd y - (x + G )  a(U- T) -  

-h G a y  + h ( j :), (8.17)

wliere /, (y) =  i4y +  /?, f t (x) = —Ax  +  C are functions 
corresponding to a rigid-body displacement.

In solving the problem in polar co-ordinates, formulas 
(8.14) arc transformed into

1 SH U-T) 
r* tip* ’

ll „ -  Gr -=

and Kq. (8.1(j) is

ii-T , 1 OT HdT _  TGKat =
,tr1 ' r Or r3 #P* X +  2G *

(8.18)

(8.19)

The displacement components uro found from the equa-

2G (). +  G) -g f. =  Rr -  ±  Dt -I- GKat -  \Ga,

2G (l 1 C) (4 - - 5jp  + -7L) =

=  Bf -  y  Rr + GKat -  \Ga.
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By integrating thc.se equations, we obtain, finally,

2G (k + G) ur = j  v*t/ dr -  (k -|- G) ■° iU~ T) -

-kG a r + F, (P),

2G (k+ G )u,=  — { j  V2C/ dr -  (8.20)

- 4  j  VHJ dp +  (k +  G) ± .  [ r  j  rfp j  f-

+  Xllt%Ka »■ J  “  ] > -  (P) rfP i ^  ( ' ) .
where A’, (P) =  A sin p +  B cos p, /<’„ (r) =  Cr +  A are 
functions corresponding to a rigid-body displacement.

Zz =  X t =  Y z = 0,
X x =  X x (x, y), Y y = Yy (x, y), .Y,, =  X v (x. y). (8-21)

/ o ^ mU!.aS and (8-15) remain unchanged, and Eq.(8.16) reduces to

(8 .22)

To determine the displacements, it is 
grate Eqs. (8.1) with (8.21).

necessary to intc-

II. TRANSIENT THERMAL PROCESS

A transient thermal process is that in which t =  
time t  Z’ T 1S aH un*tnow n function of position and

** m"de °i ii,e h'"*

(8.23)
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where x =  fc/cp (cm2/s) is the thermal diffusivity, k  
(cal -s/cm2 •°C) is the Maxwell thermal conductivity, c 
(cal/g -°C) is the specific heat, p =  y lg  (g .s2/cm4) is the densi­
ty, W  (cal -s/cm') is the quantity of heat generated in unit 
volume per unit time by a heat source situated within an 
element of volume dV.

Equation (8.23) is integrated taking into account various 
surface conditions. The following situations arc most fre­
quently encountered in the solution of problems:

(1) The temperature on the surface is a given function 
of position and time.

(2) The heat flow through the surface of the body is zero, 
i.e., at all points of the surface with normal v we have

0. (8.24)

(3) The heat flow through the surface of the body is a 
given function of position and time.

(4) There is radiation from the surface. If tho heat Dow 
through  the surface is proportional to the temperature differ­
ence at the boundary between tho body (t) and the surround­
ing medium (f0), i.e., if the heat flow is determined by tho 
expression

H (t -  to),
whore / /  is the surface heat transfer coefficient, the boundary 
condition is of the form

Ic — !/ / (<  - t 0) =  0. (8.25)

(5) At the boundary between two layers

PROBLEMS

8.1. Determine the stresses in a symmetrically heated 
It =  t (r)l long tube (piano strain) of outer radius b and 
innor radius a.
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According to formulas (8.18)

Jtr = ± j ‘ lift = Br = 0, B» =

from which

T — C0 + Cl lur + ^ -y- J  t xrdr.

The function (J should be taken in the form 
U =  Cs In r + C ^ .
According to the formulas (a), the stresses are

ft, =  — C| +  2C3— j  t xrdr,

*3 =  - £ i^ £ l  +  2C, +  JL ^ t , r d r - t t.

The arbitrary constants 
from the conditions: when 
which

(Ct — C,) and C3 are determined 
r = a and r = b, R r — 0, from

C3 = T W -a'-) J  <<r ^ .

C* — Ci - - p ] _ at [** j  t xrdr  — az [ i , r d r j .

The stress Zz is determined by formula (8.11) since 
+ Y , = Rr + B t .

For a very short lube (plane stress), t. is replaced bv t 
according to formula (8 .22). 1 F y *
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8.2. Gadolin’s problem (1858) 1581.
Determine the stresses in a long cylinder made up of two 

tubes of different material fitted on each other (Fig. 75). 
The temperature of the cylinder is I =  t(r), i.e., it is sym­
metrical about an axis passing through the centre. The con­
tact between the tubes is maintained throughout.

Fig. 75

Denote the pressure between the tubes during heating 
by X.

The value of X is determined from the condition that 
the displacements of the points of the outer radius of the 
inner tube «!•“ and of the inner radius of the outer tube 
u are the same.

According to formulas (8.20) and Problem 6.1, the dis­
placements of the tubes in the radial direction are

r l l ' r d r - r l l t r d r  ,

2 C “  " ( r j - r ?)r------  + T  j  ‘r ̂  +

+ (T.+COlri-r?) 5 tr dr ~ X  (H r 1 ?F7?r +

+ ri-’-rf t )> (a)

r |  j  trd r— r\ J tr dr r

2G* {P =  -  ° (rj-ri)r°------ +  T  [ » *  +
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+  (A,+ c5(rl-VT I ' r d r + X  ( - ' i f ' r S - r J  '

The equations (n) may Ik- wrillcn more compactly ns

2r;ll4 1,=  <p1( r) _ .V ^ ,( r ) .  2C2u(r2, =  <p2(r) +  .Yi|;2 (r), (b)

where the values of q>, and if, arc evident if we compare 
the equations (a) and (b).
; Since when r =  r„, uj." =  uJ.1', it follows that

_ C,<t, (r ,)-6'w , (r,) 
C.'fi (r.) -C ,ih (r .)-

8.3. Determine the stresses in a non-symmelrically heated 
long tube of inner radius a and outer radius b. The 
temperature in lhe| lube is expressed by a known function1 = * (r< P)-

Since the case of plane strain is considered, we apply 
formulas (8 . i8). The function T is calculated from Eq'.

v ' r  =  t, (r, ft), (a)

l>(r ’ P> =  F F £ '( r - V -

We expand the function /, (/-. p) in a trigonometric 
son os *

M r - P)-<Pd( ') +  ^  l«Pn (r)cosnP + i|;n (;)sin «P|, (b)
where

Tn (r) =  “j- [ (r’ P) cos «P rfp,

>fn(r) =  - i  j  M r ,  p ) s in n p d p .
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lis auKuiuu 10 given in riuDiem o .l.
The function T is sought in the form of a series

T =  |  I In (r) cos np +  g„|(r) sin np].

Substituting the expressions (b) and (c) in tho equa­
tion (a), we find the following equations for the unknown 
functions /„ (r) and g„ (r):

( r)^ 'P n (r),
1 (d)

gn (r) +  — gn (r) - -p rg n  (r) =  <|>n (r).

Since tho equations (d) are of the Euler type, by intro­
ducing a new variable z =  In r (r =  <?), we obtain the 
first equation of (d) as

The general solution of the equation (c) is

A particular solution is found by the method of varia­
tion of the arbitrary constants an and bn (see Problem 3.3). 

We obtain, finally, for /n(z)

where kn and ln are arbitrarily chosen numbers.
After tho corresponding replacement of the function 

<on(z) on tho basis of the equation (o) wo obtain a similar 
expression for g„ (z). As a result of the substitution of the 
expression (f) in the formula (c) and the inverse transfor-

/:,(*)- " 2M s) =  ^<P„ (?)-=<>>„(z). (e)

/„(*) ■==

(0
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mation to the variable r we find

T =  2 K  j  (r) dr— j  / '"'(Pn (r) dr j cos«p +

+  2  j r~ntl ( ^ d r~ J ^  j '■"‘ ''t’n ('•Jrfrjsinnp.

The terms of the general solution will enter into the 
expression for the function U.

The biharmonic function U is taken, by (6.13), in the 
form

U -= [(fl,r>+  C ,r-' +  D ,r In r ) ^ p _ J £ j _  ,.p‘°»p j  +

H- 2  (/lnr " +  Bnrn+i +  Cnr-n -|- D„i"ntlO i p .

The stresses are determined from formulas (8.18), aftor 
which the arbitrary constants of the general solution are 
found from the conditions: when r =  a anti r =  b.

8.4. See [591.
Determine the state of stress in on infinite triangular dam

due to a temperature f, =  f j  r\p„ (P) (Fig. 76).

Fig. 76
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From Eq. (8.19) we have

T =  2  [sin +  2) P ] <P* (P) cos (k-i 2) M P -

P
_ c o a (*  +  2 ) p J  q>»(P)sin(* +  2 ) p d p ] -

=  ^ k  + 2gh®)-

The function U is taken, by (6.13), in the form 

U — r2 (A2 cos 2p -f- B2 sin2p +  Cj +  ̂ P )  +

+  r*+2 1 cos (* +  2) P +  Bh sin (k +  2) p +

+  C* coskp +  Dfcsinkp].

Further, the stresses are determined from formulas
(8.18):

R r =  2C2 +  2Z)2p -  2/lj cos 2P +  2B2 sin 2p -  g0 (P) +

+  j ^ ( * + l ) H H 2 )  i4»cos(* +  2 ) P -

-(* -1 -2 )  Bk sin (k +  2) p +  (2 —A) Cj, cos/cP +
+  (2 — *) Dh sin Arp +  gfc (P )J,

Bt  =  2C2 +  2D2p +  2i42 cos 2p -  2B2 sin 2P -  g0 (P) +

+  S  (* +  !)(*  +  2 )r* [ / lkcos(k +  2 )P +

+ Bh sin (k +  2) p +  C* cos *P +  Dk sin kp — J .
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Rn = Br = - D z + 2AZ sid 2p +  2BZ cos 2P -{- g'0 (P) +

+  2  (*-M) »*[(* + 2 )4 *  sin (A + 2) p -

-  (k +  2) 5* cos (Ac +  2) p +  AC* sin *|J-W)» cos Ap +  j g ] .
Tho arbitrary constants are found from tlie boundary 

conditions: when f) =  0 and p =  a, /?„ =  R fi =  0 .
In [59] G. N. Maslov examined the cases when the tem­

perature varied according to the laws

< =  <P(P). < =  J / < P * ( P ) *  < =  « =  rq . (P)

and plotted graphs of stress variation.

B.5. Determine the state of stress in a hollow sphere of 
inner radius a and outer radius b due to a temperature t =  
=  t (r).

For reasons of polar symmetry it is obvious that the 
only non-vanishing displacement is uT — ur (r). According 
to Eqs. (8.3) and (3.3b), wo have
do _  d I dur 2itr \ _  Ka dt
dr d r K d r ^ r ) -  d 7 ’

The general solution of this equation is

From I'lqs. (8.2) for polnr co-ordinates we obtain

IK -  X0 +  26'-— — Kat = KC\ -  AG -

4GKa i t - , , .
TTTjTT TT rHdr,

Rfi X0 I- 2G -  Kat =  AC, -|- 2G

, 2(1 K a _1_
+  J. |-2C r> r H d r - iGKat

T f l a -

(«)
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From the boundary conditions of the problem (when 
r = a and r — o, Hr =  0) wa find

/iGa $ rH dr

C' = (\ + 2G)(P-a»)'

C2 =  A  [*T=T̂ 3 j  ^  * ■ -  j  dr].

The equations (a) arc finally

'‘ - ' ■ " w l S  j J**].
By the equation (b),

The solution for a solid sphere is obtained assuming

Cj =  a =  0 .

8.6 . Determine the stresses in a cylindrical body of revolu­
tion due to t =  t (z, r), where the z axis coincides with the 
axis or revolution.

In this case, in the absence of body forces the stresses 
arc calculated by tho formulas of axially symmetric de­
formation (Problem 4.1) for bodies loaded on the surface 
by a normal pressuro R a t  whose intensity varies along the 
axis of the body, and with fictitious mass forces (8.3). 

Assuming

V2V2-^ -  =  0ds
15-0973
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and

where

V * (.. .)  =  —  + 7 T T  +  T T -

we obtain the stresses by the formulas 

Mere
X 3X-j-4G n X+2C ,

2<X +  G) ’ 2 (X +  G) 1 2(X-!C)

The equations (a) satisfy the equilibrium equations (8.3) 
and the Beltrami-Michcll equations |Eqs. (8.5), see 
Problem 3.11.

Tho function U  is chosen in one of the forms satisfying 
the bibarmonic equation

Below are given some particular solutions of the equa­
tion (b):

U {z, r )=  £;/*(«•>«»,

* Tho formulas (a) arc obtained from the general solution of the non- 
liomogcncous equations (8.3) in cylindrical co-ordinates.
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where f h (r) are functions of r (Problem 4 .1);
U (z, r) -  (C, C.,z +  C.jZ* -|- t \ z 3) In r,
U (z, r) = C (r2 +  z2) '\ 
where n =  —1/2 , 1 , 1/2 ;
U (z, r) = C (r2 +  z2)"z, 
where n — —3/2, —1/2, 1;

U (z, r) -  C [ ( r 2 +  z2)-5'2z2- 1  (r2 -|- z2)-3/=j ,

etc. (sec the textbook [601).
The arbitrary constants of the solution are determined 

from the boundary conditions on the surface of the body: 
Z t =  R r =  -  K at, ZT =  0.

8.7. See the monograph [581.
Determine the state of stress in the half-plane xI^O due 

to a non-uniform temperature (x, y) =  t (x, y)
(Fig. 77).

To solve tho problem, the functions t lt T, and U are 
represented as Fourier integrals. As is known, a function

o y

/  (*. y) given in an infinite region can be represented os 
a Fourier integral if this function satisfies a Dirichlet con­
dition and, in addition, tho condition

j  j  I / ( * .  y) I dxdy  = A, 

whero A is a finite quantity.
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I t  tho function t (x , y) satisfies the above conditions 
and is absolutely integrable, then

U{x, y) =

=  li? j I d a ' d a * j J *(£. ri)cosa,(|-a:)x
X cos a 2 (t) — y) d,\ dr\.

The function T  satisfying Poisson’s equation is of 
the form

T ( x ,y )  = — —j j  ] a»+ a i X

X [o>i (x , a , ,  o ^ c o s a ^  l o>2 (x, a , ,  Oj) sin a 2;/| da,

where

o), (*, a , , a 2) =  j  J  t (g, q) cos a , (g -  *) cos t/r, </g,

co2 (ar, a ,,  03) =  j  j  / (g, t]) cos a , ( g -  a:) sin o 2r) dqdg.

