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NOTATION

Gy gy Ry

Yz

rB oz
B oa

Uny Uy s
Ury Up, Uy

U, Up, Ug

Xz Yo Z:}

}

orthogonal curvilinear co-ordi-

a

rectangular Cartesian co-ordi-
nates

cylindrical co-ordinates
spherical co-ordinates
projections of the displacement u
of a point on fixed co-ordinate
axes (z,y,% r, B, z r, B, @),
i.e., the components of the dis-
placement vector

components of the stress tensor
in rectangular co-ordinates

components of the stress tensor
in cylindrical co-ordinates

components of the stress tensor
in spherical co-ordinates
density of material

modulus of longitudinal elas-
ticity



Notation

8

o= ﬂle . Poisson’s ratio
=G=

* 70+ } Lamé's coefficients

5
* = araa=m

€xxr Cxyr €xz
Cyxmr s Eyz
Crxr Ezyy €1y
T

t
O Tvy Py

%y 0y G
Tin T Ty
I I Ty
h Iy 1y

}

components of the strain tensor
in rectangular co-ordinates

time

temperature

normal, tangential, and total
stress on a plane with normal v
principal normal stresses at a
oint

principal shearing stresses at a
point

invariants of the state of stress
at a point
invariants of the state of strain
at a point



Chapter 1
THEORY OF STRESS

1. STATIC AND DYNAMIC EQUILIBRIUM EQUATIONS

1. Orthogonal curvilinear co-ordinates

2(Hp8) 1 VoA g,
= 73 m*zm( )+
+HAV Ea=
where a,, @) = 1 curvilinear rdis

tually perpendicular surfaces),

.1

(mu-

h. g, = coefficients in the first quadratic form,

a=3 g,
o= () + () +(;

9z e—dan
“_A—Vlh o0 Clo

V g» da,, = ds, = length of an element of a co-ordinate line,

cos oy, 7) =V 2,

cos (@ ¥0) =V B o2

surface &, at point (a, @y, &),

cos (@y, y)= VZ%, |=dimlion cosines of a normal to
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A=V g1g:8s = unit volume factor,
AV = Ada, da, day = clement of volume,

H =body force per unit volume in
the direction of the @) co-or-
dinate,

uy, uy=displacements in the direction
of curvilinear co-ordinates.
2. Rectangular co-ordinates
a.-z. a==v‘ @y =z

ium equations are
axuax, +‘”"+x=0( o fur a-u,)

av,+_,‘+a}','_y 0( pm,) (1)

Ger e B gm0 (=0 2y,

whor XY, 2 e the projections of body forces on tho
z, y, z axes.
3. Cylindrical co-ordinstes

circular oylinders,
Planes through tho 0z
e iane porell o he oy slane (Fig. 1
® Reterring. 1o, Fiy (Fie. 1.
z=rcosB, y ==rsma. 2,
from which g, =1, Ty =t d =
av = dz, P B + azt,
'nm b cauntions e

1 9% 3
+2ery+L - Dy L TE+R=0(=p2u),

;_W(,-zl; L’%L ’+Ba0( pwu‘)




Static and Dynamic Equiltbrium Equations 1

2 1% oz, Pu,
_:_T( )+t % +Z-0(=pw)‘ (.1b)

where R, B, Z arc the projections of body forces on the
r, B, z axes.

Fig. 1

4. Spherical co-ordinates
@, = r = spheres,
@, = B = planes through the Oz axis,

@, = a = cones with vertex at the point O (Fig. 2).
Referring to Fig. 2,

z=rsinacosP, y=rsinasinf, z=rcosa,
from which

=1, g =rsinfa, g=r, A=rsina,

dV = r*sin e dr !

d = dr? + 1 sin® @ dB? + 1* da.

The equilibrium equations are

an, 1 oRy , 1 9R,

et e

2R, — By— Ag+ Rq ol Pur
SIS (2 32),



Ch. 1. Theory of Strese

12
B, 1 9By 1 9By | 3B,428scota
Ftmmeg tret et
+8=0(=p52), (1.10)

24 1 94p 1 s
Frrmew trE T

— By t 34,
pL I ()

where R, B, 4 are the projections of body forces on the
7, B, @ axes.

Fig. 2

11 SURFACE CONDITIONS

The local boundary conditions, which are valid for cvery
point of the sutface of a body with normal v, aro of tho forry

Xo=X1+ X,m+ X.n,
Yo=Yd+Y,m+ ¥, (1.2)
Zv= ZJl+ Zm+ Zn,
whoro L= cos (z, v), m = cos (4, v), n = cos (z, v), I -
+mi4 ot ={.
The integral boundary conditions, which aro valid for
a part of the surface of a body (usually a planc), specify



State of Stress at a Point 13

that the sum of stresses acting on the surface is equal to
the external forces (Problem 5
The normal and nngenml stnaus on a surface element

with normal v are, respecti
G0 = X B+ Yymt + Tt 4 '9X im + 2Y mn + 2Z.nl,
.3)

=V I N+ A— o
The total stress is

BCEE

Ul STATE OF STRESS AT A POINT

The principal normal stresses o, 0, Oy at a point are
determined as the roots of the cubic equation

O Sy + S0 — Ty =0, 1.4)
where J, are the invariants (quantities independent of the
choice of co-ordinate axes) of the state of stress, respective-
ly, oqual to

=X:+ Y, +Z. (R + By + Z,, olc),

Jo= XYy + X2, + Y, 2. — X} - Vi — 72,
X, Y. (2,
=lx, v, z,
X, Y: 2,

The invariants of the state of stress are expressed in terms
of the principal stresses as

Jy =03+ 03+ 05, Jy = 0,0, + 0,05 + 0,0y

Jy = 0,040, 1.6)

The principal sheering stresses are determined by the
formulas

1.5)

Ta= k(= o), T =3 — o),
T = t%(vn — o).

.7
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Fig. 3

lues of the normal and shearing stresses on any planes
Ppassing through a given point lie on the shaded part of the
4%, plane (Fig. 3a).
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If 0,> 0y >> 0, the extreme values of the shearing
stress are determined by the formulas

Tmos =
min

1.8)

The planes on which the extreme shearing stresses are
acting are shown in Fig. 3b.

PROBLEMS.
1.1. Write the equilibrium equations for an infinitesimal

parallelepiped isolated from a body acted on by the forco
of attraction of a mass M located at a point &, 1, { (Fig. 4).

Fig. 4

The mass of the parallelepiped is dm = p dV, where
AV = dz dy dz.
The distance between the masses dm and M is

r=VE=D Fm—wF G-

According to Newton's law, the tom of attraction
acting between the masses dm and M
= k2 M dm ,pM av

Him g

Where k% is the mvintionnl constant.



16 Ch. 1. Theory of Stress

The projections of the force dI on the co-ordinate axes
are

aF =10 4V cos (r, ) =2 2 () av

AF, = k2 v cos(r, y) =k 2L (n—y) av,

3

AR, =2 v cos (r, 5) = ke 225y av.

Substituting the values of dF,, . , in Egs. ({.1a), and
cancelling out the element of volume dV, we obtain

aXe , Xy | ox, KM _
= oyt TP E—0)=0,
¥y , Yy M

ay,
7wty tm e (1= =0,

a2, 2y | oz BM
=t t e te e -9 =0.

1.2, Write the ilibri i for an i i it 1
parallelepiped isolated from a body that is located on the
surface of the earth and is subjected to the gravitational
attraction (Fig. 5).

i
m(x4,2)

o AMO0r)




Problems 17

Assuming (E—2) = (n—y) =0 and (L —2z)=r
(Problem 1.1), we obtain
dF,=dF,=0, dF,=pXM gy —ogav,
where g = k*M/r* = 980.616 cm/s* = acceleration of

gravity,
K = 6.67 X 10 cm%/g-s* = gravitational con-

stant,
M =598 x 107 = mass of the earth,
r = 6.3783 X 10° cm = radius of the earth.

Equations (1.1a) become

Xe  OXy | ox, _
Tt t =0
o¥. , Wy

o¥, _
=t =0

92, 92y | oz,
=t oyt ee=0.

1.3. Write the boundary conditions, calculate the stresses
and strains for a body ABCD of small thickness that is

. 2x_Ayy)
dr<0 | dy
I dy<0 , D,,},, EE
v

Fig. 6

! (w\)\v

acted on by a compressive load of intensity p normal to
the contour (Fig. 6). Assume no body forces.
2-0973
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According to Egs. (1.2),
X, = X, cos(z, v) + X, cos (y, V),
Y, =Y.cos(z, v) + Y, cos (v, v).

The values of the cosine must be taken for positive
values of dz and dy, i.e., for the section AB:

% (fourth quadrant),

cos(z, v)

cos(y, v)= —4= (third quadrant).
The boundary conditions become
—p cos (z, v) = X cos (z, v) + X, cos (y, v),
—pcos (y, v) = Y cos(z, v) + Y, cos (y, v)
or
P=—XaA Xy p=YE-Y,
The state of stress in the body is characterized by a
isfying the ibri ions and

stress system
the boundary conditions:

X,=Y,=—p, X,=Y.=0.
The strains are

p(1—0)
ex=ey=—"p—, eg=0.

For a body of arbitrary shape we obtain

Xe=Yy=Z,=—p, X,=Y,=2,=0,
ex=c, =¢e, = —plK, ey =¢,=¢e,,=0,
0= —3p/K,

where K = E/(1 — 20) is thrice the bulk modulus.

1.4. Write the boundary conditions for a triangular section
of small thickness to which a load ¢ = yy is applicd along
the line OB (Fig. 7).
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Along the line OA (z = y tan p):
cos (z, v) = cos (360 — B) = cos B,
cos (y, v) = cos (270 — B) = —sin B,
X,=Y,=0, and the boundary conditions become
Xecosp— X,sinp =0, Yycosp —Y,sinp=0.
Along the line OB (z = 0):
cos (z, v) = cos 180° = —1, cos (y, v) = cos 90° = 0,

X, = yy (the load coincides with the positive Oz axis),
Y, = 0, and the boundary conditions are

Xe=—yy, Y:.=0.
1.5. Examine what conditions are satisfied by Maxwell's

X
Var ww/ B y
A ! |
x) J”‘# w Fig 7
1
-
y

electrostatic stress system
Xkl () —(—) -
Y=o [_ - _ _

:'7"=E[ o:) (
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Answer. (1) The systom is balanced when

Ay
VU (Gt g o) U=0.
(2) The system is in oquilibrinm with the body forces
9 U
X, v Z'_TV’U d:'c)y' T
1.6, In the absence of body forces the stresses can be ex-
prossed in terms of three stress functions.
Check the following stress systoms by substitution in the

llnmo'cneoua equations (1.1a):
(1) Maxwell's systom (1870)

= Pta
dy‘ o
V=it oy Pu

dx" 0y oz
A O N
* F ay" T T osoz -

(2) Morera's system (18J2)‘

Y=gt V- Z.—%
X TT(:);-'"’W )
Y- —r (G W—ﬂ)-
TR .

indicated lnnchons aro detormined from the cqua-
uon.s nl, 2k
[,,,.+(a—2>v=|x.+—x. et =0,
a,. x.+[—;¢(ﬂ V)45 0=0,
bttt St =2 Vi ]5=0
forms of roprusentation, seo Blokl V. 1., “Theory
p- 34

* For other
al‘nilullcﬂ)y. lzd. Khlr‘kov Univ., Kbar'kov, 1964,



Problems. A

and
(2 +0v2) @ — (o5 +) (@ 1 99 =0,

&

a
V2) g2 (o o) (@ P =0,
o 3 L

(& 092) 0= (3 + 557 ) (@1 +00) =0
1.7. Lamé’s problem (1859) [1].

For plane stress, derive the equilibrium equations in
Lamé’s curvilinear isostatic co-ordinates (curves coinciding
at each point with the directions of the principal stresses
0, and 0).

Let s, be an isostath coinciding with the direction of
tho | ipal stress o;, nnd Jot s, be an isostath coinciding

A
I/ \
o ds |

\
2 \&

with 0,; p, and p, are the radii of curvature of these
isostaths (Fig. 8).

By isolating a plane element ABCD by lwo pairs of
infinitesimally close isostaths, and setting up the equi-
librium conditions for it, we obtain

2, . a,—o,
R S=0,

a—

=% 1.8,=0,

do,
&t
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‘where S. is the projection of the body force on the direc-
tion ds;.*

1.8. The principal stresses at a point M of an elastic body
are: g, = 50 N/em®, 6, = —50 N/em?, o5 = 75 N/cm?.

Find the total stress p,, the normal stress o,, and the
tangential stress 7, on a plane equally inclined to the prin-

cipal axes (Fig. 9)
The problem ls s solved by using Eqs. (1.2) and (1.3).
Answer. p,=59.5 N/em?, 0,=25 N/em?, 1,=54.1 N/c?.

1.9. The stresses X., Y,, 7., Y., and X, arc acting at
a point of an elastic body (Flg lOi The stresses Y. = 2.=0.
Find the principal normal stresses g, and the stresse:
on a plane parallel Lo Lhe z axis whose normal makes an
angle @ with the z
Uu Eqs. 1.4) nnd (1 3) to solve the problem.

0y=X,costa-+¥,sin?a+ X, sin %,

Ty= 3 (Yy—X.) sin 22 + X, cos 2a,

2,=0, o, ;-‘x"* L. \/(

" For Lamé®s equilibrium equations in isostatic contingtes for
throo-dimensional problom, sco tho monogranh - p 3.

2 ) X
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1.10. The stresses at a pomt of an elastic body are: X, =
— 50 N/em?, Y, =0, Z, = —30 N/cm?, X, = 50 N/cm?,
Y,=—15 Nlcm?, Z, = 80 N/em?.
Find the principal normal and shearing stre:
Use Eqs. (1.4), (1.5), and (1.8) to solve the problem.

Fig.10

Answer. o, = 99.3 N/em?, o, = 58.8 Nicm®, o3 =
= —138 N/em®, Tmax = 118.6 N/em®.



Chapter 2
THEORY OF STRAIN

I STRAIN N 0.

1. Curvilinear co-ordinates

L 13V
w3 v
U
‘"""/ M(V‘,h)“'l/cnia;. )
where ¢,,,, = linear strains,

sheanng strains.
The dllatmon is

(2.1)

o=zle..h=% o (V sgaud) -+ o (V i) -
0y (Vi) |- @2
The components of elementary rotation are
ﬁ:[%’ﬂ/aus)—%’(l/ahu.
‘%=ﬁl’i(vz’h)—L(V&Tﬂ‘z)]. (2.3)
= [ (Vo) — o (Vo)) ).

o=

Note that on the basis of formulas of the calculus of
vectors (div rot u = 0) the components of rotation identi-
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cally satisfy the equality
2 (Vi 2 (e V(o

327 (V80 + 5 (V100 + 557 (Vg 03) = .

For tho strain compatibility equations in curvilinear
co-ordinates, ses [3].
2. Rectangular co-ordinates

Co-ordinates measured in terms of displacements:

6z = Uz Oy =u, & =u,.

The strain equations are

Quy 0y u,
Cx=gr Cw= gy T
[T ouy | duy 9.1,
= L =ttt . L8]
o=t =t 212
duy , du.
L e

23

0z
The dilatation is

oue | uy | Ouy
=%t ta (2-2a)

The components of rolation are

LR ST, )

2\oy =2\®% T
4w, dug
z(=F)- @32

The strain compatibilily equations are

Perx  Feyy ey
oF T o ozoy
Peyy | Py Py
[Z L T T P

Dezy 4 Bexx _ Pers

0z% o5
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(240)

9 [Oex | Oexy  Oeyq Peax

e At

9 [dexy | Boys  Pere) , Py

o Loz t= 3y J—2 Gz oz *

o [deys | ez Oexyq , Pe

w2

The first group of Saint-Venant’s identilies expresses the
continuity of curvatures of deformed fibres of a body, the
second group expresses the continuity of relative angles
of twist [4].

For a plane problem in rectangular co-ordinates, only
the first equation of (2.4a) will remain.

3. Cylindrical co-ordinates
Co-ordinates moasured in terms of displacements:
8 =u, Of =ugr, bz=u,
The strain equations are

dup 1% u
er=35, =g+,

_lou O u

=t 22, (2.1b)
_Oup 4 ou, au, du,
=gt TR w5t

The dilatation is

ru,) Quy
e @.2b)
The components of rotation are
oup
—ro2).
duy
op=a (=), (2.3b)

119
ou= g [ =55 |-
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‘The strain compatibility equations are
Ferr | Pers _ Pers
e
Pepp 1 Pey 1

i W* -

o= (%’- +en).

Lot (o) -t Lo
L’;'T'ﬂ_rl,m( "ZW( ) (2.4b)
i[iTo(r_q;,)] i #(r’e,a) T( ) 2 ’tn.

Fers @ (rep)  Plrepd)
op  arop  ezop
Yor & plane problem in polu co~ordmuus r and B, only

the third equation will remain since =ep, =¢,;=0,
and the other strains will be lnncliom ot r and B.

[or— 2],

4. Spherical co-ordinates
Co-ordinates measured in terms of displacements:

8 =u,, O =ugllrsina), Sa =uylr.
The slrain equations are

L Ha i),

d
% Uy g cOLQ),

+ ,_ (ﬂ) .\ (24¢)

r

! au,

g 1 du,
T)"’T‘E‘

1 "
o= iz [ & (wpsina) + 52 ).
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The dilatation is
6::5

0=t 2 (rru)t i [ (asin ey 4+ 2 (2.20)
The components of rotalion are

o =g [ 2~ s )).
= [F—F ). @39

1 .
m,_m[w (rupsin a) —

For the strain compatibility equations, see [3].

e
B

IL. STATE OF STRAIN AT A POINT

Tho principal strains ¢;, e,, e;* at a point are determined
by three roots of the equation

2(exx—e)  eq Car
e 2(ey—e) e . (2.5)
€ ey 2(en—e)

Threo real roots of the cubic equation (2.5) give three
principal extensions ¢, €., e
Determinant (2.5) in nxpnnded form is

S —5e+Te—1,=0, (2.6)
where
io=exed ey b € =e ¢y + €,
Ts iy o+ egylnn k entny — (ehy - ol A =
“eg - ey + egey,
Iy = eryye,. b eqe,.2.dh —
— (exst)? + eyyein + eh)h = ereney; @7

* For tho principal directions (7, 2, 3) the shear ccmponents are
zor0.



Cesaro's Formulas 2

I, are tho invariants of the state of strain at the given point.
‘T'he direction cosines of the principal strains ¢; are deter-
mined from the equations
2 (exx — &) b + exymi + exny = 0,
eyt + 2 (eyy — e) my + €0y = 0, @2.8)
el + eqmi + 2 (e;; —e) ry =0
with the relation
Bokmd 4ol =1, (2.9)
The extension of a line element whose direction is defined
by the cosines I, m, and n is determined by the formula
€ = eqalt b eyt eunt +egdmt it el (2.40)

1l CESARO'S FORMULAS [1]

The ination of the displ h iy from
Eqs. (2.1) will be given for the case of nct-ngul-r coordl-
nates [formulas (2.1a)]

U = Uz o+ Oyo (81 — 20)/2 — @0 (4 — ¥a)/2 +

+ ) (Usdz + Uy dy + U, da),

Mido
Uy = Uyo + Oz (T — Zo) — Oz (5 — 20)/2 +
+ § (Vadz + Vydy + V. da), @)
i
Uiy = Uso + Gxo (11 — Yo) — @yo (1 — 202 +
Fy gt W, a+ woan,
Mido
where

Ue=ext (n—y) (252 22) +

Hom o (2% 2,
=c,./2+(y.—y>("+,;r—z%g)/z+
+a—a) (T2 [y, (2.42)
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De, dey
U,=ef2+ W —1) (—5’5-—#)/24'
e, 2 9
+a—a (GE-2 5)[>
tities Vg, Vy Vs and Wy W,, W, arc obtained
‘irr};nq;glilil) l;sy c;'clic' ‘pcr‘mutntio; of the letters z, I
Tho subseript O refers to the point M, and the subscript 1
to the point M;.

PROBLEMS

2.1. The following displacements are given:
(1) corresponding to Maxwell’s stress system
2By =2 (ot — )
26u, = 5 (s — X1 — )

2Gu.=%(x.—xz—xa);
(2) corresponding Lo Morera’s stress system
&
Euy=55 01— 0 (92 +9a)l,
&
Buy=57519—0 (94 1)),

Eu,=,,—,’—‘,qu>s—-0(%+fvz)l
(see Problem 1.6);

@) u, = —z3la, u, = ozyla, uy = I + o @—1)(20),
where a is a constant.

Find the strains and show that they satisfy the strain
compatibility equations (2.4a).

2.2. Snipt-Venlnt's problem (1855).

A cyl rical or a pri: ic bar with parallel
to the z axis coinciding with tho line of centroids of cross
sections is bent by terminal couples M = EI,/a, which
lie in the 20z plane (Fig. 11a).




5
Problems.

Find the state of stress and strain.
Assume
Z, = —Ezla,

where a is a constant, and the remaining components of
the stress tensor are zero. The assumed stress system
satisfies Eqs. (1.1a) in the absence of body forces and

Fig. 11

the boundary conditions (1.2) on the lateral surface.
At the end sections we have

m=Eb_ ~§ zzar= S'j £ z2azay,

from which 1, = j j 2'dzdy (the moment of inertia
P

of the cross-sectional area with respect to the y axis).
The moment of the stresses about the z axis is ze0r0
since the z and y axes are assumed to be principal axes.

The resultant vector of the stresses SS Z,dzdy is

F
zero since the Oz axis coincides with the line of centroids.
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The strain components are, by Egs. (3.1),

_oz du_ _=
=5 ==
(3)
o My _duy | dug (
FtaE=mtay =0

The strains obtained satisfy the compatibility condi-
tions (2.4a). By integrating Eqgs. (a), we find

U= RO @ =), uy=ay, u=—2

‘The line of centroids of cross sections is displaced
according to the law u, = z%/(2a), and for large values
of a it may be considered a circumference of radius a =
= EI/M centred at the point z = @, z = 0 called the
centre of curvature.

The distortion of a cross section in the form of a re-
ctangle is shown in Fig. 11b.

2.3. When a concentrated force P acts on the half-space
2220, the displacements are obtained as (see Problem 4.4)

vz (‘T =) 7o

w =1z (‘T )

e

.

w=s[20—0)+ 5

where

—

1
R
R=VFTFTR.

Find the strains and see whether they satisfy the strain
compatibility equations (2.4a).

2.4. Calculate the dilatation for the following cases of
plane orthogon_nl co-ordinates: parabolic (confocal @, and @,
parabolas), elliptic (confocal &, hyperbolas and a, ellipses).
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For a plane problem, the dilatation, according to

formula (2.2), is calculated by the formula
0=> ‘hA=Z_[£‘ (VE":)'H,Z—'(VZ "z).],
T
where
gA=(%A)2+( )z‘ A=V g V== Ada,das,
dst= ds}+dst= g, ded + g2 dai.
By using the complex expression, we assume

oy + oy = f (z + i),
where f(...) is an analytic function.

o

Fig. 12

af
Parabolic co-ordinates (Fig. 12):

atica=V2@+u), w=Vr+z a=Vr-z

where

r=Va@ g

is the distance from the focus (z = y = 0),
2

z= 3% v <y <o,

y=ta@, ISa<oo, .
si=ge=0jtai,

A=V (@ FtaP=al+al

1 LY~ wrap~ 1
6= e [ﬁx]/a,+a,u|+"%:]/ai,+a‘,uz '
3-0073.
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Elliptic co-ordinates (Fig. 13):
@, + ia, = arc sin (z + iy)la,
sin @y = (s, — 52)/28, cosh @, = (5, + $,)/2a,
where
sa=VEta +oh s=VeE—a —¢
are the distances of the point A/ (z, y) from the foci lying

=q?
p Fig. 13
2
U

a

on the z axis at the points z; = —a and z, = a,

z = asin a; cosh &, 0y < 2,

y = % cos q; sinh @,, 0<a, < oo,

£1=g»=a" (cos® a,+sinh® a;)=a* (cosh? @, — sin? ,),
A = a® (cos® @, + sinh? ay),

= 1 2 —
0= o Taiay IE (Veos?a, +sinhZ agu,) +

+a%,(l/cos‘a.+sinhzu1u,)],



Problems 3

By adding to the co-ordinates a; and a, a third u‘)ordi»
nnwya, = zgindependent of them, we ol‘:tam, r)espechvely.
space parabolic and elliptic lind

2.5. Find the values of displacements iy, Us, and u, for
which the components of rotation are zero.

By equating expressions (2.3) to zero, we find

=0 __0

Vesoms 57
Thus, the rotation vanishes (o, = 0, = 03 = 9) w.hen
the projections of the displacement are partial derivatives

Fig. 14

with respect to the arc lengths of the co-ordinate lines of
the single function @, the displacement potential.
In the case of rectangular co-ordinates (g, = g; = gs=1)

9z e LT

2.6. A rectangular plate of thickness % is bounded by planes
z = +h/2 and bent by moments M, and M, uniformly
distributed along its edges (Fig. 14a).

Determine the values of the moments for which the cur-
vatures in the zOz and yOz planes are positive, i.e., the
centres of curvature lie in the positive direction of the z
axis.

2
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Assume
X, = Eas, Y, = Ebs,
where a and b are constants, and the remaining compo-
nents of the stress tensor are zero.

‘The assumed stress system satisfies Eqs. (1.1a) in the
absence of body forces and the boundary conditions (1.2)
on the free planes z = +h/2.

By integrating the strain equations (2.1a), we obtain
the following expressions for displacements:

uz = (a — ob) zz, u, = (b— oa)yz,

— — @
P zao P d(az+b) 2
The displ (a) satisfy the ibili
(2.40).

According to the equations (a), each plane z = constant
is bent with curvatures in the z0z and y0Oz plancs cqual,
respectively, to (6b — a) and (ou — b).

ssuming R, and R, to be the radii of curvature
(Fig. 14b), we obtain

L _ w4 o,
R E obme F=gi =0l
from which

1 1 g
a=—g—a (T.+T,)‘
The intensity of bending moments is

Az
M = j X,2dz= —D(1/R,+0/Ry),
-Ar2

N2
My= j Y,2dz= —D({/R,+0/R,),

-hr2
where D= T(%:‘Tﬁ)' is the flexural rigidity of the plate.

2.7. Find all components of strain for a deformation of
a body symmetrical about the origin of co-ordinates O.
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If the deformation is symmetrical abont' thg on:(in of
co-ordinates, the displacoment up of any point is directed
along the radius vector R and is a function of it. We thus
have (Fig. 15)

us=Fa=f(R)z, w="Ly=fR)y, wm=
=Ri={(R)sz
where

R=VFTPTA, [(R=42

According to Egs. (2.1a) we obtain

dj 2zy df (R)
ca=f R+ 3 LA, 2vdD
2 R)

=1 (R)+%4 4@

2 df (R 22z df (R)
R+ F LM o AR
2.8. Find all p of strain rec-

tangular co-ordinate system for a deformnnon of a body
symmetrical about the Oz axis.

Fig. 15

Let the projection of the displacement on the 20y plane
be denoted by u,, and the projection on the Oz axis by u,.
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Because of the axial symmetry, u, and u, are functions
of r and z, where
r=Y@+ (Fig. 16).

The displacements are
=uglr=f(r, )z, uy=uylr=1((, 2y,
us =, (r, 2y
where f (r, 2) = ur.
According to Egs. (2.1a) we obtain
e (42 2ED Zaea,

’J 5 ¥ (r, &
=1 z)+”7%. =y 2y 2y

by =

‘u=%. 6==z—"'f,:' ’)+%—:.
2.9. At some point of a body
exx = 0.001, = —0.0005, e,, = 0.0005,
=0.001, e, = 0.0008.
Determine the principal stnms and their orientation
with respect to the Oz, Oy, Oz

X
The problem is solved by using Egs. (2.5) to (2.9).

2.10. For the case of plane strain, when

u, =
= Ug (, Y), u, = u, (z, y), determine ti e
and g ey = (2 ) e the principal strnms
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Answer. One of the roots of Eq. (2.5) is zero, the other
two aro determined by the quadratic equation

& — (exx + €yy) €+ €xsfyy — /4 = 0.

One of the three principal strains coincides with the Oz
axis, the other two lie in the zOy plane.



Chapter 3

BASIC EQUATIONS OF THE THEORY OF ELASTICITY
AND THEIR SOLUTION FOR SPECIAL CASES

3 c

1. Direct and Inverse forms of Hooke's law

=g (Mr—1350). ew=g iy 6.9
where
3
0= 2 Hy Hy=204-26ey, I1,=Ge,y. (3.2)

2. Equations in ferms of displacements
(1:26) ) B2 962 (y ron) — 2 (1 o) |
+Veega H, =0,
(426 Y BE D 9 [ (1 o) = e (v o) |
+V &g =0,

0126 )/ ERD =26 [0 (V) — 2 (Vo) |+
+V giga 3 =0, (3.3)

0,

where «; are determined by formulas (2.3) . _
la @.9) y formulas (2.3), and 0 by formu
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3. Equations In ferms of stresses

Three equilibrium equations (1.1) and six strain compati-
bility equations [3) expnssed in terms of stresses according
to formulas (3.1) lete system of
in the solution of problems m terms of stresses.

). RECTANGULAR CO-ORDINATES

1. Direct and Inverse forms of Hooke's law

=% (%= =X,
ey,=J—.(Yy— i 8) ey,=%r @-12)
er= (z o 8), ex=az.

Xem 104262 ﬂu‘ - X;,—G("""+ Du,,)’

0 a &
Y, =10426 2 ;‘;, v.=c(% +6_"y) (3.22)
2,=20+26%, z,:c("“w’;f)

where 0 is deurmmed by formula (2.2a).
2. Equations In ferms of displacements
(1-1-26) ﬁ_za (&_i’ﬂt) +X=0,

0-+-26) 3726 (2 _%2) Ly o, @330

(M-zo)ﬁ_m(a_ﬂ_ a;)"'2=0
* An alternative form is r,x_—(x, -0 (Yy+2,)], ote.

** An alternative form is

et (Grale)], o
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e _ e
or
Va4 (4+6) T+ X =0,
OV, + (+6) S+ ¥ =0, (3.30)
(v, +(+6) 2 +2=0,
where

V()= s 2y
Equations (3.3a') may be represented as

(1—20) Viu.+ 32 B i x=o,

(1—20) v*u,+,,—y+—¢— Y=0, (3.3")

(1—20)vau, + 2 4 122 70,

3. sqummlnm-udmm

Three (1.1a) and six ibil
equations, viz. the Beltrami-Michell equations:
Vot 2 R (R
VY = 2 - (S T 2,
Vit =R $+a—,,+7)'
VX, +1+04762'gy - T“'% , (34a)

+ In dynamic problems, instead of X, ¥, Z on the right-hand sides
the equations we' must have, respectively,

(v). (v-o52). (or S8).




Cylindrical Co-ordinates

176 Y Z
VYetigaya= ~ (= tar

1 0 2. ax
V2ot = (&)

where & = X, + Y, + Z,.
When the hody forc , Y, Z are constant, the right-

hand sides of Egs. (3.4a) ue zero (Beltrami's equations).

1. CYLINDRICAL CO-ORDINATES

1. Direct and inverse forms of Hooke's law

ep= % Ry,

R—12-6

"’"%( fe] )

=g (Bo—350)+ en=15, (3.4b)
_,,=%(z=—,+ve) e,,=%Z,.
el gt (2],

Bn—70+—(ap+u,) B,—G(?+”"') (3.2b)

R.=10+26 %,
Z,=20+265 Zr=6 (S 2,
where 8 is determined by formula (2.2b).
2. Equations In ferms of displacements
(+26)r 2 m[""" —%(rm,)] +rR=0,
@ -,»2C)7W—2c(&—_)+5 0, (3.3b)
(A.+20)r—— zc[ = (w.)—#] +rZ=0,
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where ©,, wp, and o, are determined by formulas (2.3b), or

(3.3b")

3. Equations In ferms of stresses

Three equilibrium equations (1.1b) and six strain com-
patibility equations:
Ry
ViR, +ﬂ (R —By)- ‘_ﬁ!"'i-:-o o

VB 5 (BB + A et

0,

+¢,l,(%+iw)eao,

70
V3Z. 4 mw—o (3.4b)

V‘"ﬂ-l»m—, —W)- % 7 (=B — 1ty 0,

2 22, _ B,
V’”’*’l-(-ur@ﬁm"‘ﬂﬁ; =
70 2 9y
v=Z""|+u o B -0,

whero ©= R, + By -+ Z,.

IV. SPHERICAL CO-ORDINATES

1. Direct and Inverse forms of Hooke's law
| 1
=g (R—1550) . en=dm,

t":%(k‘—iﬂ!e) ha= -BN



Spherical Co-ordinates W

a"=§%(.4..—ﬁ‘{~,e). Car=Ar @.10)
u,
=104262,

oug
B.=A0+—(m—a-+u,+u.;mm)_

Aa=202E (o),

(3.2¢)
et ()]
B,:%(ﬂ-]»u,cola }-m ’"‘)
A,A—[rz 2 (4=) y 2],

where 0 is determmed by formula (2.2¢).

2. Equations In ferms of displacements
(A426) rsina%—%[%‘-—%(m.sina)‘li—
+rsin aR_ o
(A+20) SMT za[__— (rmu)]-{-rB 0, (3.3¢)
(A+2C)M||¢W—2G[7(rm.sma)—T]+
+rsinad=0,

where w,, g, and @, are determined by formulas (2.3c).

For an axially symmetric problem, the strains are inde-
pendent of the p co-ordinate, ug = 0, and, in addition,

O =0, =0, 0p=0;
Egs. (3.3¢) baoome
A+ 26)rsina—+26 ¢ (@sina@)+ Rrsina=0,
W 33
(1+2G)E—%I(m)+m=0,
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where
1 .
e=--—- (r2ur) +,,M ,,, (uq sina),
om b [ 0]

i For an alternative form of the equations in torms ¢
displacements, see the monograph (5), p. 141.

3. Equations In ferms of siresses

Three equilibrium equations (1 1c) and six strain compa-
tibility equations [3] expressed in terms of stresscs according

to formulas

PROBLEMS
3.1. Write the basic equations ln tems of strcssas for an
axially ic (axis z) problem 1i

According to Egs. (1.1b) and (3.4b) we Im\eA
the equilibrium equations

R
P+R=0, Zey Lz,

Ry , OR,
Tttt

G

the strain compatibility equations
ViR, — % (R, — B‘)+m-ﬁao

ViBy+ 2 (R — B"+1+a L2 -0

ViZo+ e =0,
Vit e L z,~0,

1+0 dra
where
P 0m 2 L8
and

® =R, + By + Z,.
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3.2, Write the basic jons in terms of
for an axially symmetric (axis z) problem in cylindrical
co-ordinates, and find their solution.

Since the problem is axially symmetric, it follows that
the displacements and strains are independent of the
angle p and, in addition,
up = O = @; = 0.

Equations (3.3b") reduce to

1 i 1 L Fuy
(=) w2 (P o) wrt o |=
R

=—% @
4 Pup, Pu 4 ou 2

PO Lowy 2z

Vit =g (G e+ o G

where

If the body forces have a potential II, ie., R = %
o

and Z = 5 the icular solution of the -homog
neous cquations (a) is (6]:

= _ 1w = o0

Y=g “=w ®

where ® = @ (r, z) is determined by substituting the
expressions (b) in the equations (a), giving the equation
1-20
VIO= 21
The stresses are determined by formulas (3.2b) and
are equal to

B D - o0
R=f+ 50, B=14:50, "
c]
a0 o = > a0
ot Re=Z,=55.
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The general solution of the cquations (a) in generalized
Neuber’s form is

2
U= g F+4(1—0) 0, U= (F+4(1 ~0)g.
where
vviF=0, vip=0, VF=4IL,

The stresses are

FF 1 9F  1—0 2
Re=fr+d T+ 100 (veraz,

By=vr—L L 1 (1—0) % | veraz, 0
:

The answer is the sum of the solutions (c) and (d);
without changing the notation for the stresses, we obtain

FO—F) 1—0 9 2 a
===+ VR0 1 | ViR,
B=+ 2520 vt t—0) & [ vepant 2o,
©=p o
T+ iR 2o,
R.=7,=202=D
p-For the same conditions up = 0, = 0, =0, R = % N

2=% by using Egs. (3.3b), determine 6 = 6 (r, 3)
and @0 = o (r, 2).

Equations (3.3b) become

8 K a 1

F T o= —g R,

N_K9 t_g (a)
=T E =~ 2
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where
K=xrm -
From the first cquation of (a)

(b)
By differentiating the oxpression (b) with respect to z,

and substiluting the result in the second equation of (a)

differentiated wilh respect to r, we find

Fo 0 [1a0e)]_

i [5R]=0

Assuming in the last equation

©=R(MZ@, (©)
and separating the variables, we obtain two equations
L2 -0, —4)r=o,

where o = pr, p is an arbitrary number.
By solving the resulting equations, we find, according
to (c), that @ is equal to

@ = 7, (@) (4p cosh pz + By, sinh pz)
and to the corresponding sum of the solutions over p,
where 7, (@) = EpJy (@) + FplNy (@) is the cylindrical
function of the first order; J, () is the Bessel function
of the first kind of the first order; Ny (@) is the Neumann
function of the first order; A, Bp, £y, Fp are arbitrary
conslants. According Lo the equation (b),
& e — Kp(dpsink ps+ B, cosh pa) Zy (@) —
from which
8= — K (A,sinh pz+ B, cosh pz) x

P 1 .
x j A (a)aa_m_—w)j Rda+ /()=
=K (A, sinh pz-t B, cosh pz) Zy (@) —

1

~ oy | Rde+1 @

4-0073

1
A+2%

R,
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where Z, (a) = EpJo (@) + FpNo (@) is the cylindrical
function of zero order. . .

3.3. Write the basic equati in terms of 3

for a polarly symmetric problem in spherical co-ordinates,

and give their general and particular solutions.

