
This document downloaded from 
vulcanhammer.net			   vulcanhammer.info 

Chet Aero Marine

Don’t forget to visit our companion site 
http://www.vulcanhammer.org

Use subject to the terms and conditions of the respective websites.

http://www.vulcanhammer.net
http://www.chet-aero.com
http://www.vulcanhammer.org
http://www.vulcanhammer.info


L. Levinson

FOREIGN LANGUAGES PUBLISHING HOUSE 
MOSCOW

FUNDAMENTALS

OF

ENGINEERING

MECHANICS













FUN DAM E NTALS 

ENGINEERING 
MECHANICS

F O R E I G N  L A N G U A G E S  P U B L I S H I N G  H O U S E  

M O S C O W

1922



Translated f rom the Russian

EDITED BY S. K L E I N



C O N T E N T S

P A R T  O N E
t h e o r e t ic a l  m ec h a n ic s

Introduction ............................................................................................  13
1. Mcclianical Motion.........................................................................  13
2. The Stale of Rest A.% a Relative Phenomenon ............................ 13
3. Fundamental Elements of Mechanics .......................................  14
4. Basic ifniIs of Measure Used in Mcehanirs .................................. 14
5. A Material l ’oinl and a Solid Body .......................................  15
(i. The Science of Mechanics ...........................................................  15
7. drier Stages in the Historical Development of Mcehanirs.......... 16

STATICS

Chapter I. Fundamentals of Force, and aij Introduction to Statics
8. Forces ............................................................................................. 21
9. S ta tics ..............................................................................................  21

10. Elements Which Determine a F o rce .........................................  22
11. Graphic McLliod of Representing Forces .................................. 24
12. A System of Forces and ILs Resultant .................................... 25
13. Two Equal Forces Acting in Opposite Directions Along a

Straight Line Connecting Their Points of Application Are in 
Equilibrium ...................................................................................  25

14. The Point of Application May Be Altered Along the Line of
Action of a Force .........................................................................  26

15. Equilibrant of a Force ...............................................................  20
16. Composition of Collincar Forces.....................‘............................ 27
17. Constraints and the Reactions of Constraints.............................. 28
18. Questions for Review ...................................................................  29
19. Exercises ....................................................................................... 29

Chapter II. Coplnnnr System of Concurrent Forces
20. Finding the Resultant of Two Forces Acting at an Angle............  30
21. Resolving a Force Into Two Components Applied at One Point

and Acling at an Angle ...............................................................  33

3



c
22. The Composition of Several Forces Lying in One Plane and

InLersecLing at One Point ...........................................................  35
23. Equilibrium of a System of Coplanar Forces Intersecting at

One Point ......................................................................................  38
24. Lines of Action of Three Non-Parallel Balanced Coplanar

Forces that InlersecL at One P o in t...............................................  40
25. Questions for Review ................................................., ...............  40
26. Exercises ......................................................................................  41

Chapter 111. Coplunnr Parallel Forces, and the Moment of a Force
27. Composition of Parallel Forces Acting in One Direction.............. 42
28. Composition of Parallel Forces Acting in Opposite Direclions . . .  44
20. Resolution of a Force into Parallel Components .....................  46
30. The Centre of Coplanar Parallel Forces .....................................  47
31. Moment of a Force in Respect to a Point ...................................  48
32. Moment of a Resultant ...............................................................  50
33. The Couple ..................................................................................... 51
34. Equilibrium of a Coplanar System of Parallel Forces ................ 53
35. The Moment of a Force in Respect to an Axis ...........................  57
36. Questions for Re\ iew ................................................................... 58
37. Exercises ......................................................................................  58

Chapter IV. Centre of Gravity, and Stability of Ilndles
38. Centre ol Gra\ily, and Centre of Parallel Forces ........................ 59
39. Centre of (iravilv of Certain Bodies of Simple Form ................ 60
40. Centre of Gravity of Plane Figures...............................................  62
41. Practical Method of Determining the Centre of a Plate ..........  (54
42. The Stability of a BodyTIaving a PoinL or an Axis as Support . 05
43. The Stability of a Body on a Hoiizonlal Surface ........................ 68
44. Questions for Review ................................................................... 70
45. Exercises ......................................................................................  71

Chapter V. Friction
46. Harmful Frictional Resistance .....................................................  72
47. Sliding and Rolling Friction ......................................................... 73
48. Basic Laws of Sliding Friction, and the Coefficient of Sliding

Friclion ........................................................................................  74
49. Dry and Fluid Friclion ...............................................................  77
50. Coefficient of Rolling Friclion ...................................................  78
51. Function of Friction in Nature and in Engineering .................. 80
52. Questions for Review ................................................................... 81
53. Exercises ......................................................................................  81

KINEMATICS
Chapter VI. The Trajectory of a Particle. Displacement and Time

54. Fundamentals of Kinematics.......................................................  83
55. Trajectories and Their Influence on Principal Types of Motion .. 83

4



56. Determining the Distance Traversed by a Point According to
Its Positions on the Trajectory ...................................................  85

57. Plotting a Trajectory According to Given Coordinates ............  86
5ft. The Displacement-Time Graph .................................................  87
59. Questions for Review ...................................................................  89
60. Exercises ....................................................................................... 89

Chapter VII.  Rectilinear Motion of » Partiele
61. Uniform Motion .............................................................................  90
62. Velocity and Displacement When Molion Is Uniterm ..............  91
63. The Graph Illustrating Displacement and Velocity lor Uniform

Motion .............................................................................................  92
.64. Variable (or Non-Uniform) Motion, and Averages of Velocity

and Acceleration .........................................................................  95
65. Uniformly-Variable MoLion. Velocily and Acceleration ............  97
66. Displacement When Motion Is Unilormly Accclei,lied ..............  97
67. Vertical Molion Under the Force ol Gravity ........................ 101
68. Questions for Review ...................................................................  103
69. Exercises .......................................................................................  104

Chapter VIII .  The Composition of Simple Motions of a Particle
70. Compound Motion, and Absolute and Relative M olion............... 104
71. The Composition of Uniform ( ollincar Molions .......................... 106
72. The Composition of Rectilinear Uniform Molions Which Are

at an Angle to One Another .......................................................  108
73. Resolving a Velocity into Its Components ................................ 110
74. Questions lor Review ...................................................................  I l l
75. Exercises .......................................................................................  I l l

Chapter IX. Curvilinear Motions of a Parliele
76. Uniform and Non-IJniforin Curvilinear Molion of a Particle . . .  112
77. The Velocity of a Particle Possessing Curvilinear Motion . . . . .  112
78. Acceleration of a Particle Possessing Curvilinear Motion ..........  113
79. Tangential and Normal Acceleration .......................................... 114
80. Normal Acceleration of a Particle Possessing Uniform Circular