The function^/ is taken in the form

j  I 'M * , a tt c tj)coso^ -l-

+  <l>2 (x, a,,c^) sin a 2r/J tfa, da2, 

whore

% (*, o lt a 2) =  (A, -|- BlX)e-«.*,

(x, a lt a 2) =  (/12 +
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Tho stresses are, by (8.14),

X , =  - - r j  j  { * ! ( * ,  « i ,  0^)003  0 ^  +
+  ^2 (x, a i,  a z) sin ct̂ y +  [w, (x, o „  c ^ c o s c ^  +

-I- w2 (x, a lt OzJsinctjjylJcia, dctj,

=  i  j  a n  0 2 )0 0 3 0 2 1 / +
T  ^ ( z ,  Oi, a 2) sin a^y +  ^ ^_g, [<+ (x, a ,,  0̂ ) cose^/ +  

I- 0)2 (2:, a i ,  a 2) sin a 2y| J  doi da^,

X,j - -^r  ̂ j  0 2 1 — (x, a , ,  02) sin 020 +

I- »p; (x, a ,, a 2) cos 02y +  (u; (*, o , , 02) sin a^y +

+  wj (:e, 0 |, a 2) c o s a ^ jJ  doi da2.

From the boundary conditions (when x — 0, Y x = 0 
and X x -- 0 ) we find

A { =

» t =

(«. Q|. <+) 4 co.(0 , «,, g2)
~2 , ~* ’ <*! +  «? •ai +  ° l

to; (0, a ,, ctgJ+ggO), (0, o,, a,)
«?+«!

n a„ oj)+020)2(0, a,, a,)
5 2 -------------------S f+ S j--------------- ’

The foregoing algorithm enables one to obtain the gen­
eral solution of the problem, but the calculations involve 
great difficulties due to the integration of complicated 
functions.

8 ,8 , See the monograph [56], Chap. VIII, Sec. 2.
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Determine the stresses in the half-space z ^ O  in the pres­
ence of a point heat source of intensity W M on the surfaco.

We place the origin of co-ordinates a t the point heat 
source. The analytic expression for the temperature 
field produced by this source in a body filling the whole 
space is determined by solving Eq. (8.23) in the form 
of (8.9):

t =  W JA nkR , (a)

where R  =  V r2 +  z2, W M is the intensity of the heat 
source, k =  xpc.

The temperature field (a) can be used for the case of 
a half-space if the surfaco bounding the half-space (z =  0) 
is assumed to be perfectly thermally insulated. Indeed, the 
temperature gradient

i)t _  W.\t «
Oz -  ink

is zero when z =  0 , i.e., the heat flow in a direction nor­
mal to the surface of the half-space vanishes.

To find the state of stress, we use the thermoelaslic 
displacement potential F of Eq. (8 .8 ).

For the present problem, Eq. (8 .8) is taken in the form

V2A '= - ,  (b)

where
1 -f- o aW'\t 

C~  i —a 4nk '

A particular integral of the equation (b) is the expres­
sion

'  =  7 *
this can easily lie verified by taking into account the 
equalities

™. =  -L =
0? R ’ dr R ■
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The stresses are determined by the formulas

~ w ) « e  ( ■ £ - * ) •

4 - * ( 7 T - W ) - ‘ 7 '

All stresses become zero as /? -*- oo. On the surface 
(z =  0), R t =  0, but the normal stress remains, Z. =  
-  -  cGIr.

To eliminate this stress, we superimpose on the solu­
tion obtained a second stress held defined by Love’s 
displacement function [5] given in the form 
<p =  A lr* In (R +  z) 4 - Rz\ 4- R lz2 In (R +  z) — Rz], 
where A and R are as yet arbitrary constants.

The stresses of the second field are determined by the 
formulas

~  t — 2o R

~  1 - 2 o  It
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Thn in tesra tion  constan ts A  and B  are  determ ined from 
th e  conditions: when * =  0, and hence R  =  r,

z t =  Z , + f  * =  0, R z =  R z  +  R z  =  0.
*By w riting ou t the  la s t e q u a litie s , we find 

(3 _  2a) (2A +  B)  -  2 5  -  (1 -  2a) c/2 =  0,

2 (1 -  a) (2 A +  B ) - 2 B  =  0,  

from which
2A +  B  =  (1 -  a) c/2, B  =  (1 -  a) (1 -  2a) c/2. 

Now, by the form ulas (d), we o b ta in

T + r — S ' ) '  z > =  ,;C T ( 1 + - 5 i - ) ’
z+oR

T [/? — (! — 2 a )z |,  R z =*Zr =  cGfl(J?+z) 1 ' - • -
and finally, by adding  the two s tress fields, (c) and (e), 
we find

- 2 (1 - 0 ) — ,

ZI =  0, f l I =  Z r =  0.
The displacem ents are determ ined  by the formulas

(1)

dP 1 * *  — c (1
- 2a drdz -O)-.

r [ 2 ( l - o ) V X p - $ j .

=  c (1 — a) In (R  +  z).
I t  is seen from the expressions (g) th a t  th e  displacem ent 

uT rem ains bounded a t  in fin ity , and the d isplacem ent u t 
increases indefinitely . A t the orig in  (hea t source), both 
displacem ents have a s in g u la rity . .
► By differen tia ting  the expressions (f) and (g) 
respect to z, i t  is possible to  o b ta in  the  stress and dis­
placem ent fields in the half-space subjected  to a heat dipo o 
(source and sink), located a t  the  o rig in , whose axis coin­
cides w ith the z axis.
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8.9. See [15], Problem 97.
The in it ia l  tem perature of a sphere of radius a i; polarly

sym m etric  and is determined by a function f  \r). On “the 
surface of the sphere, 0°C tem perature is m aintained 

D eterm ine the tem perature a t any point inside the sphere

The hea t conduction equation (8.23) for this case is 
of the form

( £ t _  . 2 ot \  ot 
\  dr'- ' h r  dr ) ~  d T

Assum ing 
t -  v/r, 
where
v =  v (r, t) , 
wo obtain  the equation

d*v _  dv
*  d f1 dx (a )

w ith  the boundary conditions
v (0, t)  =  0, v (a, t)  =  0 (b)

and the  in itia l condition
v (r, 0 ) =  /  (r). (C)

By solving the equation (a), w ith the expressions (b) 
and (c), we obtain

t( 'r ' t ) = 'SF 2  e ~ 01 •sin '2r '  I r/ ( r)sin — dr■

F u rth er one can follow Problem 8.5 for the therm ostatic 
case, and Problem  10.6 for the thermodynamic case taking 
in to  account, in addition to the tem perature, the inertia 
forces.
► See [15], Problem  106.

The in itia l tem perature of a sphere of radius a and of 
the surrounding  medium is 0°. From the time r  =  0, the 
surrounding  tem perature rises linearly with time, so that 
I =  bx, where b is a constant. The heat exchange between
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the sphere and the medium takes place according to 
Newton’s law [Eq. (8.25)1.

Find the tem perature distribu tion  inside the sphere 
considering the problem to be polarly symmetric.

8.10. See [15], Problem 116.
A cylinder of radius a and length I w ith tem perature 

t  =  f  (r, z) when x  =  0 is placed in a medium w ith 0°C 
tem perature. The heat exchange of the la teral surface and 
the bases of the cylinder w ith the surrounding medium takes 
place according to Newton's law.

Find the tem perature d istribu tion  inside the cylinder a t 
any instant.

The heat conduction equation (8.23) in cylindrical co­
ordinates in the case of axial sym m etry is of the form

The boundary conditions arc represented, according to 
Eq. (8.25), as

A -g — / / / | l= „ =  0 , * — + M |z = «  =  0 ,

ot (b)k  —  +  f l t  | ri=„ =  U, f (0, z, x ) <  oo,

and the in itia l condition is

t (r, z, 0) =  /  (r, z). (c)

By in tegrating  the equation (a), w ith the expressions 
(b) and (c), wo obtain

(r, z, t )  -  2  Ah*J« (|*/. - - )  ( c o s -^ p  +
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where
4n£v* p p

Ahn ~  '®2 (l‘f t+ ^ ia ) l/> (P  +  2) +  v*| J } (r > z) x

x / 0 (^ 7 “ ) ( cos +  —- sin ^ - )  dzdr,

H x =  / //* , p  =  tfi/fc,
jxh are the positive roots of tho equation
|x^6  (M-) +  H iaJ0(|x) =  0 ,

v„ are the positive roots of the equation
2 tan  v - v/p — p/v.

Comprehensive information on the application of Bessel 
functions to problems of elasticity and heat conduction is 
contained in the monograph [611.



Chapter 9

CONTACT PROBLEM

Contact problems are concerned with the determ ination 
of the sta te  of stress and strain  in the region of contact be­
tween two bodies.

Besides the general relations of the theory of elasticity, 
in the solution of contact problems extensive use is made of 
the formulas given below.

I. THE ACTION OF PUNCHES 
ON AN ELASTIC HALF-PLANE

In studying the action of an absolutely rigid body (punch) 
on an elastic half-plane (y >  0 ) under plane strain  condi­

tions use is made of F lam an t’s formula (Problem 6.4) (Fig. 78)

P

(9.1)
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If a force P is uppliod to a punch having a flat base with 
eccentricity c, the vertical displacement diagram for the points 
of the base must be trapezoidal and is determined by the 
expression

Uy (x, 0) =  A + B x  (9.2)

(Fig. 79).
The equilibrium  equations are of the form

j  P ® d t = P .  ] p ( l ) l d t = P e .  (9.3)

By neglecting the frictional forces over the base of the 
punch, we obtain the following conditions for the determina­

tion of the normal stresses on the base: when y — 0, 0 .
when y =  0 , and —a C x  ^  a,

when y  =  0  and —a ~> x  >  a, p  (z) 0 - =
If the base of the punch is bounded by a curve y i 

=  _  /. (*), the pressure p (x) on the given segment of contact 
—a <  x  <  a is found as the solution of the integral equa

* The constant C of formula (9.1) is incorporated in A.
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tion

J p © l n | l - * / 5 | d S  +  / ( x ) - 6\  (9.5)

where
/(* )  =  -  y x 0  =  nEI2 (1 -  a5).

The solution of Eq. (9.5) given by I. Ya. Shtaerman |62] 
is of the form

r t o ~ ~ y V * = 2 \ - j ;̂ r g 7  (9.6)

under the condition

i-m-o <»•’>
expressing that p (x) has no other than logarithmic singu­
larities.

In considering the problem of a punch acting on an elastic 
half-plane, I. Ya. Shtaerman [G2] proposed a new design mo­
del of a foundation, which generalizes the VVinkler-Fuss 
model in the theory of elasticity, stating that additional 
displacements resulting from local deformations of the 
surface of the foundation according to W inkler’s law arc 
nddod to the displacements of formula (9.4).

Thus,

* * .(* .  0)  =  t p W ~ J  P ( 6 ) l n | * - £ K  =
=  A  +  Bx. (9.8)
In tho case under consideration the determination of the 

stresses p  (x ) over tho base of the punch is reduced to the 
solution of tho Frodholm integral equation of the second kind

P(*)-*- j p(E)ln|*-5|dE=i4+&,
where k  =  2 (1 — a*)k/nE, k  (g-f/cm3) is the modulus of 
the elastic foundation.
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The solution of Eq. (9.8) is given in 1621. For the desien 
model considered, the boundary stresses are finilo When 
k =  oo, Eq. (9.8) transforms into Eq. (9.4); when E =  oo 
we obtain the compliance method, i.c., Winkler’s method’ 
which is widely used in the analysis of elastic beams ami 
punches (absolutely rigid foundations).

II. THE ACTION OF PUNCHES ON AN ELASTIC HALF-SPACE

In studying the action of a punch on an elastic half-space 
(z >  0 ) use is made of Boussinesq’s formulas (Problem 4.3): 
when z =  0 and R  =  r (Fig. 22),

M * . » .  0 ) = ^  =  - ^ .  (9.9)

ur (x.. 0 ) =  — i.

If a force P is applied to a punch having a flat base, with 
eccentricities ex and ev about the y and x  axes, respectively, 
the v. i tical displacement diagram for the points of the 
bast must bo bounded by the plane 

u , (.r, y, 0) =  A  +  Bx +  Cy. (9.10)

The equilibrium equations are

J  5  / ' ( ? .  11)<*6 * ,  =  /> .

j  j  P (h  (9-“ )

] j  P i t  T\)r]C%dT\ = Pev = M*,

where F is the area of the base of the punch.
By neglecting the frictional forces over the base of the 

punch, we obtain the following conditions for the determi­
nation of the normal stresses on the base: when z =  0 , —
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=  Y z =  0; when z =  0, inside the area (region) /•'

=  /H -f lx  +  Cy; 
when z =  0 , outside the area T7

(9.12)

p (*, y) =  o,
where A , B, C are coefficients determining the position of 
the plane of the punch base during the deformation.

Closed solutions for the problem thus stated are available 
only for the cases when the area of the base of the punch is 
bounded by an ellipse or a circle (Problem 9.3).

To take account of both the normal pressure p (x, y) = 
= Zz (x, y, 0) and the tangential pressures lx (x, y) = 
= X z (x, y, 0) and tv (x, y) =  Y z (x, y, 0) on the plane of 
contact between the punch and the half-space, recourse must 
bo made to the general solutions of Lame's equations (4.23) 
to (4.31) (see Problem 9.7).

III. CONTACT BETWEEN TWO ELASTIC BODIES

In the case of contact between two elastic bodies bounded 
by surfaces zl =  (x, y) and z2 =  / ,  (x, y) use is made of the
following integral equation for determining the pressure 
p ( |,  t|) in the region of contact [63):

6 - / i ( * .  y) +  fi (x , y ) =  - « i l , (x, y , 0) +  i4a,(x, y, 0) =

- w - y i i ;  <»■«>

where 6 is the approach of the axes of the elastic bodies due 
to local compression in the region of contact, F is the area 
of contact, u<‘> (x, y, 0) are the elastic displacements of points 
At of the bodies (Problem 9.1) calculated by formula (9.12).

PROBLEMS
9.1. Hertz’s problem (1881) [45l.