Since the problem is polarly symmetric, it follows that
all quantities depend only on r, and, in ion

o = Uy = 0 = 0y = g = 0.
“ tation is, by (272),

The
duy o u
O=Tr+2 .
Thus, there remains only the first equation of (3.3¢),
which assumes the form
ARSI AL @
where

R
Ri=rw -

The goneral solution of the homogeneous equation
d_( du upy

# (Gr+2)=o0

is found successively:

du, 2u, 1 d
Tt s g ) =3¢,
and (b)

u=Cr4L2,

A particular solution of the non-homogeneous equation
(a) is obtained in the form of the general solution (b) by
tho method of variation of arbitrary constants, assuming
€y and C, to be functions of r:
u=C ()r+ S0 ©
The first derivative of the particular solution is

=cin-Leun @
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on condition that

¢+ Cal)=0. ©
The second derivative is

T G+ 70 o) = CL 0. ®

Substituting (c). (d), and () in the equation (8), we
obtain

Gl =2 Ci()+ R =0. ®
By solving the i (¢) and (g) simul 1.
we find

cy=—§ fran, c,(r)gj Re 4 ®

Substituting the expressions (h) in the equation (c), we

obtain a particular solution.
3.4, Lamé's problem (1859) [5).

Determine the displacements and stresses in a closed
spherical shell loaded internally (- =a) and externally
(r = b) by uniformly distributed pressures (p, and po).

According to the equation (a) of Problem 3.3,
w=Cr L2

The dilatation is

d r
0= pote= L 4 (u,)=3C,
The stresses are, by (3.2¢),
R, =20426 L2 — (304-26) C,— 2.y,

Bp=Aa= 20+ 2y, = (31 +26)Co+ 2O
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‘The boundary conditions of the problem are: when r=a,
R, = — pi; when r=b, R, = —po}
By satisfying the boundary conditions, we obtain

1 pisd— pb? - l "b'(m pb
C=1rm e G >

During the deformation, the sphere retains the same

3.5. Lamé's problem (1852) [51.
Determine the deformation of a sphere of radius a due
to the mutual attraction of its particles.

1o Each unit volume of the splere is acted on by  radial
rco R = —pgrla, where g is the acceleration of gravity
W ihe surtuce o the sphere (Problem 1
The equilibrium equation in the presence of the radial
foreo is of the form (Problem 3.3)

d (du, 2
(G5 -l =0 ®

By using the results of Problem 3.3, we obtain the
genoral solution of the equation (a) in tho form

U = Cyr.

For a solid sphore C, = 0.
A particular solution is taken in tho form

u, = Br. (b)

Substituting the solution (b) in the oquation (), we
ol in

B 24
02 (.-+206) *
and tho displacement is equal to

up=Cyr+

g
10a (A +26) *
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Sinco the surfaco of the sphere is free from stresses
(R n = 0), we find, finally,
|t (9452
s \TmFe T F )

It is interesting to note that the radial strain insido
a sphere of radius a :_’_;::1 is a contraction, and
outside the sphere it is an extension. Thus, significant
initial stresses are induced in very large bodies due to
the mutual attraction of particles.

3.6. Write the basic ions in term:
for an axially symmetric problem in spherical coordinates,
and find their general solution.

Since the problem is axially symmets it follows that
all quantitics depend on r and a; in addition, ug = w, =
= wg =0, and Egs. (3.3¢) reduce to

o

A+20) 42+ 22 (rapsina)+ R=0,

(+26) /o — 26 - (rop) +rA =0,

where, according to (2.2) and (2.3¢),

2 (g sina),

0=t L ()

L
Tsna

“x [ )]

The equations are homogeneous when R =4 =:0:

Ll a " 90 0
T e g (0sing) =0, SL—K 52 =0, (@
where
©=roy, K= e Tl
Assuming
g o
0=k, w-To. a
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the second equation of (a) is satisfied identically, and
the first cquation is
%’,’-+cow%+r¢%=o.
Assuming in the last equation
D =R()A (@),
and separating the variables, we obtain two equations
LR _MEED g, FA4cotafhHk(E1)A=0,
whero k is an arbitrary number.

By solving the resulting equations, we find
® = (4wt + Bur=) [ExPy (1) + FaQu (W),

where p = cos @, Py (u) are Legendre’s functions of the
first kind, or Legendre’s polynomials*; Q, (u) are Le-
ndre’s functions of the second kind (see Chap. 4 and
7)); Ay, B, Ey, Fy are arbitrary constants.
According to the formulas (b), 0 and wp are equal to

0= K22 = K (Ay (k1) P — Byhr=0 )
X [ExPy () + FrQx ()],
1 0

©
=T =T =

= — (M Byt (EPa ) + Fii ()]

and to the ding sum of the soluti over k.

3.7. Michell’s problem (1900) (5).
Find the stress distribution in an infinite cone a = a,
with a force P acting along its axis at the vertex (Fig. 17).
By symmetry about the z axis,

up=Ap =Ry =0, 0, =0, =0.

Equations (3.3c) in the absence of body forces Lake the
form of tho equations (a) of Problem 3.G.

* 10k is an integor.
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The solutions of the equations (a) of Problem 3.6, in
which the displacements are inversely proportional to the

P
A
Raltr)
Fig. 17
1
|l 1z \
[ ! v
4
radius r, are as follows:
F
) =g Rl
A3 _F_sina
= 2(A+26) 4nG r °*
_ _3\44iG F cosa
M=—Siwwm e @
_p__ G F cma
Ae=Bo=rmam v
Ro—_ G ___F sina
T AF26 4n P
@ w=2, y=-Z_she
r=T, Y= " Trema’
P Sy

B _cosa
Aa=26 7 Tcosa
_ B

Bo =26 xtirezar
where F and B are arbitrary constants.
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The boundary conditions of tho problem Aq =R, =
when @ = @, reduce, after cancolling proportional terms,
to a single equation of the form

1 F 2
A% 1?"’|-.‘-cns¢.-0'
giving

_ _ Adcosa,
b= —marm &

The sccond condition for the determination of F i
obtained by forming the sum of the projections on the
axis z of the cone of the force P and the stresses on a spher-
ical surface centred at the verlex of the cone. It follows
from the last condition that

P =2_(%2?)M (1—cos” @) +G (1—cos &,) (1 -1 cost ay)].

When @, = /2, we obtain a pressure at some point on a
body bounded by a plane.

3.8. By using the results of Problem 3.2 », delermine the

displacoments for an axially symmetric problem in cylindri-
cal co-ordinates.

According to Egs. (2.2b) and (2.3b),

1 2w | au, u,
I=F b 2e=fr_du @

By eliminating the displacement «, from tle equations
(a), we obtain .

I [La(ru)), Fu, a0 a
waT'J“oT-’—,—,“W« ®
The general solution of the equation (b) is taken in the
form
u =R () Z (). (©)

_ Substituting the expression (c) in the homogencous equa-
tion (b). and separating the variables, we obtain two
equations

&z —0 @R 1 4R 1
@IS0 gt (t=%) R0, @

whero & = mr, m is an arbitrary number.
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The equations (d) have the solutions
7 = Ay, cosh mz -+ By, sinh mz,
R = % (@) = Gy (@) + N, (a).
According to the equation (c), 1, is equal to
4y = (A cosh mz + By, sinh mz) (G, (@) H V()]

and to the corresponding sum of the solutions over m.
According to the second homogencous equation of (a),

%=f;_; = m (Ap sinh mz 4 Beosh m2) Z, (a),

from which u, is equal to
u, = —(A psinhmz + By, cosh mz) G pJ o(@) 4 H N o(@)] +
+/@
(see [7]) and to the corresponding sum of the solutions
over m.

To find a particular solution, we substitute the values

of 0 and © from Problem 3.2 p in the equation (b).
After some rearrangement, we obtain

R Tty P

o

inh pz+- 7, cosh pz) Z, (@),
©

whore

Zy (@) = By (@) + Py, (@),
Ay = (2 — K) pA,,

By =2 — K)pBy, a=pr.

Assuming

u, = R (r) (4, sinh pz + By cosh pa),

where R (r) is an unknown function of r, and substituting
in the equation (e), we obtain

PR, 1 4R 1yp_d

Tt (1— ) R=5 2@ ul

—_—
* The budy forces & and Z are taken to bo zoro
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A particular solution of the equation (f) is taken in the
form

()= —gZo(@)
The displacements are finally
= D6 1 (@) + HpN 1 (@) (A cOsh 1z + By, sinh mz)—

-2 T;? (EpJo (@) +FpNo (@)] (4, sinh pz+ By, cosh pz),
»

where 4, and B, arc determined by the formulas (c).
According to the second equation of (a),

= |(20-5z)dr+1@=

= 3 (Gmd o (@) + HmNo (@)} (Ayn sinh mz +- B, cosh mz) 4

+3 % {;‘—p (A, cosh pz+ By sinh pz) x
»

X [Ey (@) -+ FplN (@) —

—2 (A cosh pe-+ By sin p2) (5, o (@) + FpVo(@)} " +1(2)-
3.9. By using the results of Problem 3.6, determine the
displacements for an axially symmetric problem in spherical
co-ordinates.

According to Egs. (2.2¢) and (2.3c),
5 () i (1t sin @),

wap=ae | 2 2y
T =50 | e T or ("‘G)J

* In soking a particular solution use is made of the formulas
" " 1
Zi=—2y. Li=Zy-o
** In deriving theso oxpressions uso is mado of the formulas

j 2, (@ da= —Z, (@), j aZ, (@) da=aZ, (a).
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or
._+ sma N —— (Uqsin @) = &_ ""c Wa _ 9r3,
(a)
where
=ru,, Us=ru.. (b)
For the homogeneous syslem (a), by taking
U, =r%, U=, ©

we identically satisfy Lhe second equation of (a), and
the first cqunlion is
(r’ ,,' + %(%sina)=&
Assuming, in the last equation,
D@ r)=R( A4 @,
and separating the variables, we obtain two equations

() —r(+ 1 R=0,
A cota 3y t)A=0.

1

By solving these equations, we lind
D= (Cr™ + Dur"™) [EnPy (1) + FuQn (1)1
According to the equations (b) and (c),

e Ze o I (e et D, (1) 2
Y [EaPy ( }') + FaQu (W), (d)
[P N .
r r da
=(Cu"'"+ ") [En P () + FuQn ())- L]
For t ystem (a), ding to (b)

and blle results of Problem 3 6 wo have
2r%0 = — 2 (At 4 Byrt?) (ExPi (1) + Fulh (W),
20 = K [ Ay (k- 1) ™2 — Bpkr*1) [Ex Py (W) + FaQu ()
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By taking a particular solution in the form

b

U,=r*},—‘?+j2r"wda. U=, U]
where
§ 2r00 da = —2 (A" 4 Bt (BaPy () + P01 ),

we identically satisfy the second equation of (a), and the
first equation is

9 D 1 o (b .
7 (") o e (i e) =
= (A2 Br?) (EyPy () -+ FaQy (W], (@
where
A=K (k+1)+ 2k +3) 4,
Br= — Kk + 2 (k — 2)] B,
Assuming
® (@ 1) = R () EPy (0 + FiQu (0,
and substituting in the cquation (8), we obtain, after
some necessary cancellations,

o (P A) — RGO R s 4 Gy

from which

7 A I ko

AC) = gy ™= 24_‘2::"_.) o

and

B~ (A Borh) [Py (1) + F0n ()]
where

A= gy K R E ) +2(k4 3] 4,

B 1
Br= =1y (Kk+2 (k—2)) B,.
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According to the formulas (b) and (f),

= ”r-""+ | 2r0da~

7

(k- 2) A 240 P — [(k—1) By +2By) ¥ x
X EnPu () FaQu (). ®
o= Le =L 2 At B BP0 + P ) )

The final values of displacements are oblained by
adding Logether the cxpressions (d), (¢) and (h), (i):

up= 2.." (Canr™ 1 — Dy (R+1) r™ 2 [EnPy () +FnQn (W) +
+ kD) A+ 240 T —[(k—1) By + 2By rh} x
X ExPi (W) + FrQn (1))
o= 3 (Cur™+ Dar™ ) 1 EnPr (1) 4 Fai () +
4 (At Bur*) [EnPi (1) + FaQR () 0]
0
If the numbers n and k are of the same nature, the
results of the solution (j) may be represented by a single
sum; in tiis case we obtain
= 2 [@nr™ ! byr™ - Conr=t— Dy (1) r7"2 X
g
XEnPr (1) + FaQn (W)
Ug= (z:l,,r"" —=B,,r”‘ 4 Cor™t + Dpr ™) X
0
X [EaPi (1) + FaQi ()
where
Gp=(n-t2) Ap— 24, =

2(2"+3) 1K (n+2) +2(n—1)] 4a,

bs —(a—1) By -+ 2B,] = gy (K (5= D)+
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2(n+1)) By,
(K (n+1)+2(n-+3)] An,

-
= 1
An= Z@n13)
1

§,,———m|l(n+2(n—-2)10,..

Here A,, B,, C,, D,, E,, F, are arbitrary constants.

If the origin of co-ordinates (r = 0) belongs to the
body under consideration (internal problem), the con-
stants B, and D, are zero; if r — co (external problem),
the constants 4, and C, are zero; if the poles (¢ = 0 and
a = ) belong to the body, the constant F, is zero.

3.10. Neuber’s problem (1931) [8).

Determine the state of stress in a spherc of radius ¢ com-
pressed by forces P applied at the poles (Fig. 18a).

(@) & |P

4 11

4i3Y

When external loads are given on the surface of the
sphere, where r = a (internal problem), we have

ER=o0(), 4, =1() (a)
These functions must be represented by series

o (@)= A On Py (),
S ¢ 9P el

T(©@)=3 =2 %sin @,
=t amt
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where the coefficients are determined by the formulas
n
On = ﬁ'T"'L i o (a) P, (cosa) sina de,

(b)
Py

P
T, = m j r(a) sineda.

In the present problem
o(a) = {

v(@) = 0.
Let us break the normal load into two component loads
o (@) = o (a) + o® (a),

—p when 0<oa<eamdrn—e<a<a,
0 when e<a<n-—e;

so that
—p when O<a<e,
b () =
"“(“)_{ 0 when e<a<m;
—p when n—e<o<nm,
(2 =
M '(a)_{ 0 when O<a<<n—e.

Consider the first case of loading
oM (@)= 3 on'Py (cos ),
=

where, according Lo the formulas (b),

o= __‘H p! P, (cosa)sinada=
=(2n-+1)P, (cosa)‘—”"" ———";;'." :=

=~ (1Posi ()= Prss (cos )l —
~ 1Py (1) = Py (cose)} =
= =5 [Pocy (cO8£) — Ppa (co5 €)).
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Thelarea, over which the uniform load p is distributed
when the angle ¢ is small, is approximately equal to ma%e?
(Fig. 18b). ) )

By applying a limiting process, i.e., letting e— 0
and pra%e® — P, we obtain
Jim Pa= (coss);P,... (cose) P 42:.-!»1) )

w_ _
On'= = g lim

Similarly, for a concentrated force at the pole a—zx
we have

- P
o= — g 2 P ()= — P n ) (=9,
0 when n--1,3,5,. ..
@ »
g — g (2n4-1) when -0, 2, 4, ...
and the load is expressed by the series
o P e,
o(@=3 0Py ()~ — pre 73— P (W)
n=0 n=0, 2, 4,

which diverges at the poles @ = 0 and @ = =, and con-
verges at the other points.

For the solution of the problem we must have an expres-
sion for the stresses in terms of Legendre's polynomials.
Pao; t)llis, we use the results of Problem 3.9 and formulas

. 2)

R=M0+2655= 3 [(n41) (260,
w5

+KMAL) P+ 260 (v —1) Cor2] P, (),
A= (G-t )=

= 3 Clantnd) 42— 1)Cor Py ).
n=0,2,4, ...
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To dotermine the arbitrary constants 4, and Cp, we use
the equations (a):
(n-+1) (26an -+ K1 Aq) a™ +26r (n—1) a™2C, =

@n-F1) P
=T 2ma
. @
(@n+ndn)+2(r—1)a2C,=0.
By solving the equations (d), we obtain
An=
@n+3) 2n+1) P/ran+2G
= T RGP A—n—@at ) (n T D—2(mF o)) *
antndn __ (14m)atdy

6= —6—D ~za-mEt K FD
+2013) (1 1) =2 2n+ 3L

In carrying out the calculations use has been made of
the fact that

A
°=T0+or
For the technique of calculating the series (c), see
the monograph [6], Chap. VI.
When » = 0, the only non-vanishing terms are those
corresponding to the coefficients 4, and C,, and it is easy
to calculate the stresses at the centre of the sphere.



Chapter 4

GENERAL SOLUTIONS OF THE BASIC EQUATIONS
OF THE THEORY OF ELASTICITY.
SOLUTION OF THREE-DIMENSIONAL PROBLEMS

Since various forms of the general solutions of the basic
equations involve harmonic, ¥, and biharmonic, ¢, fun-
ctions, we shall consider the solutions of the harmonic
and biharmonic equations.

1. HARMONIC EQUATION (LAPLACE'S)

1. Orthogonal curvilinear co-ordinates (Lamé’s)

Ao () e 0y, 9 at 2
Vo= [ (V2 ) (V) )+
3 Tk 0\

+oar (V22 =) =0, (4.0)
where A = | g1g.¢5.

By applying the method of separation of variables, we
obtain the standard forms of the solutions of Eq. (4.1):

»= ¥ (21) 2 (02) g (@a),

b= 2% (@) Ve (@) o (@a): %2)

2. Rectangular co-ordinates
s
=St St 2, (4.10)
P=X@YQEZ0@. (4.22)



Harmonic Equation (Laplace's) @

Substituting (4.2a) in (4.1a), we obtain

. AR

x &=ty tzr e =Y
or, after separaling the variables,

X _ax=0, %—b‘}'=0. 22 _cz-0
with a® + b + ¢ = 0.
By using the last equations, we obtain the standard
forms of the solution
\p = easpblgHer = graxtbyzer (4.20)
and a number of special cases:

p= 2} f(m, n)e* Y™ ¥i: (sin mg+ cos mz) X

X (sin ry + cos ny) (4.2a")
when a ~im, b=in, c= | m*+n?;
¥=3 v ) exaxsty S0 (VT Fog) (4.207)

when c=i}/ a® £ B2
The most general expression for a harmonic function is [9]

'l?=j jl(z cos @ + y sin @ + iz), al de,
“n

from which various particular solutions can be obtained.
Of interest is a particular solution of Eq. (4.1a) in the
form

v=le—af+ @ — b+~
where a, b, ¢ are constants.

3. Cylindrical co-ordinates
=10 (. o 1 Py Py
V=t (r o) F =0 (4.1b)

¥Y=R@BE® 20 (4.2)
5



8 Ch. 4. General Solations of Basic Equations
s Ch 4 Ceners Joluflons of Basle Equations

Substituting the  valuo (4.2b) in Eq. (4.1b), we obtain
14 4 ( dR 1 B, 1 &2

o () wrtze ¢
or, after separating the variables,

1 @z 1 &8
TE=" T =P

a’—+a—+(a1—p2)1i—0
ere ¢ = mr, m, and p are positive integers.
By solving tlle last equations, we find
Z = Apy cosh mz + B, sinh mz,
B = Cp cos pp + Dy sin pB,
R = Eplp (@) + FolNp (),
where

_ P (=D rayem
= () 2 T (7)
is the Bessel !unctlon of the first kind of the pth order,
aJ, o, ]
Np@= 4 [220 (g 2
is the Bessel funehon of the second kind of the pth order,

or the Neumann function.
Formula (4.2b) is finally

VB N= 3 (A, T, (mr) 4
+ B, ¥ (mr)LET? (o)

m3). (4.2v)

4. Spherical co-ordinates

V= [ (2 ) e (B siner)

+ e %]—0- (4.1¢)
‘where

vY=R(B@P 4@

(4.20)
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is a spatial spherical function (see below).
Substltuhng the value (4.2¢) in Eq. (4.1c), we obtain
1 d an 1

@ (’ 3 )+ Fenta dfF Aona F(—s"’“) =0

or, aller separaling the variables,

aRr

5 (PG )=ntt,
1 @8 e
T "

1 d (a4 .
e d_a'('d_a_s'"a)+[n(n+‘)_sln-ul" 0

where m =0, 1, 2, ... is an integer, n is any number.

By solving the hrst two equations, we find

R(r)=A,0"+B,r™!, B(B)=Cpcosmp~+Dysin mp.
The third equation, on putting cos @ = p, reduces to
an equahon for Logendre s associated fummons
-]+ [rE+ -] a=0.

I‘he standard forms of the solution of the last equation,
whon m == O (symmetrical problems), » is an intoger, and
—1 < p <1, arc as follows:

A (1) = EnPy (W) + FnQn (W),
where

1 dn(pi—)m

Poi)=5 I o
are Legendre’s functions of the first kind, or Logendre's
polynomials,

—F

n
1
Q=5 P (I FEE— 3 - Pacs () Paca ()
et
are Legendre's functions of the second kind.
The consccutive values of the above quantities are
Py(ny=1, Q (,.)=-__ Ikl

T—u

Prw=p, AW =P QW—1,
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PW=t@—1),  Qm=PWCW =k
P =GB, O =Ps() QW — Jui—F,

Continued in (7).
When n > m are integers and —1 < p <1,
A= En mPn.m )+ Fn,mOn.m (B
where
dmp, 1 — ™2 guim
Pom(W=(1—pym? Tl O o (W,
Qn.m () = (1 — ez 32 8]
are Legendre's associated functions of the first and second
kind of degree n and order m.
In particular, P, o () = Py (n).
he consecutive values of the above quantitics are
PrLim=V1
Poy(W=3uVT=p% Poo(u)=3(1—p3),
Pou(W) =5 Gui— 1) VTR, Py ()= 150 (1— 3,

Pys(w)=15(1—p2) Y T—p2, ete.

Tables of these functions for n =1, (1), ..., 10 and
m=0, (1), ..., 4 are given in [10].

When m is an integer (0, 1, 2, ...), n = v is a complex
number, so that v (v + 1) = 1 & bi, where b is a given
number, and when —1 << p << 1, we obtain

A 1) = EvnPym (1) + FymQum (B),
where P, (1) and Qum () are Legendre's associated func-
tions of the first and second kind of complex degree v(v-+1)=
=1 + bi and order m. The technique for tabulating these
functions is givon in [11]. Formula (4.2c) is finally

‘°=MEA(""'"+ Bor~1) (Cp cos mf -+ Dy, sin mp) x
X 1 EnmPrm (1) + FamQnm (W) (4.2¢')
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Every homogeneous function 7, (z, y, 7) of degree n in
co-ordinates z, y, z, for which the condition V?F, = 0 is

fulfilled, can be d as a spatial sph 1 function
Fo (@ v, 2) =1"Ya (2, B),
where]

Ya (@ B) = 4 (@) B (B) = [EymPrm (cos @) +

+ FpmQnm (c0s @)] (C cos mp + D, sin mp)
is a surface spherical function.

For symmetrical problems (m = 0),

Yp (@) = EnPy (cos @) + FrQn (cos @)

5. Additional solutions

Additional solutions are obtained by combining already
known sointions:

(a) lincar combinations

Ton, ks

(b) derivatives with respect to paramelers

M Pk Prm

% ' oK Fkom

(c) integrals with respect to a parameter with a weight
function dependent on it

[ 1 pudn, ete;

(d) derivatives and indefinite integrals with respect to &,
@, &, if Laplace’s differential equation does not contain
expllc}uy the co-ordinates @, @, as (for example, the
equation in rectangular co-ordinates)

¥ * &

S G, TR (dn gdw, e
L. BIHARMONIC EQUATION

Vivip = 0. %.3)

Particular solutions:
(a)

ete.;

P=zb yp, 2, R%, “4
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where
R=2+ P +2% 3 it aE
lynomial of degree not higher than 3;
8;7)) ;:l};r?:m};al of any degree with specially selected
coefficients, which satisfies Eq. (4.3).

HI. BOUNDARY VALUE PROBLEMS FOR THE HARMONIC
AND BIHARMONIC EQUATIONS

The boundary value problems for the harmonic 41||{d bihar-
monic cquations are Lreated by F. G. Tricomi in [12],
Chap. IV.

OI;gmnl importance for the solution of elasticity problems
are the boundary value problems for elliptic cquations
(V9 =0, V% =F(z, y), V¥ =0); the Dirichlet,
Neumann, and mixed problems.

1. Dirichlet problem (first boundary value problem)

Determine a harmonic function § in a closed region D
from its known values on the boundary C of the region.
It has been established that for every region whose con-
tour has no discontinuities and has a completely defined
tangent everywhere and also a curvature permanently varying,
cxcept for a finite number of points of dis nuity of the
first kind, the Dirichlet problem with continuous data on
the contour can be reduced to a Fredholm integral equation
of the second kind, with a kernel continuous everywhere
[12], of the form
'
M(E)—A} K@ wpmdy- _."/(g),
) E
A=l 0<EKH,

::cde ;I;):l::l)"{, vith flle condilions specified above, the ezist-
thiet roorem is proved for harmonic functions and the Diric
One ot thoi s solved by using integral cquations.
chlot probl o most important methods of solv the Diri-
problem on a plano is tho conformal mapping method

4.5
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based on the fact that this mappmg transforms Laplace’s
equation into itself ((12], Sec. 4.1). Almost all efficient
methods of solving the Dmchlet problem, found up to now,
are realized by means of conformal mappings transforming
a given region D into a circle or a half-plane, the two cases
in which there are exy]lcu formulas for expressing a harmon-
ic functlon assuming given values on the boundary C of
the regio:

The Dinch]et problem is also solved by expanding the
boundary value function f (...) in orthogonal series takin,
into account the nature of the boundednm of the m'.ern%

problem and !
cients in these series lsee Eq. (4.2¢")]. The unknown har-
monic function is

[ u)— " 2, 7"Pum () (Camcos mp +

-t Dy sin mp), (4.6)

wheie = cos @, r < a, a is the radius of the given sphere.
The nnknown cocfficients C,m and Dy, are calculated from
the boundary value function f (r, @, B) when r = a:

:n a"Ppp (€08 @) (Cpm cOS MP +

i Dy sin mP), .1
where, ding to the ortl li diti
Lo
[ \ B { / (@, B) P (cos @) sin ada.
o
n
c m

i | 48§ F@ B Pancosa) x
o 0

X cos mP sin @ da,
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w x
et (n—m)l 1
Dun= BT [ ] 1 9 P () x

X sin mpsin & de,
n=0,1, 2 .... m=1,2,...,n

If we know the Green's function g (zo, Yo, Z, y) =
= g (Py, P) for a region D, i.e., a harmonic function in
this region which assumes the same values on the boundary C
as Inr, where r is the distance from an arbitrary point
P (z, y) to a fixed point Po (Zo, ¥o), it is‘pos\slble at once
to map conformally the region D into a circle and to give
an explicit solution of the Dirichlet problem and even of a
more general analogous problem for Poisson’s equation

vie =F (3, y), 48

where F is a given continuous function; this cquation is of
greal importance in problems relating to the torsion of
prismatic and cylindrical bars [Eq. (7.9)], the analysis of
membranes {13] [Eq. (5.45)], etc. The determination of the
Green's function g, however, is often found no less diffi-
cult than the solution of the Dirichlet problem with the
given values on the boundary C*.

For the solution of the Dirichlet problem and analogous
problems (Neumann problem and mixed problems) there is
a great variety of numerical methods: the finite difference
method giving a system of five-term difference equations
(5.37), the relaxation method of R. V. Southwell, variational
mgl[not!s based on tho fact that the unknown function ¥
minimizes the integral

T = SDS [(2) +(32) | doay @9

for which the Euler-Lagrange equation is Laplace’s equation

)
v'v—w+%;-=o. (4.10)

R
* One s tho oxcoptions is an impor,

ant case where the region D
at the origin of b
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Considering further certain functions
B (z, Y3 @y Tay ooy Un)y (4.11)
where @, are the we obtain an problem
for the function J of n variables and write down ~ condi-
tions that this function mnm satisfy
o _
i ,;,,,_ =0. (4.12)
To choose the functions ¥, use can be made of the Ritz-
Timoshenko method, the Bubnov-Galerkin method, the
Vllso\ Kantorovich method, etc. (see [13], Chap. I).
nt some of the results pertaining to the solution
of tho D ichlet problem [14):
(a) region D = half-space z > 0,
boundary C = plane z = 0,
boundary value function = f (z, y),

_ @& wddn ____
le=pr+u—m + 2
= Poisson’s integral; (4.13)
the function f (z, y) must be such that the reflection of the
plane 0 in a sphere lying outside the region D ([14],
Vol. 2, Chap. IV, Sec. 1) would give a boundary value
problem with continuous boundary values for the bounded
region D’ that is the reflection of the region D;
(b) region D = half-plane y >0,
boundary C = line y = 0,
boundary value function = f (z),

v =t | LBE (6.14)

e o 9=

() region D = sphere of radius a.
boundary C = spherical surhce (Fig. 19),
boundary value function = f (a, @, B) = f («, B),

Y (ro, @, B)=

rl 2n2nm
=L ((___ Jjefdad _ _ (4.15)
(0243 —2ary cos (@a—ay)| ¥
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— Poisson's formula: i
jon D = circle of radius a,
@ m::i‘nry C = circumferonce,

vig. 19
08,08 =a?
r.h
ad

boundary value function = f (¢, @) = J (),

/(@) do MR

@y 2arg cos (% — )
]

P (o, %) = —

2. Neumann problem {second boundary value problem)

Dotormine a harmonic function 1 (to within an arhitrary
constant) in a closod region D from known values of ts
normal dorivativo on the boundary € of tho region, which
must sntisfy the condition

§Mgs -0, @17

Similarly to the Dirichlot problem, this problem can bo
volved by tho methods indicated above.

In tho caso of a plane problom uso can bo mado of tho
ogtlul.ing relations botweon two conjugate harmonic func-
Lions, botween tho ronl part w and tho imaginary
8 (4.15) . "
0 A ot o o o

e
S )

vip Z'T‘.' v
o

(0 tho monograph (14], Vol. 2, Chap. IV, Sec. 2).



Poundary Value Problems -

part v of the samo analytic function w = u + iv, in the
form of the Cauchy-Riemann equations

Uy = Uy Uy = =Dy (4.18)

If wo take an arbitrarily oriented direction v making an
anglo & with the z axis, then

=uccosa-fuysina,

and for a direction v' perpendicular lo it (z+4n/2) we
obtain

B e vec0s @+ 72) v, sin (@ w/2) =
= —u.Sina+ v, cosa=u,cosa+u,sina,
from which
LN (4.19)
Sinco the ial dil s and the direction of tho

inward normal for any closed curve doescribod in the positive
direction are related in tho same way as the directions v
and v’, it follows that if the unknown function of the Neu-
mann problem whose normal derivative assumes some given
values /* (s) on the boundary is taken to be v, we obtain
du_dv
=1 )

so that the boundary values of u can be calculated, disre-
garding Lhe non-ossential additive constant, by the formula

16)= | 1@ ds, (4.20)
:

whicl!. by virtue of relation (4.17), gives a uniquely defined
fu.nchon. We noxt find u by solving the Dirichlet problem
with the boundary values (4.20).

After determining u, to pass to v it is only necessary
to integrate the total differential

W= —u, dz + u,dy,
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and this is accomplished by simple quadratures ((12],
.5).

Ch';‘ge }}‘e’\;manl'l problem occurs, for oxample, in the determi-

i ti temperature field t(:' Y, 2) in the
:::o:‘ :‘::.:g';:::ewthaml;l process that is characterized
Dy a special form of Eq. (8.23)

L I 4.21

L leo @21)
nd the corresponding boundary conditions.
: We give an example from [15], Problem 13.1. . .

Find the stationary temperature ¢ at the interior points

of a thin rectangular plane OACB (Fig. 20); heat is uniform-

Y|
P
b pa Fig. 20
~]
ha FYYVYVYYYY)
A X

ly supplied tl!roush the side 04 and is uniformly removed
through the side OB. The other two sides, AC and BC, are
covered with thermal insulation.

Denoting by Q the quantity of heat flowin in through
ll)l;o I:m:;o 3. and]ﬂowi;g out through the siL:Ie OB, and
' ermal conductivity, and ing Eq. (421
with the boundary Wndition;y and solving £a. (620

2 _0 M
"*L-n_kb' W' =0, T o=

Q a
T "—lllu-o=o’
we obtain
e 0 =g b e—ay
where C is a constant,
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3. Mixed problem (third boundary value problem)

Determine a harmonic function in a closed region D when
values of the function are given over a part of the contour
of the region, and values of its normal derivative are given
over the remainder, or when values of some linear combi-
nation

a

A VO +BE) S =F () (4.22)
of the boundary values of the unknown harmonic function ¥
and its normal derivative dy/dv are given.

IV. YARIOUS FORMS OF THE GENERAL SOLUTIONS
OF LAME'S EQUATIONS

1. Lamé's equations In vector form
Equations (3.3) in vector form are

V2 [+ g 70 ] =0 (4.23)

5 grad dive =0, (4.24)
otal displacement vector of a point,
radius vector of a point drawn from an arbitra-
rily chosen origin of a rectangular co-ordinate sys-
tem [16],
i 9 9, a - _ aF
diva =%+d—:+%. gradF ==

—z OF aF oF
=i tig ko
2. Galerkin's solution 17, 18)
In vector form:
26u = 2 (1 — 0) Vg — grad div ¢. (4.25)

For rectangular co-ordinates
® =49, + jo, + ko, = Galerkin's vector,

v g 29
divo=20y 20, 20 (4.26)



0 Ch. 4. General Solutions of Basie Equation;

@1 = arbitrary biharmonic funetions.
In scalar form: 3
For rectangular co-ordinates

26 (u3, uy, u;)=2(1—0) V2q,, M_Pa«;’ ,
where

The stresses are determined by formulas (3.2a).
For cylindrical co-ordinates

2t =2(—0) 003 BV + sin Bvgy) — 22

wuﬁza—a)(sinaw.—mavw-é%’.
2u:=2(1~0) vig,~ 20
Where

W=¢°‘ﬂ%-$%+sinp%+

L Y

95 »

2.
V= e e

When = constant (shells),

1o,
V’(..,):IT_'_ 6:".;. :
when r—oo,

V‘(...)a";\r;»_,_ Ll iy

The .
stresses grg determineg by formulag (3-2b).

(4.250)

(4.262)

(4.25)

(4.26b)
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For spherical co-ordinates

9Gu, = 2 (1 —0) (cos p sin aV2p, + sin f sin V2, +
Feosavie) — 5L,

9Gug =2 (1 — 0) (sin BV3p, — cos fV2q,) —

- (4.25¢)
2Gu, = 2 (1—0) (cos P cos aV2p, + sin B cos aVip, —

—sin aVz%)‘_Tﬂ .

where .

. a
o=cospsine e — ok T g coboma Sy
°°’1%+cos¢;—?{+

g sinBous 99, _sine ag, (6.26¢)

+smﬂsmaT+

When r = constant,

1 gad... . P
Vi (T -l-col,aoaa + :in"u £ )
The stresses ave determined by formulas (3.2¢).

3. Papkovich's [19] and Grodskil's [20] solution
In veetor form:
2u = 4 (1 — ) — grad (rp + Vo) @2
For rectangular co-ordinates

b =i + Gy, + kpy = harmenic vector,

o = harmonic scalar, .
¥; = arbitrary harmonic functions.
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Tn scalar form:
26 (s o U) =4 (1 —0) Pr.2, ;-Eﬁﬁ. (4.270)
= + 2ps.

w}!lsl'; &nms‘vl:e ‘ﬁ:‘rmine‘d by formulas (3.2a).

4. Neuber's solution (21, 22)
In vector form:
%u =4 (1 — o) —grad F. %28
For rectangular co-ordim]zm . o
= = harmonic vector,

vtk n."i’ arbitrary harmonic functions,
vE=2 (P4 ). (4.29)
In scalar form:
26 (s, Uy, U) =4 (1—0) i, 2,5—

with formula (4.29).
Solution (4.28) is used in problems of stress concentration.

oF
Fares

(4.280)

S. Trafitr's solution (16]

26 (s, hy, 1) =y, 2.3+ 2 50 (4.30)
where

= o _ 1 -7 an
o ok (S )

Solution (4.30) is used in the analysis of an infinite layer
and a punch on an elastic half-space (Problem 9.7).

6. Lamé's solution
26 (s, u,, ";)=V¢,z.s+,_l—k(::—,—_jxh:y ).

(4.31)
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where
V=0, Vg gt Sess
PROBLEMS

4.1. Lamé’s problom for a cylinder (1852).

A circular cylinder of height k, outer radius b and inner

radius a is subjected to an murnal uniform pressure p;
and an external uniform pressure

Delermine the stresses and dispﬁlumenu for the follow-
ing boundary conditions:

(a) the cylinder is supported by an absolutely rigid and
smoolh plane,

(b) the cylinder is placed between two rigid and smooth
planes a constant distance apart.

In the case of the axially sylnmetnc do[ormuuon of
solids of revolution, as shown by 1. Love (5],
Article 188, the stresses and strains are expnmd in terms
of a single biharmonic function @, = @ (4.25b)

2%6u, = _ﬁ;_ up=0,

W, == [zu—u)vz—m]w 5,

Ro=g (0= %)@, Re=B,~B.=Zp=
By= oV*———) @

z, =—[(2—0)V‘—ai

=z=%[t-0v—

where

Vi m ittt



Ch. 4. General Solutions of Basic Equations

i itrary constant.
s ﬁ ::'A‘nnl:::eriged by substitution that for a given stresg
system two equilibrium equations (‘le) and four com-
patibility equations (3.4b) are satisfied if v2yp = (.
To find the function g, it is convenient to assign it ag
a finite power series in the variable z whose coefficients
are unknown functions of r:

l
P =h§“ WOV 2 =1o(r) 11 () 2+ [ () 22 -

+( 2+ 1u(r) 2

Substituting this expression in the biharmonic operalor
#2O 4P 4

ARSI TN SR TS S

F 2 doa
Pt Tt o) 0=0,

and equating to zero the coefficients of like powers of z,
we obtain diff i or the i i

of the unknown functions fi. These equations are of the
Evler typo and are integrable in elementary functions.
Tho result of the integration is expressed by the formulas

Jo)= Ayt Bolnr 4 Cy2 g Dy .
1/9 1
AR TLAT LN VR

1 5
‘i(:’l’vlrwa)r‘lnr-r%(c._%p.) g By,
(=448, lnr-pC.r1+D‘rzln,_|_

3
+T("—;l—ca)"—%0,r‘lnr_
/'(’)="=+B:'“r+0:r’+0,rz|..r F

3 (D,
+2 (=) re 2 b,

B0 Ayt Bylnr g cga Dylnr
ACEY R NN +Crr 4 Dyr21n
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For the boundary conditions (a) wo have
when r =a, R, =—p, 2, =0;
when b, R, 3
when 0,
when z =k, u,=0.