Molion .............................................................................................  116
81. Total Acceleration of a Particle Moving in a Circle .................... 117
82. Questions for Review ...................................................................  118
83. Exercises .......................................................................................  118

Chapter X. Simple Motions of a Hard Ilody
84. The Difference Between the Mo Lion of a Hard Body and That of

a P artic le .........................................................................................  119
,85. Linear Translation .......................................................................  119
86. Rotation of a Body Around a Fixed Axis, and Angular Dis­

placement .........................................................................................  121
87. Angular Velocity and Angular Acceleration ....................*..........  122
88. Linear Velocity of the Points of a Rotating Body ......................  123

5



89. Uniform Rotation of a Body Around a Fixed Axis .................... 123
90. Diagrams Showing the Relationship Between Peripheral Ve­

locity, Diameter, and Number of Revolutions ..........................  126
9t. Uniformly-Accelerated Rotation of a Body Around a Fixed

A xis.................................................................................................  127
92. Questions for Review ..................................................k................  129
93. Exercises ...................................................................................... 129

ID XAMH.S
Chapter X I. Fundamentals of Dynamics

91. Definition of Dynamics .............................................................  130
95. The First Law of Mechanics (Newton’s Firs I I. aw ).................... 1̂ ,0
90. The Basic Equation of Dynamics (Newton’s Second L aw) . . .  131
97. Law of the Independent Action of Forces .................................  133
98. Propositions Deduced From the Laws of Mechanics .................. 135
99. Units of Measure in Engineering and Physics.............................  136

100. Relationship Between Mass and Weight of a Body .................... 137
101. Law of Action and Reaction (Newton’s Third Law) .................. 138
102. Questions for Review ..................................................... .'........... 139
103. Exercises ......................................................................................  140

Chapter XI I .  Introduction to Dynamics of a Material Point
104. Dynamics ol a Material Point ..................................................... 140
105. The Action of the Force ol Gravity on I lie Motion of a Vertically-

Projected Body ..........................................................................  141
106. The Motion of a Body Tin own Upwards at an Angle to Ltic

Horizon ........................................................................................  141
107. Tangential and Normal Forces When a Particle Moves in a

Circular Trajectory ......................................................................  144
108. Inertial Forces ..............................................................................  145
109. Inertial Forces in Rectilinear Motion of a Particle.....................  146
110. Inertial Forces Acting Upon a Particle Moving in a Circular

Trajectory ......................................................................................  147
111. Forces of Inertia as Applied in Engineering ...............................  150
112. Questions for Review ................................................................... 151
113. Exercises ......................................................................................  152

Chapter XI I I .  Work and Power
114. Definition of Work .................................................................  ̂ . 153
115. Measurement of Work ................................................................. 153
116. Work Done by a Resultant Force ...........................................  155
117. Graphic Representation of Work .............................................  156
118. Indicator-Diagram for Heat-Propelled Engines .......................... 159
119. Work Done by a RolaLing Force of Constant Magnitude .......... 160
120. Power and Its Units of Measurement ...........................................  162
121. Power and Uniform Motion of Translation ...............................  163
122. Power in Uniform Rotation of a B ody.........................................  163

6



123. Relationship Between Turning Moment, Power Transmitted,
and Number of Revolutions ........................................................  165

124. Questions for Review......................................................................  167
12^ Exercises .....................................................................................  167

Chapter XIV.  Mechanical Energy
126. Kinetic E nergy ..............................................................................  168
127. Kinetic Energy of a Body Possessing Motion of Translation . . .  169
128. The Energy of a Body Moving Under the Force of Gravity.

Potential Energy ..........................................................................  172
129. Kinetic Energy of a Body Rotating Around a Fixed Axis .........  174
130. Governing an Engine. The Function of the Flywheel .................  176
Wl. Mechanical Efficiency .......................................................... . . .  177
132. ..Perpetual Motion” as an Impossibility .....................................  178
13.3. Impact ...........................................................................................  179
134. Impacl of a Freely Falling Hammer .........................................  180
135. Questions for Review......................................................................  182
136. Exercises ...................................................................................... 182

PART TWO
TI1E THEORY OE MACHINES 

AND FUNDAMENTAL CONCEPTS OF" STRAIN
THE THEORY OF M \C H I \E S

Introduction.............................................................................................  185
137. Machines and Mechanism ..........................................................  185
138. Historical Survey of Machine Eugineerinn in Russia ................ 186

Chapter X V . The Inclined Plane, the Pullc\, and the Windlass
139. The Inclined Plane ........................................................................  190
140. The W edge.....................................................................................  193
111. The Lever........................................................................................ 194
142. A System of Levers. The Differential Lc\er .............................  197
143. Fixed and Movable Pulleys............................................................  199
144. Syslems of Pullcvs and Hie Differential Pulley Block.................. 201
145. Simple and Differential Windlasses ........................................... 203
146. Questions for Re\iew......................................................................  205
147. I^ercises ...................................................................................... 205

Chapter XVI .  Transmission of Power Between Parallel Shafts
148. General Principles of Transmission .......................................... . 206
149. Transmission Through Pliant Connectors.....................................  207
150. The Speed Ratio and Transmission Number in Transmission

Through Pliant Connectors ..........................................................  208
151. Kinematics of Transmission with One Pair of Sheaves ................ 209
152. Kinematics of Transmission with More Ilian One Pair of

Sheaves...........................................................................................  210

7



153. Statics of Sheave Transmission..................................................  210
154. Beit Transmission with Variable Speed R atios...........................  212
155. Transmission with a Belt Tightener ........................................  215
156. Flat and V-Shaped Belts ............................................................f215
157. Chain Transmission .....................................................................  217
158. Friction Transmission Between Parallel Shafts .........................  217
159. Friction Transmission with a Variable Speed Ratio ...............  220
160 Spur Gears..................................................................................... 222
161. Speed Ratio and the Transmission Number of Toothed Gears .. 222
162. Kinematics of Drives Possessing More than One Pair of Gears 224
163. Statics of Toolhed-Gear Transmission......................................  227
164. Idler Gears ................................................................................. 228
165. Spur-Gear Differential Mechanisms ..........................................  2^1
166. The Geometry of Toothed Gearing ......................................... 232
167. Chief Forms ol Spur-Gear Teeth ..............................................  235
168. Intermittent Transmission ol Rotation ................................... 236
169. Questions lor Review .................................................................  237
170. Exercises ....................................................................................... 239