Consider the state of stress in two long contacting cylin­
ders with parallel axes pressed against each other along 
their length by distributed forces of intensity p.
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We take two points, A x and A t , on the surfaces of the 
cylinders, which are a t a distance x  from a plane passing 
through the axes of the cylinders (Fig. 80a). The distance 
between these points before deformation is

H- y t st & 2 R X +  x*/2Rt =  pa*, 

where
P =  1/2/?, -f- 1/2/?, =  (/?, +  R t)l2RxR i.

Under the load p, the cylinders are flattened in the re­
gion of contact forming a plane of contact in the shape of

Fig. 80

a straight strip of width 2a, and their axes come closer 
together by an amount 6 (Fig. SOb). . ,

If a >  x, the points A x and A % will coincide and

6 — <  — u'i' = yx +  y t =  P**i

0-0073
=  6 -  p**,
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whero uj/' and u'*' aro the vertical (projections of tho dis­
placement of the points Ai and Aa, respectively.

If lliu width of the plane of contact is small compared 
with the radii of the cylinders, each of the cylinders may 
bo approximately considered as an elastic half-plane using 
formula (9.1) for calculating the displacements u'v" 
and u”>.

Assuming the pressure on the contact nroa to be vari­
able, we obtain

j p  (6) d l =  p.

Under the load p (|) acting on a strip of width dl, the 
point A t (Fig. 80c) is displaced in the vertical direction 
by tho amount (see (9.1)1

d< 13 -  p  ®  ,n I l w r  — i n i r  p (l) ̂  "

=  — r , n 1^ —i l  t--2 (1 - 0 ,)
the total displacement is

+  r “27T4r^r —ln " '] /> } -

A similar expression is obtained for u\V by replacing the 
indox 1 by 2 .

By adding u'J' and uJ*’ logolher, wc Find

J  #»(e)»n|*-E|d6=-P** -c ,

where C stands for the sum of terms independent of x.
By differentiating with respect to x, and eliminating 

the interval of integration x  — e, <  g <  x  +  ea, when e, 
and ex tend to zero, lim (ej/ej) =  1, and the integrand tends 
to infinity 1451, we can obtain an integral equation of



the form

^ ( - ^ " h ‘L£T L) 00

By solving equation (n), Hertz found that 

p(x) ^.Publ 

where

^ - - 2 ,/n a .

The maximum compressive stress pm„  occurs at the 
middle of the strip of contact.

9.2. Hertz’s problem (1881) [45].
Consider the strains and stresses in the region of contact 

between two spheres pressed against each other by forces P.

Wo take two points, A t and A t , on the surfaces of the 
spheres, which are at a distance p from an Rxis z passing 
through the centres of the spheres (Fig. 81a). The distance 
between these points before deformation is 
C, S, =  pV2 /?j +  p*/2f?2 =  pP», 
where
P --- 1/27?, +  l/2/?j =  (/?, +  R J I Z R tR f

Under the load P, the spheres are flattened in the region 
of contact forming a plane of contact in the shape of a cir­
cle of radius a, and their centres come closer together by 
an amount 6 .

If a >  p, the points A t and A t will coincide giving 
(Problem 9.1)

u',1' -f- <  =  6 -  ppa, (a)
where u'zl> and u'*‘ are the vertical projections of the dis­
placements of the points -4, and A t , respectively.

If the spheres are approximately considered as elastic 
half-spaces, we can find the vertical projections of the
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displacements by formula (9.9):

where p(r) is the pressure at a distance r from the z axis 
for which

J j  P(r)dF = P ,

s is the distance from the point A lt whore the deflection is 
being determined, to the point of application of the load 
p (r) dP, dP = s ds chf, r =  p sin ip (Fig. 816).

By taking the sum of the vertical projections of the 
displacements (a), we obtain the integral equation
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or

- H - i T r  +  T ? )

By solving ihis equation, Hertz found |45| Hut 

P (r) -  ^  V a2 — r2,

where
/;m„i = iPl2naz, 

j /~ 3 P R tRt

The approach of the centres of the spheres is

The maximum compressive stress occurs at the centre of 
the contact area (r =  0); here the material acts under con­
ditions of uniform compression. The maximum tensile 
stress occurs on the contour of the contact area; when Ex =  
=  £ a =  E and ox =  o2 =  0.3, it is equal to 

=  0.133pmal

9.3. Schleicher’s problem.
Determine the state of stress produced in the elastic half­

space z >  0 under a circular punch of radius a whose force 
of gravity is P (Fig. 82).

According to Problem 4.3,

On the surface (z =  0) 
u t ;„ =  (1 _  a) PI2nGr =  (1 -  a*) PlnEr,

where r =  V x2 +  p2.
Since the deflections of all points of the punch are the 

same, it follows that
u,~o -  constant =  — - ) P ■ (a)
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where E1 = E/( 1 -  a*), p (x, y) is Ihe unknown pressure 
at a point of co-ordinates x, y.

By solving the equation (a) simultaneously with the 
equation

J p{x, y) dxdy,

we obtain

p0 = P/na?.
The pressure diagram is given in big. 82.

► Dorivc the solution of Boussinusq’s problem (1885)

for an elliptical punch loaded at the centre by a force P. 
A nswer.

where a and b are the seminxes of the ellipse.

9.4. Kgorov’s problem (1938) 1641.
Determine the stale of stress produced in the elastic half­

space z >  0 under a punch having the shape of a circle of

where

P ( x .  y) - P
2n<ibl/l-(x/a >*-<»//»)*’
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?FiBUS83)n"d l0ad°d ^  “ f0rC° P aPP' i0d wit^ eccentricity «

-  - L -  [ P(I: y)dldy- A  +  Bx;nK, J y , i +y*

when z =  0 and r =  /  x* +
/> (*. iO =  0 .
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To solve the problem, we set up the equations of equi­
librium

y \ Z  =  0, j  p (x, y) dx dy - P, 

2 )M y = 0, [ p(x , y )xd xd y  -P e ,

S» ,=o. I p(x , y) y d xd y  = 0.

The solution satisfying the conditions of the problem is

“'“O(r) =  - ^ ( | - ^ cosp +  1 ) /; ,

angle a ^ \ ^ g - P e .

When p =  0 and r =  x, the stresses are determined from 
the formula

1+3

m7h?T
By the formula for eccentric compression,

According to the formula (a), when x  =  — < 
=a/3, the tensile stresses under the punch are

(a)

lim - L+ l/a  =  lim a +  I  =  lim x /  ° + z = 0.*-(-) Kl _(*/«)* *-(-a) V * ' - *  x-(-.) *
► By using Gorbunov-Posadov’s solution 1651, investigate 
the action of a strip punch (alb =  5) on the elastic half­
space z >  0 (Fig. 84).
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Hint. Use the formulas

and tables for the quantities k„ (alb) and kt (alb) when 
alb = 1 to 10.

p

1_____1____ ’////////</////& x 
u2(o,y,o)

Y ’g
*

*[
4

a a
y

9.5. Sadowsky’s problem (1928).
Determine the state of stress produced in the elastic half­

plane y >  0 by a punch of width 2a whose force of gravity 
is P (Fig. 85).

The frictional forces over the base of the punch are 
neglected in the determination of normal pressures.

In using formula (9.1), it is necessary to take into account 
that A is a variable quantity and to determine the deflec­
tion due to the distributed load by the formula

M x ,  0 )--=  - - ^ ^ J  P (6 ) In IX - I  Id?.

The conditions for the solution of the problem are: 
when y =  0, X y =  0; when y =  0 and — a <  * < a,

P ( E ) M * - S |d S = *
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when y  =  0 and —a >  x  >  a, 

P (5) =  0.
By setting up the equation of equilibrium  for Hie punch

The solution satisfying the conditions of the problom is

where

</„ =  PI2a, x  =  xla.

9.6. Florin’s problem (1936) 1661.
Determine the slate of stress produced in the elastic half- 

piano y  >  0 under a punch of width 2a to which a moment 
M  = Pe is applied (Fig. 86).

The conditions for the solution of the problem are: 
when y =  0, X u — 0; when y =  0 and —a <  x  a.

P

Fig. 85

( 2 ^  =  0). we obtain
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when y =  0 and oo >  x  >  a, — a >  x  >  — oo,

p (?) =  o-

By setting  up the equation of equilibrium for the punch 

=  *))> we obtain

The

p ( x )

ilulion satisfying the conditions of the problem is
2M x 
na~ ] /  a- — i-

9.7. See [(>7, 681.
D clennine the pressure under a punch having the shape 

of a circle of radius a in the elastic half-space z >  0 for the

case of known tangential forces in the region of contact t(r) 
directed along a radius drawn from the origin to the point 
under consideration.
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According to Eq. (4.30), the elastic displacements are

= + (a)
where V2̂  =  0,

to 4o—3 I to  +  Oy +  9z ) ' (b)

The stresses on the plane z — 0 arc denoted by

Zt =  (x, y, 0) =  -  p (x, y).

By Hooke’s law and the equations (a),

+  *(♦«+•/> I _  J L  . *(» ,+ •/) I Y . .
to + to U , -  G ■ *■ + -----ITj----=  (C)

By differentiating and adding the equations (c) to­
gether, we obtain

£ ( * + 2 )  + ( £  + £ ) < ^ « > . 4 ( £ + S ) .
or, noting that

( £ + ' & )  < * -+ * > -
we arrive at tho equation

_o [Q*> , c>(ifa+x) 
to I to ^  ay to

This equation enables one to dotermino the harmonic 
function in the squuro brackoU, i(), from its normal do- 
rivalivo on tho plane z 0 by using the formuln

-±n ♦WE. n.Q) 
n d \d ^ («l)

whoro

/ f - K ( x - 6 ) 2 +  ( y - i |) 2 +  z2.
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Assuming nil functions to vanish at infinity, we obtain 
by the formula (d), ’

d$, , <>(to+y.)
V-~- d x ' r  dy te -

____L f r _ n) (lffln
-  2*G ^ (e)

On the basis of the expression (b) we obtain the following 
equation instead of (e):

f + 2 ( t - o ) A - s 5 j a + n . J 5 i , .

Tho normal stress on the surface is, by Hooke's law 
and tho equation (b),

P ( * • » > = - T T ^ [ f ‘ ' l - « - 2 a ) § L 0. (g)

Eliminating tho function gj from the formulas (f) and
(g) gives

t | ,

- " - y "  <n

r V ( z ~ l ) 2 l
According to the expression (a), the surfnce displace­

ments are
«S =  to (*, y, 0), u° =  to (x, y, 0), uj =  to (*. y, 0).

We determine the deformation of the surface of the 
clastic half-spacc clue to tho given tangential forces t (r). 

Introduce the function

7 » -  J  t(r)dr.
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In this case

%  =  - 1 (r) cos (J =  -  X , /  (r) sin P -  -  Y,

£ X _ , dY__ * T  <PT _  r
d* dy dz* dy* Vxv ■

The formula (h) with p (x ,y )  — 0 is

In the following discussion it is assumed that the func­
tions T and i|>3 vanish at infinity. By applying the formula 
(d) to (f3, and differentiating with respect to z, we find
2 b =  _  J _  J .  f r * (€. TI, 0) ^dz 2 n  dz J  J  R dz “ 6 011>

from which we arrive at the formula for the solution of the 
Dirichlot problem for the half-space z >  0

II follows from the formula (j) that

lim £  j  j  f/,i

= ^!i™  1 J > ( V I,0)

=  25t J J  f  *& *»«. iJ.0)d|rfT|. (k)

On comparing the formulas (i) and (k), we find the 
deflection of the surface of the half-space under the tan- 
gontial forces only

*?(*)= (1~ 2<y +g) T(r).

Denoting the deflection due to the normal pressure 
p (x, y) by u\ (p), we obtain

«! (P) +  (0 =  Z M,



Prnblemt

where Z (r) is the equation of the surface of the punch being 
indented, or

u\ (p )  =  Z  (r) -  < (I).
The pressure p (r) is calculated by the formula

For a smooth punch having no comers at the contact 
boundary, C =  0.

9.8. See 1691.
1 n vestigate the slate of stress in a circular bar of constant 

section (6 =  1), which rests on an absolutely rigid and 
smooth foundation and is symmetrically loaded by bending 
moments M  and normal forces N  (Fig. 87).

X [v ( 1 / F w p + ^ )  +  ] +Z' ( l /  r* sin1 P-|- u1) 
V ^sin»p!u*

_y Fig. 87
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The stresses in the bar are expressed by the formulas

where (p is a biharmonic function.
The boundary conditions of the problem are: 

when r  =  a, uT =  B r =  0; 1
when r = b ,  R r =  B r =  0; } (b)
when P =  ±  n/2,

j  B$dr =  N , j  Bfirdr — M , =  0. (c)

We assume the function cp in the form of one of the 
known particular integrals of the bilmrmonic equa­
tion (6.13):
<p =  (Ark -)- Br*+* +  Cr~* +  Dr~*+*) cos Xp, (d)
where X is an undetermined parameter.

By the formulas (a)
R r =  IX (1 -  X) Ar*~* — (X +  1) (X — 2) B r * -  
- X  (X +  1) Cr-*~* +  (1 — X) (X +  2) D r -*] cos Xp,
B fi =  [X (X -  1) Ar*-* +  (X +  1) 01-1-2) Rr* +

+  M *  +  1) Cr-*~* +  (X -  1) (X -  2) Dr~*] cos Xp, (e) 
Rp =  B r =  X [(X -  1) Ar*-* +  (X +  1) Br* -  

-  (X +  1) Cr~*~* +  (1 -  X) Dr~*] sin Xp.

The displacements are determined from the equations

T  +  T " =  ~F ~  ’
dug »e _  2(1+0) ,1 dor 

r

(0



Problem!

Jly in tegrating  ll.o equations (£), and equating to zero 
the a rb itra ry  functions, wo find ’  B zero

E u r =  { -  (1 +  a) L4r>-‘ -  IA -  2 +  a (A +  2)|ft*+» +

+  ^  +  a> XCr~i ~l +  H 2  +  a ( U  2)] D r* » )  cos Ap,

E u » =  {(1 +  a ) \A r ^ - 1 +  |(1 +  a) X +  41 Bi*-" +  (g)

-I- (1 +  o) ACr->-1 +  1(1 +  a) A. — 4] D r-*+1) sin Ap.

By se tting  up the conditions (b), and equating to zero 
the determ inant A (A) of these equations, we obtain a trans­
cendental equation for the determination of A

A(A) — A(A2- l ) £ r 3[—2A(3—o)(A +  l ) a  +  C ( l - a ) x

X (A2 -  l)a -»  +  (1 +  a) (A3 +  5A -  2)a-* +

-I- 2 (A2 +  4A +  2 — 2a) a " 2*--1 — (h)

-  2 (A +  1) (2A — 1 +  a) a 2*--1) =  0,

where a  =  alb.