’lhe am\ysns of lhe iuncnon [ and of the boundary
allows the

to be drawn:
(1) the iunctmn up depends on the odd funchono /,.
The even a pressure prop:

to the first power of z;

(2) for Z, = 0 when r = @ and r = b, the constants D,,
By, Cy, and Dy must be zero;

(3) the constant A, does not affect the state of stress
and strain.

Taking into account the conditions listed above, we
oblain

@)= (Bilnr+ Cy')z + 42 ®)

By setting up ions for stresses and displ.
and satisfying the boundary conditions, we find

+ _ (1—0) (pob* — p1a®)
W= 2(1+0) (B —a) *
Ay — =0 b —pia?) 5 a(peb—pia)
* IM+o)F—a) * ~ T G+ (F—a)"

The displacements and stresses are

B} —p) et (1—0) (peb? —pie®)
up = L0y {2t r].

1 [ (123
6 —a)

__ P2 —pia*
“F—

_ Pab—pya®
Foa

For the boundary conditions (b) it is convenient to
take the height of the cylinder to be 2k and the function ¢
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tion (b). The values obtained must
g e i of the solution of Problem 6.1
ohon . = 7, = 0 and Z, = o (R, + By).

L%oi‘:mliln?lhe state of stress in a rec(;angular plat3 boung.

=+ h2,2=0y=0z=a andy=3,
:gn:]l,ypaI:;:)r‘ud along the edge, and subjected o a uniform-
ly distributed normal load p (Fig. 21).

X
t Fig. 21

For the solution of the problem, we take, according 1o
(24), one biharmonic function, 93 = @.
4ln this case, the displacements and stresses are, by
(
)
Wuy= — 8 %u, = T
»
2¢;u‘=|':»(1—«~:)Vz_W °
a

—_ )
drdyaz ( )

Y, “%("V‘-ﬁ)%

v.=‘,-°,[(1-a)vz‘§h_

ZF%[(Z“’)V’“%I%
Z;=%[(l—q)v:_%‘_]%
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where

»...
vi(..) = Ty
The boundary conditions of the problem are expressed
as follows:
when z = —h/2,

Z,=—p, X.=Y,=0;

X,=0 (b

when y =0 and y = b, .
‘The biharmonic function snusiymg the boundary condi-

tions (b) for z and y is, by formulas (4.2a") and (4.4),

o= g )‘, | Amp sinh (nz Y mPTa® + n2762) +
m=1n={
-+ By cosh (nz V m¥a® + n?6?) +
4 Cyp..z cosh (nz V m2a® + n?b2) +
+ Dpnzsinh (az Y m?a® + n?/b?)) sin mazla sin naylb.

The distributed load p is also expanded in a double
series '\ccording to the formula

P= 2, @y Sin mazla sin naylb,
mZ i)
where
Lt
=g i psin mazla sin nnylb dz dy.
]

To determine the arbitrary constants Amn, Buns Cmns
D,,,, we use four boundary conditions (b) for z, i.e.,
when z = —R/2, Z,=—p, X, or Y,=0;
when z=h/2, Z, =0, X, or Y,=0 [see formu-
las (a)).

The mveshgaunns of the work of thck plates l24|
have led to the
theory of the analysis of thin plates I5] buod on the
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assumptions that ¢, = €y; = €x: = 0 and Z, = 0 (hence
X, Y,, and X, = Y vary according to a linear law)
allows the solution to be simplified for plates with a ratio
of the smaller size, a or b, to the thickness k equal to or
greater than three, giving results closoly approximating
the exact values.

4.3. Boussinesq's problem (1885) (5].
The elastic half-space z > 0 is acted on by a force P
normal to the boundary plane z = 0 (Fig. 22a).
Determine the displacements and stresses.

.. The problem is considered as an axially symmetric one
in_cylindrical, co-ordinates with a logaritiimic! singula-

(@)

Fig. 22

ity at ioin

foree, The £ 0. at tho point of application of the

displacoments g2 20 used for the detormination of

M}}n 44. stresses are the formulas (a) of Pro-
the

stresses arg N .
formulag Prescribed in accord, ith the
(6) of Problom 4.1, they satisfy the equilibrium
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equations (1.1b)

aR, "r—ﬂl - 02, | 9z, , 2,
ey G I w0, i e leo
and the Baltraml-Micholl relations (3.4b)

ViR, —i(n, Bo)+ s 5o =0,

1+0 o
198

V2B + (Rr—‘Bl)+‘+° +5=0
V’Z:+m‘f—3—°-

6
VZZ’__"'WW_O
if the function nv is biharmonic [see (4.1b)}, i.e.,

:7;-"’ T +as') (_rr+ o +ﬂ) =0

The problem is solved by introducing the biharmonic
function

@ = (R-1- (1 — 20) [z1n (R-+3) — R},
where
R=V7it@=VBFy+a.
Taking into account that
R—z=

R+z v
v2(zln (R4-2)—R)=0,
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(—=20P( R _ 2
"-=——am‘(n+= )
3P P
Li=—mm
3P ra
Au=Le=—gami
11,=n,=3‘=z,=u.=0.

As R = oo, all displacements and stresses tend to zero.
When z = 0 and R = r, we obtain the displacements

of the boundary plane
43P _ _rod—20p
U= =gy = T mkr .

_(U—0)P _(—a)P

= r = mEr -

The boundary plane z = 0 is free from stresses (Z, =

= R, = 0), with the exception of the point /7 = 0 where
the stresses increase indefinitely. The latter is due to the
presence of the concentrated force P applied at the origin
and can be shown by the following calculations.

We cut out from the half-space at the ovigin a hemi-
sphero of radius R, when R is small (Fig. 225), loaded by
forces in the form of stresses on inclined planes.

The projection of the resultant vector of these forces
on the z axis is different from zero and is equal to

Z= U 1Zr cos (Rr) + Z, cos (Rz)) dF = cos (Iir) =

= —sina= —r/R,

cos (R2) = —cosa= —2/R,

dP=rdpRda=3P Tdﬂm " . ~

k3 ) § (F’“‘a-l-n—.cosa) rRda=

2

=3P s sinacostada=p,
]
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We give the values of the displacements and stresses
in rectangular co-ordinates z, y, z (see Fig. 22a):
P [z z 1
“x='4T[W_(A c:)n‘u+TnJ'

[ ~awam]-
22

s ~ i)}

. __P_[3m:__ Guw(:+2R) ]
YO T RS T Gr e (Rt )

{5
"
PR, G ) G =z
Zi= — ”F*()._-e-a)n-]‘;.-;-G I }
4.4 Kelvin's problem (1848) [5].
A force P is applied at a point of an infinitely large body
along the z axis (Fig. 23).
Determine the displacements and stresses.

The origin of co-ordinates is taken at the point of
application of the force and is enclosed by a small spheri-
cal region. The problem is solved in rectangular co-ordina-
tes by assigning the biharmonic function
® =03 =AR, (a)
where
R=yaZfgta
A is an arbitrary constant.
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According to the formulas (a) of Problem 4.2, we have
L
L= WG R
4

u= o7 [ +@—d0) ],
x,:%[u—za)—%j,

Y=t [a—2)- 2], (b)
h=—gr[0-2 12 ),

2 As 9
Xyo Moy ~[a-20) ¢

2= -%[u—kH%J.

To dotermine the arbitrary constant A, wo form the
Projection on the z axis of all forces situated on the surface

& Fig. 23

of the small sphere (Fig. 23)
¢
Z= ‘,5 12:03(R, 2) 42, cos (p, D+ Zecos (1, 2)ldF=

=|cos(R, )=
s (R, z)

2R, cos(R, y)~ ~y/R,
= —cose= _yp, dF=rdf Rda|=
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2n

B
=4 [ d [ 162+ 92+ 2RI (1 —20) + 3R R da =
e

B
=214 j sina [(1—20) + 3 cos?a) da=8n (1 —0) 4;
i

hence,
A = Pl8n (1 — o).

The projections of the forces on the z and y axes are
ur&. obtain, finally,

_ (40P _ =z __(+GP PR
U= BnE (1—0) ’F—snc(x-'.m 920z *

3 A+GP PR
=BG (A +26) 030y

u: g "%—[F+(3—4°)J=

(G P R
F20) o + 28

The stresses are determined by the formulas (b)

Pz ’
Xa= gy (U —20) —

Pz
Y= e (=2~ 7
— 3Pzyz
Xy= TG0 r

- Pp: 3z
%= —ma—am [(‘ —~20) +F]v
S Py a
Vi — g7 (1—«1):(*[“‘2")"’7]'

- Pz 32
Zi= — s [—20 +35 ]
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84
i 1882) (5).
Lsfhf.:r::i: I;:ollf,-lse::ci z >) 0is ncLsd(Fqn gz). force T
i the boundary plane z = ig. 24).
unl)‘:!::'ll:linl: the displacements and stresses.

i t the force T is applied at the origip
nl.;‘);“::;ni :l;?s, we solve the problem by introducing

Fig. 24

two biharmonic functions (4.25)

= 4n(.r_,, (R+2(1~0)(1—20) [z 1n (% --z)— R}),

T
= =g (= 20)z1n (R+2).
Further, according to formulas (4.252) we obtain
~_ T (A436 a2y g T
e =g ( 1+_G'+W)T_ﬁ*2n( For
T 2 1
+ EEye ey [1“ R(ET3 J Rtz*
uy =L 1 1 1
M ke -
u,=1—_'." L 1
Ry = B
at the point 0
{§ *idzay=r,



Problems
By formulas (3.2a), the stresses are
T (3, Gs 3 2Rt 1
Xx='-zT{T+ e [lun-“y‘ ey 'FJ}
3 Y. S |
G LRRFF~ FRED F] .
T 3y, Gy 1 B BR+)
Xy =9 {4 v [ —waar )
zyz 2.

239 3
L Ve L=

4.6. Mindlin's problem (1936) [25).
Determine the state of stress due to a force P applied
inside the elastic half-space z > 0 normal to the boundary

plane z = 0 (Fig. 25)

Since the state of stress is symmetrical about the z
axis, the stresses and displacements are determined from

10.0-¢)

Fig. 25

the formulas (a) of Problem 4.1.
In choosing the biharmonic function ¢ R. D. Mindlin

Proceeded as follows:
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® = o o ok Foaations
i in" i .4) to the
he applied Kelvin's solution (P'roblem 4
lol(:e) applli’:l at the point (0, 0, ¢):
AR =ML VEFGE—o% o
i the stresses Z, and R, on the plane z = (
S)zb)u'i’;ldi?rl:;um:ii': soluti:m and io satisfy the condi-
tion

jzarz,dr= —P forz>c
3

be added five strain nuclei for tho point (0, 0, —c):

(2) force in the z direction
AR, = AVFF G T o

{b) couple in the z direction
B+ )Ry

(¢) centre of compression in the z direction
Cla(Ry+z+c)

(d) line of compression along the z axis from z +e=0
Wite=—oo
Dle+e)ln Ry 42 + €) — Ry);

(6) dipole (double contre of i ith an axis
a7 lt(no vhle o Te of compression) with an
FIRy;
thus, the biharmonic function was obtained as
"=AIR-+4-R:+B(+:"+Cln(ll,-)-z-;.:)»,-

+Di(z+¢)In (Rz‘?"+¢)—nzl+l’/ﬂg. (a)

(3) Alter determin;
formulas of Pem;ln;:lzﬂ the stresses Z. and R, from the

°f step (2), we obtain .ﬁ.”;':,“’;":;vﬂ-fczl:lr:; :&ndmons
A= Pign (g _ ) (Problem 4.4), 4 — 3 — 40) Ay
B=—24, c<_4y —20)et,,
o=4u-o)(1~z,“h P =04,
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Substituting the values obtained in the formula (a),
we can find the final value of the function ¢

o= g (o8t —0)— 1] Ry — 22 4.
240 —~20)((1 —0) z—0c) In (Ry+z+0)}. (b

If ¢ — oo, all terms containing R, vanish, giving the
solution of Kelvin's problem 4.4

PR,

=g —a"

If ¢ > 0. the solution of Boussinesq’s problem 4.3 is ob-
tained

@=%[2¢R«(1—2¢):]n (R=12)).

By using the stress function (b), the stresses are deter-
mined from the formulas (a) of Problem 4.1.

By a similar method [25] R. D. Mindlin solved the
problem of a concentrated force acting inside an elastic
half-space at a depth c parallel to the boundary plane
z =0, of which Kelvin's problem (¢ = co) and Cerruti's
problem (c = 0) are special cases.

4.7. Michell’s problem (1900) [5).

Find the stress distribution in an infinite cone @ =
with a force S acting at the vertex perpendicular to the
axis of the cone (Fig. 26).

1t is necessary to find solutions of Egs. (3.3¢) for which
:lige displacements are inversely proportional to the ra-
ius r.

Assume , and u, to be proportional to cos nf, and up
to sin nf.

In this case the displacements are

u = SosnB G426 r0 2. n 2
- ( T costh Clan” 5+ Deot™ 5 ),
cas nf 1436 . d 0
u,_m[_T,ma_(__ni).p

+ (Cnn"%-‘-Dcot" %) coua-{-l’lln‘%-f-ﬂoot”%-l,
T-0073
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A436 19
R
~(Cuan"F—Deor"3) wsu—l’lnn"%.‘.ﬂcop%]'

where
0= 4(n+cosx) mn‘%é-B(n—cow)con"zl],

4, B,C, D, F, H are arbitrary conslants.
When » =0 or n =1, the solutions require special

Fig. 28

investigation,
tion .z'c:';bg‘:d“‘" the problem, three types of solu-

) u,=_F_ sinace
"= g LB

2436 p
“"‘mev
up= — 2436 sin

F
§M+%‘)m,‘



Problems
Roo _3hHAG P sinacosp
= 2+26 4nG r
G __F si
o= By= i 252E =0
B,—C P sinp
'_).+E'4n "o
A= G P cosacosp
L =T T
¢
PR
_ C _sinB
U= T Trcwa’
- _ _ _26C (1—cosa) cos B
Rr=0, do=—Bs=—F Trcacsma
4, 26€ 4=cosasing  p 26C _sina
r=TF UFes@sme’ T T TF Tioasa’
os
H"_ZGFH»mu
@ u =2l oy —Doosp, up= —Lsing,
1e,__,4¢_—26"%, By=0,
D sinasinf
A= =6 Trema
B,=63 (2—4+wu)"“"-
1
R,=—G¢r(2-‘+m—¢)m|l‘

The boundnry conditions of the problem are: when
@=a, d, = = B, = 0, giving three homogeneous
eqlnnons in C, D and °F. From the resulting equations
it follows that

— _Utcsap 1+cosa,
¢ %i D= A P
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By taking the sum of the projections on the z axis of
the force S and of the stresses on a syh}ricll surface cen-
tred at the vertex of the cone, we obtain

P @hesa)rd6
§=f Lrom Bt (1 —cosan.

4.8. See the monograph (6], Chap. VI, Sec. 8. .
Investigate the state of stress in a heavy sphere of radius a
resting on a rigid horizontal foundation.

The acting forces are: the specific weight of material y
and the reaction of the foundation
P = 4na%yi3
applied at the lower pole of the sphere (& = x).
According to Problem 3.10, the surface load can be
represented as
onm(=ty Bl B i 2t
in particular,
G= —%Wv 0= va. (a)
For the specific weight with a potential I, Eq. (4.8)
is of the form
Vit pgmddivas ~£2 4 g, (b
and it can be satisfied by i troducis i
potentisy Y introducing the displacement
1
4=gerdy, (©

which is .detomined, s the substitution of the expres-
sion (c) in the equation (b) shows, from the equation
20

(d)

)
The specific weight potential is
= Y3 =yrcosa = yrp, N
+ it i3 a harmonic fun::t(i,;)n. @
Assuming in the general case

=Bl =Y Ermp, (),
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and seeking the solution of the equation (d) in the form

A=Y on = 2 Farlln, 0
where F, are unknown constants, we obtain

1—20) E,
i L O L
and according to (c),
1
wmg Zn =g o, ()

In our case, taking into account the formula (e), we
find:

displacements

_3u—20y __d=20% ..
U= oG [0 Ue= =0 risina;

stresses

yreosa, Ar= ——(;H—zz’q}'-rsin a,

(i)

1+30
—ﬁwcosm

The surface of the sphere r = a must be free from
stresses everywhere except for the pole (@ =n). The par-
ticular solution (i) of the equation must be added to its
general solution (c) of Problem 3.10, summing over all
positive integers from n = 0 to n = oo:
(n+1)(26a, - KA,) 6™+ 26, (n—1)a™2C, =
= (=t il gy (4]
Gl(an+nrd,) +2(n—1)a"C,l =0.

When n = 1 (particular solution), the right-hand sides
of the equations (j) are respectively equal to [(a) + (i)}

2(1—20)
S(—o) 1"

- 3_
0y =ya— 5“_"0) ya =

= g dP,
= —gaeg e (E=—sine).
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After determining the constants A, and C,, the stresses
are found from tllzglommlu (c) of Problem 3.10. For the
technique of calculating these series, see tho monograph
(6], Chap. VI, Sec. 8.

4.9. See the monograph (6], Chap. VI, Sec. 5.
Investigate the state of stress in a heavy sphere of radius a
rotating about the z axis with a constant angular velocity o.

The rotation of the sphere about the z axis involves
centrifugal forces having the potential

O =Xy,
to spherical dil by means of

Tre
the formulas
Z=rsinacosP, y=rsinasinp,
and taking into account that
Py (cos ) = Py () = (3u? — 1)/2
(see Chap. 4), we obtain
2 9

n= —%r‘«{»?—;r’l’z - (a)
m‘ll;hsonﬁrrs:z term corresponds to a potential depending
T=1g),
and in this case the equation (d) of Problem 4.8 is

=Ll fadty)_ 1—2
Vi Tf[dr (#?)J‘ zu—'z)‘n(')'
from which we find, by direct integration,

x(r) =—ﬂ_‘(‘_""’) %’.J P dr,

and hence,

<t 1.2
“ ‘k‘%—zmojr’ﬂ(rw,
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=0;
R,=10+20 %=1l (r)— ._,,,.(jr*n(rm

Aa=Bs =10+M%=mﬂ(r)+

120
+“_q)'.'}r‘l'l(r)dr, (b)

Ar=0.
For the surface of the sphere (r = a) to be free from

stresses, to the solution (b) must be added the general

solution of Eqs. (4.8) in the form [Problem 3.9, formu-

las ()]

up =24,(1 —20)r, ua =0,

Ro=A,=By=4G(U+ o)Ay A,=0

with the value of 4, determined from the relation

(©)

N (a)— f,“_—qf:,’ j P21 () dr +46 (1 +0) 4, =0

nwordmg to the first equation of (b).
We oblain

.
o= e[~ T @+ 552 i i dr].

The sum of the solutions (b) and (c) gives

Up= —

ZG
—20

[11(u)+’{‘ o)";' !r’l‘l(r)dr]r-{»
1
Ao o

rAL(r)dr, ta=

et

Re=N()~N@)— 24=20[ L { en (r)ar—
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_;’;ir*l'l(r)dr].
0
4,=0,

Ao=By= 75 (N —NE@)+

+‘l;_‘7’[",- ! rzn(r)ar+f—,§ 1 (r)ar ).

1f the first term of the formula (a) is taken into account,
we obtain, finally,

_yot(d—20)r (3=0 » 2 o
""‘"%——m-n T ), uP=0,

RO = IS @y, AP =0,

* 1—3¢
ap=pp= 322 (@25 ).

The particular solution corresponding to the second
term of the formula (a) is formed by the cqualions (g)
and (h) of Problem 4.8 for n = 2 and E, = yo¥/3g.

According to this solution, the stresses on the surface
of the sphere (r = a) are

s _ (1-20) yuta? dP;
5(6=50) Py AP ="mE e . (D)

To remove the stresses (d), it is necessary to superimpose
the solution (c) of Problem 3.10 with two constants, A,
and Ci. The constants are determined from the conditions
that the stresses R, and A, are zero when r = a:

3(26a,+ KhAy) a2 +4GC, = % (6—50),

20) Yo'

G A)a24-2GC, — —
(ar 20 04260, = — Ug2lwe

where

a= 3K Ay KB

&= BK—10) 4,
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4.10. See (26].
To the surface of a circular cylinder of radius ¢ and length !
is applied an axially symmetric balanced load of the form

2,(n0)=hH() R (0 =f() 0<r<a,
Z, (D)=, RenD=£() 0<r<a ()
Ro@2)=1s@ Z(@a2=fil) 0<z<],

where f; are piecewise continuous functions of bounded
variation on the corresponding intervals.

Determine a biharmonic function @ (see Problem 4.1)
satisfying the conditions (a).

The function @ is taken in the form

o(r o=z (Ar=+Bz=)+§:l [ 4 sinh (1y2) +

+ By cosh (ppz) + Capaz sinh (uaz) +

Dz cosh ()l Jopar), 3, (vl o) +

+ Grhar ] (Ayr)) sim (Apz). (b)
;l‘he hmcuon (b) satisfies the conditions (a) if

; @) thu quammes py are the roots of the equation

1 (paa) == 0

wnh the asymptotic formula pya = n (k + 1/4) + 0(1Ik)
(3) the functions f, (r) to, (r) on the interval 0 < r

can be represented as series in Bessel functions:

o+ z ano (uar), z bad s (),

(4) the functions f, () and fy (z) on the interval
<z < 1 can be repnsentsd as Fourier series

3+ 2 e cos (), Z dy sin (M2,
A=t
(o) lhe coefl‘-cunts in the formula (b) can be represented
in terms of a;, b;, c;, and d, taking into account the for-
mulas (a) of Problem 4.1.



Chapter 5
PLANE PROBLEM IN RECTANGULAR CO-ORDINATES

I PLANE STRESS

B=Yi=Ximey=en=0, e, = -2 (X417,

1. Equilibrium equations
Meyom o0 o
= Tt =0(=p ),

(5.1)

Yy , av,
FHGEY=0( =p%)_

Juy au,
=g ey = T;'
N (5.2)
du, ,
=Tt

Pesy | Pey ey, _
Ml (5.3)



Plane Stress 107
3. Physlcal equations

em=g Kx=¥o),
o= (¥, —0Xa), (5.4)
2(4
gy =2UF2 X,
E
Xe= g (exx+0Ey):
£ 5.5)
Yy == (ew+0exa)s (5.5)
E
Xy=Y2= g0 -
4. Basic aquations In ferms of stresses

Xy | Xy _o s 9y _
GE X =0, FE+E+Y =0

Y
VXt Y= —20 e (Z 4+ )=
=—(+o (F+3). (5.6)

5. Baslc aquations in ferms of displacements

» # —oY
(285 + (=0 5 et (1 +0) g+ HEFT X =0,

Uto) 2t 2 2 ri-o)m]w+

+2(ﬁ'fﬂ Y=0 6.7
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or in Lamé’s form
2
6V +6 (355 +1)
»
OV +6 (g +1) 37 +Y =0,
where

Ll =
E"'X_U'

(5.8)

ita
T—o "

Suy | 4y 24 -

b= to TTm =
I PLANE STRAIN

Cu=tu=ey=X,=Y,=0, Z=0(X,+Y,).

For the case of plane strain, in all equations of part |
it is necessary to replace

obyoi=72g, and Eby £i=iE_ 69
In this case, Egs. (5.7), for example, are

o
[2(1»v)§;+u—2u>$]u,+ St

42—

# ” (5.7)
&—:+[2(1—0)5—P+(1—20)£-J uy +

2(t40) (1 ~20)
+ E

Y=0
and Egs. (5.8) transform into
V(0462 4 x oo (=e3%).

» ” (5.8a)
6V, +0+6) 30 + Y=0(=p3r).

According to Egs. (3.3a) we obtain
20 %

(A+2G)3—2(:W=o_

5.8b
(+20) 242600, (5.8b)
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where
A= Eo/(l — 0}, Ey=Ell —d%), o =ol—0)

or
A= Ed/(1 + o) (1 — 20)
(see Notation).

ii1. SOLUTION OF BASIC EQUATIONS

1. Solution using stvess-dispiacement functions
Equations (5.7) have the general solution
'¢x=2V"v.—(1+¢.')‘,—"z (% +%’) +ay+b,

2 (oo . o (5.10)
uy =2V — (1 +0) 5 (5 +Tf) —azte,

where @, = arbitrary biharmonic functions,
a, b, ¢ = constants characterizing a rigid-body displace-

ment.

The gencral solution] of Eqs. (5.7a) is of the form [see

Egs. (4.25a)]
us=2(1—0) Vi — 2 (24 52 ) +ay+b,
4y =2(1-0) Vig— o (S 4 $) —az e

By meaus of the introduced stress function ¢ (z, y)
(Airy, 1861) in terms of which the stresses are exp:
Y the formulas

(5.108)

o a2
Xe=Gk, v,=3%, x,=-%—x;.-y;, (5.41)

where X and Y are constant body forces,* Egs. (5.6) are
reduced to the biharmonic equation

Vivip~ %+2%+%=0, (5.12)

*  Formul, i for-
cos havingrs (5:40) are gonoralizad in tho case of variable body
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The biharmonic function ¢ (z, y) must satisfy the stress
boundary conditions of the problem
d, Po dr_ d (9
x.=%¥7'+ o a=wla)
Zo dy Ppdr 4 (ﬂ)
@ &\ )
or, in the case of the second fundamental problem when
displacements aro given on the contour L, the conditions
Uz =8 () u, =g (), (5.14)
where g, (s) are given displacements of the points of the
contour L, which are functions of the arc length s of the
contour.

(5.13)

2. Application of » complex variable (27, 28)
For the complex variables

t=ztiyadzi=z—iy (=) (5.15)
Eq. (5.42) is

=0 (5.16)
with the general solution

P= 70+ 56 + 1)+ 77 (5.47)
or

®= Ro[5p (2) +5 (1)), (5.18)

where Re = rea] part of the bracketed expression,
$@), 1) = unl:inovlr‘n analytic functions of the complex
variable 3,
-T(;‘L;:()zu = Innclio;siconjusgalo 0 ¥ (2) and  (z).
oundary conditions (5.43) for th, 1
problem on'the contour 7, I(IN o)l‘ :In Io.r:rs' fuadomenta

EH R 0+ T T 7T

=i ! v +i¥)ds 0= £, 1ify 4 constans, (5.19)
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For the second fundamental problem, conditions (5.14) on
the contour L are

26 (s + i) = %p(e) — ¥ @) — A @) = 26 (@1+ig),
620)

where x= ‘2:: =for plane stress,

% =3 — 4o =for plane strain.
The stress components are found by the Kolosov-Muskhe-
lishvili formulas
X:+Y, =20 (&) +¥ @) =4Rey’ (2),
Y, — Xy + 20X, = 2 (3" () + 1" @)
The components of the resultant force acting over the
finite arc AB (Fig. 27) are equal to [(5.13)]

n

:
e f a4 (301
A A

»
I',=5Yvdx=—j +(R)as=—

(5.21)

(5.22)

ds
v, ds, pa dy%
9l 5 -
S @ Kpds mu:% Fig. 27
g\ . Jlﬂﬂ%
o x

Tholn?omont of the forces acting over the arc A8 about
the origin 0 is

W= farmyyde= — ([ua(2) e0i(§)]-

[, n B
=—[=2+12] . .23
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Equations (3.32) for a plane are
o o
5 +26) L —265-=0,
0w 6.24)
(0+26) S +2653=0
from which it follows that 6 and © are conjugate harmonic
functions of two variables, namely
(A + 26) 0 + 2i6o = f (= + W) (5.25)
(see the monograph (5], p. 204).
Equations (3.3a") for a plane are
.\ B ’
vt (10 D=0, GV, + (46 37=0 (B.24)
or
92 (s ig) + 2 S =0, (5.25)
O Sy 2 9 Ro 2 (i)

[ P &..
+ 5=

h. 4L
v 1

3. Solution by the Initisl function method [(29]

A plane problem is solved by tho mixed method: the
unknowns aro taken to be tho displacements ., 1, and the
stresses X, Y. The required quantities are represented as
Maclaurin’s series in the co-ordinate y and expressed in
terms of the initial functions ug, uy, X3, and Y}, i.c., the
valuos of the functions for y = 0 (Fig. 98).

For tho case of plano strain the system of computing
oquations is of tho form

X, ay, | 9,
T =0 SEH =0,
a .
[d-0) G 4o2e], 5.28)

X'=Y,=G(%+%)'
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[ntroducing, for shortness, the nolation
U=Gu,, V=6, Y,=Y, X,=X,

Z=a 5=bh .27
we reduce Eqs. (5.26) to

pU=—aV -+ X, BV=—p au+z‘“——_2‘;)y‘ '

pY=—aX, BX=—1i-aW - ay. 628
The stresses X, are determined by the formula

Xa= g5 (1—0)al +opV].

(R
e y

Fig. 28

1”’0 4 x
=
I ¥

The solution of Egs. (5.28) is obtained as
U= LycU® + LyvV® + LyyY® + LyxX®
V= LyglU® -+ Lyy VO o+ LyyV® + LyxX®, (5.29)
Y= LU o Ly V® + LigY® + Lyx X,
X = Lyxyl® 4 Ly V0 4 Ly YO + Ly X0
Where the letter I, stands for linear differential operators,

Which in_uanscendental form of the operator method are
given in Table 4.1.

_To transform from the symbolic to the real representa-
tion in the form of infinite series, it is nocessary to expand
8-0073
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the trigonometric functions in power series of ay and to
replace @ by 5.
In plane stress, E and ¢ must be replaced, respectively, by
E(1-+20)

22T and

o
d+o® 140

4. Use of boundary velue homogeneous solutions (30, 31, 32|
in the fons (5.7),

29
920y

ue=(1-0)

+ay +b,

. - (5.30)
u,=—[27,;+(l—a)Ty;Jo—az+c,

we identically satisfy the first equation, and the second
equalion becomes

¥9 oo X _
i+ =0 (5.31)

@ = (A cosh ky + By, sinh ky + Cpy cosh ky +
+ Dy sinh ky)iakz. (5.32)
Honce, for o =0
uy = & k |Ayk sinh ky + Byk cosh ky + Cy (cosh ky +
+ ky sinh ky)4-Djy(sinh ky+ky cosh ky)livkz+-ay+ b,
u, = k| Ak cosh ky + Byk sinh ky + C (ky cosh ky —
— 2 sinh ky)4-Dy, (ky sinh ky—2 cosh ky)lihkz —
—az +c,
X = —Ek* |Ayk sinh ky + Byk cosh ky +
+ Ch (cosh ky + ky sinh ky) + (5.33)
+ Dy, (sinh ky + ky cosh ky)lioy
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¥, = ER* [k sivh ky = Byk cosh ky +
+ Cy (ky sinh ky — cosh ky) ~
+ Dy (ky cosh ky — sinb ky)likz,
Y. = + ER|Apk cosh ky -+ Byk sinh ky +
+ Cyky cosh ky -+ Dyky sinh kylTikz.
If Y, = X, =0 when y = £ h, by equating to zero

the deferminant of the boundary conditions, we obtain
122 — sinh® 2% = (24 ~ sinh 2) (2A—sinh 20) =0, (5.34)

where A =
For %

m%:tms?b.

or, for the value
b~ coth 2a¥ 5inh* 2a — 4a?, (5.35)

kh.
a+ bi, we obtain Lwo governing equations
%

= cosh2a

s = cos coth 2a ST 22 — 4a?). (536)

Tho graph of Eq. (5.36) is given in Fig. 29. By taking
2n values of a (b), we can approximately satisfy the bounda-

ry cond_itions on the sides z = ¢, and z = c, at n points.
To satisfy the boundary conditions more :-xnctly.v it is
necessary to expand the particular solution duo to the luad
in n?n-onhogon-l functions of homogencous solutions de-
pending on the rools of Egs. (5.34) (see Problem 5.9).
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5. Finite-difference solution (33

When using a rectangular net (Fig. 3041%, successive diffe-
rences A"y are obtained by the formulas

5
Axhn _ 91— o 25T o—2ontar
ey rinireal T 2w = B,

o ;’:=zm—§::+w.'

-
o)
n o W\ ) ( "A: T %oty 5.37)
Txay o ) Thzby [CX
W( 28y

SO — i — 9y + e+ @y
=TT

dqp NV G0n—44m =%+ Tot By
Ny Ayt N

g Yonm20m—20n —20c— 20+ Pp+ G+ P+ %0
aroy 37057 .

where @, is the value of the function at the point k.

(a) ®
24, v
e L
[ | yakq (o
b 1] 1 Lz
t . -
X :n

Fig. 30

In this caso the harmonic equation (4.21)

Vi =0
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lakes the form of a five-term algebraic equation
@b+ )+ ¥m+ 90— 2(1 + @) =0. (5.38)
The biharmonic equation (5.12)
ViV =0
takes the form of a 13-term algebraic equation
16 (@ + 1/a) + 8l gn — 4111 + @) (91 + @) -+
+ (1 + 1/2) (@m + @a)) + 2 (95 + 9¢ + @/ + 90) +
+ @@+ 9) + (00 + @) = 0, (5.39)

where
@ = (Ay/Az), 1/a = (Az/Ay).
For a square net, Az = Ay =h, a =1, and Eq. (5.39)
becomes
MOVien = 2008 — 8 (@1 + @1 + Pm + 90) +
+ 20+ 90+ o + 9) +

T Ot 0t 9+ gu=0. (5.39)
The harmonic equation V*p, = 0 takes the form
B9 = Y + 90+ $o + 90— df = 0. (5.38")
The stresses at the point & are determined by the formulas
= Im—20ton
v
— 24,
= 12'”‘- (5.40)

o T @et G —(p+9q)
oxdy 487ay .

In setting up equations for the nodes
Rhearest to the con-
tour (m, n, o, etc.; seo Fig. 30a), it is necessary to intro-
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duce the values of the function ¢ at the nodes on the contour
and at the nearest nodes outside the contour.

The values of the function ¢ at the nodes on the contour
are determined by the extrapolation formulas

ee=o+202 (), wmear20y(R) 4
(seo Fig. 306).

PROBLEMS

5.1. A rectangular parallelopiped of great length (u, = 0—
plane strain) is subjected to a uniform pressure —p and

)

Fig. 31

L
|
i
[
1

supported by an absolutely rigid (u. =0) and smooth
(Y, = 0) foundation (Fig, 31).
Determine the state of stress and strain.

The solution of the homogeneous equations (5.7a) is
taken in the form (5.10a) assuming @, = 0 and @, = ¢
U= — it b ay+b,

. .
4=[2(1—0) g + (1 —20) g | 0 —az-+e.
The stresses are determined by the formulas

Ed—oa) 3
X, 1+o oy

B
of

(exx+04yy) = X

*[ 1 =)o
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1—0) 0
Y,= "ﬂ (g +01e) = 1(w 5 %

x [+ ] @

L0y
5 or

Xy=Yx =‘2(H'-o,) (T
i
+[-0 Lo ] 0.
We assign the function ¢ in the form of a third- -degree
polynomial
9 = Az + By*, (b)
where 4 and B are unknown coefficients
According to (a) and (b), !hc dlspllcements and stresses
are found by the formul.
Ur = —24z + ay + b,
uy=2(2(1—-04 +3(1 —20)Bly —ar +c,
26(1—0) [ 30
Xe= 7——( T=5B-4),

v, =2 (1—0) (334-——.4) X, =Y. 0.

The boundlry conditions of the problem are: when
z=0, u,=l’=0'whenz—h,X,~—p,Yg=°;
when y = 45, Y, X, =0.

According to the boundnry conditions, we obtain
A=U=9)p (I—v’)p . B=—

We Imve. finally,

o= —l=dp u= 2oy,

Xa=~p, X,=

=0,

The solution obf N N .
formulas of sl n;‘: "oldenu'c':i .v];x.th the solution by
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5.2. A narrow rectangular beam (8 = 1) is supported at
the edges z = +//2 and bent by a uniformly distributed
load of intensity g (Fig. 32).
Investigate the state of stress in the beam.
The supporting conditions are realized by the end
shearing forces, which are the resultants of the shearing

A )

27121,
(IR d
r? 1,, 4 Fig. 32
4 |
a
& y

stressos Y, and are equal in magnitude to reactions that
would arise at the points of support A and B. The problem
is solved in terms of stresses by assigning the stress func-
tion in the form

¢l =g (= L)+ gy e 52

satisfying Eq. (5.12).
According to (5.11), the stresses are

(22— Fu2)y+hy,

d o
(Ty--:»b)y Ta,
Xy=Ye= = 28o @tz
The boundary conditions of the problem are: when

Y= —hi2, Y, = —q, X, = 0; when y = hi2, ¥, =0,

These boundary conditions are exact, or local
(for uch point of the corresponding portion). When z =
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= £l/2, we have
a2

A2
) M= | Xedy=0, ) M.= S Xeydy =0,
“h2 ~hiz

nz
@ | Yay=
w2

These are approximate, or integral, conditions, which are
justified by Saint-Venant's principle.

According to conditions (1) and (2),
—dl?24 — bhi2 + a = —q, ¥4+ b = 0,
dh’/24+bh/2+a—0
hence, a = —q/2, b= 3g/2h, d= —Gqlh.

Conditions (l) And (3) are identically samhcd as can
easily be verified by substitution.