Chapter XVII .  Transmission Between Non-Parallel Spalls
171. Transmission ol Rotation Between Non-Parallel Shafts Through

Pliant Connectors.........................................................................  241
172. Friction Transmission Between Non-Pai allcl Shat Is .................  241
173. Bevel-Gear Transmission ............................................................ 245
174. The Screw ..................................................................................... 247
175. Helical-Gear and Worm-Gear Transmission ...............................  250
176. The L’niversal Joint ...................................................................  253
177. Questions for Review' .................................................................  254
178. Exercises ..................................................................................... 255

Chapter XVI I I  Comrrsiun ol Itolalion into Linear Translation
anil tier Versa

179. Conversion of Rotation into Linear Translation.........................  256
180. Friction Mechanisms lor Obtaining Linear 'I lanslalion ........... 256
181. The Rack-and-Pinion .................................................................. 257
182. Kinematics of the Screw-mid Nut Drive ..................................... 259
183. Statics ol the Screw-and-Nul Drive ......................................... 262
184. Thread Profiles of Principal Tvpes of Transmission Screws . . . .  2C3
185. Slider-Crank Mechanism .............................................................. 265
186. Kincmalies of the Siider-Ciank Mechanism ........................ i. ■ 266
187. The Eccentric Mechanism ..........................................................  270
188. The Rocker-Arm Mechanism......................................................  271
189. Kinematics ol the Rocker-Arm Mechanism................................. 272
190. The Cam Mechanism.................................................................... 274
191. Determining the Working Surlace of"h Disc C am .......................  276
192. Questions for Review .................................................................. 278
193. Exercises ..................................................................................... 280

8



Chapter XI X.  Auxiliary Ports Employed in Transmitting
Rotuliou

194. Axles and Shafts and Their Components.................................. 281
lt^S. Main Types of Sliding Hearings ............................................... 283
196. Antifriction Hearings....................................................................  283
197. Couplings .......................................................................................  285
198. Questions for Review ..................................................................  285

Demountable Connections
199. Threaded Connections ................................................................  285
200. Threads for Conner lions..............................................................  285
201. Tapered-Fin Connections ............................................................  287

‘ STllEXCiTll OF MATERIALS
Chajitcr XXI .  Rasie Principles 

202. Stress and Strain in a Hody Under the Action of External Forces 290
203. External and Internal Forces, and the Cross-Section Method . . .  291
204. Internal Forces of E lasticity ......................................................  293
205. Stress in Strained Hodies ..........................................................  293
206. Ultimate Strength and Safe Stresses ....................................... 294
207. Static and Dynamic Loads ........................................................  295
208. Chief Types of S'rain ................................................................  295
209. Questions for Review .................................................................. 296

Chapter XXI I .  Ten»ion ami Compression
210. Tension. Absolute and Unit Elongation...................................  296
211. Transverse Strain of a Hodv Under I lie Action o! a Tensile

Force.....................................‘......................................................... 297
212. The Tensile-Stress Diagram ......................................................  298
213. Relationship HeLween Stress and Unit Elonualion. The

Modulus of Elasticity ..................................................................  300
2J4. Compression...................................................................................  302
215. Design Foimulae foi Allowable 9 ensile and Compressive

Sti esses .........................................................................................  302
216. Compression and Duckling..........................................................  304
217. Questions for Review ..................................................................  305
218. Exercises .................................................................................... 305

Chapter XXI I I .  Shear and Torsion
219. /shear (Strain in Lateral Displacement) ...................................  306
220. Determining Llie Amount of Shear Strain, and the Modulus of

Elasticity for Shear........................................................................  307
221. Allowable Shear ............................................................................ 308
222. Punching of Metals and Culling Them with Steel Hladcs ..........  309
223. Torque ...........................................................................................  310
224. Torque As a I'orm of Shear ..................................................... 311
225. Distribution of Torsional Slress in a Plane Circular Section . . .  311
226. The Fundamental Equation for Torque.....................................  313

9



227. Computing the Dimensions of Shafts for a Given Torsion........  316
228. Questions for Review ...........................................................  317
229. Exercises ..........................................................................  317

Chapter XXIV.  Bending *
230. The Nature of Bending Strain ..........................................  318
231. Dislribulion of Normal Stresses During Bending. Tlfe Neutral

Plane................................................................................... 320
232. The Fundamental Equation for Bending............................. 322
233. Tlie Bending Moment ........................................................  324
234. Questions for Review .........................................................  327

Chapter XXV. (ienrral Principles of Combined Strain
235. Simple and Combined Strain...............................................  32?
236. Combined Tension, Compression, and Bending Strains ..........  328
237. Combined Torsion and Bending Strains ................................  329

Supplements........................................................................  331
Answers Lo Exercises ........................................................ 333



P A R T  O N  K

THEORETICAL MECHANICS





IXTRODUCTIOX

1. Mechanical Motion

There are a great many forms of motion. An incalculable 
number of bodies are in motion on 1 lie* earth, which in its Lurn 
is rotating abouL its axis and also travelling around the sun, 
while the sun itself and all its planets are in movement relative 
to the stars, which in their turn are also moving through space. 
But in all these instances we have to do with otdy one form of 
motion -Phe motion ol bodies themselves. Science has estab­
lished that heat, light, electricity, and chemical and many 
other phenomena are also forms ol motion. Furthermore, 
life itself in all its manifestations is a Jorm of motion.

The perpetual movement of matter causes all the natural 
phenomena about us.

Motion occurs in space and in lime, therefore space and time 
arc inseparable from matter in motion. When a body changes 
its position in respect to other bodies, we say it is in motion. This 
relative change in position of a body is called mechanical motion.

The science dealing with the laws ot mechanical motion is 
called mechanics.

2. Tlie State of Rest as a Relative Phenomenon

The state of rest is a concept we continually meet with in 
mechanics. For example, when a railway bridge is built firmly 
and rigidly to make it immovable, we infer that it is in a state 
of rest only relative to the earth. For aclually the bridge is in 
motio*i together with the earth as the latter rotates about its axis, 
trav«s around the sun, and moves with the whole solar system.

There is no such thing as an absolute slate of rest. In me­
chanics when we speak of an immovable body we have in mind 
its relative state of rest, that is, its immovability in respect to 
some other body, usually the earth. And when we say that the 
headstock of a lathe is fixed we infer that it is rigidly fastened 
to the frame which we assume to be immovable. A body assumed 
to be immovable is called a basic system.
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3. Fundamental Elements of Mechanics

The motion of a body occurs in space, therefore space is 
one of the fundamental elements in mechanics. Time is like­
wise such an element in mechanics. •

Every point of a moving body describes a path of definite 
form relalive to a basic system; this path is called,a trajectory. 
A trajectory may be either of straight or curved lines, in accord­
ance wilh which the motion of a point is then described either 
as rectilinear or curvilinear. A moving point Lraverses a definite 
distance, the length of which as covered in a definite interval 
of time will depend upon the speed of the moving point. If Lhc 
point travels erpjal distances in etpial intervals of time, its speed 
will be constant and its motion is then said to be uniform. In 
other cases Lhc moLion is said to be non-uniform, or variable.