W hen A =  0, we obtain Lamp's solution; when A =  ±  1, 
we obtain  particu la r integrals of the biharmonic equation 
different from the solution (d). The remaining roots of the 
equation  (h) give a set of parameters Am.

For each param eter Am, the corresponding constants are 
determ ined by the formulas

A m =  Aj (Am) F m, B m =  A, (Am) Fm,

C m =  Aa (Am) F m, D m =  A, (Am) F,n,

where Ai (Am) are the cofactors of the elements of a row 
or colum n of the determ inant A (Am), Fm is an arbitrary 
factor of proportionality .

By sum m ing the solutions over m, we obtain the general 
expression for the stress function for a state of stress sym- 

17-097.1
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metrical in the P co-ordinate

<r =  y  1 A, ( U  r>-m +  A2 (Xm) r>-m+2 +  A3 (K .) /->"> +

+  A* (Xm) r -Xm+2] F,» cos X,np. (j)
Substituting the series (j) in the formulas (o) and (g), 

we find the values of the stresses and displacements.
By leaving the necessary number of terms in the series 

(j), it is possible to satisfy two integral conditions of (c), 
and to require tha t /?p should be zero a t a Imilc number 
of points r =  r, for the local condition of (c); a t the points 
r — a and r =  b this condition is already fulfilled [the 
equations (b)l.
► Solve Problem 9.8 in the absence of displacements ur 
and ttp along the line of contact r =  a.

9.9. Sec [701.
Determine the pressure when the half-plane ;/ '0  is indent­

ed by a punch, taking into account the frictional forces

9

between them. Assume that the punch is in a state of lim iting 
shear equilibrium* when the horizontal shearing force T  =  
=  fP , where /  is the coefficient of friction and P is the force 
pressing the punch (Fig. 88).

By taking /  (x) to be the equation of the contour of the 
punch, we obtain the boundary conditions in the form 
Y y=0 =  X„=0 free surface,
Xy^o  +  f Y u=0 =  0, Uy=0 =  /  (x) +  c surface under (a) 
punch.

* The force T produces no moment (the punch does not turn).
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In tegrating  the strain equations for the half-plane 
gives

J ^ L u x +  C t— 2 ( \ - o )  n ] Yy=fid x+  j X u^ 0 In (£— x) dt, 

b (b)

where E s =  E /(l — a2), C; arc constants.
The last equation of (b) is represented as

T 1- “, + « • =  j
The derivative of the displacement is

On the basis of the condition (a) the expression (c) 
takes the form

VV’e introduce a function of the complex variable z =
=  x  -!- iy:

b

»! (a) = u* -  = j Yu=o . (e)
The right-hand side of the formula (d) is expressed in 

terms of the real and imaginary parts of the function (e) 
for y  =  0:
tie , (0 u u , -  i  — 2a -

2 ( dx ) „ =0 u * + ^ 2 ( l  — a ) Uy‘

By taking the condition (n), we obtain
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On the free surface Y„r 0  =  0 and the im aginary part of 
the function for y  =  0 is zero.

The boundary conditions on tho sections outside the 
punch are: when y  =  0 and —oo <  X <  a , 6 <  x <  oo,

the boundary condition in the region of contact between 
the punch and the elastic half-plane is: when y  =  0 and 
a <  x  <  b.

Besides, the function wx (z):
(1) m ay have singularities of the form z"a , where 

0 < ; a  <  1, on the real axis because of the absence of con­
centrated forces under the punch;

(2) m ust behave a t infinity as P z " \  where P is the 
force pressing the punch.

The constant lost in differentiating the expression (c) 
m ust enter into the expression for the function (f) and is 
determ ined from additional data.

Thus, the problem has reduced to a special cose of the 
mixed boundary value problem of finding a function of 
a complex variable (R iem ann-H ilbert problem).

I t  is necessary to find a function th a t satisfies, on the x 
axis, the condition 
a (x) u x +  b (x) uy =  P (x), 
where
a (x) =  0, b (x) =  1 when —oo <  x  <  a, b e  x  <  oo;

The solutions of the homogeneous problem are of the 
form

— , , 1 — 2a —
“ *  1 / 2 ( l - o ) ' “ i ' - (f)

a (s )  =  l ,  b(x) =  f when a < x < b ; 

F (x ) =  ^ - f ’ (x).

Wl (z) =  exp [ ±  arc tan ( /  L _ g )  j
( z - a ) ( z - b ) '

iP M

where P  (z) is a polynomial.
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By taking different polynomials P (z), we obtain difle- 
rent solutions of the homogeneous problem:

. . . o - l t - b V - 0

,,o=  ( z ~ b 1 -  i
’ i { z - a ) z - b  (z_ a)0(r_ 6)l-e.

r a r c t a n n r = ^ ) :

here 10 1 <  1.
For the first polynomial of (g), we obtain

* / * + < ■  ( f c l )

For the solution (h) to become general, it is necessary to 
add to it a function satisfying the homogeneous conditions

(z — a)° (z — ft)1 - 0 '

The pressure exerted on the punch is

p  (X) =  —  Im  [ (z)];esx -i.O-

If there is no friction between the punch and the elastic 
body, then

/  =  () and 0 =  - I  arc tan ~2̂ y =  -y  •

Substituting the values /  =  0 and 0 =  1/2 in the expres­
sion (h), with the function (i) taken into account, letting
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*-*■*, u d  a s p i n t l i g  1

/> (*)=  - r r . . =
p a r t ,  w e o b ta in

"  - t  -p j  r w  v <s~a> <*’-*) *

(» -* )■
^ D e te r m in e  th e  p ressu re , t a k in g  in to  a c c o u n t f r ic tio n , 
w han  a h a lf-p la n e  is  in d e n te d  b y  a p u n c h  w ith  a  f la t K « t  
1/ (x) =  c o n s ta n t )  u n d e r  a  fo rce  P (see th e  m o n o g rap h  163) 
C hap . I , See. 8 ). V '

u>, ( * ) » ------- f  (1 —f_\
V ( s - • ) ( * - » )  \  *~t> I

W hen / - 0  a nd  0 = 1 / 2 ,

»•(«) -
V ( i - s > ( » - * )  '

T h e  n o rm al p ressu re  on (he  su rface  of (he  lia lf -p lan c  is 

p ( x ) «  - 4 - I m |K - , ( s ) U x  ,.o      ' '
* J/ (0-~J-) (f; - -r)

a .  th e  re su l ts  o f P ro b le m  9 .5 .

M O . See  1711.
D e te rm in e  th e  s ta te  of s tre s s  a n d  s t r a in  in  (lie  e la s t ic  h a lf ­
p la n e  y v ,  0  if on th e  s e g m en t AH

-  i i  + t \ . (a)K f t  ~ «*.. 
on  th e  a x is  ( h  o u U id e  th e  se g m en t AH 

Y ,  -  JV -  0 , A‘f  =  T  — 0 . (b)

Ve^ .Qr < *• Y) o l  fo rces  a c t in g  on  th e  seg­
m e n t A H  la kn o w n  (F ig . 89).

A cco rd in g  to  th e  c o n d itio n s  o f th e  p ro b le m , 

j ^ T d x - X ,  j A ' d x - - K .  ( f)
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If N  and T  were known on the segment AB,  the problem 
would be solved.

By applying the complex-variable method (x =  x +  iy), 
we find expressions for the auxiliary functions (281:

^ (x) — j (.V r iT) ln(t —x)<ft+C„
(d)

x ' ( : ) -  _  ±  [ { N - i T ) \ n ( t - i ) d i ~ z ^ ( t ) + C k.
AB

Substituting the expressions (d) in the displacement 
formula (5.20)

26’ (» , +  *«») ■■= x<t> (i) -  i* ' Ml -  X (*).

where for piano strain

K - V n r - 3 - ^ .

and passing to the lim it as x - t ,  where t  is » P « n U l  
lb,. „.gm onl A B .  we obtain, taking into account the for­

m ulas (a), integral equations for the determination of
and T:

N

( T ( t ) \ n \ t - i \ d t + a n  j  N ( t ) d t -

-  - - ^ g , ( i )  -‘-C, /.(* ) r C . , (o)
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j  N  (t) In | / — t | dl — an j T (t)d t =

=  T jT S A ? ) + C i = ft (-c)-\Ci<

where

We introduce into consideration functions £/, -f- /F , and 
Ut  +  iV2 of the complex variable z

U t + iV t=  [ T(t)  In (t — z)d t,

I t  is seen from the formulas (f) th a t Ux and U„ are 
logarithmic potentials for simple layers distributed oii A R  
w ith densities T  and N.

By symmetry, Ut (x, y) and U. (x , y) arc even functions 
in y. By the well-known formula of potential theory, we 
obtain

and a sim ilar formula for N.
The plus and minus signs refer to the values of the 

derivative obtained when approaching points of the seg- 
ment A B  from above (y >  0) and from below (y <  0), 
respectively.

From tho formula (g), by using the Cauchy-Riemann re­
lations, we derive

U2 +  iVt =  j  N  (t) In ( t - z ) d t . (0

=  — M * ,  + 0 ) + c . CO
and sim ilarly for N.
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On Iho basis of the formulas (h), the solution of the 
equations (e) reduces to finding two real functions, £/j and 
U , continuous in the whole plane, harmonic outside the 
segment A B , which behave at infinity as [from the expres­
sions (f) and (c)l X In | s  | and Y  In | z |, respectively, and 
satisfy a t the upper edge of the segment AB  the conditions

U1 — olV 2 =  / 1 +  Clt U2 +  aV1 =  / 2 +  C„ (0

where and Vt are functions conjugate to Ux and Ut , 
respectively.

To solve the problem, we map the s plane cut along AB  
onto the outside of the circle | £ |  =  1 of the plane ? =
=  |  +  iq by the well-known relation

z =  t ( c + D -

On the basis of the foregoing properties of the unknown 
functions we have, for | £ | > 1 ,

£/, ■ iV t =  X  I n £ +  S a nr n + C „

1 (j) 
U„- -  iV» =  Y  \n  +  C. ,

where a and are unknown real coefficients.
P t? t5 n S  = re* (r >  1), and assuming that the func­

tions u j u 2 and the one-signed parts of the 
are continuous up to the contour rf  the c i r e l j .n d a t a  that 
the above expansions are valid for r  ( 
the series and converge), we obtain, by the
formulas (i), for 0 <  P ^  *'■

y . a n cos np +  a S fcn sin np =  Fi +  C„ 
i «

§  bn cos np -  a  S  an sin np =  F%-V Ct , 
1 1

where

F, =  f t +  <zYp, Ft =  I t  -  aX p-
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By m ultiplying both sides of the equations (k) by 
^co s  (m =  1, 2, . . .). and in tegrating between tho 
lim its 0 and ji, we arrive a t an infinite system of linear 
equations w ith an infinite number of unknowns of the form

«m +  a  2  amiAi =  C'm, bm — a  V  omna„ =  C’m,
n=l „=1

where

amn = - | -  J  cos TTljJ sin 77p dp =

=  1 Itja1 — m'-) if is 0(1(1 -
I 0 if (n — m) is even,

C’m and C"m are the Fourier coefficients of the functions Fx 
and F , in their cosine-series expansions on the interval 
10, n).

If / ,  and / 2 have, for example, bounded derivatives with 
respect to P on the interval [0, ji |. the series on the left- 
hand sides of the expressions (k), and the more so the 
series in the expressions (j), converge absolutely and 
uniformly. After finding Ux +  iV x and U i V ,  we dc- 
termine i|> (z) and (z) directly  from the formulas (d) 
and (/). v '



Chapter 10

d y n a m ic  p r o b l e m

Assuming th a t the motion of an clastic isotropic body 
(medium) is characterized by infinitesimal strains, we can 
w rite the equations of motion by applying D’Alembert’s 
principle:

#0
O y ’ i)z ■ G^P(ux, uu, uz) =

. o-ux (Pu,, (Puz
=  n 1 7 F  > ’ <n- (lO.i)

or in vector form

(>. G) grad 0 -f GV2 «  -  p . (10-2)

By using the vector identity 
ro t rot =  grad div — Vs,

we obtain , from (10.2),

2G) grad div u  — G rol rot it =  p (10.2 )

Under the conditions of motion adopted, the formulas for 
stra ins and H ooke’s law remain unchanged.

I. SIMPLE HARMONIC MOTION

For a sim ple harm onic motion with period T =  2'nip, 
where p  is the circular frequency of vibration, the displace­
m ents can be expressed as 

ux =  A  cos (p i  +  e) u’x, uv 
=  A  cos (p i  +  e) u'z.

=  A  cos (p i +  e) Uyi
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and Eqs. (10.1) are obtained in the form

<*+ G > ( -£ -  - f r ) + ( GV2+ p p2) ( “*’ uv> u*)*=o-
(10.3)

By differentiating these equations with respect to x, y, z, 
respectively, and adding the results together, we find

(Vs +  fc*)0 =  0, (10.4)
where

h* =  p PV (\ +  2 G). (10.5)
On putting
x* =  ppVG, (10.6)

wo obtain Eqs. (10.3) in the form

(V* +  x2) (k„  uu, uz) =  (1 - )  ( §  -g- g ) .  (10.7)

If 0 satisfies Eq. (10.4), i.e., V20 =  — A20, the solution 
of Eqs. (10.7) is

k.t. uu, uz =  Kj,1’ +  Mi’, u\}' +  u|*', u'zv +  u'*‘, (10.8)
where u'J\ u'J’, u '/1 is the general solution of Eqs. (10.7) 
without the right-hand sides provided that

since it is determined from Eq. (10.4); 
u ,2> u ,i> u ' t > ^ __i_/ao d0_ ao\

x ’ u ’ 1 h1 ( dx ’ dy ’ dz )

(10.9)

mum
is a particular solution of Eqs. (10.7) with the right-hand 
sides.

Equations (10.4) and (10.7) without the right-hand sides 
are called the equations of vibration, or the standing wave 
equations.