Awordmg to condition (2),

#°M2 is the moment of inertia of the beam.
The stresses are, finally,

.=7—(Ty’—z*)y+ln -

i (F-de-2),
—s (g —thys 1, )

Ko ()

By the formulas of strength of materials,
= My
X.—crx—7—u=— (——ﬁ)y

where M, is the bending moment,
Y,=0,=0
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(the longitudinal fibres do not press on one another later-
ally),

. osgt 9 (m

X, Yemt= = =g (=),

where S3*! is the static moment of the cut-off part of the

cross-sectional area of the beam, Q is the shearing force.
The X, and Y, diagrams are given in Fig. 33.

X! ! » Fig. 33
it
7 b
’ Y
b i -]
( T \ M 2 Fig. 34
\& 2l )
, L z "

» A thin rectangular plate (5 = 1) is subjected at the

ends to a load p = 2ky, which reduces to bending couples

M, (Fig. 34). -
Investigate the state of stress in the plate by assigning

the stress function in the form

© = Ay,

where A is an arbitrary constant.

‘The boundary conditions of the problem are:
=:h/2, Y, = X, =0; when z = %I, Y,
= 2ky.

Answer,

Y, =X, =0,

- 12M, M
XNy 2hy==5ty==ty.
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where /. = h¥12. This result is known from the course
in strength of materials.

.3, Z| hkin's problem [34].
sﬁnnr;::ocn deep l:nd narrow (§ == 1) beam of depth h
baving an infinite number of spans of equal length 2! and

9 7
IR RRRRARRRERRARN

u 4 23
Fig. 35

supported by columns. A load of intensity ¢ is uniformly

distributed along the top of the beam (Fig. 35).

For the assumed infinitely large number of spans all of
them are in identical conditions, and it is sufficient to
investigate only one span. The reactions at the supports
n:rc;];pliod along the axes of the columns and are equal

0 _zql

Since the stresses X and ¥, must be symmetrical about
the axis Oy, the solution is sought in the form of a tri-
gonomotrig cosine series. It is im| ossible, however, lo
manago with a single trigonometric es since all con-
ditions on the contour will not be satisfied, and hence a
second-degree polynomial must be added.

The stress function is assigned in the form

? (@ u)=4.x’+,4,,y;,1)y:+

3 N .
+ =, €08 % (Cra sinh ay = ¢, cosh ay + Cyny sinh ay —

+ Cany cosh ay),
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where
a = nall. (@)

[t is obvious that the function cos (az) is unaltered
when the quantity 2! is added to the argument z, since

cos] 120 J = cos (2= + 2nn) = cosaz.

The last equality shows that in the next spans all
quantities defining the state of stress are repeated and
all spans are in identical conditions.

The boundary conditions of the problem are:

(1) when z =0, !, X, =0 by symmetry;

(2) the sum of the stresses ¥, within the limits of a
half-span must be equal to the load within the same
limits, i.e.,

\
j Y, dz= —ql; (b)
5

(3) when y =0, X,

(4) when y = 0, Y\

(5) when y =0, z = 2 Y, — oo since the reaction
is assumed 1o be a concentrated force;

(6) when y = b, X, = 0;

(7) when y = &, Y,

For the chosen stress rnncuon (a), the stresses are deter-
mined by the formulas

7
Xe=GR =240+

+ ) acosaz(a(C,, sinhay + Ca, coshay +

n=t

+Csny sinh ay 4- Cypy cosh ay) +2(Cs, coshay +

+ Cipsinh ay)),
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— ) a2cos @z (Cyn sinh @y + Ca, cosh ay +
=t

+ Cany sinh ay + Ciny cosh ay), ©
X,=Y,= —W—Aﬁ

+ é asinaz(a(Cy coshay -+ C,, sinh ay +

et
+Cn ycoshay + Cypy sinh ay) - C;, sinh ay+
+Cincoshay]. (d)
From the boundary conditions (1) it follows that
4,=0.
From condition (2) [see the formula (b)l,

24— 3 asinal(C,,sinhay+ Capcoshal+
A=

+Cany sinh ay + Cy,y cosh ay)=|sinal=sinnn=0]=

=240= —ql; ()
hbence,
Ay = —qi2.

From condnuon (3), by using the formula () for y =0,
we obtai

n2-'| asinaz(@C,, +C,,) =0;

hence,

@Cin + Cn = 0. @
:’hr::n condition (4) and the formulas (¢) and (o) it follows

-
7+ 2‘ @y, cosaz =0,
ko
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from which, by expanding the load on the interval
O<azr<2n
in a series in cos az
g=—2 2cosaz,
=t
we obtain
4
> cosaz (29— a?Can) =0,
=t
and hence,
Can = 20/ ®
When z = 0, 21, the expansion formula is not valid,
but the stresses at these points are infinitely large (bound-

ary condition (5).
From condition (6) and the formula (d) it follows that

2 @sin az (@ (Cyp cosh @h 4 Cyp sinh @k + Cyph cosh ah +
=

+Cinit sinh ah) + Cyp sinh @h + Cy, cosh ah] =0.

By equating to zero each term in the sum, and replacing
Cen and C,, by the formulas (f) and (g), we obtain

@ (L‘.,.cnsllah+?sinhﬂh+

+Canhcosh ah —aC\yh sinh ak) +

+Cyp sinhah—aC,, cosh ah =0,

and after rearrangement

~—@*C ki sinh ah +- Cy, (¢h cosh ah +sinh ah) =

= — 20 qink ah. )
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1%
From condition (7) and the formula (c) it follows that
q+§‘ a2 cosaz (Cin Sinh @h + Can coshah +
£ Cyphsinh ah+Cigh cosh ah) =g,
from which, with the formulas (f) and (g), we obtain
Cyn(sinhah —ahcoshah) + Caph sinhak = — % cosh ah,

i
Checking of the stresses X at any vertical section
shows that

A
jx,d,,:o for A;=0 {sce the equation (i)},
o

i.e., the equilibrium condition 3 X = 0 is satisfied.

By solving the ions (h) and (i) simul ly,
we obtain the values of the remaining unknown coeffi-
cients in the formula (a)

c 29 ah+sinh ak cosh al
n

= E e )
inh® ah
= i ()

An analysis of the numerical coefficients in the formu-
las (j) and (k) in the casc of a beam of sufficicntly large
depth (¢ >1) allows us to assume simpler expressions
for tho quantities C,,:

Cin 2 —29/a%, Cyp = 29/a?, Cyp 2 —2g/at, C, 2¢ 2gla. (1)
Taking into account the formulas () and the relation
cosh ay — sinh ay = e-av,

we finally oblain the following oxpressions for the stresses:

-
Xe=—2 X,‘ cosaz (1 —ay) e-ev,
=

Y= —fl—Zq")_)l cosaz (1 —ay)e-av, ()
Xy=Y.= -9 T aysinaze-w,
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The series in the formulas (m) converge very rapidly
for all points except for those near the lower edge of the
deep beam (for small y).

The calculations carried out for a deep beam with
h =2l and 6 =1 are given in Fig. 36.

Yluy) 7
[RTTIRRTIITI IR T I R RRTIRYY)
69
3 Cmmosats
2 SH supports
B SH ¥ 3
¥
3] S, b
S
IS || B SH N
[~ Movaste J' AR ‘
supports N
Y= P .
6qL. X X(g)
% Y ¢ L /Z!A
n 2
Fig. 38
The _displ aro d by
Egs. (5.4)
dur 1 a
FE=FKamoly), FL=tv,—oxy),
ey a4
ot =—F Xn
giving
2 o 1.
"z=Tq "T‘+2 %slnaz[(l+a)uy—(i—ﬂ‘)lc-nr}+
et
+F. (),

0-0073
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1
2 -
wy= ;L{..%.{.E‘;wsaz[(l»lw) ay+2]e w}.'./z’ @,
o,
%.+—#= 8 (n)

where P, (y) and F, (z) are some functions satisfying the
third relation of (n) and the deformation conditions,

‘The presence of concentrated forces introduces indeter-
minacy into vertical displacements, and the origin can be
considered fixed only in relation to the horizontal dis-
placements u,.

Assuming, by convention, that when z = land y =0,
tho displacements u, and u, are zero, we can determine
tho arbitrary functions F; and compare the displacements
of the other points with the chosen one.

Then

P = —oqlE, Fi(z)= -2 5 Leosal; (0)
w=t
as seen, the values given by (o) also satisly the third equa-
tion of (n). When z =0, u, = —aql/E; when z =2,
u, = ogllk.
If the supports are immovable and the beam cannot
oxtend freely, instead of the condition

h
{ X.ay=0
]
itis Becessnry to prescribe the condition that u, = 0 when
z =0
_The basic equations remain the same, but the coeffi-
cient A, will be different from zoro and
®
Xi=—0g—2g 3 cosaz(l—ay)e =
ne=y

:he) remaining stresses are determined from tho formulas
m).

the caso of

The X, di i i
x diagram at the middle section mdashe o lige.

immovable supports is shown in Fig. 36 by a
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In this case the stress X, is equal to g (1 — o) when
y =0, and the beam undergoes an additional uniform
compression equal to og.

5.4. Lévy’s problem (1898) [5].

w
7
X

Fig. 37

Determine the stresses in an infinite thin wedge due to
a fluid of specific weight y and the specific weight of the
wedgo material p (Fig. 37).

The stress function is taken in the form of a third-
degree homogeneous polynomial
® (@ y) = a2® + b2y + ez’ + dp,

where q, b, ¢, d are constants,
The boundary conditions of the problem are: when

Y= —zcota or z= —ytana,
—Xycosa — X, sina = yycosa,
—X, cos @ — Y, sin @ = yy sin &;
whon y =zcotp or z =ytanp,
X cosp — X, sinp=0, X,cosp—Y,sinf=0,
where tho stresses are determined by formulas (5.11)
with Y =p and X =

o



32 Ch. 5. Plane Problem in Rectangular Co-ordinates

By solving the equations expressing the boundary con-
ditions, we obtain
o= sma gy (P(ep—tan ) —
—y(2—3tanatanp—tania)l,
1 ytane _
,,=T[_p_m 6a (tan p— tan a)] )
1 hd —
:=?unaunp (m Ba) N

tan? 3Jytana
=—’£2l[—p—m+ﬁa(3 tana 4 tanf)].

The stresses are determined by formulas (5.11):
X.=%=2u+6dy, ¥, =22 = 6az -4 20y,

Xy=Yem 2% —pr— —2y— 2+ p) 2.

Lévy's solution leads to a linear distribution of normal
l;ldd shearing stresses, and can be used in the design
of dams.

5.5. Galerkin's problem (1929) [35].

L&
WU g
1TX Bs

W E
W E 2,
x \ T
ef lo\p
:&1 [P
x §
Yoy
8
X

Detormine the stressos in infini i i
an infinite trapezoidal section
A4BCD due to the specific woight, of material b (Fig, 38
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The solution is broken down into three steps:

(1) Assume the stress function ¢ for the triangular
section AOB (see Problem 5.4).

(2) Sct up the stress functions @;, @, @; for the tri-
angular section A0B subjected at the vertex O to a hori-
zontal force Py, a vertical force P,, and a moment M,
respectively,

o sint
gy —LO=sinfeos BB orgn L p,,

w.=———1—§L"“"";:£::n <98 are ton L p,,

M 2oy 22y .,
Ps= TG B—Pcos B (?W’“‘p‘ Ty coshb
+2¢usﬂurtun%),

(3) Choose the values of the forces P,, P,, and the
moment M so that the stresses on the plane CD, given by
the sum of the values of steps (1) and (2), will reduce
to Lhc force system prescribed on this plane.

i According to Problem (5.4), with z replaced by y, we
ind

o= pcgv.ﬂ ya_%yzz‘

The gravity forces produce on the plane CD the forces
(see Fig. 38)

Sy=0, S.=2%tmp, Mo=5,24nB _ P yanzp,

Sinco no external forces are applied to the plane CD,
it follows that

NX=0, PitS8,=0, XY=0, P,=0,

3 Mo, =0, PAME prys, bk,

from which we obtain

Pee — B2 inp, P=0, M=Bumnp.

The stress function for the trapezoidal section is
DY) =0+ 9+ 0
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and the stresses are determined by the formulas
Z0 __&o
Xe= ';:D. Yy=%, Xy=—gzg—py.
Detormine the stresses in an inﬁnitg trapezoidal section
:BCD due to a fluid of specific wenght' ¥ (sec Fig. 38).
The stress function ¢ for this case is

9= —%(2y‘cotp—3y’zcotﬂ+2yz’+z‘).

5.6. Kolosov's problem (1910) [27].

An infinite plate is weakened by an elliptical hole and
subjected to a uniform extension with stresses p directed at
an angle B, to the z axis (Fig. 39).

Fig. 39
Investigate the state of stress.

The region outside the elliptical hole in the complex
:)l:lnn §t= z il— iy cxl:n be mapped onto the region o\ltsi:e

® unit circle in the complex plane ¢ — + in by the
mapping function [27] plex L=t n
2=fO) =c(t+mip, @
where 0 < m <1, e>o0.

The. contour of the unit circle | £ 1 =1 corresponds to
an cllipse contred at the origin for the z plane and having
the semiaxes

e=cltm, bmct—m), )
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According to the formulas (b),
c=(a+ b2, m=(—bla+b). (c)
When the axes are rotated through the angle B,, the
z:l;;ion between the stresses is, by formulas (1.5) and
Xe+Yy=X:4Y,,
Yy, — X, + 21X, =0 (Y, — X, —2iX,).
Since at infinity
XP=p, VV=XP=0,
it follows that
Kot ¥y =p, ¥y — KXo+ 2K, = —pe-tin,
According to formulas (5.21), at infinity
4Rey’ (2) =p, 209" () + 1" @) = —pe-28. ()
For the elliptical hole, by (5.22) and (5.19),
P+ ilfy, =0,

VO W@+ L@ =0. ©
With the help of the formula (a) we find
Y@ =yl () = Q)
%@ = xlf () = % ()
Then
) 0 a6 L _ %@
Yo-g=a=70"
)G %@
ro-Z=L L,
-l [ ] & _GRO-WOrQ
vo-g[Fd]E= or : ®
e A1 _ GO OGRS E
o =g [ % & =0 :
Subets les (5.20),

ing the expressions (f) in
(5.21), (5.22), and (5.23), we obtain

e, =220, Q-2 JEFO+HO]. ©
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/N

LA
x,+Y,=4neT,'@. ()
¥, X 20X, = g T OV O F O —

“TOHOFO+RO T ©—1 @/ O

Ferify=—i[0 @+ L8 T +ED T, @
et BL
a =R -+ 10—y @]

For the stresses to be single valucd, the functions
¥ (2) and 7 (¢) must be of the form

HO=T AL Q=3 Bl (U]

1t is seen from the equations (e) and (i) that the follow-
ing relation holds on the circle | § | = 1:

TOWO+HORO+4O=0; (U]
also, for the conjugate functions
I OO +TO W &)+ (0)=0. (k)

By integrating the formulas (j), we obtain

Y O=AL+ 4L+ Ainﬁ';" 44,

e (U]
%O =BL+B L+ %"T"“,'

n=2

where A and B are complex nts characterizing 8
rigid«hofiy displacoment.p consta

Substituting the expressions (1) in the formula (&)
we find the condition for single-valuedness of displace-
ments, viz. that the cocfficient of In ¢ should bo z0r:

B-oA+(U+0B =0 (m)
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For | § | =1 we have
f@=c(1—3)=ct—mem,
T@=c(i4F) =clei® 4 mem,

=T P—idp—

NO= 3, A,

A1 ()= Boe®-+iB S~ ) ﬁ Boel1-m,
n=2

ituting these i in the i (k)
and (&), and equating the coefficients of] p and eib, we
find
A+ 1t =0,

— ey + S A -em Ao+ By =0,

cAycmAy—

(n)
¢Ag-i-cm Ay +-c Ao+ mA,— B
=0.

—emZy 4 eyt emy— 2

When n > 3, A, = 0; when n>5, B, = 0. According
to the formulas (),

A= L By _"__ch—m‘,

By solving the first equation of (n) simultaneously with
the equation (m), we obtain 4; = B, = 0. By solving
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the remaining equations of the system (n), we find
A,= i‘L (m — 2%is),

By= 5214 m2—2mcosp),

By=0, Bi=—Zet®.

The required functions arc

. Py P 0B~
¥ 0=+ (m—2e20) T2,

r Q= —Seh S (1—m2—2mcos 2,) ¢ —
—.%g“';"‘.

From this, according to the formula (h), we obtain
Xx+yu=1_|_,,,—-"ﬁﬂ —m2—2cos2 (B, —B)+
4-2:n cos 2B cos 2 (B, — B) — 2m sin 2B sin 2 (B, — B)].

The maximum stress occurs at the end of Lhe semimajor
axis (§ = 0) for B, = n/2. At this point, X. =0 and
f=mi42—2m _ 34m

Trm—n P 1=u-

max Y, =

Taking into account the formulas (c), we obtain, finally,
max Y, = p (1 + 2alb). (0)

Tho ecquation (o) expresses the results of Kolosov's
problom.

> “_lhun m =0 and B, = 0, the solution for a circular
hole is obtained; this is Kirsch's problem (sec Prob-
lom 6.7).

» Find tho law of stress distribution in an infinite plate
weakened by a square hole and subjected to an extension
in two directions; the tensile forces at infinity X% =
=Y =p, Xp =0 aro inclined to the z axis at an
angle ;. Map the square holo in the z plane onto the
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unit circle in the ¢ plane by the mapping function
i 1
zzc(f—-gt’). ()]

whore ¢ = 3a/5, a is the length of the side of the curvi-
linear square (Fig. 40).

r=3a/50
Fig. 40

The equations of tho contour are obtained from the
formula (p) for | § | =1:

z=c (cosB—cos3p), y=—c (sin p+-5-sin3p)

(see tho monograph [37], p. 64).
5.7. See the monograph (28].

Solve tho first fundamental problom for the half-plane
y<0. On the boundary of tho half-plane (axis Oz) are
applied normal Y, = N (z) and shearing X, =T (z)

stresses, which are contumous and snmiy, for lnrge Izl
the conditions N = O (1/z), T = 0 (1/z).

By adding formulas (5.21) togethor, we obtain
Y+ X, =¥ @+¥ O+ @+ 16

and hence the boundary condition may be written in the

N 4T =® () + D (2) + 1 (1) + v (0,
or, what is the same thing,

—iT=F@)+ O+ @+ 0 @
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where, for simplicity, we have written
YO=00 O=%0-
For the case when the functions (a) are holomorphic

and vanish at infinity, it is proved ([28l, p. 361) that
they are equal to

0(‘)=_L ( N—iIT

dt, (b)

2ni t—z

Michell's problem (1902) is solved in a similar way
(128], Sec. 93a).

Determine the state of stress in the half-planc y<<0
when the segment —a<Ct<Ca of the axis Oz is subjected
to a uniform pressuro p (Fig. 41).

Fig. 41

In the case under consideration T = 0; N = —p when
—a<{tca, and N =0 for the other values of t.
According to the formulas (b) and (c),

o
di - z—
“’(‘)=—z—fﬁ§a =l G— izt = n 12,
.

— e f_d__
YO=—m ) o= ~wE—a
S
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‘T'he expression In ::—: is the incroment of the function

In(z--t) when ¢ varies continuously from—a to+a:
) _ T r

s—t=re® In(e—)=Inr—if, ln 22 =1n 2 —1 (8, —p,).

‘The stresses are determined by (ormulasi(s.ﬂ):

Xk ¥y =4Ro®(s) = — 22 (B, —py), @

Y, —X.+2iX, =220 (2) +p (5)] =

28 i—: _ bpay dpay(2—a?) . ©
WA—@ AP n@—o)@—a

hence,

2 pay (22— y? —a)
Xo= — (o) + e T
2 oy (e
Yy= =& (b= b — el T ®

Assuming 22—a?=rr,e~"®+8 in the formula (e), we
obtain

Y, —Xa4-2X, = — ‘r;_':;" BB, )

and taking into account the formula (d), we find

Xom =L (Bi—o) +2po 2eButb),

Vo= — £ @i—p)—2pa LoSBith) ®
Xy= —opa Ll uth)

The stresses are continuous up to the boundary. At the
points ¢ = g, the stresses cease to be continuous, remain-
ing bounded (y = —r, sin B, = —rysin B,).

The displacements are continuous up to the whole
boundary (including the points t = =a). When |z |—
~ oo, the displacements increaso as In |z |.
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» Determine the state of stress in the l}nlf—plane y¥<0
when constant shearing stresses are applicd on the seg-
ment —a<<t<<a of the axis Oz.

5.8, See the monograph [38], Chap. VII.

A rectangular strip along the z axis (y = 0 and y = h)
is placed between absolutely rigid and smooth planes;

Fig. 42

arbitrary (static, geometrical, or mixed) conditions are
specified at the ends of the strip (z = 0 and z = 1) (Fig. 42).

Determine the state of stress and strain for the case of
plane stress (6 = 1)

When y =0 and y = h,

u, =X, =0. ()
In this case, for the initial functions we have
uy = X3 =0.

By satisfying the boundary conditions (a) when y = k,
we obtm_n a systom of two differential equations of infi-
nitely high ordor in the unknown initial functions ul

t3
[(1—0) sin (k) — (1 +0) ah cos (ah)) ug 4

+3[B-0 B (1+.0) hoos () ]¥3 -,

(b)
—2(1 +0) (sin (ah) + ah cos (ah)] ug +
+1(1 —0) sin (@h) — (1 + o) ah cos (k)] Y3 =0.



Problems 143

Introducing the solving function F(z) by the formulas
,,;s[{ﬁ- sin (ah) — ek cos (k) ]17.

(©
Yy =2a(sin (¢h) +akcos (xh)| F,

we identically satisfy the second equation of (b), and the
first equation becomes

(sin® (@h)} F = 0. (d)
The solution of the equation (d) is taken in the form
F=ce= ()

Substituting the expression (o) in the equation (d), we
arrive at the equation

sin® (kk) = 0, )
from which

k =k, == nalh,

where n is any positive integer.

Thus, tho general solution of the equation (d) is

F= 2‘," Ap cosh (k,2) + B, sinh (kax) + Caz cosh (kaz)+
i

+ D,z sinh (k,z), ®

where A,, B, Cp, D, are arbitrary constants.

The general solution does not incorporate the elementary
solution in terms of polynomials corresponding to the
2ero roots of the equation (f).

To find the elementary solution, we represent the equa-

::‘ons (b) as infinite series and separate the first terms in
iem

— 2l (1—0) ¥y =0, 2(1-+0)a?us4oa¥y=0. (h)
We obtain, from the equations (h),

U="F"Biz+ 4o, Yy=0by Xe=Bo. ()
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By using the expressions (i), () (g), and (5.29), we arrive
at the following formulas:

u;=Ao+'—;lB.,:—i (=1yh {k,. sinh (k) Aq -+
=1

iy cosh (kn2) Bt 11, cosh (ka2)-+hnz sinh (ka2) JCat

-+ 1225 sinh (ky2)-leyz osh (kr2) | Do } 008 (k).

u,=§ (—1)" k {knc0sh (k2) An + K sinh (ko2) B+
Al

+[ 2L sinh (kaa) + ko cash (ko2) | Cat

+[2E2 cosh (kaa) -+ kpzsinh (ko) | D, }sin (kut)s
Yy =0Bo+2 % (—1)" knh {ky cosh (koz) An + )

ne=i
+ kn sinh (kn2) Bn +-[3sinh (knz) + Koz cosh (knz)] €+
+(3 cosh (knz) + knz sinh (kaz)[ Dn} cos (kab),

Xz=Bo—2 3} (—1)" koh {kn cosh (kn2) An+

Tl
- ky sinh (k,z) By, -I- [sinh (knz) 4 knz cosh (k7)1 € -
+ loosh (knz) + kaz sinh (knz)] Dy} cos (Kny),
o

Xy =23 (—1)"knh{ky sinh (knz) 4n+
-

+kp cosh (kaz) By, + (2 cosh (knz) + knz sinh (k,2)] Cn -
+(2sinh (k,2) + knz cosh (k,z)] Do) sin (kay).

With the help of the arbitrary constants A, Bo, 4n,
By, Cny Dy (R =1, 2,3, ..., ) we can salisfy any
boundary conditions on the sides z = 0 and z = L

The formulas (j) are generalizations of the well-known
Filon (39] and Ribiére [40] solutions (seealso [1], Chap. X).
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» Solve a similar problem in the case when u, = Y, =0
fory = O and y = k (se0 the monograph [38], Chap. VII).

Solve a similar problem in the case when Y, = X, = 0
’lor y =0 and y = h (see [41]). v v

5.9, See [42]. .
A thin rectangular strip (§ = 1) is loaded by a force
equal to unity at the point z = ¢, y = h. The edges of the

¥ 1
I_qh[

x Fig. 43

L L

strip (z = =) are clamped (u, = O throughout the depth
%, u, =0 when y = 0) (Fig. 43).
Formulate the boundary conditions of the problem.

The concentrated force at the point z = ¢ may be repre-
}\enud on the interval —I<{z<{! as the limit of the
unction

0 for —Igz<e,
f@=9 p for ez +e, (a)
0 for c+e<z<<l
as & — 0; tho product pe remains finite and is equal to
unity,

Taking into account the expression (a), we replace the
force by the trigonometric series

- -

1 . afe . ART
I(z)=?+% ngm,#.%zmeT.
ne=q e

100073
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The boundary conditions on the longitudinal cdges are:
when y =k

- -

sz?’i‘":‘ 3 oos"—l’"-cosl;'—‘--{-—:— 3 sin S sin 22
=t el

X,=0;

when y = —h,

Y, =X, =0

The boundary conditions on the lateral edges (z = +1)
lro:u,=0(ur—-h<y<h; u, =0 fory =0.

The solution of the problem using the homogeneous
boundary value solutions is given in [42].

5.10. See [43].
Analyse a square deep beem loaded according to Fig. 44.

1
IR R

in 72814 1
100 09 0
LYY o
W% % Y%
WIRE
1 .—MA
Fig. 44

Let us calculate th i the
contour, he value of the stress function on.
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Portion I:
s
Y, = =0, sr=ci, g=cia+cy,
I M _
X, =—’7¢—‘,y—0 G =%
Assume ¢; = ¢, = ¢ = 0.
Portion 2:

Y, =22 = —4p, 42 =—dpzte,

¢o= —2plz+£kz+cs.
o _
X,= _azay =0, 2y =C

At the boundary of portions / and 2 the values of the
function and its derivatives must coincide, and hence

—4pz oy fsmom =0, SE=c=0,
—2pa?4-e,z+ 5 |xm0.41=0.

Con:eqx.ontly, ¢y = 1.6pl, ¢, = —0.32pP, and for por-
tion 2

@= —2pa?+1.6plz—0.32pl2, %=D.

When z = U/2, ¢ = 0.72B, where B = pl*/36.
Portion 3:

X*=W 0, %—"7' @=cy+cs,
%o _o % _
Yi= 7 =0 =0

From the equahty of the boundary values for portions
2 and 3 we

=0, = (—2pz“ + 1.6plz — 0.32p%) =810
= (—4pz + 1.6pDm0sti
hence, c= —0.02pl?, ¢, = —0.4pl, and for portion 3

P —0.02pl2= —0.72B, L= —0.4pl, % =0.

10v
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1]

Portion 4:

Yy=22a0, FEoce @-cez e
X'"‘o‘%=°' %=e,,.

From the equality of the boundary values for portions
3 and 4 we have
en =0, co=—04ph (167 + Cudamost = —0.02pP;

hence, ¢,y = 0.18pP, and for portion 4
o= —0.4plz+-0.48pP, 22 = —04pl, % 0.
Portion 5:

v,=3%=—» Lo —prten
9= —0.5pz*+cuz+eu,

Po _o 99 _
xv=—5%,—0- Fy =G

From the equality of the boundary values for portions

4 and 6 we have

(=pz + Cra)ome.at = —0.4pl,

(—0.5p2" + €197 + C)omo.at =

= (—0.4plz + 0.48pP) 1y o1

hence, ¢, = 0, ¢; = 0.10pB, ¢, = 0, and for portion 5
=— 9 _ M

[ 0.5pz2 4+ 0.10pi2, =P 0.

When z =0, ¢ = 3.68; when z — - 3.4B; wh

z?hlla, ]Q= 1f~55- ; when z = 1/6, ¢ — 3.1B; when

values of ¢ i i

obtained by 'om“ii:’ll(l;?;;n @ outside the contour are

along the lower edge

Py =0n+24y (%)'.,%

since (29/dy), = 0, where ¢, is any lower value of @
for the ineido nodal points adjacent ylo the contour;
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along the lateral side
1
e 028z (52), =@ +24 (—0.4ph = 1 —4.88,

where @, is any lateral value of @ inside the contour;
along the upper edge

o= n+200 (32),=n

where @, is any upper value of @ inside the contour.
The contour values of @ and the values outside the
contour are given in Pig. 44.
By applying Egs. (5.39") to individual nodes, we find:
node 1
209, —8 (388 + @+ @+ @) + 2(9s + 318 +
+31B+ @) + 0t O+ @+ @ =0,
or
219, — 169, + 205 — 8, + 49 + @ = —16.4B;
node 2
2095 - 8348 + @5 + @3 + %) + 2 (9 + 3.68 +
+1.68 + 9) + @ — 0.72B + @y + 9, = 0,
or
—8, + 229, — 89; + 20, — 8¢y + @ = —15.128,
etc. (for all 15 nodes shown in Fig. 44).
By solving the system of 15 equations, we obtain
@ = 3.3568, @, = 2.885B, ¢, = 1.482B,
90 = 29068, @ =2.5128, o, = 1.311B,
@ =2.306B, ¢ = 2.024B, @ =1.007B,
@0 = 1.531B, @y, = 1.381B, @,y = 0.8008,
Q1> — 0.6348, ¢, = 0.608B, @y = 0.396B.
The graphical represent of the surface showing
the stress function @ is given in Fig. 45.

The stresses ure determined by formulas (5.40); for
pxample:
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t50 0 Cho Thane TTOTPR 7 CTTTRAAT Locordinates

point I
Xl= W“M = —0.50p (compression);
point
Xi=
poing XITI
xfm_(n«w—Z__;;:'“'“"’ B_1.27p (tension).

1
(36002 x‘3}356+2»”5) 2~ —0.207p

The diagram for the normal stresses X . on the section
coinciding with the y axis is given in Fig. 44.

Fig. 45

In solving the finite-differonce equations extensive
use can be made of tho modern computing technique.



Chapter 6
PLANE PROBLEM IN POLAR CO-ORDINATES

1. PLANE STRESS

Zo=l = Zp=er=ep=0, en=—-p(Re+By)

The equations of this chapler are obulned as a specml
case from the c co-
ordinates (1.1b, 2.1b, etc.).

Equillbrium equations

aR, | 9Rg  R,— Pu,
Gt F— o+ R=0( =0 2E),
8 6.1)
9B, | L by 'n, Fup g
ARl R . +B=U(=p7;)4
e =2 =

v, ©2
"”*‘_ﬁu""‘ ar

e »
(rz Oepp ) s %u_ der, _ 4 F(rers) . ©.3)

T =7 Tarop



152 Ch. 6. Plane Problem in Polar Co-ordinates
52 ChO PlaneProblem B0 e

3. Physical aquations
1
er=t(Be—0Bp), e = (Bo—0Ro)s
2049 g, (6.4)

erp=

R,=-{57-(e”+am), By=—1—g (ess+00re),

R.-%;)e,. (©.5)
n.wcmummum

LI L N

ﬂt ’ia‘;;+’_‘,’z+s=o. ©.6)
vi( L
5. Baslc equations In ferms of displacements
(it ) ut

+a (B2 - 25w 155 R0, o

t4o 1 0
W(1—q G 0r+|_¢ ,.)u,

2 2(+0)
+H(E e +'1_—,:7,F)up+——z—a=o.

By making a change of the variables according to the
formula

r=¢ (¢t=Ir), (6.8)
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Eqs. (6.7) can be reduced to equations with constant coeffi-
cients

(-1+
+15% R (=0,

l»—a L

(Hz-o %_3—0

5wt

up

) 4+q )
e S ) uet (a1

42D up =0,

It. PLANE STRAIN
b= o=y =2 =24 =0, Z,= (R, + By

For tho case of plane strain, it is necessary to replace in all
equations of part I,

E

o by u,:_T_v—;, and E by E\=

HI. SOLUTIOR OF BASIC EQUATIONS

1. Solution using displacement and stress functions

The solution of the homogeneous equations (6.7) can be
taken in the form suggested by B. G. Galerkin:

= — e [ (14 0) 92 2 (cos B2y + sin BY*es) | +
+asing +beosp, (6.10)
ue — 4 [1Ee e L — 2 (sin Vg, —cos BY2ga) |+
+acosﬁ bsmﬂ+cr,

where «; are arbitrary biharmonic functions,
w=coqﬂ&_ﬂ_ﬂﬂ+sinp."&+ﬂl%’.

a, b, and ¢ are constants characterizing a rigid-body dis
Placemen
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1 solution (R = B = 0) of Egs. (6.6) with the
Iu;l;;heort‘;:enstrm function @ (v, B) is obtained by taking
the stresses according to the formulas

109 1 _Ze
R"’T""‘?’%' By=5,
1 _Z

o (Lop\_1 o 1
=R= =5 (F &) == F T ww
When the stresses are given in the form of (6.11), tho
system of equations (6.6)is reduced to tho biharmonic
cquation
a 1 &\

VY= (gt g+ ag) 0 =0. (6.12)

A wide class of biharmonic functions ¢ is obtained from
harmonic functions $ by means of transformations

@=rpcosP, rpsinf, ryp.

Of the known particular solutions of the hiharmonic
equation (6.12) we mention the following:

@ B)=A*+ BB+ Alnr+ Breinr+Cre- DrfSp+

+[(Ar 4 B Cirt 4 Dy i — 224 i “]+

(6.41)

1

-
+m_§ 3 (Anr™+ Bur ™2+ Cryr =™ 4 D =42y mP +
-
+“§ S ™[ A cos mp + B,, sin mp +
+Crm o8 (m—2) B+ Dy, sin (m —2) B). 6.13)

In polary symmetric problems, instead of Eq. (6.12)
we have the equation

B LN a2y 4 gy
(G +va STt T w gt
1 dg
tEa=0 (6.44)
: "'; e oities Ao and 4, do not affect the state of stress and

is takon in tho ease of a closed ring to obtain single
splacements; in Eq. (6.13) 1t is writtey for plano sIress
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whose general solution is
¢g=Alnr+Bflnr+Cr*+D. (6.15)
The stresses are determined by the formulas

A+B{+2Inn) 420,

A rBE+2I0n 420, (6.46)

2. Application of a complex varisble [27)
Referring to Fig. 46, we have
ug =1 cos p —upsinB, u, = u sin B + uycos B,

17)

from which
Uy -k iuy = u, (cos B + isin B) + iug (cos P +
+ isin B) = (u, + iug) e,
For plane stress, according to conditions (5.20) we find

Uy iup = e~ B { 3;‘7 v —
- @mra). ©18)

_Substituting z = rei® and z = re-® on tho right-hand
side of formula (6.18), and separating the real and imaginary
parls, we obtain expressions for u, and u in polar coordi-
Pates.
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According to the formulas

R, = X,cos'B + Y, sin® B + X, sin'2B,

By = X,sin* B + ¥, cos® p — X, sin 2p,

R =¥y — X;)sin pcos p + X, (cos® B — sin® p),
we find the relations

R, +By=X,+7,,

By — R, + 2Ry = (Y, — X, + 2iX,) 8,

from which, taking into account (5.21), we obtain

Br+ By =21¥ (5) + ¥ () = 4Re " (2), (6.19)
By — By + 2Ry = 219" () + y* (5)] e, (6.20)

By subtracting (6.20) from (6.19), we find
Re— iRy =¥ () + ¥ ) — 9" ) + 4 ()] s,

©21)
xwdb-u.'_m,.m
F (-0,
+(7-1+—7,F)/, FasinBibeosh,  (6.22)
""("F‘—F%})/n—

B‘ ‘i:: ;‘%)Ixrncwp—bsilnﬂ : ce

whero f,= /, (B, ) are functions satistying the equation
7"“@*““? 2—+/—0 (6.23)
A p-mcular solution of Eq. (6.23) may be taken in the

'“" @ wedge-shaped region
I=~B@yen,
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from which
1 (B, 1) =r*lAncos (k—1) B+ Bysin (k — 1) p +
+ Crcos (k + 1) B + Dysin (k + 1) Bl; (6.24)
for an unclosed annular region
[=T R,
from which

£(B, 1) = (ANP¥ - Bur=t 4+ Carh™t 4 Dy )88 iB, (6.25)
where & is an undetermined parameter, Ay, By, Cy, Dy are
arbitrary constants.

The displacements are:

in the first case

U= 2 (1 40) k— 3 —0)l {(k—1) By cos (k—1) p—

— Apsin (k—1) Bl + (k-+1) [ Dy cos (k-+1)B—

—Cysin (k-+1)B)} -+ asinP - beosp,

up = A(k—1)[(1 +0)k-+(@—0)l [ Ancos (k—1) B+
(6.26)

+Bysin (k—1) Bl (k+ 1) (A +0) k—(3—0)] X

X [Ca cos (k-+ 1) B+ Dy sin (k- 1) Bl) -+
+acosf—bsinp—er;

in the second case

U, = £ F{(1+0) (k—2) A —[(1 +0) k4] Bur-*-1 4
+1(1 +-0) k— 4] Cyr*~t — (1 0) (k +2) Dyr™ )52k +
+asinp +bcosp,

Upm £ (1 4 0) - 41 A I8+ ) k41 X
X Byt (1 0) k— 4} CAP ™+ (1 +0) k— 4] X
X Dyr** 488 kB + a cos p—bsin p—ecr.

(6.27)
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Further, formulas (6.5) arc used Lo set up expressions for
stresses. Thus, for the first case

Ry = Gkr*=V{(1 +0) (k—3) (k—1) [ By cos (k—1) p—
—Aysin (k—1)B) + (k+1)[(1 +-0) k— (3 —0)] x

X [Dycos (k+1)B—Cy sin (k+1) )},

By= —Gk(k+1)r*1{(1 +0) (k—1) x

X [ By cos (k—1)p— Ay sin (k—1)B) + (6.28)
+1(1+0) k—(3—0)}[Dy cos (k +1) p— Cy sin (k-+ 1) ]},
By = Ry= —Gkr**{(1-+0) (k—1)* |4; cos (k— 1) B -

+ By sin (k—1) B+ (k+1) |1 +0) k— (3—0)) x

X [Ch cos (k +1) B+ Dy sin (k +1) B]).