If speed changes at an equal rate in equal intervals of time, 
the motion is said Lo be either uniformly accelerated or uniformly 
retarded. A change in speed is called acceleration.

In investigating mechanical motion of bodies and their state 
of rest (as a particular case ol motion), another quantity is met 
with which determines the action of one body upon* anoLher; 
that quanLity is called force.

All these elements will be dealt with in detail along wilh 
others pertaining Lo mechanics, as we proceed.

4. Basie Units of Measure Used in Mechanics

In order Lo express quantities in figures, definite basic units of 
measure are required. Such units are:

the metre, written m, for measuring length and distance; 
the kilogramme, written kg, for measuring force; 
the second, wrilten sec, for measuring time.
Units representing other quantities in mechanics are derived 

from the above units. Speed is represented as a fraction formed 
by dividing distance by time, thus:

or n-  , or in X sec-1; acceleration is represented unit of tune ’ sec N 1
m

» see*
, ., .. , unit of velocity • mby the m agnitude----- — — , i. e., —— — —  or.J ”  unit of tune sec X sec » .
or m X sec-2; and so forth with other magnitudes. '

It is sometimes found more convenient to derive certain
units directly from in, kg, and sec. Low speeds, for instance.
are expressed as ; the speed of a train or a plane as thekm

speed at which a laLhe cuts metal as great forces are1 nun n
expressed in tons (ton), etc.
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In solving problems the unils of measure must be brought 
into proper correlation and thenceforth strictly followed to 
obtain correct results.

IVluBtratlve Problem 1. How much greater or smaller is the unit of
velocity than the unit of velocity —'7— ?J hr min

Solution: to solve this problem, the units must first be reduced to
a common denomination: since 1 km -  1,000 m and 1 hr = 60 min,
it follows that

i km _  1,000 m _ 
lir ~  00 mm

therefore
km , m 1,000 in .. m 1,000 21 . — : 1 -  .— = : 1 — =■ ,, - — to — ■hr nun 60 nun mm 00 3

tt .. km . 2 .. . .. .. mHence 1 ;— is 10 -rr times greater Ilian 1 -—hr 3 nun

5. A Material Point aud a Solid Body

Bodies whose motion is dealt with in theoretical mechanics 
are assumed as consisting of a very great number of infinitely 
small particles. The size of each particle is imagined so sinail 
as to approach a geomcLnc point. Each such particle is known 
as a male rial point.

Hence, any body is regarded as being the sum, or a system, 
of material points.

In studying motion in mechanics, the body concerned is 
frequently leprcsenlcd by a single material point. The motion 
of a ship, for instance, may lie designated as the niolion of just 
such a material point. A moving ball aLtached to a long sLring 
may also be considered a material point.

Accordingly, the concept material point may signify either 
a very small particle of a body, or a whole body considered as 
a point.

A material point is a body whose dimensions are so small as 
to he negligible with respect to other geometric values involved 
in Lhe given problem.

Bodies dealt with in theoretical mechanics are assumed to be 
absolutely rigid and unchangeable in size and shape under the 
influence of another body.

6. The Science of Mechanics

Mechanics deals with a variety of problems, but notwith­
standing this variety they fall under one of the following classi­
fications :

1. Determining the trajectory described by the points of a 
moving body, the position of any one of the points in its trajcc-
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tory, its speed and acceleration, elc., in short, the solution of 
$>toblems concerned with the movement of a body as a whole 
or of any of its individual points independent of the force 
applied.

This branch of mechanics is^cplled kinematics. Kinematics 
deals with the relationship between the geometric elements

M. Lomonosov

of motion and time, inespeclive of the forces acting on the body 
in motion.

2. Determining the nature ot motion oi a body as related to 
the forces acting on the body, or, con\crsely, determining the 
forces causing the motion. This type ol proidem is dealt with 
in the branch of mechanics called kinetics.

Mechanics also treats of terrestrial bodies in a slate of rcsL, that 
is, a slate of equilibrium. Here we seek the conditions under 
which forces acting on a body are brought into equilibrium, 
for knowing these conditions, engineers can ensure rigidity and 
strength to the si ructures they are building.

That pari ot kinetics dealing tvilh equilibrium of forces and 
the consequent stale ot rest of a body is known as statics, while 
the investigation of motion ol bodies under the action of forces
16



applied to them constitutes anolhcr branch of kinetics called 
dynamics.

Such are the sciences embraced by mechanics, and their fun­
damentals are lakcn up in 1 lie first part of this book in the follow­
ing order: statics, kinematics, and dynamics.

7. Chief Stages in llic Historical l)c\elopmen( of Mechanics

It Look thousands of years for man to find scientific explana­
tions for mechanical phenomena. The first known attempts 
of the kind were conducted during the 4Lli cenLury B. C. Imple­
ments and mechanical devices of the lime were extremely simple.

P. Chcbyshcv.

knowledge of mechanics was correspondingly limited and the 
devices known—the lever, pulley, windlass, etc. —were studied 
for the most part from the standpoint of statics to aLtain an 
understanding of equilibrium of forces.

Some of the mosL important work in Ihe held of statics was 
done by Archimedes (287-212 B. C.), who carried on research 
on the laws of the lever, centre of gravity, and other phenomena.
2 - son 17



After Archimedes, there was little advance in mechanics 
until the loth cent my A. I)., when it began to develop in­
tensively, spurred on by the transition trom primitive handicraft 
to improved methods ot production. During tins period Leonardo 
da Vinci (1402-151!)) made several discoveries m Lhc field of 
mechanics, while Stevinus (1518-1620) lurl her developed many of 
Archimedes’ principles of statics and investigated the mechanical 
properties ol the inclined plane.

In the 17th cenlury mechanics was further enriched by Galileo 
Galilei (1564-1612). Galileo’s work in this sphere was carried 
forward by Isaac NewLon (1642-1727), who improved the

•N. Zhukovsky

formulation of some of Galileo’s laws and developed mechanics 
to the level of a science. The mechanics of Galileo and Newton, 
now known as classical mechanics, formed the foundation for 
the subsequent intensive growLh of that science.