Their particular solutions are: 
rectangular co-ordinates

=  (10.11) 
(plane wave), where k2 +  lz -f- m2 =  x2;

• In Eqs. (10.3) primes on llio displacements are omitted for sim­
plicity.
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cylindrical co-ordinates

u'itm =  e* «"»+*«/{» (r ] /x2—m2) '

spherical co-ordinates

**5.“  =  - j7 7  R « + m  ( * r ) ( « .  P) ** (10.13)

(spherical wave); when n =  0, 4 “ =  e,xr/r.
For vibrations in a plane (m = 0), a plane wave trans­

forms into a line wave, and a cylindrical wave into a cir­
cular wave.

II. PROPAGATION OF VOLUME WAVES 
IN AN ELASTIC ISOTROPIC MEDIUM

When 0 =  0, Eqs. (10.1) become

If (d.c, coy, u>z (Eqs. (2.3a)] are zero, so that the vector u  
is the gradient of a potential <p, i.e.,

* (pr) =  EhJ k (pr) +  FkNk (pr) is the cylindrical function of 
order k (see Chap. 4).

** Yn («, P) =  (cos a) e""p is the spherical function of

GV2(«„  u„ uz) = p - £ r ( u xt uv% ut). (10.14)

u  =  grad q> =  i  -g- + j  - g -  +  * - £  ,

then

0 =  V2cp,
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and Eqs. (10.1) toko llio form 

(X 4- 2G)V2(ux, uy, «z) =  P a |- (« * .  «*)■ (10.15)

Equations (10.14) and (10.15) are wave equations jn 
sjmce

whore c, is llic velocity of wave propagation, <p =  ux, u Ui- 
Slicar waves, or waves of distortion (S-wavcs), involving 

no dilatation (0 =  0) have a velocity c., y  G/p; irrota- 
lional waves (w* =  a>v =  w. =  0), or compression-dila­
tation waves (P-wavcs), involving a change of volumo, travel

with a velocity c, =  V X +  2G/p.
If q> =  q> (x, ij, t ) ,  Eq. (10.16) assumes the form of the 

wove equation in a plane

When <p =  (p (x, t)  Isimilarly, (p — (p (ij, x)|, wo obtain 
a ono-dimonsional wave equation

Tho general solution of Eq. (10.18) given by D’Alombcrt 
is of tho form

whoro /( uro arbitrary functions.
Tho process expressed by Eq. (10.19) involves two waves 

travelling with a velocity c.

(10.16)

(10.17)

•P =  /l (* — ct) -f It (x +  ct), (10.19)

(10.20)
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Tlic general .solution of Eq. (10.20) is

<P — /1 (r  — cx)/r 'h  12 (r -f cx)lr, (10.21)
where /, are arbitrary functions.

The process expressed by Eq. (10.21) involves two circular 
waves, with a source at the fixed point, travelling with 
a velocity c.

The surface s of the disturbed part of the medium moves 
in the direction of its normal v with a vclocitv c.

where I =  cos (x, v), m =  cos (y , v), n =  cos (z, v) are the 
direction cosines of the surface s.

The dynamic conditions (three equations) for points of
the surface s are

where A'v, y v, Zv are the projections on the x, y, z axes of 
the stress on the surface s.

The right-hand sides of Eqs. (10.23) may be written as

(10.22)

(10.23)

~  I , l + c >14 r + 0  ( 1 + “ ■ % -+ “ - f r ) +

+  ( u -W l + c " t t ) +  ( u - & - +<!- w - ) ] -  (,M 4)

The next two expressions of (10.24) are obtained by cyclic 
permutation of the letters x, y, z, I, m, n.



272 Ch. 10. Dynamic Probirr

III. WAVE PROPAGATION OVER THE SURFACE 
OF AN ELASTIC ISOTROPIC BODY

1. Rayleigh waves [72]

Plane waves of a simple linrmonic nature travelling over 
the boundary plane z =  0 of the medium z >  0, for which 
the disturbance penetrates only a vory short distance into 
the medium, are called Rayleigh waves (77-waves). The dis­
placements for wave propagation in the x  direction are of 
the form

«*, =  «!?’ I Mi", U'"-| u'J\ u r i - u l 1', (10.25)
whore

Mi". Mi", u':"= (Is, /.-, Dx-ZQe-'HXr'-l*', 

Mi", Mi", U i" - ( i / ,  0, (/)/t-2/V-"+.(/.t-/.r) 

and, by Eqs. (10.4), (10.5), (10.7),

(10.26)

(P =  p  _  h*, s' =  p  -  ■/}. (10.27)
On the boundary plane z =  0, the following conditions 

must bo fulfilled:

or, in oxpanded form, 

¥ ' l - ( s a +  /* )-£  =  0, A =0,

(10.28)

(x* -  2h*)P!h' -  2<PP/h* -  2sfQ/x2 =  0,
(10.29)

where MG has been replaced by x W  — 2.
The condition k  =  0 shows that the motion takes place 

m the xz plane (uv =  0).
The elimination of P and Q from Eqs. (10.29) leads to the 

equation

x" -  8x* +  24x* -  16 (1 +  hs)xa +  16/T* =  0, (10.30)
where x* =  x*//* and h1 =  A1//*.
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For an incompressible material (X =  
from Eq. (10.30) wo obtain

_  8^‘ +  24x2 -  16 =  0.

»). **/*• =  0, and

For the real value of the root x2 =  0.91262...

<P =  /*, s2 =  0.08737...Z2,

and the velocity of wave propagation (the wavelength is 
2nlf) is determined by the formula

cn =  pH =  0.955*. . (10.31)

i.e., it is close to the velocity of shear waves.
The Hayleigh surface waves (/?) are formed on the surface 

of a half-space as a result of the superposition of the longi­
tudinal (P) and transverse (S) waves at the moment of 
reflection from the boundary of the half-space z >  0.

If the disturbance centre is at the origin, the displace­
ments of points of the half-space coinciding in direction with 
their radius vectors produce longitudinal P-waves, and the 
displacements normal to the radius vectors produce trans­
verse iS'-waves.

The front of Rayleigh waves away from the disturbance 
source 1ms a large radius, and hence these waves may be 
regarded as plane. They decay with depth according to the 
exponential law (10.26), and predominate near the surface 
(z =  0). According to the investigations of G. F. Miller 
and II. Pursey 173), the energy transferred by various waves 
is partitioned as follows: the Rayleigh (R) waves — 67 per 
cent, the transverse (S ) waves—26 per cent, the longitu­
dinal (P) waves—7 per cent; hence, in the design of the 
foundations of machines and buildings primary attention 
must be given to the study of the Rayleigh surface waves.

Figure 90 shows to scale the positions of the fronts of 
different (R, S , and P) waves and the displacements of 
particles of the medium produced by each wave at a fixed

* The factor in front of the root ranges from 0.874 to 0.958 when o
varies from 0 to 0.5, respectively (when o =  0.25, it is equal to U.J^).
18-0073
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instant. The arrows indicate the directions of displacements 
of particles a t the front of the corresponding waves (see 174)).

The practical application of the foregoing theory of wavo 
propagation in an elastic half-space to the design of foun-

Fig. 00

dations is given in the monograph [75], and the description 
of experiments may be found in [761.

2. Love waves [77]

If a body is composed of two physically different regions, 
z >  0 and —h ^  z ^  0, another type of waves occurs, 
known as Love waves. The displacements in this case are 
of the form

ux, uy, uz =  (0, v, OJe1**1-" )  (—h ■£ z <  0),
(10.32)

ux, Uy, uz =  (0, v', 0) eM*-cr> (z ^  0), 
where v and v' are functions of z*.

By securing the continuity of v and Y z =  Z across the 
plane z =  0, and assuming Y z =  0 when z — — h, we obtain 

v =  v„ cos lag (z +  A)) (~ h  <  z < 0),
v' = Vy cos (oqh)e-0'v  (z ^  0), 

where v0 is an arbitrary quantity,
=  cVc\ -  1, ( a y  = 1 - c V  (c tf, 

cl =  Gi p, (c 'y  =  G'/p',
• Hero and henceforth, the unprimed symbols refer to the upper

layer, and the primed symbols to the lower layer.
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and the velocity ol propagation of Lovo wnvosc, provided 
c:, >  Co, is doterminod from the equation

(10.33)
[t follows that the velocity of propagation of Love waves 

depends on the wavelength 2nlq, and thus wave dispersion will 
lake place.

IV. EXCITATION OF ELASTIC WAVES 
BY BODY FORCES (5)

If I he motion takes place under the action of body forces 
X , Y , Z  dependent on the co-ordinates x, y, z and the lime t, 
the equations of motion (10.1) aro

+  , « . r . Z ) - p ( £ .  & ) •  ' l0 M |

By representing the body forces as*
/M) a® a®\ ,

X, V , Z = grad ® -r rot (L, M , N) — \ dz , < dt )~r
,„.y 0M 0L _ d N  0M__(10.35)

+  ( “  dz ' Tz dx ' dz »y I ’
and the displacements as

u u,j, u z =  grad q> -h rot (F, G, H), 
we satisfy Eqs. (10.34) if the functions q>, 
the equations

(10.36) 

G, H satisfy

« h £
lational (P) waves, c\ =  Glp is the squa 
of shear (5) waves.
♦ Kelvin’s"solution (1848) for the static action of forces.
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Particular solutions of Eqs. (10.37) may bo roprcscnlod 
in the form

, - ^ r J I J  j< J> '(t-r /e i)dx’ dy, dz, t

F =  -A s-  [ f || — L ‘ ( t — r/c2) dx' dy' dz',
7  n  (10.38)G =  IZcf J J J T M' (T-  r/ci)dx' d,j' dz'<

H =  4HT I J  J  T  N ‘ (* ~  r/c^  dx‘ W  d i' ■

By expressing O ', L ', . . .  in terms of X ' , Y ',  Z' by 
the formulas

=  I I  ( * '  - is r-+ r  t t  +  z ' t t )  ** '*» '& , 

[z ' > 

{X ' ^ r - z ' - ^ r ) dx' dy ' ,lz' ’ 

{ Y ' ^ r - x ' ^ w ) dx' d,J ' dz'>

where X ', Y ', Z' are the values of X, Y , Z at a point (x' , y', 
z ) insido a region T when the body forces ore different from 
zero, r is the distance of the point (x , y, z) from the point 
(x , y  , z'), wo can perform the integration of formulas (10.38).

V. DEFORMATION OF SOLIDS UNDER CENTRIFUGAL FORCES

The equations for displacements symmetrical about the z 
axis (up -  durldp =  duJOfj =, 0) aro, by Eqs. (3.3b),

( l l 2 G ) £  + 2 G » £ - = - p*Pr,

(M  M ) £ 4  ( r» ,)= o .
(IO/iO)
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or, by Eqs. (3.3b'),

277

(Jl+ G) J r  +  Gv2tt*= 0 *
where

p is the angular velocity of rotation.
In a rectangular co-ordinate system we obtain, from 

Eqs. (3.3a'),

(X -!- G) -£■ +  GVzux +  p*px =  0,

(X -I- G ) + GV2uu -)- p*py =  0, (10.41)

(X !6 ') -g - - |6 'V 2u: -=0.

VI. PLANE DYNAMIC PROBLEMS

1. Equations ol motion

0Xx 'i x u IT-Uy 
Ox 1 Oy _ |1  W  ’ -o T  + -o5~= f>-otr- (10.42)

2. Equations ol Hooke's law

G ) ^ -  + X ^ - .

Y > ( - ' 2G) ^ r + ^ -
(10.43)
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4. Cemplei-vi >d [78, 79]

By differentiating the first equation of (10.42) with respect 
to x, the second with respect to y, and subtracting one result 
from the other, we obtain

{ - & - ! % & )  x * ~  (10-45)
Equation (10.45) is satisfied identically if the stresses 

aro equal to
v  <F<t> 1 iP<t> , ,  05<D 1 ,y- it,

whore the function fl> is the dynamic ana logon of Airy’s 
function, satisfying the equation

( V2- ^ ^ ) ( V2- ^ ^ ) (I)(^. *) (10.47)
If the disturbances propagate with a velocity c parallel 

to the x  uxis, by applying the transformation 
5 =  * -  ct, q =  y, 

we obtain Eq. (10.47) in tho form

( ^ — ^ $ ) ( | r - ^  —  ) ‘l» -0 ,  (10.48)

*1 =  ip, =  i ( l ~ J ) , / 21 .'•2--=ip2 - i ( l _ ^ . ) ,/- .  (io.49) 

Formulas (I0.4G) become 
.. ,mi> c- ,/=(!> ,)*u t
x * w ~ " c i ~ ! ¥ '= ~ ^r ~ T e - K ) - ^ . (10.50)
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and

(10.51)

(10.52)

v  l  Y  -  " " . <PV>

Assuming 

zi =  6-l- V). *2 =  6-1- **i), 
wo obtain the solution of Eq. (10.48):

^  =  p i (*i) +  M ^ j  +  Ft (z,) + F 7K ) =
=  2Re \FX W  +  Ft (zs)], (10.53)

whore F,,(*,), /', (*,) and P% (z3), 7 ^ )  arc conjugate analy­
tic functions of the complex variables z, and z2.

Substituting expression (10.53) in formulas (10.50) and 
(10.51), we find

XI = - 2 R e [ ( l  +  p j - i K) / r (Zl) +

2 J (10.54)

^x +  y |(= --2 (P !-P D B e[F ;(z I)i.
After substituting expressions (10.54) in formulas (10.43) 

and integrating,'wo obtain

Gux =  -  Re [P\ (*,) + i  (1+  pj) r % t o  1 ,
r  , , « 1  ,  (10.55)

Guy = \m [ ^ F \(z t) + ^ . F - i (zt)] .

Inserting those expressions in the third formula of (10.43), 
we find

X,, 2 Im [p ,F ;(z1)-f^<l±M>!^(z,)]. (10.56)

Tiic problem can also be solved in terms of displacements. 
In III is case, substituting formulas (10.43) in Eqs. (10.42), 
we obtain

I Z. +  2C a*-] X+C dug p S*ux
I G dx> +  0<f- J 1 "*■ C dzdy C «t< 1
x + c  a»ux , r >-+2G d» , a* 1 .. p "lu»

c a* dy L c a»» ̂  a** J v c ax’ ■

(10.57)
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Assuming
7. +  C 3*0

(10.58)X-r 2C 7-0  , a*C> p W  
Uy G d i3 "r  dy3 G dr* 1

where O =  d> (x, y , t), we identically satisfy the first equa­
tion of (10.57), and the second equation takes the form of 
Eq. (10.47)

which, for the case considered above, is solved in a similar 
way.