Having the values of displacements (6.26) and (6.27)

and of stresses (6.28), it is possible to formulate any boun-
dary value homogeneous solutions.

PROBLEMS
6.1. Lamé's problem (1852).

A long hollow cylinder is subjected to a normal external
pressure po and a normal internal pressure p; uniformly
distributed over the lateral surfaco (Fig. 47).

Find the stresses and displacements.

In view of polar symmetry and two houndary conditions
Brea=—pi, Ry = —p, ()
wo take the stress function (6.15) in the form
®=Alnr+ cre,

According to formulas (6.16), the stresses are

A
B=F42, B=—tioc gy

).

By using the boundnry conditions (a), we obtain
~ 8 (p,—py) a%p; — b,

AT = faste

— ¥
R -
For a solid eylinder, ¢ = ¢, By =By = —p,, 1ty =B, =0.
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from which
1

Br=5—gF [a P:—b‘/zo+ 2 (o p:)J

Br=rer [a*m—b'p.,———(po—m].

To detormine the displacements u, (g
necessary to integrate Eqgs. (6.4), wnth Eqs (6 2) nnd

%

S

b

relations (5.9). Equations (6.4) for the given problem
are of the form

B Gr=R.—0iBp, 4= By—oR.. ®
From lhc cquations (b) wo oblain

[ (4 —20) (a*pi—t2po)

=

m].

26

=

6.2. Golovin's problem (1881) [44, 45].

A flat circular bar of outer radius b and inner radius a
with a section in the form of a narrow rectangle (6 = 1)
is bent by moments M applied at the ends (Fig. 48).

Determine the stresses and displacements.

In view of the fact that the stresses are independent
of the polar angle ﬂ. we take, according to formula (6.15),
the stress function in the form ¢ = A lnr 4+ Brilnr +
+



160 Ch. 6. Plane Problem in Polar Co-ordinate.

The boundary conditions of the problem are
Rpey =0, Rpmyp=0, ja,ar_ o, jB,rdr M. @)

By writing out in full the equations (a), we obtain
Al +B(1+2na) +2C =0,
A+ B +2Inb)+2C =0, (b)

A2+ BE b —a*lna) +C @ —ay =

The unrd condition of (a) is satisfied if the first two
are fulfilled.

Fig. 48

We solvo the ‘qulhons (b):
A== 2y 2 T B=—M o)

C=7,-lb=—at+2(bz Inb—alna)),

where
V=0 —a) —dawrinel,
The strem are

R= —T *I“ *'H’z In—-l-!l‘ln—)

- am 53
B~ -3 (-2 |n—+’l‘ln-+a‘ln— +12—ad),
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The approximate solution by the formulas of strength of
materials, where the stresses B vary according to a hyper-
bolic law, is in good agreement with the foregoing exact
solution.

To ine the it is to
integrate Egs. (6.4):

%=_2_{ LL2 4+12(1—0) Inr+1—30) B+2(1—0)C},

i

.:_"_,;”21"7—% — S 441200 —0) Inr+3—0lx
xB+2(1—0)C}, (©)
1 du dup _ up _
TH T oT=0

We integrate the first and second equations of (c)
successively

i 14

R

S A+12(1—0)Inr—1—0)rB+
+2(1—0) rC}+ [ (B),
B—11B) +f2(r)-

Substituting the values of displacements thus found
in the third equation of (c), we obtain two equations
HO =7 £0=0, LB+ E=0,
from which
i B) = bsinp —acosP, f,(r)=cr

The displacements are finally

U= {__“;” A+[2(4—a)inr—1—a)rB+

+2(1—a) ,c}+ui..p+msp.
up .—_% rB-+acosp—bsin p-cr
lef. formula (6.10)).

11-072
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To determine the arbitrary constants a, b, and ¢, it is
necessary to fix the bar so as to eliminate its motion as a
rigid body; for example, to assume, at the point O,,

aup
U=y =2 =0,

The displacement u, is made up of Lwo components: the
displacement and the rotation of the section through an
angle 4BB/E about the centre C as a rigid body. Conse-
quently, in pure bending the cross sections remain plane
(Bernoulli’s hypothesis).

6.3. Michell's problem (1900) [45].

termine the state of stress in a thin (§ = 1) infinite
wedge of angle 2a to whose vertex is applied o force P
making an angle B, with the axis of the wedge (Fig. 49).

2

g

We assign tho stress function in the form

¢ = Arfsin p + Brf cos g.

. The hnusndnry conditions of the problem are: when
=+% By =Ry =0; whenr—+0, ¥ X = Y = 0.
According to Egs. (6.11), the streau?’ are 2

Re = (24 cos BYr — (2B sin pyir, 15, — Ry =0.
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Thus, the boundary conditions on the sides of the wedge
are satisfied, and the conditions for determining the arbi-
trary constants are

«
SxX= S R, cos Br dp + P cos B, =0,
%

Sx- S R, sin prdB + Psin B, =0,

from which
2P
Tafsinda *
i)
—sin2a "
We obtain, fnally,
R, - 2P (cosBicosB . sinpsinf

T 2a.+sin 2a 2a—sin

As r— 0, the stresses R, — oo since it has been as-
sumed that the force is applied at the point.

When the angle 2 is small, the stresses determined by
the formulas of strength of materials are close to those
obtained in the problem considered.

» Determine the state of stress if a moment M is
applied to the vertex of the wedge (see Fig. 49).

Hint. Take the stress function in the form ¢ = Af +
-+ B sin 2§.

Answer.

in28, Bp—0, Rp=-5(cos2P—rcos2a),
=

where C is determined from the condition
@

5 rBrd=M
“a
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and is equal to
€ = M/(sin 20 — 2a cos 2a).

» Delermine the state of stress in a thin infinite wedge
of angle & with a uniformly distributed vertical load of
intensity ¢ applied over the inclined face (Fig. 50).

Fig. 50

Hint. Take the stress function in the form |sce (6.13)]
® =1 (dy 03 2B + By sin 2B + C,B + Dy,

Answer.

R, %cos‘ﬂ, Bp= —

I_ sinz
e Sin*P,

By=Ry= I sin2p.

® Determine the state of stress in a thin infinite wedge
of angle « for Lwo loading conditions (Fig. 50):

(1) the pressure of a Muid of specific weight y on the
vertical face;

(2) the specific weight of the wedge material 8-

Hint. In both casos take the stress function in the form
[see (6.13)]

® = r* (4500538 + By sin 3p + €308 B -+ D, sin B),
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determine the stresses by formulas (6.11) and, to take
account of the action of the specific weight, add to the
cxpressions obtained the particular values of the stresses
by the formulas

R, = —greosB, Bp= —grcosp, Ry=D5,=0,
which are derived from the equilibrium equations (6.6)
when
R =gcosP, B = —gsinp.

6.4. Flamanl’s problem (1892).
Determine the state of stress and strain in the elastic

half-space £=>0 loaded by a concentrated force P perpen-
dicular to the boundary z = 0 (Fig. 51).

Fig. 51

‘This problem is a special case of Problem 6.3 if we put
@ = /2 and B, = 0. Taking this into account, we obtain

Rom — 288D gy Ry,

i.e., the case of an clementary radial distribution of
strosses (Michell, 1900).

_On any circumference of arbitrary diameter D tangen-
tial to the boundary line at the point of application of the
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force (see Fig. 51) we have
D = rlcos B, R, = —2P/nD = constant.
The principal shearing stress at all points of the cir-
ference is
Tmax = | R, — By |/2 = P/aD = constant;
hence, in the photoelastic analysis of plane models similar
circumferences (isobars, i.e., lines of equal stress) show
on the screen near the points of application of forces.
Equations (6.4) for plane strain are

au,__zﬂ—mp co;!

o v

u, 1 % 20(+40) P <osB

oyt titial b ®
1 ou, dug _ up

@t T =

By muzmtmz tho first and second equations succes-
sively, wo ol
RS —%cosﬂlmﬂ'm.

up = 22ULAP iy 2A=DP Giupinr— @)1/, ().
To find the unknown functions / (8) and f, (r), we sub-
stitute the values of displacements in the third equation
of (a), which after some manipulation becomes
@)+ 108) + EAEDU=20P G gy iy ()
and breaks up in two equations
7@ +1p= -Gl

f—L =0

sin B,

* Equating both sides of tho equation to zero and not Lo an arbitrary
constant is duo to tho fact that this constant docs not enter into
oxpression for displacoments.
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The unknown functions are
1) =CicosP+Cysinp 4 LEA2IP goop
fi(r)=Car.
The displacements are finally
2(f

- =P U+0)(1—20)P
Up= —"—Elnrmxﬂ_T

+[_C;+ (|+0)1’:—20)P J

Bsinp+
cosp—Cysinf, _

d+o)(1—20) P
ELTES LI

BT I

_c.coss—[c,—%]sinwc,r.

T'o determine the arbitrary constants Cy, it is necessary
to fix the half-plane so as to eliminate its motion as
a rigid body; for example (see Fig. 51). ‘when § =0,
when r = h and p =0, u, = 0.
case [45]

C,=Cy=0,

? nh—

(+0)d—20)P

nE .
and the displacements are determined from the formulas
U= M[ln—-n:osll-l- Ta= ﬂ) ﬂsmﬁj

ug ‘-m—;;ni {[lnT+ 2“_',) ]smﬂ—A

The points of the boundary line (p = £n/2) have the
displacements

1+40)(1—20) P
R T—— _L"L_’_‘

20—oh P 0P
Uplpmsnrz = = £ 2T I = urar,
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Referring to Fig. 51, tho stresses on planes parallel to
the z and y axes arc

B 2P cos?p
X.=R,cos?p= e
: 2P 2 2P cosPs
Y, =R, sin?p= - (z‘"’y‘)‘ =R

Y,=Xy=%sin 2=

2P cos*Bsinp

i
» Determine the stresses in the half-plane duc to a mo-
ment (seo Fig. 51).

Answer.
A= —2M gin2p, By=0,
Ro=B, =2 cozp
(see Problem 6.3).

» Cerruti’s problem (1882).

Determine the stresses and displacements clastic

half-plane loadod at the origin by a force T directed along
the y axis (see Fig. 51).

Answer.
Ry=—Z 3B g Ry B, =0,

w=-t (210 -sinB—(t—a)peoss),
u,=m%[(t+u)mn—2m%wss—a_a)psinﬁ].
6.5, Hortz's problem (1883).

Determine the state of stress in a circular disk compressed
by two forces P not Passing through the centre (Fig. 52).
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The problem is solved by superimposing three states
(1], p. 522):

(1) the point A is a pole from which a radial com-
pression emanates producing the stresses

20
Ry = “T%' Byy= Ry, =0

Fig. 52

(2) the point B is another pole from which a radial
consprossion emanates producing the s

R 2P cos B, — R —0-
Moo =220 gy = Ry =0;

3; Lo the disk is applied a uniform all-round tension p
for which

R,, = Bgy=p, Rp, =0
(sec Problem 6.1).
When all three londs are acting simultancously, the
stresses at the point C are
R, 2k (1 5 By cos?a +lcospzcos=¢z)
LA Senterad (,—IW d 1T "
o2k A . 1 .
Bp»-p—T(r—lwsB.sm'a.+ - cos Bz sin Uq)‘
B, .- — 27” (:—‘cosﬂ. sin oy oS &y —

1 "
—Tcosﬂ,smu,wsaz),
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Taking into account that
@+ By = 2wyt b= w2
ry=dcosa = dsin B, ry = dcosa, =dsinf,,
where d is the diameter of the circumference, we obtain,
finally,

2P .
Ry=p—g-sin (s +B2).
By=p— 2 cotPy cot By sin (B + o).
Ry=B,=0.

For the circumference 4 BC to be free from radial stresses
R, at all points, except at A and B, we have to put
p=-Eg sin (B + B0,
where sin (B, + B,) is a constant.

» Determine the state of stress in a circular disk com-
pressed by two forces P passing through the centre of the
disk, and construct the normal stress diagram at a dia-
lanetnl section perpendicular to the forces (see Problem

.1).

6.6. See [46).
Determine the state of stress and strain in a hollow cir-
cular semicylinder of large length, resting on an absolutely

Fig. 53

rigid (ug = 0) and smooth (R, = 0) foundation, due to
a hydrostatic load ¢ = y (b — b'sin f), where y is the spe-
cific weight of the fluid (Fig. 53).
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‘We assign the stress function in the form of (6.13)

-

@ A+ ByInr+ N (Apr™+ Bur™z 4+
i

+ Cur™™ A+ Dpar™™2) cos mf.

(a)

The boundary conditions of the problem are: when

r==b, R, = —y (h — bsin p) and B, = 0; when r = a,
R, =0 and B, =0; when =0 or n, Ry =0 and

ug = 0.
Expanding sin B on the interval 0 < B << n by the
formula
) 2 4w o8 mp
sinf - P T—DmFD "
2, b

and assuming the stresses by formulas (6.11)

Ro=2A+50— 3 (m(m—1) Anr™ +
2,4 ..

+(m—2) (m+1) Bur™ +m(m+1) Cur™ +

+ (1 +-2) (m —1) Dpyr™™) cos mB,

By=24— 2 4 3 Im(n—1)Aw"+
2

+(m+2) (m+1) Bpr™ +m(m+1) Cor ™+

+ (m+2) (m —1) Dpr~™) cos mf,

Ro=B,= 3 mi(m—1) ™ (m+1) Br™—

—(m+1) =™ — (m —1) Dyr™™) sin mp,
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wo obtain the values of all arbitrary constants in the

formula (a) from the first four boundary conditions
(2b— k) b* ¥ (2b—ah) a2t

P

An =3 (m 1) [mC — (m—1) D} ™1™,
By =L (m—1) (mD — (m +1) Cl ™0™,
Con == AL (m — 1) Da~™1g™3,

Dy= =4 (m+1) Dama™,

where

a = bla,

A =1 (CB — mAD) (m — 1) (m + 1),
(m—1)ad— (m — 2) — g-20msn),
ma? — (m —2) — (m 4 2) g-",
—(m —1) @ + m — g-2m+n,

D = —mat+ (m + 1) + a-m.

The displacements are determined from Eqs. (6.4)
with (6.2). By integrating the first two equations of (6.4),
and equating to zero the arbitrary functions®, we find

By =2(1—0)) Ar —(1 +0,) Lo

- 5‘. {1+0) mAn™ 41— 246, (mA-2)] B —
—(.i:“"-‘)mcmr"‘"—lm+2+u. (m—2)] D,,r=""1} cos mf,
En"n=z.f;”((i +0) MAm™ 4 (1 +-0,) mA-4) Bor™ 4
+ (-1 0) mCur ™t (1 6) m—4) D™} sin m.

* The thind equation of (6.4) e;p= 2“;’ %) Ry with the stress
function in tho forum (a) is satisfied idoptically.
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‘Thus, the boundary conditions in B are satisfied.

In the case of a uniform external pressure p, and a
uniform internal pressure p, on the semicylinder, pro-
vided that pob > pja, the well-known solution of Lamé’s
problem is obtained.

» Find Lhe state of stress and strain in a solid semicylinder
(a = 0) of radius b, resting on an absolulely rigid and
smooth foundation, due to a hydrosiatic load (Fig. 53).

Hint. Take the stress function in the form

¢ = A+ 2 (Apr™ + Bpr™?) cos mp.
m=2, T

Fig. 54

igate Lhe state of stress in a thin (8 = 1) circular
ring extended by two forces P (Fig. 54) (see the monograph
1 p. 512).

Iints. (1) Replace the concentrated force by a uniformly
distributed load g = P/2ab in the portion 2ab, where a
is a_small angle.

(2) Assume the stress function in the form (a).

6.7. Kirsch's problem (1898). .

Investigate the state of stress in a thin (§ = 1) uniformly
oxtendod rectangular plate with a small circular hole
(Fig. 55).



% Gh. 6. Plane Problem In_Polar Co-ordinates

The stresses caused by the small l;olo a!': local stresses

idly decaying with the distance from it. .
"?l":aysirmy %n a solid plate can be determined in
terms of the stress function

" 1

=4 = prisin?p= pri(t—cos29)
for which
X, =58 =p ¥,=X,=0.

In using the stress function @ for the solution of the
present problem, the resulting stresses for large values
of r must be the same as with the function .

Y

~
<

22Xk}

treettt

Tl

Fig. 55
According to formulas (6.13), we assign the stress
function in the form
e=Alnr+ Bflnr+Crt +
+ (A4 + Byt + Cyr-t + D) cos 2p.

To avoid increasing stresses with increasing r, we set
B=8,= to obtain the same stresses for large
values of 7 as with the function @, it is necessary that
C = pl4 and A, = —pl/4. Thus, the stress function is

@ =AInr+ prifh + (—prilh + Cor-* + D,) cos 2B,
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and the stresses are
R, = Al 4 pl2 - (p/2 — 6C /r* — 4D /% cos 2B,
B. = —Alr* + pl2 4+ (—p/2 + 6C,/r*) cos 28,
Ry = By = —(p/2 + 6C,/rt + 2D,/r* sin 2.
The arbitrary constants are determined from the con-
ditions: when r = a, =0*.
On setting up these condmons, we obtain
A = —pa2, C,= —pa*ld, D,= pa¥/2.
The stresses are finally

Re=f [t -G+ (1+5 -5 ) o],
=%[1+-——(l+—)m2@]
Ry=B,= —L (1-5 4+ 22 ) sin2p.

Since the body is not simply connected, it is necessary
to check the single-valuedness of displacements. Calcula-
tions show that the displacements are single valued; this
proves the validity of the solution.

Figure 55 shows the B, diagrai
By = 3p; whenﬂ—Oorn.B = —p.

Thus, an increase in stresses (concentration) occurs at
the edge of the hole.

If the width d of the plate is not very great compared
with the diamoter 2a of the hole, but still greater than 4a,
the maximum value of By can bo determined by the
formula

max B, 2 3pd/(d — a).

when B = /2,

6.8. Michell’s problem (1900) [5).

Determine the state of stress in a thin (8 = 1) circular
heavy disk resting on an absolutely rigid horizontal plane
(Fig. 56).

* It follows from Eqs. (6.11) that we can also set up conditions for

the function @: when r = a, ¢ =0 and e 0.
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The force at the point of support of the disk is
P = nRYy,

where y is the specific weight of material.

Fig. 50

The problem is solved by superimposing Lwo states:
(1) the point 4 is a pole from which a radial com pression
emanates producing the stresses

R 2 cob 28 osB, Bp=Ry-- B, -0,

and the stresses ot the edge of the disk (r - 2RcosP)
are (Problem 6.4)

Rr=—%R, X,= —yReostp, ¥,= —yRsinp,
Xy

(2) to eliminate the stresses thus found, it is necessary
to add the system of stresses

= _ v
Yo =T R—2) X,=— oy ¥

Y,—.ge%(nu)
determined by the stress function

w=%[§+nw+w—m}
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Noting that y = rsin f, z = It —r cos B, it is easy
to obtain stresses al the edge of the disk (r = 2R cos B),
which are reciprocal to those indicated in part (1).
At ench horizontal section there is a radial pressure
acting in the direction of the point A and equal to

L (4R cosp—r).

6.9. Sce 127].

An infinite plate is weakened by a circular hole with known
stresses /2, and B, applied on the contour of the hole for
2 = ae®, where a is the radius of the hole.

Investigate the state of stress.

The analytic functions }’ (z) and %" (z) of solution
(6.24) must be expanded in power serics so that they will
be finite when r = co. These functions are of the form

Ve B AT 6= Pt ()

and B, are complex constants.
cn from formulas (6.19) and (6.21) that the stresses
at infinity are determined by the constant B, and the
roal parl of the constant A,. The imaginary part of the
constant 4, does not affect the state of stress.
By integrating (a) with respect to z, we find

P(@)= A+ A nz—3) PSS

n—1

n=2

bl 1
¥ @)= B+ Bynz— 3, 22Ty C,,
n=2
where C; are complex constants.
Taking into account the relations

S BEw =
=2 =+
n=2

12-0073
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from formula (6.18) we obtain

had ~nel
uptivgem B[ 22 (A.z-;-A.lns—gz‘:‘T'-;.c.)_

-
1-}..1 (/TaH""Z ﬁn;-(uun)_
i n=l

— L (Ba+Bimi—3 +8) . )
o
Sotting z = re® gives Inz = Inr -+ if.
This function is not single valued in . The increment
of u, + iug on passing once round the hole is

2mie-# (152 4,4+ 1L F,)

and the condition for single-valucdness of displacements is
B—od+U+ 0B =0,

from which

A= -2 5, ()

Since the stresses R, and B, are given at r = a, the
oxpression (R, — iB3;),., can be expanded in a complex
Fourier series (47]

(B —iB)ea= 3} Cpeib, (@)
nee

whore the coofficients C,, are determined by the formula
=
o= | 1R (BB, Blema et ap,
i
n=0,1, —1, — 2, ..

Substituting tho series (a) and (d) in solutions (6.21),
and taking into account tho conditions on the contour
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(, =a), we find
2 C ,(nb_z ,-m+2 A enb 4

nea—co

+ 2 T’:%‘L‘-lnl— S

n=o n=t

fn-2p —
einb
I

— B on—pet 3, ‘f—: einp ©
n=0

By comparing Lhe coefficients of like powers of ein®
on both sides of the equation (e), we obtain

=i‘, [a+m 4, — 22z
=0

fotTo—tamcy, A_B_c,
g-,;ofc,, 2, forn>3, ®
L py—Bra ., for >t

Noting that 4o + A, and B, characterize the state of
stress at infinity, we consider them known. The magnitude
of the imaginary part of the constant 4, corresponds to
the displacement of an absolutely rigid body (b), and
it can be taken to be unity. The constants are determined
by the formulas

Ao+ Fy=240, A= —5ET B, [se0 formula (o).
Further, from the equations (f) and (¢) wo find

Bi=—22%c, 4=1d,
=240 — Coa®, A, = Boa® + Ca%
for n>3

By = (n—1) %pey — A'Copvss Ap = o™
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The complete solution of the problem is possible if the
stress distribution along the circular contour and the
conditions at infinity are given.

Determine, by using the method considered, the state
of stress and strain in a wide plato weakened at the middle
part by a small circular hole of radius a and subjected to
a uniform extension with stresses p directed along the z
axis (Fig. 55).

Answer. (1) For the stresses, sec the formula (b) in

The displacements for €, = C, = 0 are, by the
formula (b),

p(i+o) i;ﬂ,zv,,,,q( (4;: _Hz_%‘)mz”]‘

=5 | TFo &
up=s — 2D °2a2+r3+:—:)sin2ﬂ,

» Find the stress distribution in an infinite plate with
a circular hole if R, = —p and B, = 0 at the edge of the
hole (r = a). The stresses at infinity are zero.

Answer.
V@) =0, y ()= pa¥s,
R, = —pa¥?, By =pa¥, B, =R
up = pat (1 + o/Er, uy=0.

»  Find the stresses in a thin circular ring of outer radius b
and inner radius a compressed across the thickness by two
forces (Fig. 57).

For the solution, see [48].

6.10. See [49).

Find the homogeneous solutions for a thin wedge fixed
at a finite number of points of the base if the follo ing
data arc given (Fig. 58): the wedge is acted on by a fluid
;:l spzciﬁc weight y, @ = n/6 = 0.524, 6 = n/12 = 0.262,

=4m
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To obtain a particular solution satisfying the non-
homogeneous boundary conditions on the faces 04 and
OB, we assume k = 2 in Egs. (6.23)0"1‘1 (6-28) and, to

simplify the expressions, take o —

Fig. 57

The arbitrary constants of the particular solution are
dotormined from the conditions: when f =a, Bg=
= —yrcos (@ -+ 8) and Ry = 0; when p = —a, Bp =
= Ry = 0.

The general homogeneous solution is obtained for the
homogencous boundary conditions on the faces O4 and
OB: when p = a, By = Ry = 0; when B = —a, Bp =
= R, - 0, which in expanded form give four equations
(ke — 1) sin (k — 1) ad) — (k — 1) cos (k — 1) 2By +
+ (k — 3)sin (k + 1) aCy — (k — ) cos (k + 1) aDy =0,
(k — 1) cos (k — 1) @Ay + (k — 1) sin (k — 1) @By +




182 Ch. 6. Plane Problem in Polar Co-ordinates

+ (k — 3) (k + 1) cos (k + 1) aCy + (k — 3) (k + 1) x
X sin (k + 1) @Dy =0, (a)
(k — 1) sin (k — 1) a4y + (k¢ — 1) cos (k — 1) @By +
+ (k — 3) sin (k + 1) aCy + (k — 3) cos (k + 1) aD,=0,
(k — 1)* cos (k — 1) ad — (k — 1)*sin (k — 1) aB, +
+ (& — 3) (k + 1) cos (k + 1) aCy —

— (k—3)(k+ 1)sin (k + 1) 2Dy = 0.

In order to have the constants 4,, By, Cy, and D,
different from zero, the determinant A (k) of the system
(a) must be zero. By expanding the determinant, we
obtain a transcendental equation for determining &
sin 2ka = =k sin 2a. (b)
Setting
k=axib,

substituting in the equation (b), and separating the real
and imaginary parls, we obtain equations for deter-
mining a and b:

sin 2aa cosh 2ba = +a sin 2a, cos 2ax sinh 2bq =
= b sin 2a, or, for the value

o=+ MBS e — g, ©
cos Z- (coth | 2bar| | S 2 — 75T 0 @
= £5in2e L (@)

sinh Zha "
For the numerical valuos of tho problem (¢ = 0.524),
the cquations (d) and (c) arc

@ == 1455 coth [1.05b | VST 1066 — 0750, ()
c0s 1.21 (coth | 1.056 | / STuh® 1.056 — 0.756% —

= 0.866b/sinh 1.05b. U]
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The graph of the equation (f) is shown in Fig. 59. The
values of some of its roots are given below:

m M=o k40,

1-4 +4.051+i11.94
5-8 17.170§52445

For the set of the parameters ky, = ap, + ib, found from
the equations (a) and (f), the corresponding constants are
determined by the formulas
Ap = Frby (k) Bx = Fpby (k), Cx = FrAs (),

Dy = Frdg (k),
where A, (k) are the cofactors of the elements of a row or

column of the determinant®; Fy are arbitrary propor-
tionality factors.

ez N

15

S B

Fig. 59

By taking any finite number of terms in the general
solution, it is possible to satisfy the boundary conditions
on the supporting plane AB at any finite number of
points.

The numerical calculations for an elastic wedge on a
rigid and an elastic foundation by the foregoing method

.

using computers aro given by N. E. Borisov in (50, 511.

For simplicity, the subscript m on k is omitted,



Chapter 7
TORSION OF PRISMATIC AND CYLINDRICAL BARS

1. PURE TORSION OF BARS OF CONSTANT SECTION

1. Assumptions

In solving problems of the pure torsion of bars use is
mado of Saint-Venant's semi-inverse method assuming

X,=Y, =% =X,=0,
whore z is the axis of a bar.

2. Basic equations
With the assumptions adopted, the computing cquations

(7.1)

Boundary conditions [(1.2))
onthe lateral surface

Zy cos (v, x) + Z, cos (v, y) = 0, (7.2)

atthe ends (z = 0 and z = 1)
f .‘ X, dF =0, H Y.dF =0,
e ¢ X
(Y re—xpar -m,,
A

where M. is the torque.
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The geometrical equations (2.4a), with (3.1a), take the
form

u, du,
erm GE=0, en =T+ Sr 0,

auy _ _ duy | du, _ X,
’W:'W‘O' en =+ =0, (1.4)
o _duy 0w _ Y,

and Egs. (3.4a) become
w2, =0, VIX,=0. @5
3. Solution of problems by means of Prandti's function (4903)

The stresses are expressed in terms of the function ® =
= @ (z, y) by the formulas

P o0 a0
Xe=ta=T0. Yi=Z,= -3 (1.6)
According to Egs. (1.5),
i = C. @.7)

By integrating Eqs. (7.4), we find, omitting terms repre-
senting rigid-body displacements of a bar,

Uy = —ayz, wy, = 0z, U = U Y), (1.8
where « is the angle of twist per unit length of the bar.

From Lhe last two equations of (7.4) we obtain the values
of the shearing stresses

L ( u w o
X, G (S —ay), Y, G(O—y»}»\u), (7.6%)
and, on comparing Egs. (7.6) and (7.6"), we find Poisson’s
equation (4.6) for Prandtl’s function

from which, by Eq. (7.7),

C = —2aG.

The relation belween the displacement u, and the stress
function ® is determined by equalities (7.6) and (7.6")
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from which it follows that
100 ou _ 1
A = R i .9
and
Viu, = 0.

Equations (7.9), with (7.7), are always integrable [see
Egs. (417) to (4.21)). )

The quantity u, characterizes the warping of the cross
section, i.c., ils distortion out of the plane during the
deformation of the bar.

4. Properties of Prandtl's function (1]
From Eq. (7.2) (Fig. 60) it follows that

and hence on the contour of a solid bar wo have
Dz y) = 0. (7.40)
Tho shearing stress at any point in the section is dirocted
along the tangont to the lino ® = constant passi ig through

Fig. 60

this point and is proportional to the rate of change of ®
along the normal to this line
b
PR A (7.11)

By the shear circulation theorem (R. Bredt, 1896),
§ S, ds = 2aGFg, (7.42)
D=C
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where Fo = § hdsi2 is the area of the solid soction

omC
enclosed by the curve under consideration.
By the third equation of (7.3),

M,=2 | Fod0=2 U ©dF, (7.13)

where d® = S, dv is the differential of the stress function
(7.41), F is the cross-sectional area (including holes).

1l. PURE TORSION OF CIRCULAR BARS {SHAFTS)
OF VARIABLE SECTION (36]

1. Assumptions

In the case of the torsion of a shaft of variable section
(Fig. 61) the problem is solved in cylindrical co-ordinates
under the following assumptions:

up=u, =0, up=1us( 2, (7.14)
R =By=2Z,=R,=0. (7.44")

Fig. 61

2. Basic equations

Under the above assumptions, (7.14), the computing
equations are:
Geometrical equations [(2.1b)]

au,
=g = 0,

er=—L=0,

oy
ar
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1 dug
ap="F =0,

o= e 4 2z o, (7.15)
S s L

T

Equations of Hooke’s law

B=Ry=G(M_%) p_z-cls (7.16)

Static equations [(1.1b)] . .
In tho absonce of body forces, there is only onc equi-
librium equation left:

9B, ;. 28,
ottt Se=0

and the ions are satisfied id
The last equation can be writlen in the form

2 () + Z(r2B)=0 (1.47)

and satislied identically by introducing the stress function 1)
by the formulas
1o ) -

b~—mgd p=L2 (1.18)

By solving Eqs. (7.16) and (7.18) or the fifth equati
(2.4b) simul; the ining strain
equations are satisfied identically), we obtain

S Py _

] Fo
T =0

(7.19)

If the lateral surface is froc from external forces, the
resulting shearing stress is dirccted along the tangent to
the contour of the axial section, and its projection on the
normal v is zero. In this case we have

Brcos (v, 1) + B, cos (v, 2) = 0,
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where
€08 (v, r);%‘ o5 (v, Z)=—%‘
Taking into account formulas (7.18), we obtain

from which it follows that on the contour
= constant, (1.20)
and at the ends (z =0,z =1)

aan a
M=\ \ Brar=\ | Brrarap=2x{ r28,dr=
= ymeer=i] fre
—~2n { 2 ar—2apli, (7.21)
o
where a is the radius of the cross section under consideration,
determined by the equation of the generator.
If the lateral surface is acted on by a load p, then
1oy d: 1 o dr
FEw T Er s P
from which
av_
2= T
and instead of formula (7.20) we obtain
b= _j r2pds. (1.22)
[
3. Solution of the differential
for the forsion of a shaft [52]
There are several possible forms of solution of Eq. (7.19).
In terms of power functions
Assume

b =" (7.23)
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1%

Substituting the value of ¥ in Eq. (7.19), we find n = 4
and m = 1, from which

¢ =(4z+ B)(Cr* + D), (7-24)
and the stresses become
B,= _% (€r+D), B,=4Cr(Az-+B). (7.25)

From formulas (7.25) we obtain several special cases;
for example, when 4 = D = 0and B =1, we haye the
elementary solution of the torsion problem for a circular
shaft. In this case

$=Cr, B =0, B,=4Cr,
and, from formula (7.21),

C = M,/2na".

In terms of Bessel functions

Assuming

y=R(NZG@),
where R (r) is a function of the variable r, and Z () is a
function of the variable z, and substituting in Eq. (7.19),
we obtain

@R daR Pz

= Tﬂ:h‘R=0, = F 22Z=0, (7.26)
where A is some number.

Equations (7.26) have the following two solutions {53):

¥ = (4 sinh Az + B cosh Az) [Cr2J, (Ar) + Dr2Y, (M),

(1.27)

¥ = (4 sin Az + B cosA) [CP*], (M) + DriK, (An)], (7.28)
where J, (\) and Y, (Ar) are the Bessel functions of a real
argument of the second order of the first and second kind,
respectively; I, (Ar) and K, (M) are the Bessel functions
of an imaginary argument of the second order of the first
and second kind, respectively. The stresses are determined
by the formulas

B, = —X (A cosh Az + B sinh Az) [CJ, (Ar) + DY, (Ar)],

B, =1 (Asinh Az + Bcosh Az) (CJ, (Ar) + DY, (Ar)] (7.29)
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and

B, = —\ (A coshz — Bsindz) [CI, (Ar) + DK, (Ar)),

B, = A (4 sin Az + B cos A3) [C1, (M) + DK, (Ar)), (7.30)

where Jy, Yy, I;, K; are the Bessel functions of the first

order.

In terms of Legendre functions

The differential equation for the torsion of shafts of
variable section (7.19) in curvilinear orthogonal isothermal
co-ordinates* is of the form

o (1 oy, 0 (Low ;
(%) +m (Fa) +o (1.31)
where & (r, z) and 0 (r, 2) are curvilinear orthogonal iso-
thermal co-ordinates in the plane of the axial section of a
shaft.
The co-ordinates ¢ and 7 in the plane rOz (see Fig. 61)
are related to the di rand z by the liti

r=Cesinm, z=Cécosy, (1.32)

and inversely
t=InVrP+2 n=amctanrl
Assuming
Y =h(E) /)
where £, (£) is a function of E, and f, (n) is a function of 7,
and substituting in Eq. (7.31), we obtain, with (7.32),
two equations
%—3%—(,.—1)(“2)/.:0.
E A 1:53)
a —3eotngu (=) (+2) =0,
where n is some constant number.

* The isothermal co-ordlnates §(r, z) and y(r, 2) satisfy the rele-
ions & am 3
tions = — 2 ang =L
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From the first equation of (7.33), assuming [, (§) = ems,
we find

F1 ()= Apen ¥ 2% 4. Bk nH 1k, (7.34

The solution of the second equation of (7.33) is sought
in the form

fo () = sin* nY (cos M) = (1 — p?) Y (p), (7.35)
where p = cos n.

Substituting the value of f, (y) in the sccond cquation
of (7.33), we arrive at the Legendre equation

wla-w | +[rorn—Ee ]y =0, aa
from which
¥ (s 1 —p) L) @.3n

where P, (i) are Legendre functions of tho first kind, or
Legondre’s polynomials if n is an integer.
The first solution of Eq. (7.31) is

Yo = [ Apetn 28 |- B o=k D8] sind g "’Z;,‘"’ . (7.38)

‘The second solution is of the form

Yn = (A8 ot 03 i y £ ) (7.39)

EToa

where Q, () are Logondre functions of the secomd kind.

Whon n = 0and # = 1, the solutions are obtained directly
from the second oquation of (7.33):

whon n =0,

fs = Cocos - Dy (1 + cos® n);

when n =1,

s+ €y Dy (3 cos ) — cos? ).

Thus, solutions (7.38) and (7.39) are supplemented by
two values of the function P

Wo = (Aae® | Boet) 1Cq cos 1) + Dy (1 -+ cos? . (7.40)
W= (At B (C -+ D,y (3 cos n — cos? ).
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In the case of olliptic co-ordinates § and 7, which are
related to the co-ordinates r and z by the equalities

r=asinh §sinn, z=acosh§cosqy, (7.4)
assuming

p=1hE 0

we arrive at a solution in the form (see the monograph [52],
b 92)

o= [Aocosh &+ By (14 cosh2E)] (Cocos n+ Dy (1 4+
+cos?)),

py=[4;+ B, (3 coshE—cosh*&][C, + Dy (3 cos n—
—cos? )],

q;,,:sinh'gsin‘n[A,. ";;5,‘0’ +B,,ﬂ;g°l]x
X[C Jr-l'..m) D, mo..m J

(7.42)

where u =cosn, 0= cosll t,

P, = Legendre functions of the first kind,
) = Legendre functions of the second lnnd
If the co-ordinates r and z are interchanged, i.e., the
poles of the elliptical co-ordinate system are placed not
on the axis of the shaft Oz, but on the axis Or, the relation
between r, z and &, 7 is

r=uacosh tcosv, z=asinh¥siny, (1.43)
and solution (7.42) becomes

Yoo [AgsinhE-1 By (1 —sinh2)] |Cosinn-+ Do (14

- sinz )],

By (g1 By (3sinh B sinh3E)] [Cy - Dy (Bsinn—

—sin')),

Y, - i" cosh*Ecost 0 [A,, _%(0), +B, d‘—?"‘T@] X

x[Cy £ | p, P00 ],

(7.44)

where 0 == i sinh §, p = sin 1.
13-0973
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" [ (z, y) = a%a® +
7.1. A bar of elliptical section [ (z, y) = 2%a® + y¥/p* _
—1 =0 is twisted by a torque M,
Investigate the state of stress in the bar.
We assign the stress function in the form
© = Af @ y) = A @l + b — 1),
where A is an unknown factor.