The 18th century saw the advancement of a new science 
called analytical mechanics, whose founder was the Russian

18



mathematician and mechanic. Academician I,. Euler (1707- 
1783).

An outstanding name ol the eii»htcen1 h century was that 
of the Russian scholar M. Lomonosov (1711-17(53), eminent 
fof his discoveries in various spheres ol science, including me­
chanics; another major contribution was his discovery ot the 
law of the conservation ol matter and energy.

S. Chaphgin

Another amongst the first Russian scientists notable for 
their.work in mechanics, was Academician S. Kotclnikov who 
in 1774 published a bdok on equilibrium and motion ol bodies.

Beginning with the 19th century mechanics made rapid 
strides and its principles were applied with ever greater frequency 
to practical problems. The Russian scientist P. Chebyshev 
(1821-1894) carried out extensive research on, and created 
the foundation of, a branch of mechanics called the “Theory of 
Mechanisms and Machines”. Russian scientists also contributed
2* 19



enormously to the knowledge of the mechanics of liquids and 
gases. Amongst them N. Zhukovsky (1847-1921) holds a leading 
position. Known as the “Father ol Russian Aviation”, he is 
the founder of the Russian theoretical school in that field, Jtiis 
works forming the basis of the general science of aerodynamics 
and aviation as a whole. Academician S. Chaplygin (1869-1942), 
one of Zhukovsky’s outstanding pupils, solved a number of 
important problems in contemporary super-speed aviation and 
oilier pressing questions of mechanics of great theoretical and 
practical significance.



STATICS

C l I A P T l j n  I

FUNDAMENTALS OF FORCE, AND AN INTRODUCTION
TO STATICS

11. Forees

Some examples of mechanical phenomena are: a stone falling 
to the ground, a tramcar passing from a rectilinear lo a curvi­
linear streleh of track due lo pressure on I he sides of the wheels 
by the raffs, I he deformation ot the spring and consequent lowering 
of the pan of weighing scales when an object is placed thereon.

[n all of the above instances a change of motion, or, as il is 
called, of mechanical position of a body, is brought about by the 
action of another body upon the one in question. In the lirsl 
and third ot Ihe above instances that other body is the earth, 
while in the second instance il is Ihe rails.

In mechanics, action exerted by one body upon another is 
called a force.

It must be noted that these are instances of the interaction 
of two bodies (the earth and a stone, rails and wheels, tin body 
being weighed and a spring). When body A exerts a force 
upon body H, body U excels a lorce of equal magnitude upon 
A but in the opposite direction.

9. Statics

As has already been said, statics deals with the equilibrium 
of forces. In order to find if a system of forces is in equilibrium, 
or what conditions are required to maintain a given equilibrium, 
it is necessary first to effect either a composition of the given 
forces, that is, to replace all the forces by a simple system of 
forces or by a single force that will exert the same action, or to 
resolve the forces into their components. Hence the laws of 
composition and resolution of forces are of primary import­
ance in statics.

Among all forces acting on a body there is always one which 
is manifest by an attraction towards the centre of the earth; 
that force is weight, or gravity.
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Another constant force is friction; let us say we want to shift 
an object along the ground. Bui we know from experience thaL 
iL is not always possible to do this and that the action will depend 
upon a number of conditions, one of the most important beftig 
the resistance of the surface of the ground, i.e., the force of fric­
tion. All other conditions being cqu^l, friction will.vary directly 
with the weight oMhc object; the heavier the body, the greater 
will be Lhe friction.

The force of gravity and the force of friction arc very impor­
tant factors in solving a great variety of problems; therefore 
they will also be investigated in this section of the book.

10. Elements Which Determine a Force

The action of one body upon another, known in mechanics 
as the application ot a lon e, may be exerted in various directions, 
lienee, direction is the first element of n force. For example, the 
force of gravity which alfcels everything abound us acts towards 
the centre of the earth, i.e., vertically.

However, the direction of a force is not sufficient to deter­
mine the action it will exert upon a body. For obviously Lhe 
greater the Jorcc, the greater the aclion in the given direction.

Therefore the second element required 
to determine a force is its magnitude.

To express the magnitude of a force 
it must be measured by some definite 
force taken as a unit. The most con­
venient way to measure the magnitude 
ot a lorce m mechanics is to compare 
it with the force ol gravity to which 
all bodies on earth are subjccL. For 
that reason the kilogramme (kg), 
which is the weight of one cubic 
decimetre of water, has been accepted 
as the unit of weight for measuring 
the magnitude of any force in mechan­
ics. The instrument used for this 
purpose is called a dgnamomeler.

'lhe simplest type of dynamometer 
is illustrated in Fig. 1. A spiral spring 
A, with a pointer D attached to a 
hook oj i  the low'cr end, is suspended 
from a stationary hook li. A strip C 

is fastened rigidly to the upper end of the spring. A mark 0 
is made to indicate the position of the pointer D when at rest 
(Fig. la). When a load, let us say a 5 kg weight, is suspended 
from the hook on the lower end of Lhe spring (Fig. 16), it will 
stretch the spring so that the pointer will finally come to rest
22
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at a new position which is then marked «7. Thus the force of 
gravity acts on the load and causes the spring to stretch to a 
definite extent. Now if the load is removed and we subsequently 
stfctch the spring again by hand till the pointer reaches the same 
figure J, we may say that we are exerting a force of 5 kg upon 
the spring. And if we 
hang a 2.5 kg weight 
on the spring, we 
would see thal I he 
pointer comes In rest 
halfway between 0 
and 5. Therefore il we 
divide the distance 
between Oand 5 in Lo 
five equal parts, we 
may then measure 
forces to within one-kilogramme divisions; or bv dividing the 
same distance into ten equal pails, we could measure forces 
to within half-kilogramme divisions. Dynamomelers constructed 
on the principle of Ihe deformation ol a spring are called 
spring dynamomelers.

Fig. 2 shows another type of spring dynamometer used to 
measure forces of targe magnitude, from 2 lo 5 tons. When 
pulling forces arc applied to hoohs A and A. plates li and B

will be brought closer to 
each other and displace 
one ol Ihe pointers on 
the dial. By hitching such 
a dynamometer belween 
a locomotive and a train 
ot cais, the pulling power 
ol I lie locomotive can be 
measured.

Finally, the thud clement of a foiic is its point of application. 
Let us imagine that the load (I in Fig. d is lo be raised by a lever. 
The magnitude of Ihe loice needed to raise the load will depend 
upon the distance belween the applied lorce and the fulcrum C. 
If the force is applied at point y\j, il will have to be greater than 
if applied at point A. From this it follows thal in order to deter­
mine the action that a given force will have on a given body, its 
point of application must be known. In practice, the force will 
not act at a geometric point but will bear over a certain area. 
But for convenience in compulation il is assumed as applied 
at one definite point or contact.