5. Integral transformation method [79 to 81]

Various forms of the integral transformation method based 
on Fourier and Laplace transformations arc in use. Below is 
given the procedure of solution by one of the forms of this 
method:

(a) for each function /  appearing in Eqs. (10.42) and (10.43) 
or in Eqs. (10.57), apply an integral transformation convert­
ing the given equations into simpler equations containing 
tho functions /;

(b) determine the functions f; the constants entering into 
these functions are found by considering the boundary 
conditions;

(c) _by using Fourier’s integral theorem, invert the func­
tion /  into /.

6. Method of functionally Invariant solutions [82 to 84]

According to this method, the solution of the wave enua- 
tion

is sought in tho form 
u =  Re (/ (£)], (10.61)

where /  (£) is an arbitrary complex function of the argument 
£ (x. y< x) satisfying the wave equation (see solution (10.19)1,

(10.59)

V 2u — (10.60)
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satisfying the condition
%(x, y, t)  is a functionally invariant solution of Eq. (10 601 
cntisfvintr the condition i  \ ;

(10.62)
The general integral of the system of differential equations 

for £ is taken in implicit form:

where I, m, n, k  are coefficients.
For a plane wave, the coefficients of the variables x, y, x 

must be real. By assigning two coefficients, say I and to, 
we obtain

where the plus sign corresponds to the motion of the wave 
towards the boundary, and the minus sign away from it.

The foregoing method is used to investigate the laws of 
reflection of elastic vibrations from the freo surface of a body.

It is found that the boundary conditions cannot be satis­
fied by any one type of wave.

When a dilatation (shear) wave is incident on a free boun­
dary

both types of wave arc roflcclcd:

q>2 -■= Af (lx -'r mx — Y  He] — m2y) 

i|)2 - - Ilf (lx — mx — Y  1 lc\ — m2y).
The constants A and B are determined from the boundary 

conditions by substituting for 9  =  9i +  Vi an(1

VII. THERMODYNAMIC PROBLEM

+  »  (0* +  » ( 0  y -  k (t) =  0, (10.63)

k(V) = lx — mx \!c\ — m2y. (10.64)

9 , =-- / (lx — mx +  Y He] — to2!/). (10.05)



Ch. 10. Dynamic Problem

Eqs. (8.3) take the form

( * + G ) £ + g v ^ = p - ^  +  k « | - ,

(X +  G ) £  +  W u , J= p ^ -  +  K a 4 L ,  (10.G6J

(X + G ) ^  + GV*uz =  P % -  +  h

The stresses are determined by formulas (8.2).
When there is no mutual transformation of llio thermal 

and mechanical energies, the temperature t = t (x, y, z, t) 
is determined from the heat conduction equation (8.23) 
subject to surface conditions.

If the mutual transformation of the energies is taken into 
account, it is necessary to consider the refined heat conduction 
equation (see the monograph (581).

If, a t a point M 1 (xlt ylt s,) of an infinite body, there is 
an instantaneous heat source of intensity 

6 ,= jF / ( e p )  (°C-cm3),
where W  (cal -sVcm) is the quantity of heat (in calorics) 
generated at the point, divided by g, Eq. (8.23) becomes 

xV2t =- ,

and the lempcrnturc distribution at any instant is deter­
mined by its solution [571 

l(x , y, z, x) =

= + + <10-C7)
Uy integrating solution (10.67) throughout the volume, 

we obtain

y, z, t) dx dy dz —

It is seen from solution (10.67) that as t - + 0 ,  t-*  0 at 
all points except a t a single point, M, (xlt y lt z.), where it 
becomes infinite. Relation (10.67) is the analogue of the 
Green s function.
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Tho temperature distribution in an infinite body under 
a two-dimensional heat flow produced by an instantaneous 
heat source on a straight line passing through a point 
•Vi fo . !/i) parallel to the z axis at the time x =  0 is deter­
mined by the expression

'  y> T> -= - j f e r  cxp [ - - ~ Zl>y ~ !fl)1]
since

I j  l(x , IJ, x) dx dtj =  l>2 (°C cm2).

The solution of the thermodynamic problom of a thermal 
shock on the surface of a half-space is given in 1861.

PROBLEMS

10.1. Chrec’s problem (1892) 1871.
Determine the state of stress in a cylinder of radius b and 

length 21 rotating with an angular velocity p.
The computing equations arc Eqs. (10.40).
The boundary conditions of the problem are: when r = b, 

/(, =  Zr — 0; when z =  ±  I,

IL -  0 and \ Z z2 n rd r^ 0 .

The last condition is an integral one (instead of Zz =  0), 
hut according to Saint-Venant’s principle, the resulting 
slate of stress is sufficiently accurate at points remote 
from the ends of the cylinder.

In terms of R  and a Eqs. (10.40) arc 
( t - o )  A1 flO , E *■>» 

l +  o(l+o) (1-2o) , 
( l - o )  E

! = - p V ,  

iT ( '“ »> =  °-r1 +  o ) ( t -2 o )  - 
The solution of these equations satisfying the above 

boundary conditions is of the form 
„ 1r P*P U +  ° ) d - 2 g) u - B z ,

r ~ - lr 8 E l - o  ’ 1
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The stresses are equal to

y  _ P;P ( ^ - ^ )  a

10.2. See [451.
Determine the state of stress in a thin annular disk of 

outer radius b and inner radius a rotating 'w ith a constant 
angular velocity p.

The equation of motion is, by (6.1),
Ur -Wfl 

------ ;------ I p2p/ =0* .

Whon h =  h (r), Iho equation (a) becomes 

- fr V 'r R r ) -  httR -f  p*pftrJ =  0.
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Substituting tlio stress values (6.5) in the equation (a), 
and cancelling out the constant factor, wc obtain
d-ur 1 dur Ur _  p (1 — 0~) p*r 

~ d ^~  r  dr r> K
By solving the equation (b), we find

~  _ . Ct  P (i — o’) P*r* *ur ~ C tr + - ------------gg-------.

By (6.5),
Rr = A _ j ^ _ j t t ^ L ,  b , =  a  +

B (l +  3o)pp«r3 
r  T* 8

(b)

where the new unknowns 
A =  ECXI( 1 -  a) and B  =  ECJ( 1 +  a) 
are determined from the boundary conditions: when r = a 
and r  =  b, R r =  0.

The stresses are, finally,

The /?r and diagrams are given in Fig. 91.

10.3. Chree’s problem (1889) 188).
Determine the displacements of a sphere of radius a ro­
tating about the z axis with an angular velocity p.

The boundary conditions (1.2) for the surface of the 
sphere (r =  a) arexr = y r = zr = o.

The body forces in Eqs. (10.41) may be considered as 
the gradient of the potential 

q> =  p/>* (z2 +  y®)/2,
* A particular solution is lakon in the form -  c sT-
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which may bo represented in tho form
<p =  ppV*/3 -|- pp2 (x* -|- y2 -  2z2)/(i, (a)
whore
r2 =  xa +  ya +  za.
The first term in the) formula (a) gives a purely radial 
body force 2ppar/3 with a purely radial displacement ur 
(ttp =  ua =  0), which can bo determined from the first 
equation of (10.40):

(* - I'' 2C) — ( -I-2 f ) + -  P/* -  0. (b)
By solving tho equation (b), we obtain

r 15 (>.+2C)
/ 5X +  GC r- \
I 3X +  2G a1 } ■

- (  ML-H2C “  ^  ) ('1’
In a similar way it is possible to solve the problem of 
tho deformation of a sphere duo to the mutual attraction 
of its particles (tho earth).

The second torm of the potential <p Iseo the formula (a)l 
represents a spatial spherical function of the second order

V., =  r*Y2 (a) =  i^P. (cos a) =  ra (3 cosa a — l)/2 

[see Chap. 4).
Equations (10.41) for this case arc

( i +.6’) ( + ,  + ) o  I i / „  !

By using the properties of spherical functions Isce 
Chap. 41, we obtain the solution

u„, uz — A [(5X +  7G) r*(x, y, - 2 z )-  
-(2> . : 1C.) (x* + y*-2z*) (x, y, z)]-|

y, - 2z ) - ^ L _ [ , z (Zi IJt _ 2z) +

-|-(x2 +  i>2- 2 z 2)(ar, ;/, z)],
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where the arbitrary constants A and R determined from 
the boundary conditions aro

A p/*(7>.+6C) u _  (ip> (4X+3G)
42(>.+2G)(19H-14G)G ’ " ~  "3G(l!Wi +  14G) •

10.4. Pochhammer’s problem (1876) [89).
Investigate the vibrations of an isotropic circular cylin­

der of radius a whose surface is free from stresses.

To solve the problem, we make use of Eqs. (3.3b) sub­
stituting inertia forces for the body forces R, B, Z; we 
thus obtain

Assuming that the displacements arc harmonic functions 
of z and t  of the form

„ r =  Ue* y«+i*>, u„ =  p e«v*+i«), u , =  We'«*+«),

where t/,  V, IV are functions of r  and (), we arrive at 
a number of solutions.

Torsional vibrations.
When U =  W =  0 and V =  V (r), the first and third 

equations of (a) are satisfied identically, and the second 
equation takes the form of a Bessel equation

^ + - r 4 r + ( » , - ^ ) , , = 0 ' (b|

where x* =  ppa/G — y®.

By integrating the equation (b), wo obtain 

V =  A J i  (x, r),
whore / ,  (x, r) is the Bessel function of the first order.
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The surface conditions are satisfied if x is the root of 
the equation

When x =  0, y2 =  ppVG and V = Ar; the displace­
ments are

The solution (c) represents a torsional wave, which pro­
pagates along the axis of the cylinder with a velocity

c2 = V gT?.
For a cylinder of length I with stress-free ends, we 

obtain

where n is an integer, e is the phase of vibration. 
Longitudinal vibrations.
When V =  0, U = \U  (r), W  =  W  (r), the second equa­

tion of (a) is satisfied identically, and the first and third 
equations take the form of Bessel equations

where

h2 =  pp2/ (k +  2 G) — y2, x2 =  pp2/G — y2.

By solving the equations (d), we find 

0 a  {hr) and <op a  (xr).
By satisfying the equations
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we obtain

u  =  A -£r J o (kr) -i- IjyJ  i (xr).

W -  A iy J 0 (hr) - \ - lL - L \ rJ i (xr)|.

The stresses on the surface of the cylinder (r =  a) are 
zero if the constants A and B  are related by the equalities

[ 26. _  _£ j^L  j 0 (Aa) j  a  -j- 2Gy B  -  0,

2 y d- ± ^ A  +  ( 2 y 2 - - y f - ) j i (xa )B  = 0. ^

By setting the determ inant of the equations (e) equal 
to zero, we obtain an equation for the determ ination of 
frequencies.

Transverse vibrations.
Assuming

U =  U (r) cos {I, V =  V (r) sin p, W  ^  W  (r) cos p,

and substitu ting  these quantities in the equations (a), wo 
obtain three differential equations in the functions U (r)
V (r), W  (r) whose solution is

U {r)^ A d- ^ p .  +  ,

V (/■)-= -  A _  HV c
W (r) : iA y J l (lir) — i/ix V , (xr).

The conditions of zero stresses on tho surface are too 
complicated to be given here (51.

10.5 Investigate the radial vibrations of a thin (6 =  1) 
annular disk of inner radius a and outer radius b whose edees 
are free from stresses.

Since tho problem is polarly sym m etric, the com puting 
equation in terms of displacements is, by Eq. (6.7),

10-0973
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Assuming 
ur =  W  cos (p t +  e)*, 

we obtain a Bessel equation

(a)
where

By solving the equation (a), we find 
W  =  A J X (xr) +  B N X (xr), 

and the displacement becomes, finally, 
uT =  \A JX (xr) +  B N X (xr)| cos (px -(■ s).

The stresses are determined by formulas ((>.'>).
At the edges of the disk r  =  a and r b the .stresses 

R r are zero; this leads to two equations

By eliminating A and B  from these equations, we ob­
tain the frequency equation.

10.6. Poisson’s problem (1828) |5).
Consider the radial vibrations of a hollow sphere of outer 

radius b and inner radius a.

The problem is polarly symmetric, i.e., all quantities 
depend only on r and t ,  and ua = u e =  o>r =  o„ =
=  u>a — 0.

According to the first equation of (3.3b), we have

* The problem can also be solved by the method of separation of 
variables nssuming ur =  It (r) T (t).

A 1 J , (xa)] -I- B +  -  /Vi, (xa) | =  0,

- |y , (J c A ) ]+ f l| '^ ^ - l- f  Ar,(x/>)J = 0.'

( X + 2 G ) § - p ^  =  0, *
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where

0 - - - ^ - + 2 - — |see formula (2.2h)|.

Assuming 
u, =  A W  (r) cos (px +  e), 

wo obtain the equation

&  + (1) 
wliero
A2 =  pp2/(X +  2 G).

Tho integral of the equation (a) is
W  , V d ^ sin hr-\- Jl cos hr \

d{hr)\ Tr )■
The boundary conditions of the problem are: when r =  a 

and r =  b,

flP =  X0 +  2 G ^  =  (X +  2G)-§^+2X-!!£ =  O. (b)

The condition (b) for a sphere of radius r is of the form 
{(X +  2G) [(2 -  hV2) sin hr -  2hr cos hr] +
+  2X (hr cos hr -  sin hr)} A +  {(X +  2G) 1(2 -  
— h2r2) cos hr +  2hr sin hr]—
—2 X (hr sin hr +  cos hr)} 5  =  0.

By writing the last equation for the values r =  a and 
r — ft, and eliminating A and 5  from these equations, we 
obtain the frequency equation 
Kh„ -|. -  K) lan ha Khb+ (h-l? -  K) (an lib
ill-0- -  K) -  Kha lan ha ~ (h-1? —K) — Khb lan lib ’
where
2 — K — 2X/(X 2G).

For a very thin layer, the period is

T — na >• c 1+cr 
For a solid sphere, 5  =  0.

► Lamb’s problem (1882) 15].
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Investigate the vibrations of n solid sphere of radius 
a for which 0 = 0 .

Hinls.
(1) Assume the solution of the homogeneous equations 

(10.7) in the form

=  R  (0  (a, p).

(2) To determine the relations between the functions 
Y x.<j-z (a > P)> usc condition (10.0).

10.7. Determine the displacements in an infinite body due 
to a concentrated force % (x) applied at the origin and act­
ing in the x  direction.