Y
X,

53

x Fig. 62

2

2a

Substituting the function ® in Eq. (7.7), we obtain
24/a* + 2A/6* = —2q6,
from which
4 = —aGa®¥(a* + b?),
and the stress function is

aGa? S
0= (1-5-5). ®
The stresses are delermined by formulas (7.6)

2uGh*

9 _ 2060 0
X, =22 22 =L L,
arEl Y= —p= R

Ty

The stress diagrams are given in Fig. 62.

To determine M, we use formula (7.13). According to
the formula (a), the area of the ellipse is
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whero, for z =y =0,
Wy = aba®b?¥(a? + b7,
By (7.13),
"’m!x omr
M, =2 j Fo d® = 2nab j (1 — O/Dpyyy) dD =
a v

= nab® ey = naGabd/(a? + h?).
The maximum stress occurs at the points (0, =+b)
max X, = 2M/(nab?).

From Egs. (7.9) we find

2 — 5t
= —a g ®

Thus, the cross sections of a bar of elliptical section do
not remain plane in torsion, but transform into surfaces

Fig. 63

whose horizontals are equilateral Ilyperholas having the
axes Oz and Oy as asymptotes (Fig. 63) [1].

7.2, A bar of circular section f (z, y) =2 + y* —a* =0
is twisted by a torque M.
Investigate the state of stress in the bar.

We assume the following expression for the stress func-
tion
D =Af(z, y) = A (& +y* —dY),

130
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whoro 4 is an unkno'
By Eq. (7
94 + 24 = =206,
from which
A = —abl2,
and tho stress function is
0=;'2G-(a*—¢3—v1)A
The stresses are determined by formulas (7.6):

wn factor.

X=8=—aly, Yi= — 2 —abz.

iy

X<

2 x Pig. 64
g

By‘vTh('7 :’é‘;“ diagrams are given in Fig. 64.

M, = naGa*/2.

The maximum stresses are
max X, = max Y, = M,/W,,
where W, = na*2 is the i

polar section modulus.
ofA'}ll l?rm\lhs of the present problem are a special cas
T, e?l' ormulas of Problem 7.1 when a = b, i-e., Whet
ipse transforms into a circle. For a bar of circular

section, u, = 0, accordin -
2 =0 g to the formula (b) of Pro
blem 7.4, i.e., the cross sections remain plnne( i)n torsion:
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7.3. Webor’s problem (1921).

A circular bar of diameter b with a semicircular notch
of radius a is twisted by a torque M, (Fig. 65).

Find the state of stress in the bar.

Fig. 65

‘The equations of the contours of the section in polar
co-ordinates are of the form

B B =r—boosp=0, f(r, f)=r—at=0
The stress function is taken in the form

O(r, )= 4102 = 4 (r2—a2—br cos p+ 2% cosp) ,

where 4 is an unknown factor.

The function @ is zero on the contour.
In Cartesian co-ordinates when

recosf =z, rsinp=y, rP=2"+y?
the stress function is
Do (224 yrm el FE)
By (7.7),
A = —aG/2,

and the stress function is

[a—rt-4 boosp (r—-2) .
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Referring to Fig. 65, the shearing stresses in polar
co-ordinates are

. a1 9 w 1 o
n,=x,mp+y,smp=v73€.-$(_7;".)=

= L_g;
X
" oD o
B,=Y,cosp—X,sinp= _%%_0—1/6—:= -
By differentiating the function ®, wo obtain
R, = —aGb (1 — a¥r) sin B,
B, =aGlr— b1 + a¥/r®) cos B.

The shearing stress assumes a maximum value at the
point of the contour located at the root of the notch

(max B,).:., = —aG (2b — a).

nnotched

When b > a, it is twice as high as that on Lhe
contour (stress concentration at notches).

7.4. Saint-Venant’s problem.

A rectangular bar of sides a and b (a > b) is twisted by
a torque M, (Fig. 66).

Investigato the stato of stress in the bar.

y axb
ll

Fig. 66

Ny Nl

NS

The stress function is taken in the form
O = aG (B4 — 4" + F, (@)
where ¥ is an unknown function.
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Substituting the expression (a) in Eq. (7.7), we find
that the function F must satisfy the harmonic equation

=0 (b
and the boundary conditions: when z = +al2, F =
= aG (y* — b%/4); when y = +b/2, F = 0.

Following the Fourier method, we seek a particular
solution of the equation (b) in the form
FEy)=X@Y@

where X (z) is a function of z, and ¥ (y) is a function of y.
Substituting the function ¥ (z, y) in the equation (b),
and sepanlmg the variables, we arrive at the equations

&Y
LX _wx=0, FrHNy=0, ©

where A? is a constant.
In view of the symmetry of the problem the solution
of the equauons (c) is taken in the form of even functions
Az, Y = cos Ay, from which

F= z Ay cosh A,z cos Apy.
When y = +b/2, F = 0; hence, cos ,,b/2 = 0 and & =

= (2k + 1) alb (k 0. 1,2,
When z = +a/2, F = a6 (y* — "bY4), L.

LE Ay cuhﬂ%m“_*%’ﬂ=w(y=_m» (@
)

The right-hand side of the squality () on the interval
—b/2 -< y < b/2 is expanded in a trigonometric cosine
series

a6 (= 3y = 3, Bycos BNy, (©
LT
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where
2 % @k+1)ny 8aGH (— 1A
et e
-b/2

On comparing the coofficients A, and B, in the expres-
sions (d) and (e), wo obtain

Ay=Bylcosh Zhthne
The stress function is finally
Omag| By
e (2k+bl):u cos (2A'+b|)ny
= @kt cosn ZETDTE

The maximum shearing stress occurs at the middle
of tho longer sides, ie., at =0 and y= =+ b/2

muxx‘=-'—;§ o =
ly=kb/2

=¢ab[1_% S —
heo (2K 1) cosh

The stress diagrams are given in Fig. 66.
By (7.13),
(k+1)na
= taph &t e
1_8ib %
M*’“"“"’[T‘FTAE"' @Y ]

The inGinite series converge rapidly whon a/b > 1.
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For practical calculations, it is convenient to use the
formul
max X, = M./qab?, max Y, = q, (max X,),
a=M,JC,,

where C; = g;Gab? is the torsional rigidity.
The values of the coefficients ¢, are given in the Lable.

arm @ a o | w» o « «

1 0.208 | 1.000 | 0.140 0.298 | 0.743 | 0.208
1.5 | 0.230 | 0.860 | 0.198 0.307 | 0.743 | 0.307
2 0.246 | 0.795 | 0.229 10 ]0.312 | 0.743 | 0.312
3 0.267 | 0.753 | 0.263] oo [0.333 | 0.743 | 0.333
4 0.282 | 0.745 | 0.281 (1/3) 3y

7.5. Saint-Venant's problem.
A bar with a cross section in_the form of an equilateral
triaugle of height a (Fig. 67) is twistod by a torquo M..
Investigate the state of stress in the bar.

x

X o Fig. G

a/i

The stress function is taken in the form
D = A2+ yt — (@ — 3zy)la — 4a27).
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It can easily be verified that the function ® vanishes
on the contour of the section_
z=—3, ¥= 17—:: 5 l;"

From (1.7),

A = —aGl2,
and tho stress function (a) iy

e

By (7.6), tho stresses aro
X,= —aG(y+3zyla), Y, =

[Z——(z’— v |

£

Tho stross diagrams aro given in Fig. 67.
‘rom

wo= 5 Gn - 2

4, vanishes whon z = 0 und z = £y 3y, ic., on all
throo porpondiculars droppod from the vertices of the
trianglo bounding the cross section to its sides. 'Il-c linos.

Fig. 68

u, = constant _are_ third-ordor nlg.lmuc curves whose
goneral character is shown in Fig. 68 [1].
7.6. Loibenzon's problem (54].
bar with a cross section in the form of a somiring
(Fig. G9) is twisted by a torquo M,.
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Investigate the stato of stress in the bar.

Poisson’s equation (7.7) in polar co-ordinates is

Lad 1 90 1 a0
Gt T T = 6 ()

Let us find a solution of the cquation (a) satisfying
(gndilﬁon (7.10) for the stress function on the contour

We cxpand the right-hand side of the equation (a) on
the interval 0 -2 B < n in a Fourior series

——Zal).:—.s—';ﬁzh—:_‘-sin(h+l)p (b)
f=rt

and seck the solution of the cquation (a) in the form of a
sories

D, py= 3, fn () sia 2+ P ©
2
Substituting the cxpressions (b) and (c) in the formula
(), we obtain an equation for determining fy ()

T TR X

@ T e = ERFTEE I (@

By solving the equation (d), we find
fa(r) = Aar?™ 4 Bpra"t 4+ Cor?, 1.»
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where A, and B, are integralion constants,

Co= 8aG
" XN @A+ 2T )

is a constant in the particular solution.

The series (c) satisfies the condition ® =0 on the
straight sections (8 = 0 and p = n). We determine A,
and B, from the other two conditions

Ja @) =fo (b) = 0.
We obtain, finally,
Ia ()= Cab? (p*—anp?™' — b,p7"1),

whero

1— ks v 1—ken-t
T n:k‘“’, —T

an
k=alb, p=rlb.

The torsion function (c) is

O(p, ﬂ)—-b‘::'n Ca (02— anp?™ — b0 1) sin (20 5. 1) .

By (7.6),

1
T\

'np+xxmp:»}%%"-.
B.=Y,c0sp—X,sinp- — L2
We oblain, finally,

=0 3 Co(2n 1) 10— 0™ — b0 cos (20 1 1)B,
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B

ZagT P 40"+

Bo=—b 3 Ca@n 1)[

n=0

4 by | sin 20 +1) B

The resulting shearing stress attains a maximum value
when p = 1and B = a1/2 (at the middle of the semicircular
arc of longer radius).

Determine the relation botween the angle of twist @
and the torque M.

» Consider the torsion of a bar of semicircular section
when a = 0 (Timoshenko's problem).

7.7. Foppl's problem (1905) (36).
A conical shaft is twisted by a torque M, applied to its
vertex (Fig. 70).
-

Fig. 10

Determine the shoaring stresses.
Any function of the ratio
= cos f = conslant

VFEE
satisfies Eq. (7.19).
The function  is taken in the form

e I

The constant C is derermined from Eq. (7.21):

c— 3ar,
TRE—3cospFcos ) "
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The shearing stresses are, by (7.18),
B, = —Cri(* + 2% B, = —Cral(® + 2%

7.8. Melan's problem (1920) [551.

Fig. 71

A shaft in the form of an ellipsoid of revolution is twisted
by torques M, applied to its vertices (Fig. 71)
Find the shearing stresses.

The elliptical co-ordinates & and 1 are related to the
co-ordinates r and z by the equalities

r=asinh §sinn, z=asinh§cosn.

The lines n = constant represent a family of hyper-
bolas, orthogonal to the ellipses § onstant, whose real
axis is Oz, and the conjugate axis is Or.

The lines § = constant are a family of confocal cllipses
with an interfocal distance 2a and a major axis coin-
cudug’ with the axis Oz (see Fig. 13; in Fig. 71 this is
the axis).

The function ¥ is taken in the form

$ = C (2 — 3cosh  + cosh? §).
This function vanishes on the axis of the shaft (£ = 0).

It is constant on a surface of § = constant corresponding
to some ellipsoid of revolution.
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The stresses are

w=0, ‘n=m-
For n=1/2, ie., on the axis Or
€ _r
@ VrExe '
7.9. Melan's problem (1920) [55).
An infinite shaft, having the form of one of the parts

of a hyperboloid of revolution of two sheets, is twisted by
a torque M, applied to its vertex (Fig. 72).

=2 tanh g =

Find the shearing stresses.

We assign the stress function in the form
p = C (2 — 3 cos n + cos® n),

where the constant C is determined by formula (7.21).
The stresses are

_ 3Csinn _
= F IR o e 0 =
B Investigate the torsion of a shaft with a lateral surface
generaled by revolving a hyperbolic arc about the con-
jugate axis (Fig. 73).

Hint. Take the stress function in the form
$=C (2 — 3sin 1 + sin® ).
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7%

, Tlg, &, )

Fig. 73 Fig. 4

7.40. Seo (521, p. 96. i
Investigate the torsion of a cylindrical shaft weakened
by a hollow in the form of an ellipsoid of revolution whose

major axis is situated on the axis Oz (Fig.

ty of (7.42)

n=2 A,=Ca', By=0, C;=1, D, =D,
we obtain

p=cr {1—D[EREE=ID S £}, @)

Assuming in the third eq

where

D= 1
T cosh g (Z—3simi ) _ 3. N
T T
The function (a) is zero when r = 0 and § = &,, i.e.,
on the nxis Oz and on the contour of an ellipse in the axial
section of the shaft. As z— oo, the function § tends to

:::c(vllno Cr, i.e., to the solution for a solid cylindrical
aft.
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The shearing stresses are
Ma:m‘v]smln’t {|_D[mh§

~ {cosh® E—cost nir

—lnmuhﬂ},
Casin®n b cosh? § + 2 sinh?!
2 e {dcoth g4 D[R EELIE

cothEIn Ianll—J

A

On an inner curved contour (=E)
cDa

=0, =

»Investigate the torsion of a cylindrical shaft with an
elliptical hollow whose major axis is perpendicular to
the axis of the shaft.

Hint. In choosing the function § nssume in the third
equality of (7.44)

n=2 A.=Cga, B,=0, C;=1, Dy=D.

igate the torsion of a cylindrical shaft with
ical hollow situated on its axis.

Hint. In choosing the fanction ¥ assume in Eq. (7.38)
n=2 A,=Cs By= —CéS.



Chapter 8
THERMAL PROBLEM

It is assumed that the temperature varies over a range
in which the elastic coefficients do not change; the exten-
sions are proportional to temperature and aro the same in
all directions, and hence the shearing strains are zero during
the heating of an element of volume. Steady-state and tran-
sient thermal processes are considered.

I. STEADY-STATE THERMAL PROCESS.

A steady-state thermal process is that in which ¢ =
=4z, %) is n known function of position.

To determine a stationary temperaturo field ¢ — ¢ (z, y, z)
uso is made of the heat conduction equation (561

V=0
with the corresponding boundary conditions see: Kqs. (4.24
and (8.23)), i o (420

In the design of structures on a frozen soil, where & =
=k (t), the heat conduclion equation is of the form |57}

a an 9 a i an

o (k5r) + oy (k) 45 (R 5) =0,
whero k is the Maxwell thermal conductivity [see Eq. (8.23))

1. Stafic and geomefrical aquations.
Thoy are taken in the form of (1.4a) and (2.1a), (1.1b)

and (2.1b), (1.1c) and (2.1¢c), depending on the Lype of co-
ordinate axes.
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2. Physical equations

Direct form of Hooke's law: the Duhamel-Noumann equa-
tions (1838, 1885)

P A AR AL NWET S
=g V=0 Gt XD 4al, =g Va @)
b oA Y Hat, =g T

where a is the coefficient of lincar thermal expansion (1/°C),

at is the unit thermal expansion.
Inverse form of Hooke's law

X =0 + %e,, — Kat, X, =Gey,
¥, = A0 + 26e,, — Kat, Y,=Ge, ®2)
7. = A0 + 2e,, — Kat, 7 =Ge,,
where K = 2G + 3\ = E/(1 — 20) is thrice the bulk modu-
lus (see Problem 1.3).
3. Duhamel-Neumann thermsl equations
( =6) 2 - GY%u,— Kage =0,
(- +6) 2+ Gvtu,— Ka 3 =0, 3

0.-+6) 2 + Gviu,— Kagr=0.

The surface conditions (1.2) expressed in torms of the
components of the displacement vector u are of the form
. og s uy 2
(10-+20 G246 (G2 4+ ) mt
4G %+0;‘»)IL=KGH.

G(%+'ﬁ'—:)l+(m+2€%’-)m+

+a(%+”7"".) n=Katm, (8.4)
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G(%"'%‘)HG( Ty
+(m+2ﬂ%) n=Katn.

From Egs. (8.3) and (8.4) it follows that the therma)
problem reduces to the usual elastic problem involvipg

body forces

duy\
+52)m+

X, Y, Z=grad (—Kat)= —Ka (96, 2 2

and an external normal surface pressure

p = —Kai

4. Beltrami-Michell equations

- PO’ 3
VX, 2L T R U 260 S =0,

2(M 70" 2 ?
vz, 4 2040 767 iﬁf; Vi k=0, @5)

2046) #8° Ll
VRt T gy T gy 7 O
A . 7
vy, 2E0 SO 4 26T e,
- 2(46) 7€’ £
Vet =5 g+ Wag g 0
where
O =X, +Y, +2,~ K0—3Kat,
2046 _ 2 26K E
K 140’ X% T—0"
5. Solution of Lamé's equations

The solution of Eqs. (8.3) is taken in the form
B, P g, (60)

wl i
here u is the goneral solution, u® is a particular solution-
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The general solution is assumed according to Chap. 4,
for_example, in the form proposed by P. F. Papkovich

26 (u, u, ut?) =4 (1 —o)v.,z,,—%‘
where ; are arbitrary harmonic functions,

=2 + ¥, + 25

Assuming, in finding a particular solution,

o OF F ¥
S TR Rl @®7
we obtain, from Eqs. (8.3), Poisson's equation for the

function F

- (8.8)
from which
. L(E n DAV
Fle v 9= — oy ‘S Vet u— T =0
(8.9)

where E, 0, § are the co-ordinates of an clement of volume
i¥, V' is the volume of the whole bod
The boundary conditions (8.4) are

(o226 ,,:i.. yi+6 "Z—i"*r a;:;" Jmet

(S 2 e i (),
ey e S L
LRI

6 S e (S FE e

+ (20w 426 22 ) =2t n—26 2 ().
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duy 2
e
=G ), =

a,

y (2, y), ur=az, ®41)

Xe=Yi=0, Z= g (X —v,)—
— i a—an,

Xe=Xalm )y Yy =Y, (5 9, X, =X, p.
Equilibrium equations

Xy, 0Ky e Wy

Tty =0 S 12)

Strain compatibility equation

VXY, + B g, (8.13)

By intcgrating Eqs. (8.12) and (8.43), wo obiain the
stresses

_AU-T) p - PWU—T) _ _FW-mn
i e
(8.44)

whore U is a function satisfying the biharmonic cquation

vV =0, ®.15)
T is n function satisfying Poisson’s equation

vzr—.%:-_:.. (8.46)

To determine the displacements, it is nocessary to inte-
wrato Eqs. (B.1), with (8.41),
WO O FE= B x Ly ke ig,

P
Wh+6) Gr=2tBy by | ke sca;
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215
by integrating, we oblain
26046 ue=23E { v dz— (1.6 240
—AGaz+ i (¥),
26 (G uy=25E (gway—p.40) 280
—2Gay +/z(2), (847)

where f, () = Ay + B, [5(2) = —Az + C are functions
corresponding to a rigid-body displacement.

In solving the problem in polar co-ordinates, formulas
(8.14) arce transformed into

1 0Ww--T 1 aW-T
e

#W—T)
b’u':_(,,,. U

818)
2 1 a(U-T)
By b= - [+ 25 )
and Eq. (8.46) s
ST 4 T | A @T _ 2Kat _
TG b E R = AR = ®19)

The displucement components re found from the equa-
Lions

2 (. 4-6) Y. = 21X g % by 4 GKat —AGa,
26 (11 G)(}%"_+;)=

2426 gy 2 R, +GKat—MGa.
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By integrating these equations, we obtain, fnally,

2 i aU—m
260+ =252 [ yar— .16 2E=10 _
—hiGar +F,(B),

26 +6)up = — 222 §{vwarap— (8.20)

—Fvwdrare g [r [ 29Dy
+B02AK (iap— [ P @ a1 P,

where ¥ (B) = A sin B 4 B cos B, Fa(r)=Cr+ A are
functions corresponding to a rigid-body displacement.
7. Plane stress
Basic conditions
Z,=X,=Y,=0,
Xe=Xz(z 9), Yy =Y, @ 9 X, =X,z v
Formulas (8.14) and (8.15) remain unchanged, and Eq.
(8.16) reduces to

v!r=f—f’¢-z =t (8.22)

). 8.21)

To determine the displacements, it is necessary to inte-
grate Egs. (8.1) with (8.21).

. TRANSIENT THERMAL PROCESS

A transient thermal process is that in which f=
=1(z, ¥, z, 7) is an unknown function of position and
time 1.

To dotermine the temperature, uso is made of the heat
conduction equation

*vi S % =5 (8.23)
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where x = lc/cg (cm®s) is the thermal diffusivity, &
(cal -s/om?®.°C) is the Maxwell thermal conductivity, ¢
(cal/g-°C) is the specific heat, p = y/g (g-s¥em") is the densi-
ty, W (cal-s/cm®) is the quantily of heat generated in unit
volume per unit time by a heat source situated within an
element of volume dV.

Equation (8.23) is integrated taking into account various
surface diti The following situati are most fre-
quently encountered in the solution of problems:

(1) The temperature on the surface is a given function
of position and time.

(2) The heat flow through the surface of the body is zero,
i.e., at all points of the surface with normal v we have

at
0 (8.24)

(3) The heat flow through the surface of the body is a
given function of position and time.

(4) There is radiation from the surface. If tho heat flow
through the surface is proportional Lo the temperature differ-
ence al the boundary between tho body (¢) and the surround-
ing medium (f), i.c., if the heat flow is determined by tho
expression

H (& — 1),

whore H is the surface heat transfer coefficient, the boundary
condition is of the form

ke H (t—1g)=0. (8.25)

av’
(5) At the boundary between Lwo layers
My Oty
b=k
PROBLEMS

8.1. Determine the stresses in a symmetrically heated
(¢ = ()] long tube (plano strain) of outer radius b and
innor radius a.
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According to formulas (8.18)
— & (U—T)
Ro=p U0 py=p=0, =220
From Eq. (8.19),
&°T 1
=+
or

L3

d ( 4T\ _

w(rgr) =t

from which

T_-C,+C.lnr+j%jl.rdn
LA

The function U should be taken in the form
U=Cilar+Cys.
According to the formulas (a), the stresses are
.
Be= G258 a0 L (irar,

By= -G o0, L {turdr—t,.
4
The arbitrary constants (C, — C,) and C, are determined
from the conditions: when r = a and r = b, , = 0. from

which

¢ =

1]
1
T [ tyrdr,

. .
C,—C.:ﬁ-l’b’sl.rllr—a’jl,rer‘
The stress Z, is determined by formula (8.11) since

X+ Y, =R + 8,

For a very short tube (plane stress), ¢, is replaced by f,
according to formula (8.22).
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8.2. Gadolin’s problem (1858) [58).

Determine the stresses in a long cylinder made up of two
tubes of different material fitted on each other (Fig. 75).
The temperature of the cylinder is £ = (), Le., it is sym-
metrical about an axis passing through the centre. The con-
tact between the tubes is maintained throughout.

‘Qa Fig. 75

£,y

Denote the pressure between the tubes during heating
b,

yThe value of X is determined from the condition that
the displacements of the points of the outer radius of the
inner tube u;" and of the inner radius of the outer tube
uf® are the same.

Accerding to formulas (8.20) and Problem 6.1, the dis-
placements of the tubes in the radial direction are

" "

it {trdr—ri furdr .

26,ut = —2 L +-:-Strdr+
v

=T

3
3

Gir ¢ 1426,
oo ) =X (MR e+

i 1
=5 @
ot {trdrmrd{trr o
2 ___ 0 0 1
2l — et g trdr+
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Gor ¢ hei26 3
B s o ’.\'lrdr+X(1—' Fer e
[
i)

The equations (a) may be wrilten more compactly as
26" = @y (1) — X1 (). 26 =2 (N + X2 (), (1)
where the values of g; and ¥ are evident if we compare
the equations (a) and (b).

Since when r = ry, u = uf®, it follows that

Gy (rs) — Gy (r3)
X =22 onds Ve
AN TN AE ol ©
8.3. Determine the stresses in a non-symmetrically heated
loug tube of inner radius a and outer radius b. The
temperature in the| tube is cxpressed by a known function
t=1t(, p).

Since the case of planc strain is considered, we apply

(I;T;;du (8.18). ‘The function T is calculated from Eq.

VT =4 p), @
where
i B =2 p).

We expand the function ¢, (r, B) in a trigonometric
cries

WD =m0+ 3 lon ) cosnb g, sl )
where

P (r)= £i(r, B) cos np dB,

2y

()= | 4,6, B)sin npap.
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‘The term «q (r) is excluded from the consideration since
this solution is given in Problem 8.1.
The function T is sought in the form of a series

T= 2‘ [/a (r) cos nB -+ g,i(r) sin nB). ©

Substituting the exprossions (b) and (c) in tho equa-
tion (a), we find the following equations for the unknown
functions [, (r) and g, (r):

[ =2 10 () = 0 (),

” @
85 () € (1) — 25 g (1) = ¥ 7).

Since tho equations (d) are of the Euler type, by intro-
ducing a new variable z = Inr (r = ¢), we obtain the
first cquation of (d) as
[i(2) = 12fn (2) = ¥ (€') = 0 (2). (e)

The general solution of the equation (c) is
In(2) =< a,em {-bpene.

A particular solution is found by the method of varia-

tion of the arbitrary constantsa, and b, (sce Problem 3.3).
We obtain, finally, for f,(z)

In(8) = ape™ 4 bpe-ne 4 § ™0, () da—

lin

- je"u,.(z) dz, n

where &, and [, are arbitrarily choson numbers.

After ‘tho corresponding replacement of the function
@a(2) on tho basis of the equation (o) wo obtain a similar
expression for g, (z). As a result of the substitution of the
expression (f) in the formula (c) and the inverse transfor-



208 Ch. 8. Thermal Problem

mation to the variable r we find
- . r
r=3 [;—:j g (r) d "‘-T 5 g, (’)er cosnf +
nmt o dn in
- ’ )
+ 3 [ [ re a5 [ 1t () arJsin g,
n=t " in in

The terms of the general solution will enter into the
expression for the function

The biharmonic function U is taken, by (6.13), in the
form

U=[B+ Cort 4 Dir g — 220 g ]+

T—o, "Puinl

-
4 2 (Aar™+ Bur™2 4 Cor" -1 Dyr™3)sinng,

w2

The stresses are determined from formulas (8.18), after
which the arbitrary constants of the general solution are
found from the conditions: when r =a and r = b,
R, =B, =0.

8.4. See [59).

Determine the state of stress in an infinite triangular dam

due to a temperature ¢, =A§)mp. (B) (Fig. 76).

/N .
ﬁ :
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From Eq. (8.19) we have
r=é’,{%[sin (k+2)8 3: o (B) cos (k-+ 2) pdfi—
-m(k-n)nj: on (B)sin (k+2) pap ]| =
-3 e ®).

=
The function U is taken, by (6.13), in the form
U =r?(Ayc08 2B+ By sin 28 + C; + Do) +
+é‘,‘ ™2 (A, cos (k+2) B+ Bysin (k+2)p+
+ Cy cos kB + Dy sin k).
Further, the stresses are determined from formulas
(8.18):

= 2C, 4 2D, — 24, cos 2B + 2B, sin 2 — g, (B) +

+ 3P e D102 s+
= (k1D Bysin (64 2) B+ (2— ) Crcosk+
+@—k) Dy sin K-+ 64 (B
B= 20,7+ 2D,8 + 2cns 39— 2Bysin 28— s ) +
3 k1) (k+ 2 [ Anoos (k+2)B+

Ay

“+ By sin (k +2) B+ Cy cos i+ Dy sin kp— 5281 |,
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Ro=B, = — Dy +24,8i0 28 + 2B, cos 28+ ‘Tg; ®+
+3) G+ ) A [(k+2) dysin (e+2) p—
Ll

. w(B)
— (k+2) Bycos (k+2) B+ KCy sin K—kDy mkﬁ.l% .

The arbitrary constants are found from the boundary
conditions: when B =0 and f = a, Ry = By = 0.

In [59] G. N. Maslov examined the cases when the tem-
perature varied according to the laws

n n
t=q(@), ¢ =.§2 Pon(B), t= .g;zr"% ®), t=ro@)
and plotted graphs of stress variation.
8.5. Determine the state of stress in a hollow sphere of
inner radius a and outer radius b due to a temperature ¢ =
=t(r).

For reasons of polar symmetry il is obvious that the
only non-vanishing displacement is u, = u, (r). According
to Eqs. (8.3) and (3.3b), we have
H_ 4 (du 2wy Ke dt

=ar ('Tr A =

The general solution of this equation is

oy | rudr.

u=Crt+Sap
From 1gs. (8.2) for polar co-ordinates we obtnin
R=20+26 %2 _ Kat = KC\— 4655 —
_ 46Ka Lj"r,“h.
o (0]

G S
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From the boundary conditions of the prob]
r=aandr=b, R,=0) we fnd = T oOCT (When

v
4Ga § rudr

C=grme—a)

a

4 e
3
c,=%—|’b,_‘_a, j reedr— I ru dr],
o
The cquations (a) are finally
b .
4GKa r—g 1
o= [y | rrar = [ ruar],
a a

By A =255 [(b.z':—',';,‘;',, fr‘tdr+%jrwr],
2 2

By the cquation (b),
) .
o [ 46R+Ke K
T | e | =% S r’ldf],

a

U=

The solution for a solid sphere is obtained assuming
Cy=a=0.
8.6. Determine the stresses in a cylindrical body of revolu-

tion due Lo ¢ = ¢(z, r), where the z a incides with the
axis of revolution.

In this case, in the absence of body forces the stresses
are calculated by tho formulas of axially symmetric de-
formation (Problem 4.1) for bodies loaded on the surface
by a normal pressure Kat whose intensity varies along the
axis of the body, and with fictitious mass forces (8.3).

Assuming

v o

15-0973
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and
wg-::%t(z,r)=h(ivf)-
where

... 1d... P...
RO e e R I

we oblain the stresses by the formulas

) b gy W=D _ gop]

"’“%l—u +6) = T'-
] LS 1 0W=T) _ gap]

R’"W[z(i-w) V==~ ’I-

0 [3ht4C _BW=T)_ ]
7= L[S v _ZEZD_ver],

(a)

0 [ A2 rU—
K sy v - (.m
Here
A NG A426
oG T mEe 2T Toae %

The ions (a) satisfy the equilibri quations (8.3)
and the Beltrami-Michell equations [Eqs. (8.5), sce
Problem 3.1).

The function U is chosen in one of the forms satisfying
the biharmonic equation

L 19 a* \2
(FF+ratm)u=o L]

Below are given some particular solutions of the equa-
“tion (b):

TEn=3n0

The formulas (a) are obtained from the general solution of the non-
homogencous equations (8.3) in cylindrical co-ordinates.
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where /i (r) are functions of r (Problem 4.1);
U 1) =€+ Cazt Ca 4+ C)In r,

U r)=C@+ 2,
where n = —1/2, 1, 1/2;
Uz, r)=C(?+ 2%,

where n = —3/2, —1/2, 1;
Ut n) = C[(r 2y — g e 2y ]
etc. (sec the textbook [60]).

The arbitrary constants of the solution are determined
from the boundary conditions on the surface of the body:

Z,=R, = —Kat, Z,=0.

8.7. See the monograph [58].
Determine the state of stress in the half-plane z>>0 due

to a non-uniform temperature ¢ (z, y) :ﬁ"; t(z, y)
(Fig. 77).
To solve the problem, the I\lnctiops t, T, and U are

represented as Fourier integrals. As is known, a function
xy) Fig. 77

X

/ (z, y) given in an infinite region can be represonted as
a Fourier integral if this function satisfies a Dirichlet con-
dition and, in addition, tho condition

J T 1rewiady=a,

whero A is a finite quantity.
15+
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It tho function ¢(z, y) satislies the above condilions
and is absolutely integrable, then

bz )=

=l,;f§'da.da1 Il j't(g, n)cosay E—z) x

X cos @, (n—y) dEdn.

The function 7' satisfying Poisson’s equation is of
the form

®w
1 [ 1
T@o=—5{ | aiagx
11
X (04 (2, @y, o) cO3 @Y |- 0y (2, &, @) 8in ayy| dor, da,
where

o1 an @)= [ 1 n)cora, €~ ) cos cmand,

- -
0y (2, @y, @) = j j £, ) cos e (E— ) sin aymdndt.
LS
The function U is taken in the form
oo
U=5 j i 191 (2, @y, @) cosazy -
o

+ %2 (2, @1,a2) sin ay) dey dary,
whore

W (@ @ @) = (4, - Byz)eew,
Ve (2 01, @) = (4, + Byz)eaur,
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The stresses are, by (8.14),
Xo= —o | [ {bi (e 0, acosay +
o0

(5 @ @) S e g (045, @, ) osay
w2 (2, o1, ) sin oy} day daty,

1
Y=

ct—g

H\ﬁ(z. @y, @) cos azy +
,
F ¥ (5 1, ) Sin ey 4 griar (07 (2, 0, o) conay -
w3 (e, au, @) Sin Gay)} dasy da,
Xy ,:—;[ S%{—vi(r. @y, &) sin oy 4
v

b (o, @, @) cOS @Y+ “f':"’% 10] (2, @y, @) sin ey +

+ o (2, @y, a,)cos a,,y]} da, da,.

From the boundary conditions (when z=0, Y,=0
and X, ==0) we find

_ 00 @y a) _0:0, @, @)
A=Srar o A= rar
B, = L0 0y, @) 400, (0, ), @)

! oo '

By =930, %1, 92)+0,0,(0, ay, @)
== Jmmt

The foregoing algorithm enables one to obtain the gen-
eral solution of the problem, but the calculations |Evo]v3
great difficulties due to the i ion of
functions.

8,8, Sce the monograph [56], Chap. VIII, Sec. 2.
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Determine the stresses in thc.half-sApnce 2220 in the pres.
ence of a point heat source of intensity Wy on the surfaco,

We place the origin of co-ordinates at the point heat
source. The analytic expression for the temperature
field produced by this source in a_body ﬁlling the whole
space ;s determined by solving Eq. (8.23) in the form
of (8.9):

¢ = WaldnkR, ®

where R = J/® + 2%, Wy, is the intensity of the heat
source, k = xpe.

The temperature ficld (a) can be used for the case of
a half-space if the surfaco bounding the half-space (z = 0)
is assumed to be perfectly thermally insulated. Indeed, the
temperature gradient

is zero when z = 0, i.e., the heat flow in a direction nor-
mal to the surface of the half-space vanishes. .

To find the state of stress, we use the thermoelastic
displacement potential F of Eq. (8.8).

For the present problem, Eq. (8.8) is taken in the form

V=4, 0]
where
e ldoawy

—0 4nk

_ A particular integral of the equation (b) is Lhe expres-
sion

‘R
Fain;

this can easily be verified by taking into account the
equalilies
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The stresses are delermined by the formulas

R,:za( v!ll) ,_c(___

-8 (=)= ().

Bp=26 (12 —voF)= —c L, ©

All stresses become z¢ro as R — co. On the surface
0), B, =0, but the normal stress remains, Z, =

Ir.
T

this stress, we i on the solu-
tion obtained a second stress field defined by Love's
displacement function [5] given in the form
¢=Al*In(R+z2)+ Rl + Blz*In (R + 2) — Rz,
where A and B are as yet arbitrary constants.

The stresses of the second field are determined by the
formulas

2w (ove—3¥) =

(20—%) @A+ B+

2Bz

S
%R

2 [(2 9 V’w—ﬂ]=

(2A+9)—2n],

:—M—[(ZG—I)(2A+B)+ ,’,’j",

2{a—oyvp—2t

1—0) _
A i J(2A+B) ,,+,




integration constants 4 and B are determined f
th;r ’:;u::itgns: when z = 0, and hence R =r, rom
2,=Z,+7%.=0, Ri=R. + R =0

By writing out the last equalities, we find
(3—-20)(2A+B)—-23——(1 —20)¢c/2 =0,
2(1—0) (24 + B —2B =0,
from which
24+B=(1—0c2 B=@—o0)—20c2

Now, by the formulas (d), we obtain

Rt b (258 —5), Z=b 4 (145).

o=y (R (129031, R,

and finally, by adding the two stress fields, (c) and (e),
we find

R,=—2(1—0) R‘iz,
B,=2(1—u)cc(ﬁ;—%), ®

Z,=0, R,=Z2,=0.
The displacements are determined by the formulas

_F 1 Pe
=g~ 1% e =¢ 1=V

_oF 1 - 7q
=G+ 1oz (20 -0) Vo 5F |~ @

=c(1—0)In(R+2).

It is seen from the expressions (g) that the displacement
u, remains bounded at infinity, and the displacement u:
increases indefinitely. At the origin (heat source), both

1 have a singularity. .
BBy differentiating the expressions (f) and (g) with
respect to z, it is possible to obtain the stress and dis-
placement fields in the half-space subjected to a heat dipole
(source and sink), located at the origin, whose axis coin-
cides with the z axis.
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8.9. See |15Il, Problem 97.

The initial temperature of a sphere of radi i
symmetric and is determined by a flmctio:nus/‘:r)l.s g)‘:nl‘{I:Z
surface of the sphere, 0°C temperature is maintained.

Determine the temperature at any point inside the sphere
for v > 0.

oth,:: Ir]::;‘ conduction equation (8.23) for this case is
Assuming

t=vlr,

‘where

v=uv(, 1),

wo obtain the equation

_
e @

2
Ly

with the boundary conditions

v(0, ©)=0 v, 1)=0 (b)
and the initial condition

v(r, 0)=f(). (©

By solving the equation (a), with the expressions (b)

and (c), we obtain

2 o - B amr f . nnr
t(r, t)=F2¢ @ smTir/(r)sder.

n=t

Further one can follow Problem 8.5 for the thermostatic
case, and Problem 10.6 for the thermodynamic case taking
into account, in addition to the temperature, the inertia
forces.
» See [15], Problem 106.

The initial temperature of a sphere of radius a and of
the surrounding medium is 0°. From the time © = 0, the
surrounding temperature rises linearly with Lime, so that
t = b, where b is a constant. The heat exchange between
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the sphere and the medium takes place according to
Newton's law [Eq. (8.25)].

Find the temperature distribution inside the sphere
considering the problem to be polarly symmetric.