Wherefore, the elements required to'delermine a force are direction, 
magnitude, and point of application.
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11. Graphic Method of Representing Forces
The action of forces is much easier to understand when they 

are represented graphically. Let us take a simple example.
Assume it necessary to represent the pressure exerted on* a 

horizontal plate hy a stationary hall whose weight G — 2.25 kg 
and which is lying on the plate’s surface at a. distance of 
a mm from its front edge and b mm from its left edge.

The application of the iorce G occurs at the point of contact 
between Lhe flat plate and the ball. Hy drawing a straight line 
I\L  at a distance of a from the front edge of the plate (Fig. 4) 
and another straight line MN at a distance of b from Lhe left

edge, we tind Lhe point ol application 
A at their intersection. At this point 
a lorce equal to the weight of the ball 
is acting on the plate. Since the force 
of gravity acts directly downwards, we 
draw a vertical line BC through point 
A along the path of the force. Now all 
that remains is to mark olf on the latter 
line the lorce to be represented, to do 
which scale must be selected, such as 
lb mm to one kg. We then mark off 
a seel ion ol 22 5 mm on the line BC 
from point A downwards to I), and 

draw an arrow at I) indicating that the direction of the force is 
downwards.

The line upon which the lorce has been laid out (in this case 
line B(.) is called the line of action of the force. This is a 
term we shall subsequently make Irequent use ol.

Force, as Me see, is a quantity possessing direction. Other 
quantities possessing direction are also applied in mechanics 
(velocity, acceleration, etc.) and are alt called vector quantities 
or vectors, as distinguished irom quantities which have no direc­
tion (as, lor instance, area, volume, etc.) and which are called 
scalar quantities.

A vector is delineated as part of a straight line whose length 
is based on a scale equal to the value of the given vector, while 
its direction is Laken as the direction of this value.

To show the direction ol Lhe vector, an arrow is drawn on the 
segment of the line where the vector is laid out. A vector occur­
ring in the text is designated by the same letters as indicated 
on the length of its delineation, except that a vinculum is drawn 
above these letters; for instance, lhe vector represented by the 
length AD in Fig. 4 is written in the text as AD.

A vector may also be designated by only one letter instead 
of two in the text, but printed in bold type. For example, if 
the vector AI) has a value of G, it is designated as G.
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In the above example the letter A marks the beginning of 
the vector while Ihc letter I) — its end. To denote a vector 
the letter which marks ils beginning is always written first and 
then follows the letter marking ils end.

If the vector G were to act from points D to A, then it would 
be written as DA.

12. A System of Forces and Its Resultant
Fig. f> represents a bodv with forces P2, and P3 applied 

at points A , B, and C. The aggregate ol forces acting upon a 
body is called a system 0 / forces.

If we find one force It exerting the same action upon a body 
as the whole system of indicated forces, 
then that force can be used to replace 
the system of forces.

A force which exerts the same action 
as a given system ol forces is culled 
the resultant of /ones.

Forces whose concurrent action can be 
replaced by a resultant ol torcesare called Fig. <>
the components of the lorcc.

The resultant of lorces is found through the composition 
of forces.

13. Two Equal Forces Acting in Opposite Direelions 
Along a Straight Line Connecting Their Points of Application,

Are in Equilibrium
Assume Lwo men holding the ends of a pole and pulling in 

opposite directions. If the pole shills lowaid one of the men, 
we will sav ho is pulling it wdlh greater lorce than the other;

if the pole does not shift, we will 
p. a n say the two men are pulling with

— o-----------o— H? - equal force. In Fig. (5, if forces Px
and P2 applied at points A and B 

Fig. d are equal in magnitude and acting
in opposite directions along a 

straight line connecting their points ol application, they will be 
in equilibrium and will cause no change in the mechanical state 
of the body. In like manner forces Pj and P2 may be applied to 
one point (Fig. 7).

From this iL follow's that if we add two more equal fortes acting 
in opposite directions along a straight line to a system of forces 
already acting upon a body, the mechanical stale of that body will not 
be changed.
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14. The Point of Application May Be Altered 
Aloiiy the Line of Action of a Force

Let us assume that a force P is applied to a body at point 
A (Fig. 7) and that at another point, say B, we apply two forces 
Px and P2, each equal in magnitude to P and acting along its line 
of action but in opposite directions. As previously explained, this 
will not change the mechanical state of the body, but as a result 
we will have a system of three 
forces P, Pt, and P2 acting 
along one line. But forces P 
and P2 are equal to each other

P A____  Pi B Pz

Fig. 7

and in mutual equilibrium and consequently the mechanical 
state of the body Lo which the three forces are applied depends 
on force Pj alone, which j s  equal in magnitude Lo F and acting 
in the same direction. In other words, we have altered the point 
of application of force P to point 13.

This property of forces is frequently used in solving problems 
of mechanics.*

P, A. ,8 Pz

.Pz-
0)

1)
Fig. 8

15. Eqiiilibrant of a Force

Let us return loSer. 12 (Fig. 5), where it was shown that the 
forces Pj, P„ and I‘3 mav be replaced by their resultant II!

Now let us apply force H,, equal in magnitude, opposite in 
direction, and collinear with It, lo point 0. On the basis of what 
has been staledin Sec. Id, It and ltj are equivalent and conse­
quently the forces P,, P2, and P3 are equivalent lo It! which 
means Lliat a body acted upon by this sysLem of forces will be 
in equilibrium. A force It! wtyich is equal, opposite, and colli­
near with Lhe resultant It of a system of forces acting on a body 
is called the equihbranl of that system. This line of reasoning

* A clarification is required here. Let us assume that tw» forces 
P, and P., equal in magnitude and acting in opposite directions, along 
the same line of action, are applied lo a thin bar at points A  and B  
(Fig. 8a). Force P, may he moved to point B, and force P„ lo point A  
(Fig. 8b), but it is apparent that in the first instance tin* bar would tend 
to stretch, and in the second would tend Lo contract and take the shape 
shown in Fig. 8b. Therefore from the physical standpoint the situation 
of the point of application of a force along its line of action is not a matter 
of indifference. Hence, as already stated in Sec. 5, fundamental deduc­
tions in theoretical mechanics arc based on the assumption that a body 
on which forces are acting is absolutely rigid and unchangeable.
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may be carried further. Let us assume Lhat we have a system 
consisting of P2, P3, and Rr  Then their resultant would be 
equivalent in magnilude to force Plt and would be opposite 
anfl collinear with it, while P! would be the equilibrant. This 
means that in a system oj forces w equilibrium, any one of the 
forces is the equilibrant of all the other forces.