In solving the problem we assume tha t a region D where 
the body forces are different from zero decreases indefi­
nitely, and

p j  J  j  X ' tlx' dy' dz' =  X0,

where X 0 is a force acting on a point (x , y ' , z )  in the 
x  direction.

In the case under consideration wo assume

* o  =  X (T -  r /f j) ,

whore r  is the distance of a point (x, y, z) from the origin.
According to formulas (10.30), we determine the quanti­

ties

<1)'(t-/•/<?,) =  -  —  x (T- r / c , ) ^ - ,  L ' ----- 0,

M ' (x -  r/c2) --- —  -/ (x -  r/c2) —  ,

N '( t -  rlc2) =  rlc2) .

By dividing the space around a point (x, ij, z) into thin 
slices by spherical surfaces centred a t this point, integrals
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(10.38) may bo expressed by the formulas

(J5 f

whore ds is a surface clement of a sphere of radius r,

[ !j ^ - d s . , o

if the origin is inside s,

if the origin is outside s, r0 is the distance of the point 
(x, y, z) from the origin.

In  the first case r0 <  r, in the second r ,  >  r.
By integrating with respect to r (the upper lim it may 

he replaced by r„), we'obtain

______ !_  H iL  r% (t — r/c,) dr -=
(f  /incfp ')x J K

■tn i) Ox .1

where t' =  i-/c„  and r has been used for r0.
In a sim ilar way we find 

F = 0,

o - c r s r

r/c.
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By determining the displacements by formulas (10.36), 
with the formulas (a) and (b), we obtain

“* =  ^ 7 ^  J x 't { x - x ') d x '  |-

+ 4 (X —Tr)—TTy-(X_^)J-  

“ *= i - f i r  I  T'z  (T- T' ) </T' i- (C)

=  8 ^ ! p  ( ° ’ " * •  ~w)  [ ” r ' / - ( T “ ' 7 r ) J -
► Calculate the displacements when /  (r) =  A cos px.

]  (t ~ x ‘) (lx' = 4 -  [cos p ( t  — r/c2) — cos p (x  — r/c{) —
r/e,

~  77  s i" /' (T -  r/c2> - I - s i  n p (x — r/c ,) j  .

The process involves simple harmonic waves of two kinds 
travelling with a velocity ct = J /  (X +  2G)/p (dilatation 
wave) and a velocity c2 =  ]/ G/p (shear wave).
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► Calculuto the displacements (c) when ■/ (t) =  constant 
and compare with the results of Problem 4.4.

10.8. Seo the monograph 1791, Sec. 76.
Determine the displacements of the half-plane y >  0 

when a pulse of normal pressure moving with a velocity c 
is applied to the boundary y =  0.

The boundary conditions are: when y =  0,
Y v =  — IP" (x — ex) +  Pm {x -  ct))/2, (a)
X u =  0 (b)

On putting i] =  0 in expression (10.56), we find that 
the equation (b) is satisfied if we assume

from which

<c>
Substituting the last relation in formula (10.54), wo 

obtain tho following expression for VB:
Y u -  ( l  +  P ; ) - ‘ R e  l ( i  +  PS)2 r x (* ,)  +  4 p ,p 2F ;  (z*)|.

Thus, the boundary condition (a) is satisfied if we

(d)p  (H-Pi)aP(l)
(1+pi)3-'*6^2

By expressions (10.55) and the equations (c) and (d),

t ’"* =  ( i- i - p iA p .p ,  Re fir (z,) _  ( T r f e  p {Zi) J * , .

City =
( l + P i r — 4PiP*

In. [(1 -1- Pi) P' ( z .) - 2 / J' (Zz)|.

The formulas (c) express the solution due to I. N. Sned­
don.
^-Sneddon’s problem 1901 

Solve the preceding problem for the case of a moving 
pulse of tangential pressure.
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flin t. Take the boundary conditions in the form: when 
x  =  0,

Yy =  0, X y =  -  \T" (x -  ex) +  T" (x -  c t)]/2.

► Galin’s problem [63; 79, Sec. 76).
Investigate the state of stress in the half-plane y ^  0 

produced by a punch moving over its surface with a con­
stan t velocity c.

10.9. See the monograph [79], Sec. 77.
Determine the displacements in the half-plane y >  0 

when a varying pressure p (x, t )  is applied to its boundaryy =  o.
We introduce a variable x' =  c ,t.
Tho boundary conditions of the problem are: when y =  0, 

Y u =  — P (*. *'), X,j =  0. (a)
To solve the problem, wo apply to all quantities appear­

ing in expressions (10.42) and (10.43) a two-dimensional 
Fourier transformation defined by tho formula

7 (I. y. <e) =  ^  j  f  (x, y, t ' ) c l,tlL« 'i ( fa ( / t '.

If both sides of each of tho equations in systems (10.42) 
and (10.43) arc multiplied by exp [i (£x -|~ orr")] and 
integrated with respect to each of the variables x  and x' 
from — oo to oo*, we obtain a system of simultaneous diffe­
rential equations

i \X x— =  (A. -)- 20) (iy2ux ,

- a (b)i \Y x - ^  =  (X +  2 G )^ u v.

The stresses arc determined by the formulas

X V - - i i(X -|-26 ')n t - i - A ^ ,

* It is assumed that the unknowns in liqs. (10.42) and (1U.43) tend 
to /.oro as V x - +  i/2 -*■ oo.
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< I +  2 0 ) ^ 1 .  w

If the formulas (c) are substituted in the equations (b), 
wo obtain two simultaneous differential equations for the 
determ ination of the Fourier transforms of the functions 
u x and u v:

[ p>(V> -  »») -  i  J » , +  ( f  - ) )  i |  *  -  0,

where
P2 =  (X +  2 G)IG.

By elimination, the equations (d) can be simplified to

(£-;) ( w - o s - ' «•»
whore
« * = ? _ « * * ,  =  P*w*-

From the equations (e) we obtain

ux =  A xe -n‘» +  Aie - ,,'», ^

-/ise— »,
where the integration constants /1( and B, depend on £

Substituting the expressions (f) in the equations (d), 
wo find the following relations between the integration 
constants:
£.42 =  in2B u  ^

Ily rearranging the boundary conditions (a), we obtain 
two more equations

G f ( P * - 2 ) ^ J - f S P * t t * ] 1(i.i 0 r= - P ® '  (° ) ’
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By solving- the equations (g) and (h), we Find

. ifnCcr-poy-ri)
1 ~  2Gc
n n 'p(l*-pu-l2) 
B ' = --------2Gc--------

where

Az = - 2 Gc '

c = c (  I, (0) =  ( |2 -  P 2o)*/2)2 -  n ^ V -
Substituting these constants in the equations (F), and 

inverting the resulting expressions by the two-dimensional 
Fourier integral theorem, wo obtain the following expres­
sions for the components of the displacement vector:

« - - r a r . [  .... .

— j  g-«(S*+«x‘) d \  doi.

“•“So I  [ f[n,(P-Lnv)c.-,._^,c-.,»jx
X «‘ «  *-*''></£ r/o>.

The solution of this problem by the integral transforma­
tion method is given in the monograph 1801.

10.10. See [911.
Investigate the vibrations of the elastic half-plane y ^  0 

when a source of clastic displacements begins to act a t its 
boundary. At x <  0, the half-plane is a t rest.

In plane strain and in the absence of body forces Lamo's 
equations arc of tho form

(X +  G) - g  +  GV2« , =  P , (X +  G) - g  +  G V X  =
<FUy

In plane stress X must be replaced by 
X* =  2 XG/(X +  2G).
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The stresses are determined by the formulas

y . - i o  +  s c ^ t .

Assume lliat as x  —► oo and | y | —>- oo, all components 
of the displacement vector and of tho stress tensor tend to 
zero. We introduce a function <I> (x, y, t)  and express the 
displacements in terms of this function

i±£.£!!!L  ).+2G!tr-a> p a»g>
G dx t)y ’ U'J G Oy1 +  ax- G iH1 ’

Substituting the expressions (b) in the equations (a), 
we arrive at Eq. (10.59). The stresses are expressed in terms 
of the function ® as follows:

g w -

^ /lG ) S i  +  +  2G> ^ ~  <* +  2G> T  & . <c>

To solve Eq. (10.59), we apply two integral transforma­
tions, namely the Laplace transformation in the variable 
x and the Fourier complex transformation in the variable y.

Since we arc considering the case of zero initial condi­
tions, we have to put

<!>(*, y, 0 ) - ^ l)K " ’-0 U y<1,^ / - 0).=

*«■»(*. .'/• 0) n 
-  w

By m ultiplying Eq. (10.59) by e 'pT, and integrating 
w ith respect to x from 0 to oo, we find an auxiliary diffe­
ren tia l equation for <P with two independent variables, 
x  and y,

(V2 -  p2/c?) (V2-  p2icl) (D (*, y , p) =  0 (d)
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where

<D (x, y, p) =  j  e-PHD (x, ij, t)  clx.

By m ultiplying the equation (d) by e'ax, and integrat­
ing with respect to x  from — oo to -f oo, we obtain a 
differential equation of the form

( 5 = - « 2- - £ ) ( ^ r - “ 2— v.  p) °- (c)
where

F (a > >J- p) =  r ^ =  J eiax® (x, y, p )dx.

The solution of the equation (e) bounded at infinity 
is of the form

y, P) =  A exp ( - y ] /a? +  PVc\ j

-I-1) exp ( -  y ( V a 2 -! p^c i), 
where A and Ji are determined from the conditions on the 
boundary of the half-plane y =  0.

By making use of the inversion formula for the Fourier 
complex transformation

® ( * .  V. P) =  y -  j  e~ iaxF (« , if, P )d a ,

we find that

® (x, y, p) =

=  1 ? W  I  '  ic“  [ ̂  (« . p) fcxp ( -  If K a 2 I- p 2/c?) I-

+  fl(o , p ) e x p (—y / a z-|-/?2/cj)] <ta.
By using next the inversion formula for the Laplace 

transformation
Y+lco

°  = m  j  ePT® ,J' p ) dP'
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x M ( “ » p)cxp( — y l/a M ^ /c f ) - ) -

+  /i (a, p) exp ( — }) V a 2 +  p*/c!) 1 rfa } dp, (f)

where /I (a, p) and Z? (a, p) ore determined from the boun­
dary conditions.

After finding cD (x, y, t) from the expression (f), wc 
calculate the displacement components by the formulas(b), 
and the stresses by the formulas (c).
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Airy’s stress function, 109, 154

Bars, torsion of (see Torsion) 
Bonms, bout by distributed load, 

121
bent by terminal couples, 30, 

123
continuous, bent by distributed 

load, 124 
doop, bent by distributed load, 

146
Bcltrami-Michell compatibility 

equations, 42 
Boltrami’s compatibility equa­

tions, 43 
Bonding, of boams, by distribu­

ted load, 121 
by terminal couples, 30, 123 
continuous, by distributed 

load, 124 
deep, by distributed load, 

14G
of circular ring sector, 159 
of plates, by couples, 35 

Bcssol functions, 68 
Biharmonic oqualion, 71 

boundary value problems for, 
72

Biharmonic function, general so­
lution of tho equations of equi­
librium in terms, of, 66, 79

Boundary conditions, 12
in thermal problem, 211, 217 
in torsion problem, 184 

Boundary valuo problems for 
harmonic and biharmonic equa­
tions, 72
first (Dirichlet), 72 
second (Neumann), 70 
third (mixed), 79 

Boussincsq’s problem, 88

Cauchy-Ricmann equations, 
77

Coulrc of curvature, 32 
Cerruti’s problem, 94, 108 
Chreo’s problem, 283, 285 
Circular bar, contact problem

Circular cylindor, contact stres­
ses in compression, 240 
equilibrium of, under pres­

sure, S3 
loaded symmetrically, 105 
long, under pressure, 158 
rotating, 283
temperature distribution in, 

234
vibrations of, 287 

Circular disk, compressed by 
two opposite forces, 168, 170 
under gravity, 175
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Circular liolo, in plate under 
tension, 138, 173, 180 
load on contour of, 177, 180 

Circular ring, compressed by two 
opposite forces, 180 
extended by two opposite for­

ces, 173 
rotating, 284 
vibrations of, 289 

Circular ring sector, bont by 
terminal couples, 159 

Circular somicylindor, hollow, 
under Quid pressure, 170 
solid, under fluid pressure, 173 

Compatibility equations, Belt- 
ratni-Michcll, 42 

in cylindrical co-ordinatos, 27 
in terms of stresses, 44 

in orthogonal curvilinear co­
ordinates, 25 
in terms of stresses, 41 

in plane polar co-ordinates, 151 
in rectangular co-ordinates, 20 

in terms of stresses, 42 
for dynamic problem, 278 
for piano problom, 107 
for thermal problom, 212 
for torsion problem, 185 

in spherical co-ordinates, 28 
in terms of stresses, 4C 

Saint-Vcnant's, 26 
Compression, of circular disk by 

two opposite forces, 108, 170 
of circular ring by two opposite 

forces, 180 
of sphere bv two opposite for­

ces, 62
Cone, equilibrium of, under axial 

force, 54 
under transverse forco, 97 

Contact problem, 23G 
circular bar, on rigid founda­

tion, 255 
stress between bodies in com­

pression, 240 
cylinders, 240 
spheres, 243 

Co-ordinates, cylindrical, 10 
elliptic, 34
in terms or displacements, 25, 

26, 27

orthogonal curvilinear, 9 
parabolic, 33 
rectangular, 10 

' spherical, 11
Cylinder (see Circular cylinder) 
Cylindrical bars, torsion of, 184 
Cylindrical body of revolution, 

thermal stresses in, 225

Dams, thermal stresses in, 222 
Dilatation, in cylindrical co-or­

dinates, 26
in elliptic co-ordinates, 34 
in orthogonal curvilinear co­

ordinates, 24 
in parabolic co-ordinates, 33 
in rectangular co-ordinates, 25 
in spherical co-ordinates, 28 

Dirichlel problem, 72 
existence of solution, 72 

Displacement potential, 35 
Displacements, co-ordinates in 

terms of, 25, 26, 27 
dotormined by strain, 29 
strain in terms of, 24 

Duhamol-Neumann thormal equa­
tions, 211 
solution of, 212 

Dynamic problem, 267 
plane, 277 

compatibility equation for,

equations of motion for, 277 
Hooko’s law for, 277 
solution of, by complex-va­

riable method, 278 
by integral transformation 

'method, 280 
by mothod of functionally 

invariant solutions, 280

Egorov’s problem, 246 
Elliptical hole, in plate under 

tension, 134 
Elliptical hollow, in twisted 

shaft, 208, 209 ,
Equations, of compaVinllity (see 

Compatibility equations) 
of equilibrium, 9
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general solution of, 60, 79 
in cylindrical co-ordinates, 