8.10. See [15), Problem 116.

A cylinder of radius ¢ and length ! with temperature
t=f(r, z) when T =0 is placed in a medium with 0°C
temperature. The heat exchange of the lateral surface and
the bases of the cylinder with the surrounding medium takes
place according to Newton's law.

Find the temperature distribution inside the cylinder at
any instant.

The heat conduction equation (8.23) in cylindrical co-

ordinates in the case of axial symmetry is of Lhe form
4 PN _ ot

(Tt tas)=a @

The boundary conditions are represented, according to
Eq. (8.25), as

!
kot Hlmg=0, kSt Hi|ay =0, (b)
ket Htlpea=0, £(0,2,7)< oo,
and the initial condition is
Lz 0)=f(r 2). (©)

By integrating the equation (a), with the expiessions
(b) and (c), we obtain

-
(2= 3 Auda (<) (cos 22 4
honod
P
2oz )
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2 Ia

Ann = TR F T P (pF DT j S” rax
XJ., ""r ) (oos a2 +5- L gin InZ )dzdr,
Hy = Hlk, p = Hlk,
u are the positive roots of the equation
pJo (W) + HiaJo(p) =0,
v, are the positive roots of the equation
2tanv = v/p — plv.

hensi f he of Bessel
functions to p 1 and heat duction is

contained in tlle monograph [61].
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CONTACT PROBLEM

Contact probl are d with the de i
of the state of stress and strain in the region of contact be-
tween two bodies.

Besides the general relations of the theory of elasticity,
in the solution of contact problems extensive use is made of
the formulas given below.

1. THE ACTION OF PUNCHES
ON AN ELASTIC HALF-PLANE

In studying the action of an absolutely rigid hody (punch)
on an elastic half-plane (y > 0) under planc strain condi-

P
7 % rig. 78
>
Yl
tions use is made of Flamant’s formula (Problem 6.4) (Fig. 78)
—o?
u, (2, 0)= _"’(“‘—B)" ]n%_%=
2(1—0%)P
= —20=P )y g g, (9.1)

(@, 0, 0= ;Wn
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Ifa {orw P is applied to a punch having a flaL base with
eccentricity e, the vertical displacement diagram for the points
of the base must be trapezoidal and is determined by the
expression

u, (z, 0) =4+ Bz 2
(Fig. 79).

The equilibrium oquations arc of the form

jrma-r. {r@sa=re ©3)

By neglecting the frictional forces over the base of the
punch, we obtain the lowi litions for the d il

Fig. 79

p(x)

o)

Yy

tion of the normal stresses on the baso: when y = 0, X
when y=0, and —a <2z <@g

[

1y (2, 0= —24ZD [p@Inlz—t dt= A+ B 00

wheny:Oand——a>x>a,‘p(z)=0‘ _

If the base of the punch is bounded by a curvo ys =
= — f, (z), the pressure p (z) on the given segment of contact
—a <z < ais found as the solution of the integral equa-

+ The constant C of formula (9.4) is incorporated in A
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tion
.
[r@ it -2t & +/(0)=C, (v.5)
Za

where
f@=—yp @8, 0=aE2d1— o)

The solution of Eq. (9.5) given by I. Ya. Shtaerman [62]

is of the form

P S, .

PR - V@2 | V’“,“_’ 3 (9.6)

under the condition

=0 9.7)

expressing that p (z) has no other than logarithmic singu-
larities.

In considering the problem of a punch acting on an elastic
half-plane, I. Ya. Shtaerman [62] proposed a nesw design mo-
del of a foundation, which generalizes thc \Winkler-Fuss
model in the theory of elasticity, stating ihal additional
displacements resulting from local deformations of the
surface of the foundation according to Wink law are
nddol)ld to the displacements of formula (9.4).

us,

a
1 2(1—0?)
(2, 0)= £ @) —2UZT {p @ infe—g =
‘o
—A+Bz. 9.8)
In the case under consideration the determination of the
strosses p (z) over tho base of the punch is reduced to the
solution of the Frodholm integral equation of the second kind

P@—=1 [ p@®)In|z—t| @ =4+ Bz,

where A = 2 (1 — oY&/nE, k (g-f/cm®) is the modulus of
the elastic foundation.
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‘The solution of Eq. (9.8) is given in [62]. F i
model considered, the boumlal;'y sl.mss‘!;z:lumh:':rn::: d\:;l:ﬂ
k = oo, Eq. (9.8) transforms into Eq. (9.4); when £ = oo
we obtain the compliance method, i.c., Winkler's method,
which is widely used in the analysis of elastic beams and
punches (absolutely rigid foundations).

I. THE ACTION OF PUNCHES ON AN ELASTIC HALF-SPACE

In studying the action of a punch on an elastic half-space
(z > 0) use is made of Boussinesq’s formulas (Problem 4.3):
when z = 0 and R = r (Fig. 22),

u; (2, y, 0) =%1—P ey LAy ©.9)

nEr
1—20) P (i — )
(e, y, O)= —UZ2AE _ (o (oaiP g,

If & force P is applied to a punch having a flat base, with

riricities e, and e, aboul the y and z axes, respectively,
tical displacement diagram for the points of the
base must be bounded by the plane

ey, 0) = A + Br + Cp. ©.40)

The equilibrium equations are
fir@ naam=r,
x

§ ] P& mEdan=Pe=p,, o)

s
{§pe wadzan=rpe,=i
¥

where F is the area of the base of the punch.

By neglecting the frictional forces over the base of the
punch, we obtain the following conditions for the detormi-
nation of the normal stresses on the base: when z = 0, X; =
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=Y, = 0; when z = 0, inside the area (region) /"

j ‘ p(E n)dEdn =
=E ) Te-vito- m’l""

=A+Bz+Cy; 9.12)
when z = 0, outside the area F

Py =0
where A, B, C are coefficients determining the position of
the plnne of the punch base during the deformation.

Closed solutions for the problem thus stated are available
only for the cases when the area of the base of the punch is
bounded by an ellipse or a circle (Problem 9.3).

To take account of both the normal pressure p (z, y)
Z,(z, y, 0) and the tangential pressures ¢, (z, =
= X; (2, ¥, 0) and ¢, (z, ) Y, (z, ¥, 0) on the plane of
contact between the punch and the half-space, recourse must
bo made to the general solutions of Lamé’s equations (4.23)
t0 (4.31) (see Problem 9.7).

u:(z, 4, 0)=

1H1. CONTACT BETWEEN TWO ELASTIC BODIES
In the case of contact between two elaslic bodies bounded
by surfaces z, = f; (2, y) and z, = [, (2, y) use is made of the
iollowmg integral equation for determining the pressure
p (% m) in the region of contact [63]):
S—fi(@ W+l v)= —u (z, 4, O+ uP (3, y, 0) =
1 l-vi_i—o' l” __p& mdidn n)d§l'| (9.13)

where § is the nppronr,h of lhe axes of the elusuc bodles due
to local compression in the region of contact, 7 is the area
of contact, u{h (z, y, 0) are the elastic disphcements of points
A; of the bodies (Problem 9.1) calculated by formula (9.12).
PROBLEMS
9.1. Hertz's problem (1881) 45].

Consider the state of stress in two long contacting cyl
ders with parallel axes pressed against each other along
their length by distributed forces of intensity p.
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We take two points, 4, and 4,, on the surfaces of the
cylinders, which are at a distance z from a plane passing
through the axes of the cylinders (Fig. 80a). The distance
between these points before deformation is

yy 4 yo = 2/2R, + 2'2R, = 2,
where
B = 1/2R, -+ 1/2R, = (Ry + R)12R\R,.

Under the load p, the cylinders are flattened in the re-
gion of contact forming a plane of contact in the shape of

Fig. 80

a straight strip of width 2a, and their axes come closer
together by an amount & (Fig. 80b). "
I a > z, the points 4, and 4, will coincide an
S~ —u =yt =BT
or
uP ot up =8—p
160073
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where uj’ and u” aro the vertical {projections of the dis-
placements of the points Ay and As, respectively.

If the width of the plane of contact is small compared
with the radii of the cylinders, cach of the cylinders may
bo approximately considered as an elastic half-planc using
formula (9.4) for calculating the displacements u{
and u.

Assuming the pressure on the contact area to be vari-
able, we obtain

ip(i)di=p-

Under the load p (£) acting on a strip of width dt, the
point A, (Fig. 80c) is displaced in the vertical direction
by the amount [see (9.1)]

= — 20290 p gy agin L2l

= 2o [y by = | @

the total displacement is

| fp(i)lnl-"—él"iri-

E,

—InRy|p}.

A similar expression is obtained for 1" by replacing the
indox 1 by 2.

By adding u} and uf} together, we find
2 71—} i1—0}y [ P
FEFEEE) fromic—tia-pe o,

where C stands for the sum of terms independent of z.

By differentiating with respect to z, and eliminating
the interval of integration z — e, < t <z + e,, when €,
and e, tend to zero, lim (e,/e,) = 1, and the intogrand tends
to infinity [45], we can obtain an integral equation of
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the form

a
[ 2®

) | A= ®

By solving equation (), Hertz found that

p (@)= Dmax YT

where
. _1/ 4R, [i—ai  T—af
poae = 2pin0, 0= S s (5T,

The maximum compressive stress pp,, occurs at the
middle of the strip of contact.

9.2. Hertz's problem (1881) [45).
Consider the strains and stresses in the region of contact
between two spheres pressed against each other by forces P.

We take two points, 4, and 4,, on the surfaces of the
spheres, which are at a distance p from an axis z passing
through the centres of the spheres (Fig. 81a). The distance
between these points before deformation is
G pY2R, + p*2R, = fp*,
where
B = 1/2R, + 1/2R, = (R, + R,)/2R,R,.

Under the load P, the spheres are fattened in the rogion
of contact forming a plane of contact in the shape of a cir-
cle of radius a, and their centres come closer together by
an amount 8. o

If @ > p, the points 4, and A, will coincide giving
(Problem 9.1)
ul -+ u =6 — Pp?, (a)
where 1" and u{ are the vertical projections of the dis-
placements of the points A, and 4,, mppclively.

If the spheres are approximately considered as elastic
half-spaces, we can find the vertical projections of the

160
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displacements by formula (9.9):
; 1= pin
w1 | 2 ar.
¥
where p(r) is the pressure at a distance r from the z axis
for

Hp(ndr=r.

s is the distance from the point 4, wbere lhe deflection is
eing to the point of of the load
p(r)dl’ dF = sdsdy, r = psiny (Fig. 81b).

Fig. 81

By taking the sum of the vertical projections of the
displacements (a), we obtain the integral equation

+ (T [f 2 ar =0t
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or
L 1—at
E,

=% j’jn(na-uo;o-ppz.

By solving this equation, Hertz found 145] that
p(r) =ty F=

where
Peonx = 3P127a2,
PR, (1—of )

o Vv (2 53).

The approach of the contres of the spheros is

1 -a' 1 —al

b (SFA I

The maxlmum compressive stress occurs at the centre of
the contact area (r = 0); here the material acts under con-
ditions of uniform compression. The maximum tensile
stress occurs on the contour of the contact area; when E, =
—E,=E and o, = 0, = 0.3, it is oqual to
Zio = 0.433pmax

Pmax.

9.3. Schleicher’s problem.

Determine the state of stress produced in the elastic half-
space z > O under a circular punch of radius a whose force
of gravity is P (Fig. 82)

According to Problem 4.3,
P )
o (20 -9+ ]

On the surface (z = 0)

;.0 = (1 — a) P/2nGr = (1 — o) PinEr,

where r = V2 F 4
Since the deflections of all points of the punch aro the
same, it follows that

U;q = constant —"‘F‘-é%' (®

u,
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where E, = El(1 — %, p (z, y) is the unknown pressure
at a point of co-ordinates .

By solving the equation (u) simultancously with the
equation

p= _\' plz. y) dzdy,
F

we oblain

Pz y)=
where
po = Pina?.

The pressure diagram is given in Fig. 8
)Derwu the solution of Boussinesq's pmhlun (1885)

2 #fa

4
x
8 2 o Fig. 52
¥
F Mlxg)
y

for an elliptical punch loaded at the centre by a force P.
Answer.

P
P T =Grr—urr
where a and b are the semiaxes of the cllipse.
9.4. Egorov's problem (1938) [64].
Determine the state of stress produced in the elastic half-
space z > 0 under a punch having the shape of a circle of
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radius a and loaded by a force P g

. pplied with eccentricity ¢

The conditions for the solution of (he problem are:

o
&
N
3
N Fig. 83
~
<
e>%
X

when z=0,Y, = X, = 0; when z= Qand r =V 7+ ¢°<

S a,

0 [ plydzdy_ "
U= 7[—17—;+_y7_4+3z.

whenz = Oandr =} 2 + 4" >a,
Pz ) =0
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‘o solve the problem, we set up the equations of equi-
ibrium

Sz=o0, E pla, y)dzdy=P,
3 M=o, jp(z, y)zdzdy = Pe,
¥
3 M.=0, ip(.z, y) ydzdy =0.
The solution satisfying the conditions of the problem is

1+35c0sp
PO ava=a "

(3% cosp4-1) P,

zF
1—

angle a =2 122 pe.

Usmo (r) =

2i

When =0and r =z, Lhe stresses are determined from
the formula
ze

143

P = @

By the formula for eccentric compression.
P
P@)=gm (144 5).

According to the formula (a), when z = — a and ¢ =
=al3, the tensile stresses under the punch are zero sinco

lim
2=(-a)

By using Gorbunov-Posadov's solution [65), investigate
the action of a sn;'iz punch (a/b = 5) on the elastic half-
space z > 0 (Fig. 84).
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Hint. Use the formulas
_A=a (a\ P 1— M
4 (0, y, 0)= "°(T)W- asdofy 2y 2
and tables for the quantities ko (a/b) and %, (a/b) when
alb =1 to 10.

P
t\"!

x
R
6 Fig. 84
-

4

a | a
Y

9.5. Sadowsky’s problem (1928).
Determine the state of stress produced in the elastic half-

plane y > 0 by a punch of width 2z whose force of gravity
is P (Fig. 85).

The frictional forces over the base of the punch are
neglected in the determination of normal pressures.

In using formula (9.1), it is necessary to take into account
that k is a variable quantity and to determine the dellec-
tion due to the distributed load by the formula

o
wyle, 0= — 2029 F g
a
The conditions for the solution of the problem are:
when y = 0, X, =0; when y=0 and —a<z<a

— 2 [ @ injz—tid=4
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when y =0 and —a >z>a,
P =0
By setting up the equation of equilibrium for the punch

Fig. 85

QY =0), we obtain

[ r@y&=>.

Tho solution satisfying the conditions of the problom is

P(I):W%——

where
¢ = Pl2a, T = zla.

9.6. Florin's problem (1936) [66].

Determine the state of stress produced in the elastic half-
plano y > 0 under a punch of width 2a to which a moment
M = Pe is applicd (Fig. 86).

The conditions for the solution of the problem are:
when y =0, X, =0; when y =0 and —a <z <a,

a

~ n;o.) p@®In|z—t|dE= Br;
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when y =0V and ©>2>0a, —a>z> — o,
p(® =0

By sctting up the equation of equilibrium for the punch
(XM, = 0), we obtain

[RIGEL S
2
The solulion satisfying the conditions of the problem is

4d(1—0%) M.

na= nEat

9.7. Sce 67, 68.
Determine the pressure under a punch having the shape
of a circle of radius a in the elastic half-space z > 0 for

Fig. 86

case of known tangential forces in the region of contact £(r)
directed along a radius drawn from the origin Lo the point
under consideration.
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According to Eq. (4.30), the elastic displacements are

Yo =Vi2aF 2 g, ®
(b)
The stresses on the plane z = 0 are denoted by
Xy, 0=X(z 9, Y.(z y 0)=Y(z, y),
Ze=(zy,0)=—py.
By Hooke's law and the equations (a),
My A (6aty) X M oty Y
At = Tl L@

By diflcrentiating and adding the equations (¢) to-
gether, we obtain

F (R + (Fr ) rnd ().

or, noting that

L &
(75 +97) i = — 2840
we arrive al tho equation

FS R (5 ).

‘This equation enables one to determino the harmonic
function in the square brackots, ¥, from its normal do-
rivativo on the plane z = 0 by using the formuln

1 2 (6, 1, 0)
o= -ﬁf SWM.,, (d)
whero

RV =+ G—nit2
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Assuming all functions to vanish at infini i

B the. Tormula (d): inlinity, we obtain,
L0y M O(batn)

Yooty [

_ 1 X G +Y, €0 d

= —m || Vv @

On the basis of the expression (b) we obtain the following
equation instead of (e):

) Xi+Y:
Zero—o =352 | {2 aa ®

‘The normal stress on the surface is, by Hooke's law
and the equation (b),

Pl )= — g [+ —2) %] )

Fliminating tho function 2 from the formulas (f) and
(g) gives
a0y

__20-0)
r73 Py g 2 Vb
— 2 - Xi+Y5
- [ { T ®
whore

rVE= -
According to the expression (n), the surface displace-
ments are
U= @y 0, u =900 w=¥E0.
We determine the deformation of the surface of the
elastic half-space due to the givon tangential forces t(n).
Introduce the function
LGRS IO
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In this case
I —t(eosP=—X, L. _i(r)sinp-. —Y,

ar N
X oY _ _ar_aT_
o et ot T C T8
The formula (h) with p(z, y) =0 is
A—20(1+0) T _ g N
% =0~ 2nE ” - dgdn= X (i)

In the following discussion it is assumed that the func-
tions T and ¢, vanish at infinity. By applying the formula
(d) to ¢;, and differentiating with respect to z, we find

[ 14 7 0)
200600 gy gy,

T
-

from which we arrive at the formula for the solution of the
Dirichlet problem for the half-space z > 0

LR RS AN @

It follows from the formula (i) that
%’L»-n: _ § BENO g,
f

¥ (25,9 = — g i

im V2, ”wdgdqﬁ
o

=g | |+ Vi n ) dan, )

On comparing the formulas (i) and (k), we find the
deflection of the surface of the half-space under the tan-
gontial forces only

(= 4=20049 7 )

Denoting the deflection due to the normal pressure
P (@, y) by u? (p), we obtain
uE) +u ) =20,
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where Z (r) is the equation of the surface of th
indented, or e punch being

ud (p) = Z (r) — uz (9).
The pressure p (r) is calculated by the formula

pin= zaVa’ i""s{
x[Z'(Vr‘sin‘B+u‘) +Z‘(}/ﬁ-—':"l_""?%]

4—241 S . LV s 6 w)
=2 [v (v Psmep ) 4 LV Dam ) Ve r 29 ) au.
For a smooth punch having no corners at the contact
boundary, C = 0.

9.8, Sce [69].

Investigate the state of stress in a circular bar of constant
section (6 = 1), which rests on an absolutely rigid and
smooth foundation and is symmetrically loaded by bending
moments M and normal forces N (Fig. 87).

Fig. 87
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The stresses in the bar are expressed by the formulas

~Ade 1w P
Ri=-5r+ o5 Bi=Gr.

(a)
10 (% _ ¢
Ro=B= -5 (%-F).
where ¢ is a biharmonic function.

The boundary conditions of the problem are:
when r = a, u,=B,.=0;} b
when r = b, R =B,=0; ®
when § = + n/2,
1] b
SE.dr=N, jB.rdr=M. Ry=0. ©
a a

We assume the function ¢ in the form of one of the
known particular integrals of the biharmonic equa-
tion (6.13):

@ = (Ar* 4+ Bri+2 4 Cr-% 4 Dr-++%) cos A, (@)
where A is an undetermined parameter.

By the formulas (a)
Ro=n(l —AN)AP2— (A 4+ 1) (A — 2) Br—
—A (A + 1) Cr-% 4 (1 —2) (A + 2) Dr -M cos AB,
By=IAA—1) AP 4 (A + 1) (A4-2) B +
FARF)Cr2t 4 A —1) (A —2) Dr*lcos AP, (e)
Rp =B, =AI[(h—1) AP+ (A + 1) B —
— (b4 1) Cr*2 4 (1 — 4) Dr-*] sin Ap.

The displacements are determined from the equations

a 1
So=5 (R,—aBy),

TR+ (Ba—oR)), ®

1 0w,  dup _ug_ 2(+0)
TR YT TS h
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_—
e wrbirnry Totiones e pog " *14 S48 10 200
Fup ={=( + o) MP —h—24 54 2))Bri+ 4.
+0+ QA A+ 24 00— 2)IDr41) cos 1§,
Eug = {1+ OMPA 4 (@ + ) A+ 4] Bt 4 (g)
+ (4 ) ACr*t + I(l + 0) A — 41 Dr+) sin Ap.

By setting up the conditions (b), and equating to zero

the determinant A (1) of these equations, we obtain a trans-
I 1 ion for the di ination of A

A() = MA—1)b—24(3—0)(A + 1)a -+ G (1—0)x

A 02 —Da + (1 + 0) B 4 54 ~ 2= +

T 202+ 4+ 2 —20) a Bt — (h)
—2( 4+ 1) 2k — 1 + o) a®1] = 0,

where @ = a/b.

When A = 0, we obtain Lamé's solution; when A = + 1,
we obtain particular integrals of the biharmonic equation
differcnt from the solution (d). The remaining roots of the
cquation (h) give a set of parameters h),,f.

For each m» the are
determined by the formulas

Am = 8y (hm) Fmy B = 8 () Py

Cn = B3 (M) Frny Dy = A () Fis

where A, (Ay,) are the cofactors of the clements of a row
;}r column of the determinant A (An), Fm is an arbitrary
factor of proportionality. .
By summing the solutions over m, we obtain the general
expression for the stress function for a state of stress sym-
17-0973

(®



58 Ch. 9. Contact Problem

metrical in the p co-ordinale
= D184 () P B () P By () P -

+ B (M) P72+ 2] F COS hinP (0]
Substituting the series (j) in the formulas (c) and (g),
we find the values of the stresses and displacements.
il s in Lhe series
(), it is possible to salisfy Lwo integral condilions of (c),
and to req that Ry should be zero at a finitc number
of points r = r; for the local condition of (¢); at the points
r=a and r = b this condition is already [ulfilled [the
equations (b)].
»Solve Problem 9.8 in the absence of
and up along the line of contact r = «.

9.9. See (70].
Determine the pressure when the half-plane
ed by a punch, taking into account the [

y
L)

placements u,

is indent-
tional forces

—a

T=fP {— Fig. 88
— sl o
T
f{x)%

between them. Assume that the punch is in a state of limiting
shear equilibrium* when the horizontal shearing force T =
= fP, where { is the coefficient of friction and P is the force
pressing the punch (Fig. 88).

By taking f (2) to be the equation of the contour of the
punch, we obtain the boundary conditions in the form
Yymo = Xy frec surface,

Xymo + 1Ym0 = 0, Uy = [ (z) + ¢ surface under (a)
punch.

X

* The forco T produces no moment (the punch does not turn).
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Integrating the strain cquations for the haif-plane
gives

x b
£, 1—20 [ (
FutCi=5a—g n) Y,:M;H—J Xy=o In t—2) dt,

: 0]

b x
Iy + 6= | Vim0 @ —2) B n { X,
a a
where £y=E/(1—0?), C; are constants.
The last equation of (b) is represented as
*
2
T :,)"j Xyo dt.
]

v
2 uy4-Co= | VymoIn|t—z|dt—
:

The derivative of the displacement is

nE, (uy _ & 120
7 (47—1)7=0—5 Ym0 g2 — =gy imo. ©
]

On the basis of the condition (a) the expression (c)
takes the form

b

dE 1—20

52) 0= | Yumo 2+ gy WY um @
a

2

Ak, ('7“5-

We introduce a function of the complex variable z=
=z--iy:

»
w (2) < Te— ity = | Yymo ©
@

The right-hand side of the formula (d) is expressed in
terms of the real and imaginary parts of the function (e)
for y =0:
nE, (Juy = 1—20
(R e =Bt 50
By taking the condition (a), we obtain

nE, = —20 —
T (@)= ] gy e
17v
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On the free surface ¥yuo = 0 and the imaginary part of
the function for y = 0 is zero.

The boundary conditions on the sections outside the
punch are: when y =0 and —0 <z < g, b <z < oo,
u, =0;
the boundary condition in the region of contact between
the punch and the elastic half-plane is: when y = 0 and
a<z<b,
bt RSt =2 @) ®
Besides, the function w, (3):

1) may have singularities of the form z-*, where
0 << @ < 1, on the real axis because of the absence of con-
centrated forces under the punch;

(2) must behave at infinity as Pz, where P is the
force pressing the punch.

The constant lost in differentiating the cxpression (c)
must enter into the expression for the function (f) and is
determined from additional data.

Thus, the problem has reduced to a special case of the
mixed boundary value problem of finding a function of
a complex variable (Riemann-Hilbert problem).

It is necessary to find a function that satisfies, on the z
axis, the condition

a(@uz+b@u, =F @),

where

a(@) =0, b(@)=1when —0 <z<a, b<z<oo;
a(z)=1, b(;)=/2’(1‘_’*:) when a<z<b;
PE@="31 (o).

. The solutions of the homogeneous problem are of the
form

b
_iP(z)

[Tl

wy(2)=

‘where P (z) is a polynomlal
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By taking different polynomials P (z). weobhm diffe-
rent solutions of the homogeneous problem:

w;’=(;z%:)°.

—b\1-0
wl= (:—_a) ’ ()
- ( z—b 1
= e
where
1 2(1—o) .
0=;ummn/“_m H
here |8|<<
For the first polynomial of (g), we obtain
E, — 1-0
wy(2) = __2(:73 X
21/-"”’ 20)
b—z\-0 dr
l Jrale= =)= i

For the solution (h) to become general, it is necessary to
add to it a function satisfying the homogeneous conditions

4 "

(c—aV® z—5)i-0" ®

The pressure exerted on the punch is
P (@) = — I [ (2)e-iv0-

If there is no friction between the punch and the elastic
body, then
2(1—0)
fa—20)

Substituting the values f = 0 and D = 1/2 in the expres-
sion (h), with the function (i) taken into account, letting

f=0 and 0=latcum
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3—+3, and separating the imaginary part, we obtain
PE)= —Ypo=

®
i
-—{Lvﬁ:{ruw&—a) G=Dx
1
-y

> Determine the pressure, taking into account friction,
when a half-plane is indented by a punch with a flat base
If (x) = constant] under a force P (sec the monograph {63],
Chap. I, Sec. 8).

Answer.,

wy ()= —

=
Vi—a a5
When /=0 and 6 =1/2,

e 4
- Vi—au=n "

The normal pressure on the surfaco of the half-plane is

L P = MU & L

Ve
CL. the results of Problem 9.5.
8.10. See {71).

Dotormine the stato of stress and strain in the viastic half-
plane y < 0 if oo the segment AH

Y=+ Cy ouy gy G, (@)
©on the axis Oz autside the segment AR
Y,=Nw=m0, X,=T=0, ®)

and the resultent veoter (X, Y) of forces acti n the seg-
meat AR is known mg.'ss)‘n feting o

According 1o the conditions of the problem,
)n;-x. ‘LNd:- ~Y. (©
»
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1f N and 7 were known on the segment A

would be solved. B the problem
By applying the complex-variable method (z = x + iy),

we find ions for the auxiliary (28}:

v - —gi | (N D = di4C,
AB

Y@= — S(N—KI‘)In(l—s)dl—-:\p‘(n)+c.,.
AB

he exprossi (d) in the displ

bstituti 1
formula (5.20)
26 (ug + iuy) = %p () — 3 @) — 1 @)
where for plano strain

=3—4o,

and passing to the limit as 3= T, where t is n point of
the segment AR, we obtain, taking into account the for-

mulus (a), integral equations for the determination of ¥
aud T:

i T
(T@n|t—s1dt+an [ Nwdi=
5 s

- @O [ ©
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I3 T
jN(z)ln|t—:|d:—aajr(z)fn=
-1 0

=@ +C= (4 C.,
where
®—1
=< <1
We introduce into i i Uy -+ iV, and
U, + iV, of the complex variable z
I}
U= [T In@—s)ar,
<t
.
U Wy= [ N In@—2ar. 1)
-1

It is seen from the formulas (f) that Uy and U, are
logarithmic potentials for simple layers distributed on 4B
with densities T and N.

By symmetry, U, (z, y) and U, (z, y) are cven functions
il; y. By the well-known formula of potential theory, we
obtain

1 (3, ou, 1 (au,
T [(F).~(5) )=+ (%), ®
and a similar formula for N.

The plus and minus signs refer to the values of the
derivative obtained when approaching points of the seg-
ment AB from above (y > 0) and from below (y < 0),
respectively.

From tho formula (g), by using the Cauchy-Riemann re-

lations, we derive

: ;
[r@=g [ (%), ae-—4 ] (%), e

==LV +0+C, 0]
and similarly for N,
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On tho basis of the formulas (h), the i
cquations (e) reduces to finding tw(o )real luzltlil;:n:" l?' alnl;:
T continuous in the whole plane, harmonic outside the
segment AB, which behave at infinity as [from the expres-
sions (f) and (¢)) X In |z {and Y In | z|, respectively, and
satisfy at the upper edge of the segment A3 the conditions

Uy —aVa=h+Cn Ustaly=f+Cy ®

where V; and V, are functions conjugate to U, and U,
respecti;lely.h . v

To solve the problem, we map the z plane cut along AB
onto the outside of the circle | | = ; of the phn:gg =
=t + in by the well-known relation

b (ord).

On the basis of the foregoing properties of the unknown
functions we have, for [{1>1,

U,iVy=XInt+ Nat"+Cy,

1

. ()
U, iV,=YInt+ ? bl +Cy

where a, and b, are unknown real coefficients.
Putting{ = re!® (r > 1), and assuming that the func-
tions U, Us and the one-signed parts of the functions V,, V2
are continuous up to the contour of the circle, and also that
the above expansions are valid for r = 1 (it follows that
the series y.ai and b3 converge), we obtain, by the
formulas (i), for 0 <P <
® =
Sla,cosnp+a Nba sinnp=Fi+Ci,
1

T (k)

$b,, wsnﬁ—a}i'.a,, sinnp=Fz-+Cs
where

Fy=f, + a¥p, Fo=/s—oXp:
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By multiplying both sides of the cquations (k) by
%cos mp (m =1, 2, ...), and integrating between the

limits 0 and =, we arrive at an infinite system of linear
equations with an infinite number of unknowns of the form

Onta 2 Gmnbn=Cry bm—@ Y G0, =Ch,

where

A =% f cos mf} sin nf df =
o

={ Ty i (i—m) is odd,
0 if (n—m) is even,

Cp and C;, are the Fourier coefficients of the functions F,
imd i]’2 in their cosine-serics expansions on the interval
0,

If f, and f, have, for example, bounded d atives with
respect to B on the interval [0, n), the seric: on the left-
hand sides of the expressions (k), and the more 0 the
series in the @, ge absolutely and
uniformly. After ﬁndlng Uy + iVyand U, -- iV, we de-
lel;iml(l;)e ¥ (2) and %' (z) directly from the Ionnulns (d)




Chapter 10
DYNAMIC PROBLEM

Assuming that the motion of an elastic isotropic body
(medium) is characterized by infinitesimal strains, we can
write the equations of motion by applying D’Alembert's
principle:

N R
0.4-6) (G2 Tpr 2) FEV ()=
oot Py, P,
=0 (5 5 ) 0.4

or in veclor form
(h+ ) grad 0 -4 CV?u = p e, (10.2)
By using the vector identity
rot rot = grad div — V%
we obtain, from (10.2),
P o
(- 26) grad div w—G rol rol w=p . (10.2)
Under the conditions of motion adopted, the formulas for
strains and Hooke’s law remain unchanged.
1. SIMPLE HARMONIC MOTION

For a simple harmonic motion with period T= 2/p,
where p is the circular frequency of vibration, the displace-
ments can be expressed as

Uy = A cos (pT + &) ux, u,=Acos(pt+ €) Uy

U, = 4 cos (pt + ) uz,
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and Eqgs. (10.1) are obtained in the form

A6) (52, 22, 22) 4G+ 05" (e 1y 1) =0,

(10.3)
By differentiating these equations with respect to z, y, z,
respectively, and adding the results together, we find

(V* + 190 =0, (10.4)
where

h?* = pp*(h + 26). (10.5)

On putting

®* = pp¥G, (10.6)
wo obtain Egs. (10.3) in the form

(Vo) (g )= (1— 25 ) (2 22). (10.7)

If 0 satisfies Eq. (10.4), i.e., V0 = — h?0, the solution

of Egs. (10.7) is
U Wy Uy = uP + o, uP +ou®, wd +u®, (10.8)
where uy, uf is the general solution of Eqgs. (10.7)

without the right-hand sides provided that
P g

OV =divu= o rm - =0 (10.9)
since it is dotermined from Eq. (10.4);
u, g, = — (Z_f ;:. zx_") (1040

is a particular solution of Egs. (10.7) with the right-hand
s

es.

Equations (10.4) and (10.7) without the right-hand sides
aro called the equations of vibration, or the standing wave
equations.

Their particular solutions are:

rectangular co-ordinates

Ufh = elthxslv+ma) (10.11)
(plane wave), where k2.2 -m?=x2;

* In Eqs. (10.3) primes on tho displacements are omitted for sim-
plicity.
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cylindrical co-ordinates
i == 4O, (r |/ 3F—R)* (10.49)
(;y};n;l;:;al wave); when k=m=0, up = (a,f -+ ;) (biz+by)x
o (%r);
spherical co-ordinates

e

1
u ’—"T/Tnn-f-llz () Yo (@, )™ (10.13)
(spherical wave); when n = 0, uf" = er/r,
For vibrations in a plane (m = 0), a plane wave trans-
forms into a line wave, and a cylindrical wave into a cir-
cular wave.

1l. PROPAGATION OF YOLUME WAVES
IN AN ELASTIC ISOTROPIC MEDIUM

When 0 = 0, Eqs. (10.1) become
OV (e, sy, 1) = (s iy ). (0.44)

If 0, o, o, [Eqs. (2.3a)] are zero, so that the vector u
is the gradient of a potential ¢, i.e.,

w=—gradp=i-+j L +koL,

or
PR S
then
6=v2,
® B M

R R N )

"l
order k (see
** Yo (e, B) = YCrnPam (c0s @) ™ is the spherical fusction of

dogree n (see” Chap. 4).

EpJy (pr) + FylNy (pr) is the cylindricel function of
eyt
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and Egs. (10.1) tako tho form
i

(A+26) V2 (txy By ) =P g7 (e, Uy, W) (1045

Fquations (10.14) and (10.15) are wave equations i,
space

vip = m B (10.16)
where ¢; is the velocity of wave propagation, ¢ = u,,

Shear waves, or waves of distortion (S-wavi cs), ir lnvo
no dilatation (0 = 0) lmvc a velocity ¢, = | (:/p, irrola-

tional waves (0, = ), or compression-dila-
Lation waves (P-waves), lnvolvmg a change of volume, travel

with a velocity ¢, = V/ & ¥ 2G/p.
o =gy 1), B (10 16) assumes the form of the
wave equation in a plane

o= (‘,—,, )_—A (10.17)

When ¢ = ¢ (z, <) Isimilarly, ¢ == ¢ (4, 7)l, wo obtain

a ono-dimonsionnl wave equation
ﬂ = ._A (10.18;

Tho general solution of Eq. (10.18) given by D’Alombert
is of tho form

¢=h@—cv)+/s(z+ecr), 10.19)
whoro f; aro arbitrary functions.

‘Tho process expressed by Eq. (10.19) involves Lwo waves
tmvcllmg with a velocity c.

@ (r, 1), where r is the radius vector of a point,
Eq. (10 (8) lakes the form

I
Famo=55. o)
* For u,=%+%, u,,=& J’_‘V’_ we obtain

‘W'm:— and ey, = Uz
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The general solution of Eq. (10.20) s

@ = fy 0 —=ct)r -+ [, (r + cvyr,
where f; are arbitrary functions.
The process expressed by Eq. (10.21) involves two circular

waves, with a source at the fixed point, travelling with
a velocity c.

The surface s of the disturbed part of the medium moves
in tlw direction of its normal v wnlln a velocity c.

for points of

(10.21)

(nin
l,he snr[nol.' s (I3], Article 205) are ol‘ the form

duy _ au, 1. ux / _ouy ou, A oy

w=am ! iy L

ou, ﬂu,,/ ouy au,,/ 1w, .
1=t =t fa= L2 0.9
u, 17u,/ _ au,/ 4 o

G 1= m= e — L 2

where L = cos (z, v), m = cos (y, v), n = cos (z, v) are the
direction cosines of the surface s.

The dynamic conditions (three equations) for points of
the surface s are

au. a a
pe( e, S8, S =—(Xw Yy 2 (10.23)
where X, Y, Z, are the projections on the z, y, z axes of
the stress on the surface .
The right-hand sides of Eq-. (10.23) may be written as
—l’(?.vl-b')l""’ 6 (15 em By n SE) 4

17'4,

T)+ (M ton Z2)], (020

The next two expressions of (10.24) are obtained by cyclic
permutation of the letters z, y, z, I, m, .
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I, WAVE PROPAGATION OVER THE SURFACE
OF AN ELASTIC ISOTROPIC BODY

1. Rayleigh waves [72]

Plane waves of a simple harmonic nature travelling over
the boundary plane z = 0 of the medium z > 0, for which
the disturbance penctrates only a vory short distance into
the medium, are called Rayleigh waves (R-waves). The dis-
placements for wave propagation in the z direction are of
the form

gy Uy wp=u b udy P, u®, (10.25)
whore
wP, g u (s, ke, )72 Qe -,
(10.26)
ud, ul, u = (if, 0, )l Pe-drein-ro
and, by Egs. (10.4), (10.5), (10.7),
B=f_m P2=p_ (10.27)

On the boundary plane z = 0, the following conditions
must be fulfilled:

B, "a_":!_%;o, 1026520, (10.98)
or, in oxpanded form,

Br@imZ=o, k=0,

(10.29)
(x* — 26%)PIR* — 2PIKS — 25/Q/x? = 0,
where A/G has been replaced by x3/h? — 2,

‘The condition k = 0 shows that the motion takes place
in the zz plane (z, = 0

(zy = 0).
The elimination of P and Q from Eqs. (10.29) leads to the
equation

X — 8 + 2t — 16 (1 + 2 + 162 = 0, (10.30)
where %* = x¥/f! and i = KYP.