Oral Exercise
What is the difference between the resullant and the equilibiant of 

forces?

10. Composition of Collinear Forres
Given two collinear forces Px and P2 acting on a body in the 

same direction at points A and B (Fig. 0a). The problem is to 
compose the forces, i.c., to g p2

R=P,+PZ a)

A B
Pi

*)
F ir .

R-Pz-P,

find their resullant.
We know by experiment 

that the action of Iwo such 
forces oit the mechanical 
state ol a body will be the 
same as the action oT another 
force equal in magnitude lo 
the sum of the two lorces and 
acting in the same direction.
We can find (his sum graphi­
cally by altering the poinl 
of application oi force P2 Lo the end C of the vector Pj. as shown 
in the figure. Then the resultant can be represented by the vector 
AD. The same result may be obtained il the end ot the vector 
Pj is transferred to point B. From all ol which the resultant

R -  1\ | l \ .
Or let us take the case ol two opposite lorces acting along 

one line (Fig. 9b). Here it is necessary lo compose the lorces 
Pj designated by AC, and P2 designated by BIJ, in Lo their result­
ant, the second force being greater than the first (P2 ^ fJt). 
Let us assume force P2 to be the sum ol two forces acting in the 
same clircction—the lorce designated by the vector BE, which 
is equal, opposite, and collinear with Px, and a second designated 
by ED. Forces AC and BE are in equilibrium since they are 
equal, opposite, and collinear. As a result the two forces Pi 
and P2 are reduced to one force, i.e., to the resultant ED, which 
is equal in magnitude to the difference between them and acts 
in the direction of the greater force:

R = P 2- P V
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If instead of the resultant of two forces we must find the result­
ant of more than two forces with a common line of action, 
then each direction of forces is first summed up and the resultant 
of the two forces determined as described above. •

If it be assumed that the forces acting in one direction are 
positive and those acting in the other are negative* then their 
algehraie sum will be the resultant.

Wherefore the resultant of two or more collinear forces is the 
algebraic sum of their components.

o
Illustrative Problem 2. Find llic rcsullnnt of the following live collin- 

ear forces: P. = 400 kg, P, =  — 200 kg, P , =  —350 kg, P, =  100 kg, 
and Pa =  —175 kg.

Solution: tlie resultant 7f =  P, + P„ -f P, +  P , 4 P, — 400
— 200 —350 + 100 —175 =  —225 kg, acting in the direction oppo­
site to P, and P,.

Illustrative Problem 3. A man weighing 82 kg is standing on floor 
scales and pulling vertically on a rope hanging fiom the ceiling. "What 
force is he exciting on the rope if the scales arc registering 45 kg?

Solution: the figure registered on the scales shows thceforce with 
which the man is pressing down upon them. This force, which is the 
resultant of the weight of the man and the foice exerted by means of 
the rope (in opposition Lo the weight of the man), we shall designate 
as P.

If we take the forces acting veiticallv downward as positive and force 
P as negative (the man is pulling lnmsclj upwaids), then we have the 
following equation :

82 — I’ =  45, from which P = 37 kg.

17. Constraints anil the Reactions of Constraints

Various kinds of motion occur when bodies arc acted upon 
by forces. Most frequently we meet with the motion of a body 
whose free choice of position in space is restricted by oLher 
bodies. Instances of this type of motion are: the movement 
of a body on the earth’s surface, the revolution of a shaft in a 
bearing, the movemenL of the carriage of a lathe along the 
guides of its bedwav, etc.

This kind of motion of a body is called restricted motion. The 
conditions restricting the motion of a body are called constraints.

The action on a body by other bodies exercising constraint is 
measured by a force called the reaction of the constraint.

In Fig. 10 the ball rolling down the inclined plane under the 
force of gravity is subject to the reaction of that plane, des­
ignated by force N perpendicular to the plane KM.

Or, take a beam lying freely on two supports (Fig. 11). The 
weight of the beam exerts pressure on both supports, while

* The choice of which forces to designate as negative and which 
as positive varies with each case and has no influence on the final result.
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the supports in their turn exert opposing forces Qt and Q2 on the 
beam and are called the reactions at the supports.

It is important to stress the following: the force excited, by a 
bocfjj on a support is applied to a point on the support, whereas 
the reactive force of the support is applied at a point on the body, 
with the result that the two forces have different points of applica­

tion. So is it in Hie case ol' Lhe ball on I he inclined plane when 
the pressure ol the ball is exerled al a point on the plane and 
Lhe reactive force is applied to a point on the ball. The two 
points are contiguous al poinL A. In the same way the points 
of application of pressure of a beam are on the supports, whereas 
the points of application of the reactions are on the beam.

Oral Exercise
A ball weighing 2 kg is resting oil a hori/onlal plate. What is the 

direction of the reaction of the plate, where is its point of application, 
and what is its magnitude?

18. Questions for Re\iew

1. What do we call a force in mechanics and how does it manifest 
itself?

2. Is there any difference be I ween the line of action of a 
force and the direction of a force'!

3. In what sequence should the elements designating a 
force be delineated on a drawing?

4. What quantity is a vector?
5. What is the difference between the resultant of a system 

of forces and equilibranL?
6. What is meant by the expression lhe algebraic sum of 

forces?
7. What is the difference between the foice that a body 

exerts on a support and the reaction at the support?
8. What is the direction of the reactions exerted on the 

wheels of a locomotive at rest?

19. Exercises

1. Load B, weighing 3.5 kg (Fig. 12) and attached 
by a cord to dynamometer A, is lowered to a table in 
such a way that the cord remains tauL. The pointer 
on the dynamometer registers 1.5 kg. To what is the 
reactive force of the table applied, what is its direction, 
and what is its magnitil(Je?
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2 A man is sLanding on floor scales and pulling on a rope 
suspended from a dynamometer fastened to tlie ceiling. The 
dynamometer registers 15 kg while the scales on which the man 
is standing show 05 kg Find 1) the weight of the man and 
2) the magnitude and directions of the reactions exerted on The 
man by the plalfoim of the scales and by the rope.

•

CHAPTER II
COPLANAR S\ STEMS OF CO\CURRE\T FORCES

20. Finding I he Resultant of Two Forces 
Acting at an Angle

So lai we lnne in\eslig.iled systems of foices having a single 
line ol action and whose lesidlanl is collmeai with these tones.