10
for axially symmetric prob-

for torsion problem, 188 
in terms of displacements, 

43
in orthogonal curvilinear co­

ordinates, 9
in terms of displacements, 

40
in plane polar co-ordinates, 

151
in terms of displacements, 

152
in rectangular co-ordinates,

for plane problem, 100 
for thermal problem, 210 
for torsion problem, 184 
in terms of displacements, 

41
in spherical co-ordinates, 11 

for axially symmetric prob­
lem, 53 

for polarly symmetric prob­
lem, 50 

in terms of displacements, 
45

of motion, 267 
for axially symmetric prob­

lem, 276 
for piano problem, 277 

of vibration. 268 
Extension, of circular ring by 

two opposite forces, 173 
of lino element, 29

Filon’s solution, 144 
Flamant’s problem, 165 
Flexural rigidity of plate, 36 
Florin’s problem, 250 
Foppl’s problem, 205

Gadolin’s problom, 219 
Galerkin's problem, 132 
Gnlin s problem, 296 
Golovin's problom, 159 
Greon s function, 74

Ifalf-plane, heated non-unfform- 
ly, 227
indentation of, by Oat punch, 

236
loaded by couple, 250 
under gravity, 249 
with friction, 262 

by moving punch, 296 
by punch of givon shape, 

with friction, 258 
loaded by couple, 168 
mixed boundarv value problom 

for, 262
under concentrated force, 165 
under normal and tangential 

forces, 139 
under normal pressure pulse, 

295
under pressure, 140 
under tangential force, 168 
under tangential pressure pulse, 

295
under varying pressure. 296 
vibrations of, 298 

Half-space, indentation or, by cir­
cular punch, 245

londed eccentrically, 246 
under tnngonlial forces, 251 

by flat punch, 239 
by strip punch, 248 

under concentrated force, 32 
under internal force parallel to 

its boundary, 97 
under normal internal force, 95 
under normal surface force, 88 
under tangential force, 94 
with heat source on its surface, 

230
Harmonic function, gonoral solu­

tion of the equations of equi­
librium in terms of, 66, 79 

Harmonic oquntion, boundary val­
ue problems for, 72 

first (Dirichlcl), 72 
second (Noumnnn), 76 
third (mixed), 79 

gonoral solution of, 66 
in cylindrical co-ordinatos, 

67
in orthogonal curvilinear co­

ordinates, 66
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in rectangular co-ordinates, 06 
in spherical co-ordinates, 68 

Hertz's contact problem, 241, 243 
Hertz’s problem, 168 
Hole, circular, in plate, 138, 173, 

177, 180
elliptical, in plate, 134 
square. In plate, 138 

Hooke’s law, in cylindrical co-or­
dinates, 43 

for torsion problem, 188 
in orthogonal curvilinear co­

ordinates, 40 
in plane polar co-ordinates, 152 
in rectangular co-ordinates, 41 

for dynamic problem, 277J 
for plane problem, 107 
for thermal problem, 211 

in spherical co-ordinates, 44

it punch, 236
loaded by couplo, 250} 
under gravity, 240 
with friction, 262 

by moving punch, 296 
by punch of givon shape, with 

friction, 258 
of half-space, by circular punch, 

245
loaded eccentrically, 246 
under tangential forces, 251 

by elliptical punch, 246 
by Oat punch, 239 
by strip punch, 248 

Infinite body, loaded internally, 
91
under variable force, 292 

Invariants of strain, 20 
Invariants of stress, 13

Kolvin’s problom, 91 
Kirsch’s problom, 138, 173, 180 
Kolosov-Muskhclishvili formulas, 

111
Kolosov's problem, 134

Lamb's problom, 291 
Lamd's oqunlions, 40 

general solution of, 79

of Gslerkin, 79 
of Grodskii, 81 
of Lamb, 82 
of Neubcr, 82 
of Papkovich, 81 
of Trefftz, 82 

in vector form, 79 
Lamp’s problem, 21, 51, 52, 83, 

158
Laplace's equation, 06 
Laplacian, 66 

in cylindrical co-ordinates, 67 
in orthogonal curvilinear co-or­

dinates, 66 
in rectangular co-ordinates, 66 
in spherical co-ordinates, 68 

Le^endro’s associated functions,

Legendro’s functions, 69 
Logendro’s polynomials, 69 
Lcibenzon's problem, 202 
Levy’s problom, 131 
Love wavos, 274

Maxwell's stress system, 20 
Molan's problem, 207 
Michell’s problem, 54, 97, 140, 

162, 175 
Mindlin's problem, 95 
Mixed problom, 79 
Modulus of foundation, 238 
Morora’s stress system, 20

Neuber's problem, 02 
Neumann problem, 76

Plano problem, 106 
beam, bent by couples, 123 

bent by distributed load, 121 
continuous, bont by distri­
buted load, 124 
deep, bent by distributed 

load, 146 
circular disk, compressed by 

two opposite forces, 188, 170 
under gravity, 175 

circular ring, compressed by 
two opposite forces, 180
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extondod by two opposite for­
ces, 173 

circular ring sector, bent by 
terminal couples, 150 

circular seinicylioder, hollow, 
under fluid pressure, 170 
solid, under fluid pressure, 

173
cylinder, undor external and 

internal pressure, 158 
half-j)lanc, loaded by couple,

under concentrated force, 
165

under normal and tangen­
tial forcos, 139 

undor pressure, 140 
under tangontial force, 168 

in polar co-ordinates, 151 
in rectangular co-ordinates, 

106

180
under tension, 138,173,180 

with elliptical hole, undor 
tension, 134 

with square hole, under ten­
sion, 138 

prismatic body, under pressure, 
119

solution of, 109, 153 
by complex-variable method, 

110, 155 
by finito difloroncos, 117 
by initial function method, 

112
using boundary value homo­

geneous solution, 115, 156 
using stress and displacement 

functions, 109, 153 
stress function for, 109, 154 
strip, in a state of plane stress, 

142
under concentrated force, 145 

trapezoidnl section, under fluid 
pressure, 134 
undor gravity, 132 

wedge, loaded by couple, 163 
under distributed load along 

its  face, 164

under fluid pressure, 180 
under fluid pressure and gra­

v ity , 131, 164 
under inclined force, 162 

Plane strain, in polar co-ordina­
tes, 153
in rectangular co-ordinates, 108 

equations of equilibrium for, 
108
in terms of displacements, 

108
thcrmoelastic, 214 

Plane stress, in polar co-ordina­
tes, 151 

equations of equilibrium for, 
151
in terms of displacements,

in terms of displacements, 
107

thcrinoclaslic, 216 
Plates, bending of, by couples, 35 

flexural rigidity of, 36 
under transverse loading, 86 
with circular hole, loaded along 

its contour, 177, 180 
under tension, 138, 173,
180

with elliptical bole, under ten­
sion, 134 

with square bole, under ten­
sion, 138 

Pochbammer’s problem, 287 
Poisson's oquation, 74 
Poisson’s problem, 290 
Potential, displacement, 35 
Prandtl’s stress function, 185 

properties of, 18C 
Principal directions, 28 
Principal extensions, 28 
Principal strains, 28 
Principal stresses, 13 
Prismatic bars, torsion of, 184 
Prismatic body, in a state of plane 

strain, 119 
Propagation of waves, in elastic 

isotropic solid, 269 
over surface of solid, 272



ltayloigli waves, 272 
Rinidre’s solution, 144 
Ring (see Circular ring) 
Rotation, components of, in cy­

lindrical co-ordinates, 26 
in orthogonal curvilinear co­

ordinates, 24 
in ^rectangular co-ordinates,

in spherical co-ordinates, 28 
of circular cylinder, 283 
of circular ring, 284 
of sphere, 102, 285

Sadowsky’s problem, 249 
Saint-Vonant's compatibility 

equations, 26 
Saint-Vonant’s problem, 30, 198, 

201
■Schleicher’s problem, 245 
Semi-inverse method, in torsion, 

184, 187 
Shafts, torsion of (see Torsion) 
Shear circulation theorem, 186 
Shtaerman’s model of foundation, 

238
Simple harmonic motion, 267 
Sneddon’s problem, 295 
Sphere, compressed by two oppo­

site forces, 62
contact stresses in compression,

243
equilibrium of, under gravity, 

100
under its own attraction, 52 

hollow, thermal stresses in, 224 
vibrations of, 290 

rotating, 102, 285 
solid, vibrations of, 292 
temperature distribution in, 

233
Spherical hollow, in twisted shaft,

209
Sphorical shell, equilibrium of, 

under prossure, 51 
Square hole, in plate .under ten­

sion, 138 
Strain, a t point, 28 

displacements dolerminod by,

invaUr™ nVof!iS59,“ m0nU' 24
plane, 108, 153 
principal, 28
Produced by centrifugal forces,

theory of, 24 
Strain equations, 24 

in cylindrical co-ordinates, 26 
for torsion problem, 187 

in orthogonal curvilinear co-or­
dinates, 24 

jn plane polar co-ordinates, 151 
in rectangular co-ordinates, 25 

for plane problem, 106 
for torsion problem, 185 

in spherical co-ordinates, 27 
Stress, at point, 13 

invariants of, 13 
maximum shearing, 15 
normal, 13 
plane, 106, 151 
principal normal, 13 
principal shearing, 13 
shearing or tangential, 13 
theory of, 9 
total, 13 

Stress function, of Airy, 109, 154 
of Prandtl, 185 

properties of, 186

under concentrated force, 145 
Surface conditions (see Boundary 

conditions)

Strip, in a 
142

Thermal problem, 210 
circular cylinder, temperature 

distribution in, 234 
cylindrical body of revolution, 

225
half-plane, heated non-uniform-

J h
227

ilf-space with heat source on 
its surface, 230 

sphere, hollow, 224 
solid, temperature distribu­

tion in, 233 
steady-state thermal process, 

210
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basic equations for, 210 
Bcllrarai-Miclioll equations 

for, 212 
Duhamcl-Noumann equa­

tions for, 211 
solution of, 212 

heal conduction equation for, 
210

piano strain, 214 
plane stress, 216 
surface conditions in, 211 

transient thermal procoss, 216 
hoat conduction equation for, 

216
surfaco conditions in, 217 

triangular dam, 222 
tube, hooted non-symmelrical- 

ly, 220
heatod symmetrically, 217 

compound, 219 
Thermodynamic problem, 281 
Timoshenko’s problem, 205 
Torsion, of bars of constant sec­

tion, 184 
assumptions in, 184 
basic equations for, 184 
boundary conditions in, 184 
of particular forms of section: 

circular, 195 
with semicircular notch, 

197
elliptic, 194 
rectangular, 198 
semicircular, 205 
semiring, 202 
triangular, 201 

of circular bars (shafts) of va­
riable section, 187 
assumptions in, 187 
basic equations for, 187 
conical abaft in, 205 
cylindrical shaft, with ellip­

tical hollow in, 208, 209 
with spherical hollow in,

ellipsoid of revolution in, 206 
hyperboloid of revolution, of 

one shoot in, 207 
of two sheets in, 207 

of cylindrical bars, 184 
of prismatic bars, 184

Torsion problom, 184 
differential equation for, 189 

solution of, 189 
solution of, 185, 189 

by semi-inverse motliod, 184,

using P randtl’s function, 185 
stress function for, 185, 188 

Trapezoidal section, under fluid 
pressure, 134 
under gravity, 132 

Tubos, heated non-symmclrically,

heated symmetrically, 217 
compound, 219

Velocity of waves, 270 
a t surface, 273 
of dilatation, 270 
of distortion, 270 

Vibrations, longitudinal, of cyl­
inder, 288 
of half-plane, 298 
of solid sphure, 292 
radial, of circular ring, 289 
of hollow sphere, 290 
torsional, of cylinder, 287 
transverse, of cylinder, 289

Warping of cross sections of bars 
in torsion, 186 

Wave equations, 270 
Wave surface, conditions on, 271 
Waves, cylindrical, 2C9 

duo to variable forces, 275 
irrotational, 270 
Love, 274 
of d ilatation, 270 
of distortion, 270 
plane, 2G8
propagation of (see Propagation

Rayleigh, 272 
reflection of, 281 
shear, 270 
spherical, 269 
surface, 272
velocity of (see Volocity of 

waves)
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Wnbor’s problem, 197 under fluid pressure and grav-
Wodgo, loaded by couple, 163 ily. 131. 1M

undor distribuled load along undor inclined force, 102 
its fuco* 164

under fluid pressure, 180 Zhoinoclikin's problem, 124
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Elements of Hereditary Solid Mechanics

Yu. RABOTNOV, Mem. USSR Acad. Sci.

Boltzmann-Vollorrn hereditary mechanics describes such processes 
when the stale of a mechanical system depends ou the entire history 
of the actions it has been subjected to. Tho considerable development 
of this theory in the last few decades was determined by a multitude 
of its technical applications connected with the studying of tho creep 
of metals, plastics, concrete, rock and other bodies. Tho book sets out 
the formal fundamentals of the theory, its applications to the descrip­
tion of tho behaviour of real materials, and sorao methods for solving 
problems of the linoar hereditary theory of elasticity [and the non­
linear theory of creep. Special attention is given in the appendices to 
the use of weakly singular operators.
Tho book will bo of interest for quite a broad circle of renders—en­
gineers, scientists, students and post-graduates.



The Theory of Elasticity

Yu. AMENZADE, Corr. Mem. Azerb. SSR Aenrl. Sci.

This book conlains relevant data from tensor analysis (the exposi­
tion of the fundamentals of tho theory of e lasticity is given a t contem­
porary advanced level and in modern form), the plane problems of 
theory of elasticity arc considered with tho help of method of functions 
of complex variables and method of integral transforms. Tho book 
deals with the theory of rotation and bending of prismatic bodies. 
Hertz contact problem and certain six-symmetric problems. It also 
contains theory of propagation of elastic waves in an infinite medium 
and surface waves of Rayleigh, otc. Examples of theory of bending of 
lliin sheets are given. The textbook excels in clarity and originality 
and is illustrated by numerous examples. The textbook is intended 
for university sludonls.
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