Wave Propagation Over Surface .
For an incompressible material (A = it =
from Eq. (10.30) wo obtain (b= o), =0, and

% — 8x* + 24x* — 16 = 0.
For the real value of the root x* = 0.91262...,

& =f, &=008737..p,

and the velocity of wave propagation (th i
2a/f) is determined by the l;or;ugl: (the wavelength is

ca = plf = 0.955%. ..V Glp, (10.31)
i.e., it is close to the velocity of shear waves.

The Rayleigh surface waves (R) are formed on the surface
of a half-space as a result of the superposition of the longi-
tudinal (P) and transverse (S) waves at the moment of
reflection from the boundary of the half-space z 3 0.

If the disturbance centre is at the origin, the displace-
ments of points of the half-space coinciding in direction with
their radius vectors produce longitudinal P-waves, and the
displacemnents normal to the radius vectors produce trans-
verse S-waves.

The front of Rayleigh waves away from the disturbance
source has a large radius, and hence these waves may be
regarded as plane. They decay with depth according to the
exponential law (10.26), and predominate near the surface
(z = 0). According to the investigations of G. F. Miller
and . Pursey [73], the energy transferred by various waves
is partitioned as follows: the Rayleigh (R) waves — 67 per
cent, the transverse (S) waves—26 per cent, the longitu-
dinal (P) waves—7 per cent; hence, in the design of ghe
foundations of machines and buildings primary attention
must be given to the study of the Rayleigh surface waves.

Figure 90 shows to scale the positions of the fronts of
different (R, S, and P) waves and the displacements of
particles of the medium produced by each wave at a fixed

* The factor in front of the root ranges from 0.874 to 0.958 when o
varies Trom 0 1o 0.5, respoctively (when & = 0.25, it is equal 10 0.92).
18-0973
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instant. The arrows indicato the directions of displacements
of particles at the front of the corresponding waves (see [74)).

The practical application of the foregoing theory of wave
propagation in an elastic half-space to the design of foun-

2 gwave

Vertical Horezontal,
enl component

componer

e
S84

Fig. 90

dations is given in the monograph (75], and the description
of experiments may be found in (76].

2. Love waves [77]
If a body is composed of two physically diffc
2> 0 and —h <z<<O0, another type of waves occurs,
known as Love waves. The displacements in this case are
of the form
Uz, Uy, Uy = (0, v, 0)eld=—D (—h <z <0),

(10.32)
Us, 2y 2, = (0, V', 0) 9=-0 (2 > 0),
where v and v’ are functions of z*.
By securing the continuity of v and Y, across the
plane z = 0, and assuming Y, = O whenz = — £, we obtain

v=uyscoslog(z + k)] (~h<z<0),
V' = vy cos (agh)e-9% (z > 0),
where v, is an arbitrary quantity,
ot =cld—1, (¢'F =1—c¥ (32,
ot = Glp, () =G'lp",
* Here and henceforth, the unv]rimed symbols ll'ler to the upper
ayer.

layer, and the primed symbols to the lower
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and the velocily of propagation of Love wavesc, provi
v [ ¥ , provi
¢ > Cy 18 determined from the equation provided

b"[l-—;c%f ”2=G(%—1)”“%[(:—;—1)"3‘”.

(10.33)
It follows that the velocity of propagation of Love waves
dependson the h 2n/g, and thus wave dispersion wi

take place.

V. EXCITATION OF ELASTIC WAVES
BY BODY FORCES 5]

If the motion takes place under the action of body forces
X,Y, % dependent on the co-ordinates z, y, z and the lime 7,
the cquations of motion (10.1) aro

W (0 0 N
00 (- 50 ) OV v )
s, Y, 2o (B T T (10.34)
By representing the body forces as*
X, V. Z=grad ©-rot (L, M, N)=(%_a#‘—;‘§)+
. oM aL_oN oM _ oL
(22 2T 5-5) (1035)

and e displacements as
u,, iy, u, = grad @ 4 rot (F, G, H), (10.36)
we satisfy Egs. (10.34) if the functions @, F, G, H satisfy
the cquations
L = ZE_ =
Frodve=0, w0 b (10.37)
26 VG =M, 2 _avi=N,
where ¢ = (A + 26)/p is the square of the velocity of irro-
tational (P)( vuves,)c‘i = Glp is the square of the velocity
of shear (S) waves.
T Relvin's solution (1848) for the static action of forces.
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Particular solutions of Eqs. (10.37) may be representod
in the form

o=z | [§ L0 —renaz ay az,
F=I‘—,:d-j_” L1 c—rley) s’ ay' a2,
a=‘_,:{ J ” LM (w—riey) dz’ dy’ ax',
H=ﬁ j § j LN —rleydz ay' da'.

By expressing @', L’,... in terms of X', Y', Z' by
the formulas

o= _%jij(x'%+ v 2Lz 2 ardyta,

(10.38)

L= jij (232 —y 22) ax' ay ae',

4 P Y (1059
M =H“;j (% 2z 22 st ay

N=#‘H;S (Y";—:'—x'%)dz',ly' dz',

where X', Y, Z' are the values of X, Y, Z at a point (z/, y',
') insido a region T when tho body forces are different from
zoro, r is tho distance of the point (z, y, z) from the point
(&', ¥, 2’), we can perform the intogration of formulas (10.38).

V. DEFORMATION OF SOLIDS UNDER CENTRIFUGAL FORCES

The ions for displ ical about the z
axis (up = duoB = 0u,/0f = 0) aro, by Eqgs. (3.3b),

(:426) 2 +26 28 _ iy,
oy % 0 (10.40)
() 26) 2 — 2k (rog) =0,
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2

or, by Egs. (3.3b"),
.
0.4 6) 5 +6 (ViU —25) = — pror,
+6) 2 +6vau, =0,
where
O=crrtemben =0 42 g e
= G~ oe=0,=0,

p is the angular velocity of rotation.

In a rectangular co-ordinate system we oblain, from

Eqs. (3.32"),
(402 4 6vau, + prpz=0,

(-46) 55+ 6Ty Py =0, (10.41)
V1. PLANE DYNAMIC PROBLEMS
1. Equations of motion
Xy | X, Ld ay, | O, Fu
=0, =0, (1042
2. Equations of Hooke's law
Xo= (hi-26) 5 ""x PR '"y ,
Y, -Gl 20) - “" PN ”"x . (10.43)
du
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3. Strain compatibility equation a
(A+-G) L Juy u,
Vit vy =S T (S 5E) =0,

or (10.44)

(v2— ;’f%)(x, FY,)- 0.

4. Complex-varlable method (78, 79]

By differentiating tho first equation of (10.42) with respoct
to z, the sacond with respect to y, and subtracting onc result
from the other, we obtain

P& F_ 14

(FF ﬁ) Xo= (W 1 )YM. (10.45)

Equation (10.45) is satisfied identically if the stressos
aro equal t

> 1 'O Cald 1 20
Xem G g S V=S (10.46)
where the function ® is the dynamic analogne of Airy's
function, satisfying the equation
( _L%) (Vz_%£)rp(,. yoT)en (10.47)

If the disturbances propagate with a velocity ¢ parallel
to tho z uxis, by applying the transformation
E=z—cr, n=y
we obtain Eq. (10.47) in tho form
& 1 & L i *
(W‘ﬁa_-ﬁ (W‘?,W)""O' (10.48)
where
2\ 12 2
s,:ip.:l(‘l—'—?) L speeiy- .(1_
Formulas (10.46) becomo
X ,ﬂ(l)_ & Fb _ D 1
TR T T
1

Y=g U+B) 5

. (10.49)

(10.50)
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zn
and
XA = T2 p oD, (1051)
Assuming
n=§+sm 2=+ s, (10.52)

we obtain the solution of Eq. (10.48):
@ =Fy (@) + ) + Py (a) + P ) =
= 2Re [Fy (@) + Py (z)), (10.53)

where F, (z), Py (z) and F, (z,), F, (7, Y') are conjugate analy-
tic functions of he complex variabl

and z,
Subslituting expression (10.53) in formulas {10.50) and
(10.51), we find

Xe= —2Re[ (5 +Bi—38) (e +
FEUFB B ()],

Yy = [ +B) RelF; @) +F5 @),
Xt ¥y = —2 (1~ ) RelF; (s0).

After substituting expressions (10.54) in formulas (10.. 43)
and integrating,"we obtain

Gug= —Re[Fi (a0 + 3 1 +B) Fi )],
Guy =T [BiF; )+ 158 Pie)].

Inserting thoso expressions in the third formula of (10.43),
we find

%y 2im[pF )+ S | (0.56)

The problem can also be solved in terms of displacements.
In this case, substituting formulas (10.43) in Eqs. (10.42),
we obtain

ll ;zc L3 ]u, A+G au _p Fus

(10.54)

(10.55)

G('\'“

):G Py +[).+25 0‘ ]"v %

(10.57)
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Assuming
16 PO

Ye= =T Ty
A+26 #O , PO p IO

G o T TG
where ® = @ (z, y, 7), we identically satisfy the first equa-
tion of (10.57), and the second equation takes the form of
Eq. (10.47)

(vt—;}%)(w-“—;%)amo, (10.59)
which, for the case considered above, is solved in a similar
way.

(10.58)

Uy

$. integral fransformation method [79 fo 81]

Various forms of the integral transformation method based
on Fourier and Laplace transformations arc in usc. Below is
given the procedure of solution by one of the forms of this
method:

(a) for each function f appearing in Eqs. (10.42) and (10.43)
or in Egs. (10.57), apply an integral transformation convert-
ing the given equations into simpler equations containing
tho functions f;

(b) determine the functions f; the constants entering into
these functions are found by considering the boundary
conditions;

(c)_by using Fourier's integral thcorem, invert the func-
tion f into f.

6. Method of functionally Invariant sofufions (82 fo 84]
_ According to this method, the solution of the wave cqua-
ion

t

V:,,_:’r'f?"_'m 0 (10.60)
is sought in the form

u =Relf ()], (10.61)

where f ({) is an arbitrary complex function of the argument
£ (@, y, 7) satisfying the wave equation [see solution (10.19)],
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(z, y» <) is a functionally invariant soluti
e ding the condition nt solution of Eq. (10.60)

a*\2 a2 1 (apy2
(&) +(E) -7 (%)-0 (1062)
The general integral of the sys
for { is taken in implicit form:
It+m@Qz+nQy—k@ =0, (10.63)
where I, m, n, k are coefficients.
For a plane wave, the coefficients of the variables z, y, ©

must be real. By assigning two coefficients, say I avd m,
we obtain

k()= lt—mz = VT —mYy, (10.64)
where the plus sign corresponds to the motion of the wave
towards the boundary, and the minus sign away from it.

The foregoing method is used to investigate the laws of
reflection of elastic vibrations from the freo surface of a body.

1t is found that the boundary conditions cannot be satis-
fied by any one type of wave.

When a dilatation (shear) wave is incident on a free boun-
dary

@1 = j (x—mz+ V T —may), (10.65)
both types of wave are roflected:

= Af (It -+ mz—V T—my)
and

o= Bf (lv —mz— Y /el —m?).

The constants 4 and B are determined from the boundary
conditions by substituting for @ = @ + @2 and ..

tem of differential equations

Vil. THERMODYNAMIC PROBLEM

In the case of a high rate of time variation of a tempera-
ture field, its pulsation or an instantancous action of a tllsgxi-
mal impulse corresponding to umr!nnl shock ellelct l'o;
it is necessary to set up the differential equations of mt:x on
(10.1) with the right-hand sides involving the lm;;?ra uro
propagation as a function of position and time. In this c:
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Eqs. (8.3) take the form

(462 +eviu,=p Bt 4 Kalt,

”
(+6) 33+ GV, = p oo+ Ka g, (10.66)

(+6) 2+ 6y, = p- 5%

The stresses are determined by formulas (8.2).

When there is no mutual transformation of Lho thermal
and ical energies, the t=1t(zy 2 1)
is determined from the heat conduction equation (8.23)
subject to surface conditions.

If the mutual transformation of the energies is taken into
account, it is necessary to consider the refined heat conduction
equation (sce the monograph [58]).

If, at a point M, (z,, y,, 2,) of an infinite body, there is
an instantaneous heat source of intensity

b = W/ (ep) (C-em?),
where W (cal s%cm) is the quantity of heat (in calories)
generated at the point, divided by g, Eq. (8.23) becomes

a
*VH =,

and the temperature distribution at any instant is deter-
mined by its solution [57]

z, ¥, 2, )=

= b exp| — E=ZF T —p )P Fe—z)
TV up[ e J (10.67)
By integrating solution (10.67) throughout the volume,
we obtain

IIS&(:, . % dzdydz=b,.

1t is seen from solution (10.67) that as t — 0, t—0 at
all points except at a single point, M, (zy, s, 2,), where it
becomes infinite. Relation (10.67) is the analogue of the
Green’s function.
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The temperature distribution in an infinite body under
a two-dimensional heat flow produced by an instantaneous
heat source on a straight line passing through a point
M, (. y1) parallel to the z axis at the time v = 0 is deter-
mined by the expression

b, - —
ta yy =i oxp[ EIEEGmI (g gy

£

since
[ ]t v dzay=b, (C.cmd).

‘The solution of the thermodynamic problom of a thermal
shock on the surfaco of a half-space is given in 86].

PROBLEMS

10.1. Chree's problem (1892) [87].
termine the state of stress in a cylinder of radius b and
longth 21 rotating with an angular velocity p.
he computing equations are Egs. (10.40).
The boundary conditions of the problem are: when r = b,
Ry =7, =0; when z =1,
b

R0 and | Z,2ardr<0.

W

‘The last condition is an inlegral one (instead of Z, = 0),
but according to Saint-Venant's principle, the resulting
xtate of stress is sufficiently accurate at points remote
from the ends of the cylinder.

In terms of £ and o Egs. (10.40) are

-0k .

0 (-2 =
U—0)E =0.

M+a)(1—20) 9 (ras)

The solution of these equations satisfying the above
boundary conditions is of the form

uy e Ar = B0 UHDA=20) 5y g
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whero

The stresses are equal to
fty = B2 Z, R=0

P (3—20 . 1420
B~ B (-1 ).
4 Eow—) o
L= =
10.2. See [45].
Determine the state of stress in a thin aunular disk of

outer radius b and inner radius a rotating”with a constant
angular velocity p.

0%oridrdp

=%
%l o
YA

maxh.

Fig. ot

The disk is subjected to centrifugal inertia forces ppr
(Fig._91).
The equation of motion is, by (6.1),
dR, | M—ny
Tt =1 prer=0e,

(a)
* Whon &= A(r), tho oquation (a) becomes

;;(hrn,)—l.n,.;. Pphrr =0,
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Substituting tho stress values (6.5) in the equation (a),
and cancelling oul the constant factor, we obtain

du 1 duy, _ u, _ p(1—0%) pir
™ -

dr? rodr
By solving the equation (b), we find
iy Cyr 4 Co B *

(b)

By (65),

"':A_%_wi . Be=A+

B _ (1+30)p8
R A

where the new unknowns
A = EC,/J(1 — o) and B = ECJ(1 + o)
are determined from the boundary conditions: when r = a
and r=5, R, =0.

The stresses are, finally,

3 - a

R, =‘_+;’&(bz_rz) (‘_?)'

_ B40)pp o A+301, _B
By~ SEQOE [0t a1 =]

The R, and By diagrams are given in Fig. 91.

10.3. Chree's problem (1889) [88).
Determine the displacements of a sphere of radius @ ro-
tating about the z axis with an angular velocity p.

The boundary conditions (1.2) for the surface of the
sphere (r = a) are

X,=Y,=2=0.

‘The body forces in Egs. (10.41) may be considered as
the gradient of the potential
9=pp" @+ ¥02

* A particular solution is taken in the form u, = Cy*.
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which may bo represonted in tho form
@ = pp¥™3 -1 pp* (@ - gt — 26, (@)
whero
=24yt 2
The first term in the} formula (a) gives a purely radial
body force 2pp*r/3 with a purely radial displacement u,
(up = ug = 0), which can bo determined from the first
oqunuon of (10.40):
(A 1-26) 2 (G2 2o ) 2 ppr =0, (b)

By solving the Lqunuon (b), we obtain

__aer

Uy =l

r T B0 |
from which

Uy, Uy, U= (€, y, 2).

pew
In a similar way it is possible to solve the problem of
tho deformation of a sphere duo to the mutual attraction
of its particles (tho earth),

‘The second torm of the potontial @ Isec the formula (a)]
represents a spatial spherical function of Lhe second order

V. =1, (@) = 1P, (cos @) = r* (3 cos® « — 1)/2

Isco Chap. 4].
Bqunuons (10.41) for this case are

*+6) (5= P LG A

N )
t5 = o as)V‘“O

By using the properties of spherical functions [sce
Chap. 41, we obtain the solution
Uy, ty, uy= A[(SA--76) 1% (z, y, —22)—
— (2 1 T6) (22 4 42— 22 (z, 4, 2]
Bz, y, —20)— r*(z, y, —22)+
A+t =29 (z, y, 2],
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where the arbitrary constants 4 and B determined from
the boundary conditions are

= PROMEG e (At36)
4 RO+ (R T00C ' D= o iaer -
10.4. Pochhammer's problem (1876) (89).

Investigate the vibrations of an isotropic circular cylin-
der of radius a whose surface is free from stresses.

To solve the problem, we make use of Eqgs. (3.3b) sub-
stituting inertia forces for the body forces R, B, Z; we
thus obtain

. M 26 00, |, o M i
(7quo)7—7m—'1-2a,,—r”=p§"‘, s

190 L
0426+ S —20 e 26 B =0 T2 @

N0 26 0 N Puy
(426 3 — 2L ron -2 S —p T

A ing that the displ are b ic functions
of z and T of the form

= Ueitvtim, gy = Veitntm, u, = Welwe+rm,

where U, V, W are functions of r and f, we arrive at
a number of solutions.

Torsional vibrations.

When U = W =0 and V = V (1), the first and third
equations of (a) are satisfied identically, and the second
equation takes the form of a Bessel equation
@&V oav 1\y_

o G Lt ®
where x* = pp%G — v*.

By integrating the equation (b), wo obtain

V=AJ & 1

where J (x, r) is the Bessol function of the first order.
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The surface conditions are satisfied if x is the root of
the equation

d [Ji(x a)
o[22 =0
When % =0, y* = pp¥G and V = Ar; the displace-

ments are
.
w=u,=0, u.=/lrt‘p('/ - ')A (c)
The solution (c) represents a torsional wave, which pro-
pagates along the axis of the cylinder with a velocity

e =V lp.

For a cylinder of length [ with stress-free ends, we
obtain

nar L N
cos (T V srie).
where 7 is an integer, e is the phase of vibration.
Longitudinal vibrations.
When V =0, U =IU (r), W = W (r), the second cqua-
tion of (a) is satisfied identically, and the first and third
equations take the form of Bessel cquations

up= Aprcos

#0 , 1 40 , & oy . 1
It T h0=0, -t (=) on=0,

()
where

= pp*(A -+ 2G) — y%, % = pp¥G — 2.
By solving the equations (d), we find
0ty (i) and wpocdy (xr).
By satisfying the equations
0= % +% 4 "VW) elveam,
aw

20p= ( U =47 ) cionir,
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we obtain
U Ao (i) -1 By o (),
W Ayl (br) -+ L g (el

The stresses on the surface of the cylinder (r = af are
zero if the constants A and B are related by the equalities

L d2J g (ke *h ] o8l (xa)
[26 Lol — 0% gy (ha) | 4+ 26y 22 0,

2y 2ol 4 1 (292 08) J, (ua) B=0.

By setting the determinant of the equations (e) equal
to zero, we obtain an equation for the determination of

(e)

frequencies.
Transverse vibrations.
Assuming
U=U()cosf, V=V()sinB, W =W (r)cosp,

and substituting these quantities in the equalions (a), wo
obtain three differential equations in the functions (UGN
V (), W(r) whose solution is
_ 44 0n Ay r) | o dy (xr)

Utn=ai .y pydln) o

N Iy (hn) Jixr)  ddy (xr)
V(r)-= ~A+_BV‘T—C'4—r'
W (r) <idyd, (hr)—iBx3 | (ur).

The conditions of zero stresses on the surface are too
complicated to be given here [5].

10.5. Investigate the radial vibrations of a thin (§ = 1)
annular disk of inner radius a and outer radius b whose edges
are free from stresses.

Sin(_:o the problem is polarly symmetric, the computing
cquation in terms of displacements is, by Lq. (6.7),

Kt Py
(3= P <0,

10-0073
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Assuming
= Wcos (pr+e)*,
we obhin a Buoel equation

1
Tt (e k) w0, (@
where
%’—’ pp.

By solvmg the equation (a), we find
W = AJ, (xr) + BN, (xr),
and the displacement becomes, finally,
u, = [AJ, (wr) + BN, (xr)] cos (pt -I- ¢).
The stresses are determined by formulas (6.5).
At the edges of the disk r = a and r b the stresses
R, are zero; this leads to two equations
A[HD 4 27, x|+ B[ 4 2N, | =0,

N, (xb)
Al 2 ) ]+ B[ L 2 v ) | =0,

By climinating A and B from these equations, we ob-
tnn the frequency equation.

10.6. Poisson's problem (1828) [5].
Consider the radial vibrations of a hollow sphere of outer
radius b and inner radius a.

The problem is polarly symmetric, i.c., all quantities
depend only on r and T, and u, = up = 0, = Wy =
=g =0.

Actording to th first equation of (3.3b), we have

(+26) 32 —p T =0,

‘The problem can also be solved by the method of separation of
variables assuming u, = R (r) T (7).
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where

u

022422 faee formula (2.2
Assuming
ur = AW () cos (pt + ¢),
wo oblain the equation
TR (=AW=, ®
whero
Bt = pp(h 4+ 26).
Tho integral of the equation (a) is

d_ ¢ Asinhr+ B coshr
W)= s + ).
‘The boundary conditions of the problem are: when r = a
and r=b,
Ro—=20 ouy _ au, ur _
= +2GT-(A+2G)T+ZAT— . (b)

The condition (b) for a sphere of radius r is of the form
{( + 26) [(2 — k**) sin hr — 2hr cos hr] +
+ 2\ (hr cos hr — sin hr)} A + {(A + 26) (2 —
— 1) cos hr + 2hr sin hrl—
—2 A (hr sin hr 4 cos hr)} B = 0.
By writing the last equation for the values r = a and

r =b, and eliminating A and /3 from these equations, we
obtain the frequency cquation

2 — K = 2M( + 26).
For a very thin layer, the period is

For a solid sphere, B = 0.
» Lamb's problem (1882) [5).
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Investigate the vibrations of a solid sphere of radius
a for which 0 = 0.

Hinls.

(1) Assume the solution of the homogencous cquations
(10.7) in the form

Ury: = () Yoy, (@ B).

(2) To determine the relations between the functions
Yep.z (@ B), use condition (10.9).

10.7. Determine the displacements in an infinite body due
to a concentrated force % (t) applied at the origin and act-
ing in the z direction.

In solving the problem we assume that a region D where
the body forces are different from zero decreases indefi-
nitely, and

efJ j X' dz’ dy' dz' — X,
b

where X, is a force acting on a point (z, y', ') in the
z direction.
In the case under consideration we assume

Xo =y (v — rley),
whore r is the distance of a point (z, y, z) from Lhe origin.

According to formulas (10.39), we determine the quanti-
ties

» (x—rlc ,ﬂ:—px(x—r/:,)—,-, L0,
9 __1 art

M’ (t—rley) =Ty % (t—rles) 55—,

N'(t—r/c2)=—ﬁx(r—r/cg';’+;l,

'By dividing the space around a point (z, y, z) into thin
slices by spherical surfaces centred at this point, integrals
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(10.38) may be expressed by the formulas
S j S lo (x-:-‘) do' dy' da’ =
= S’ —-,‘—:‘7;((1—:—. —'I'L ) S %d:,

where ds is a surface clement of a sphere of radius r,

i ol dse=0

if the origin is inside s,
Gt gt
§§ S ds e e -

if the origin is outside s, ro is the distance of the point
(z, y, 2) from the origin.
In the first case ro << r, in the second ro > r.
By integrating with respect to r (the upper limit may
be replaced by ro), we obtain
T
1 gt
§== —m% S ry(t—rle))dr-=
]
s
! ., oy
='W'71?.5,1“‘—”d1' @
where © =rley, and r hos been used for ro.
In a similar way we find

F=0,
e
G=Z%ﬁ’—,:7::_ S Ty—v)dr, (b)
(]

Lo rles ,
H= =gt S' yla—)dv.
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By determining the displacements by formulas (10.36),
with the formulas (a) and (b), we obtain

t o T

- B " de

Us = T Ty (r—1)dt -
)

ok () Tre—rer

' LV Al=rle)

_T,T"('_T,)J+ mpdr
. rles
- N

Uy = i T { Ty(r—7)dv +

1 ar or 1
e | (-
2 e ©
Zr 5 Ty (r—T)dv
ey

R A

0

1 2 FRYA r
o= gmg (0 . o) [F2(—Z)].
»Calculate the displacements when % (t) = A cos pv.

Note.
riey
j Ty(r—v)dv' = % [cos p(v—rje;) —cos p(t—rley) —
e,
— L sinp(x—rley) Z—:sin p(r—r/c.)J4

The process involves simple harmonic waves of two kinds
travelling with a velocity ¢, = |/ (& + 2G)/p (dilatation
wave) and a velocity ¢, = V/ Glp (shear wave).
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»Calculato the displacements (c) when % (t) = constant

and compare with the results of Problem 4.4.

10.8. Sec the monograph [79], Sec. 76.

Determine the displacements of the half-plane y > 0
when a pulse of normal pressure moving with a velocity ¢
is applied to the boundary y = 0.

‘The boundary conditions are: when y = 0,
Y, = —IP"(z —c1) + P" (z — cv))2, (a)
X, =0 (b)
On putting 1 = 0 in expression (10.56), we find that
the equation (b) is satisfied if we assume
Qg 1432
@+ L -0,

from which
F@)= - g r ). ©

Substituting the last relation in formula (10.54), we
obtain the following expression for Y :

Y, = (1467 Re (1 +BD2 £ () +4BiBeF (2]

Thus, the boundary condition (a) is satisfied if we
assume

U8R P Q)
F®= —grmpr—mss (@)

By expressions (10.55) and the equations (c) and (d),
. 1483 AN YA
Cue g e [ 1 0 — i 9.
Clty = — g, I (B P ) =20 Gl

The formulas (e) express the solution due to I. N. Sned-
on

»Sneddon’s problem (90} .
Solve the preceding problem for the case of a moving
pulse of tangential pressure.
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Hint. Take the boundary conditions in the form: when
z=0,
Y, =0, X,=—I["(z—ct)+ T (z —cr)li2.
»Galin’s problem [63; 79, Sec. 76].

Investigate the state of stress in the half-plane y >0
produced by a punch moving over its surface with a con-
stant velocity c.

10.. 9 See the monogruph (791, Sce. 77.

in the half-pl y=0
wllen a varymg pn.ssure P (z, 7) is applicd to |L~x lyoundary

We introduce a variable v = ¢r.

‘The boundary conditions of the problul are: when y =0,

Y,=—p v), X,=0. (a)
To solve the problem, we apply Lo all quantitivs appear-

ing in oxpressions (10.42) and (10.43) a two-dimensional

Fourier transformation defined by the formula

1€ 0=5 | j 1(, g, ¥) 8ot d

If both sides of cach of the equations in systems (10). 42)
and (10.43) are multiplied by exp li (Ez + wt”)] and
intograted with respect to cach of the varinbles z and ©
from — oo to co*, we obtain a system of simultancous diffe-
rential equutmns

X, — % F=0+20) 0L,
(b)
ze?,—%= (426) o7,

The stresses are determined by the formulas

T (Ao T duy
X — i (b 26) e A

* Itis assumed that the ullkllown: in Bqs. (10.42) and (10.43) tend
to zoro as V= + 3¢
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F, = — i+ 0-4-26) o1

v du. P
V.= G (G —itn,).

If the formulas (c) aro substituled in the equations (b),
we obtain two simultancous differential equations for the
detormlnltlon of the Fourier transforms of Lhe functions
u, and 2,

-l e (0 5) ]G o0,

()

)

(b @m0t [t 2= ) %2 <0,
where
B2 = (A + 26)/G.

By limination, the ions (d) can be simplified to

(=) (52— 12) (o, ) =0, ©
where
e B—a?, ni=B—per

rom the equations (¢) we oblain

U= Ae"W |- Age="¥, o

Uy = B 4 Byemm,
wlicre the intogration constants 4, and B, depend on §
and o.

i the in the (d),
we find the following " rolations betwoen the mwgrnuon
constants:

EA, = iny By, mA;, = itBy. @®
By the boundary conditions (a), we obtain
two more equations

o[ - B i), ,~ ~ P& O

I_"dj 1EuyJ =0.

)
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By solving the equations (g) and (h), we find

p<§= ﬂﬂw’m Az__ten.n,ﬁ
- 2Gc

1 _f207)/2)
Byt ptew‘b’«»/ ) gy
where
c=c (@ o) =& — po¥2)? — nn.t’
il these in the i (B, and
inverting the resulting ions by the two-di: ional

Fourier integral theorem, wo obtain the following expres-
sions for the componenls of the displacement vector:

Uy l'gg (gz '52“,4 oy
_i;n.n,c-mvje—um"twg do,

1 T rr 1
PRI O 1 P EE S P
X e-18s=v) dE do,
The solution of this problem by the integral transforma-
tion method is given in the monograph [

10.10. Sce (91).

Investigate the vibrations of the elastic half-plane y > 0
when a source ol' elastic dl«splncemvnts be; to act at ils
boundary. At t < 0, the half-plane is at rest.

In plane strain and in the absence of body forces Lamé's
equnlions are of tho form

*+6) 26V~ L3 (;‘+(;)’;_‘:+sz.¢,,=
~oTu.

In plane stress A must be replaced by
A* = G/ + 26).
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The stresses are delermined by the formulas
X W01 2652 Y, 504002,

- (e 2uy
X,=GC + 52
Assume that as z — oo and | y | - oo, all components
of the displacement vector and of the stress tensor tend to
zero. We introduce a function ® (z, y, 7) and express the
displacements in terms of this function

ht-G FD LE6IP0 | 20 p PO b
T wtwETewm O
(b) in the

i (),
we arrive at Eq. (10.59). The stresses arc expressed in terms
of the function @ as follows:

PO PD ) P
Xy= _("'*ZG)MW "’7‘477_%@0; .
Yy = (3-+H46) s+ (h+20) S — (1 426) 8 28 (o)

PO PO L)

X, = Yo AT 042058 —p 20

To solve Eq. (10.59), we apply two integral transforma-

tions, namely the Laplace transformation in the variable

T and the Fourier complex transformation in the variable y.

Since we are considering the case of zero initial condi-
tions, we have to put

"
s 0);."'""’#‘ 9_2# l)(;'.y, o _

D (z, 4. 0
e

By multiplying Eq. (10.59) by e*, and integrating
with respect to T from 0 to oo, we find an auxiliary diffe-

rential cquation for @ with two independent variables,
z and y,

(V2— pled) (V2 — p?led) D (=, y, p)=0 @
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where
Bz y. p= [ e (2, y .
]
By multiplying the equation (d) by ei«*, and integrat-

ing with respect to z from — oo to 4 oo, we obtain a
differential equation of the form

(F—az ﬁ- (Tr—al—%)i(a, ¥ p)=0, (¢)

where

F(a, . p)= 1/_ j B (z, y, p)dz.

The solution of the equation (¢) bounded at infinity
is of the form
Flaw g, p)=Aexp(—y V@ F pcy) -+

= Bexp(—y (Ve it

where 4 and B are determined from the conditions on the
boundary of the half-planc y = 0.

By making use of the inversion formula for the Fourier
complex transformation

N }' ewieF(a, y, p)da,

we find that

Dz, 4, p)=

=ﬁ:& i A (a, p)exp(—y V@@ | pFed) -

+B(a, p)exp(—y V&1 p7c})] da.
By using next the invorsion formula for the Laplace
transformation

| Y
D(z, 4, V=35 j e D (z, y, p)dp,
y-iow
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hoest——————_m
we obtain, flllully,
Ol b D 3’ {_ r ey
Y-l
x[A (@, pyexp(—y V& + p’_)lc’ +
+B(a, p)expl—y V@@ pic )“a} i, o

where A (&, p) and B (a, p) are determined from Lhe boun-
dary conditions.
After finding (D (z, y, ) from the expmnon (B, we

lculate the by the formulas (b),
and the stresses by the formulas (c).
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Squaro hole in-plte junder ton-

d iizpblmm‘nu dowmln-d by,

s

in terms of di
Pt disglacamonts, 24

principal, 38
pl\;dumd by centrifugal forces,

of, 24
Strain | cquah %
in cylindrical uumhmws.
for torsion problem, 187
in orthogonal curvilinear co-or-
dinates, 24
in plane pohr co-ordinates, 151
in rectangular co-ordinates, 25
for plane problem, 1W
for torsion problem,
In splmnul oo-ordmlu. 27

&

Ing,
shoaring or g, 13
theory o,
total
Streas lulu;lwn, ol Airy, 109, 154
of Prandil,
propetis o 1
Sl.:-zz. in a state of yllno stress,
under concentrated force, 145
Surlace conditions (see Boundary
conditione)

Thermal problem, 2
circular_cylinder, unperature
distribution in,
eylindrical body of revolution,

bl las, Denadson-ior-
7
hall'spaco with heat source on
m"p'mu o
"nl'fa'. Mpersiato disribus

tion in,
m-dy—mu thermal process,
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busic equations for, 210
Beltmml-Micllell equations

Duhaml Noumann  cqua-

f,
heat conduction equnuon for,

plano strain, 214

plano stress,

surface conditions in, 211
transient thermal process, 216

I\o;li :onduclion oquation for,

surfaco conditions in, 217
triangular dam,
tuln. hoated non»symmetncn

Hoatod symmotrically, 247

pou!

Thormodynamic ‘problem, 281

Timoshenko's problom,

To:‘non. of bars of constant sec-
assumptions in, 184
basic_cquations for, 184
boundary conditions in, 184
of particular forms of section:

circular,
with semicircular notch,

elhpuc, 104
198
o rculnn 205

tmnguF ar, 20
of circular bars (shnlu) of va-
riable section,
assumptions in.
basic aqunnons for, 187
conical , 20!
cylindrlml shnu, with ellip-
tical hollow in, 208,
with_spherical hollow in,

ellipsoid of rovolution in, 206
hyperboloid of revolution, of

0'!0
o sheets i m, 207
of ayllndncnl hnm
of prismatic bars, i

Torsion problom, 184
diflerential cquation for, 189
solution of, 189
solution of, 185,
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using Prandtl’s function, 135
stress function for, 185,
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pressure, 134
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oo symmotrically, 217
compound, 219

Velocity of vaves, 270
ab suriace, 273
of dilatatjon, 270
of dlslorlmn, 270
Vibrations, longitudinal, of cyl-
inder, 288
of half-plane, 208
of solid sphere, 202
radial, of circular ring, 289
of hollow sphere,
torsional, of cyliner, 287
transverse, of cylinder, 289

Warping ol cross sections ol bars
in torsion, 186

Wave equations, 270
Wave surface, Londmuus on, 271
Waves, cylindrical, 2(
duc to variable Iurces, 275
irrotational,
Love, 27
of dilatation, 270
of diswn ion, 270
plane, 2t
proylgluon of (see Propagation

Rayleigh, 272
reflect tx%n of, 281

sheal
he | 269

spl

surface, 2

velocity ul (see Volocity of
waves)
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Elements of Hereditary Solid Mechanics

Yu. RABOTNOV, Mem. USSR Acad. Sci.

Boltzmann-Volierra hereditary mochanics describes such processes
when the state of a mechanical system depends on the entire history
of the actions it has been subjected to. Tho considerable devele
of this theory in the last fow decades was determined by a multitude
of its technical applications connected with the studying of the creep
of metals, plastics, concrele, rock and other bodies. The boek sels out
the formal fundamentals of the theory, its applications to the descrip-
tion of the behaviour of real materials, and somo methods for solving
problems of the linear Lereditary theory of elasticity ‘and the non-
linear theory of creep. Special attention is given in the appendices to
the use of weakly singular operators.

“The book will be of interest for quile a broad circle of renders—en-
wincers, scientists, students and post-graduates.




The Theory of Elasticity

Yu. AMENZADE, Corr. Mem. Azerb. SSR Acad. Sci

This book contains relevant data from Lensor analysis (the exposi-
tion of the fundamentals of the theory of elasticity is given at contem-
porary advanced level and in modern form), the plane problems of
theory of elasticity are considered with tho help of method of functions
of complex variables and method of integral transforms. The book
deals with the theory of rotation and bending of prismatic bodies.
Hertz contact problem and certain six-syrametric problems. It also
contains theory of propagation of elastic waves in an infinite medium
and surface waves of Rayleigh, elc. Examples of theory of bending of
thin sheets are given. The lextbook excels in clarily and originality
and is illustrated by numerous examples. The textbook is intended
for university studonts.







This book is designed to be used as an aid to solving elasticity
problems in college and university courses in engineering.

The book covers all subjects of the mathematical theory of
elasticity. It contains material which forms the basis for structural
analysis and design. Numerous problems illustrate the text and
somewhat complete it. Along with classical problems, they include
cases of practical signiticance.

The author does not emphasize any particular procedure of
solution, but instead considerable emphasis is placed on the
solution of problems by the use of various methods. Most of the
problems are worked out and those which are left as an exercise

to the student are provided with answers or references to the
original works.

Professor Vladimir Germanovich Rekach, D.Sc., is the Head of the
Department of Strength of Materials at the Patrice Lumumba
Peoples’ Friendship University in Moscow.

His main scientific interests are structural design, analysis of
curved bars and vibration problems. The fitle of his doctoral
thesis was ““The Analysis of Spherical Shells”. He is the author of
28 articles and 3 books (3 as coauthor).
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