Now we shall take up the question ol finding 
the usultanl ol two Ion os whose lines of aclion 
inlcisecl at a poml and toim an angle

1 he simplest syslem of fonts acting at an 
angle is obi lined when (he forces ail' of equal 
magnitude as shown in Fig lb  where loiees 
?! and P2 aie equal and an  acting aL an angle «. 

Since llicie is no reason loi Ihe lesullanl Lo be dnected closei 
to one fone than to Ihe other, it should bisect the angle II the

1 if? H

Fig. 14
forces were ol different magnitudes, the resultant would remain 
in the same plane and make a different division of the angle 
formed by the lines of action of the forces.
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Let us make the following experiment.
Suspend two spring dynamomeLers A and B from hooks in 

a stationary horizontal bar as shown in Fig. 14a. Tie their hooks 
to jing 0 with cords of any length. Then hang load G from the 
ring by a third cord. The cords will become taul, the load will 
swing and the poinLers of the dynamometers will shift back 
and forth. Finally the dynamometers and the weight will stop 
fluctuating and the whole system will reach a state of equilib­
rium.

Now let us see what forces are acting on the ring 0. The spring 
of dynamometer A is acting on it Irom the lett, and the spring 
of dynamometer B from the right. The weight G of load c is 
acting on it directly downwards. And since the system is in a 
state of resl, the three forces are m equilibrium.

Now Jet us lake a sheet ol cardboard, place d behind this 
sysLcin of forces, and with a pencil mark points a and h the 
points from which dynamometers A and 11 are hung--and the 
centre ol the ring 0, and also draw' a straight line Or designating 
the position of the cord from winch the load is hung.

Now web can delineate on the caidboard all the lorces acting 
on the ring and meeting at its centre. First we draw hues On, 
Ob and Or to represent the lines ol action ol flu* lorces acting 
on the ring (Fig. 1 16;, the weight ol the load is known and the 
magnitude ol the two other lorces is taken irom the dynamometers. 
Ily choosing a suitable scale we can lay oil corresponding lengths 
from point 0  along the three lines and add arrows showing the 
directions along which the lorces are acting. As a result there 
will be Ihrce forces designated on the cardboard: Plt P2 and G. 
expressed by the vectors 0 A lt OB1. and 0(1 v

These three forces are in equilibrium. Assuming thnL force 
G is the equilibrant ol forces Pj and P2, we then delineate 
vector OC2, which represents force R, equal in magnitude to 
force G and acting in the opposite direction. In accordance 
wiLli Sec. 12, the lorce II is the resultant ol P, and P2.

If we draw a sLraiglit line extending from A, (the end of the 
vector of force Px) parallel to the vector of force P2t and another 
line from Bx parallel to the vector of force P, (the feud of the 
vector of force P2) we will rind that these two lines intersect 
at point C2, that is, at the end of the vector of the resultant 
R^IIcnce, by thus constructing a parallelogram of the vectors 
OA,, and OBl of the forces Pj and P2, we obtain their resultant 
R in magnitude and direction, designated by the diagonal OC2 
of the parallelogram.

Such a parallelogram is called a parallelogram of forces.
Wherefore the principle for the composition of two forces 

acting at an angle may be stated as follows: the resultant of two 
forces with a common point of application and acting at an angle
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is equal in magnitude and direction to the diagonal of a parallelo­
gram constructed with the two forces as adjacent sides.

In the above inslanee the component forces present, a common 
point of application (the centre of the ring shown in Fig. Ha). 
But if the forces are exerted at dilfcrent points, they may be 
shown as applied to a point where these lines intersect and a 
parallelogram with their vectors forming adjacent sides 
may be constructed as shown in Fig. 11c.

The resulLant obtained in I his way is called the geometric 
(or vectorial) sum of component forces.

This principle of the parallelogram is also employed in the 
composition of other vecLor quantities acting at an angle.

It will be recalled from geometry that any side of a triangle 
is less than the sum of the other (wo sides and larger than their 
difference. By applying this to the resultauL in Fig. 14b we 
obtain

l \  ! -  li >  I \  - l \ .
When the angle under which forces arc acting is changed, 

their resultanL will also change: if the angle decreases.,the result­
ant will increase and vice versa; with an angle of 0°, the two 
components will have both the same line of action and of direc­
tion and their resultant will be Px \ P2, whereas at an angle 
of 180° their resultant will be Pl —7\. With Ihese extreme angles 
between coinponeril forces, their geometric sum becomes their 
algebraic sum. This means that the punciple used in the compo­
sition of Lwo collinear forces is paF ot the principle ol the paralle­
logram of forces.

Illustrative Problem 4, Two forces P, and P of equal magnitude are 
acting at an angle of 120° Find Iheir resultant (Fig. l,r>).

Solution: the paralli logiani consliueled on llie vectois of these forces 
is a rhombus, for which uason Die diagonal ()(', bisects angles AOH 
and ACJt. Therefoic ' A O C  / C O B  = »»()'’ = /  AGO / OCJi.

It follows that the resultant forms an arigh of (H)° with each of ih? com­
ponent forces. Furthermore it is easy to see that the triangles OAC 
and OBC are equilateral, which means that OC =» OA =  OH. Hence 
the resultant in this case is equal to each of the components.
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Illustrative Problem 5. A groove is being cut in a workpiece machined 
on a lathe (Fig. 1(5). It has been determined with a dynamometer that 
radially acting force Pv = All -- ~>‘t kg, and vertically acting force 
Pz = AC = (J3 kg. Find the magnitude and the direction ol the result­
ant* 11 = AD.

Solution: since Llie components are pcipendieular to one another, 
the parallelogram constiucled oil then \ectors will he a rectangle and 
its diagonal can be determined by the Pythagorean Theorem:

n  -  1 =- 108 kg.
Fiom the luangle ADC w  obtain DC - .If,' tan thereioie

tan rp -  ~  - 0..192 and the angle y> - 30o3(/

21. Itcsohinij si Force into Two Component-, 
Applied sit One Point smd Acting at an Anjflc

'Flic reverse oi llie eomposilion ol forces is called the i(’solu­
tion, of a loree into its eomponenls To icsotvc a force into two 
components signifies finding Iwo foices whose combined action 
will be the same as the given force, i.e., finding two forces whose 
resultant iff ill be equal to the given foiic.

it  can be easily iomul that such a problem may have ;m in­
finite number ol solutions. Lei us assume it necessary lo resolve 
Llie force 0 ~  CM into two minponeids (Fit?. 17). My drawing 
(wo lines. OK and OL. through (be point ol 
application 0, and lines AC and Alt parallel 
to them, Irom point A, we obtain a parallelo­
gram Oil AC from which we see lhal loiees OH 
and OC are eomponenls ol Joree 0- lint oilier 
lines of action could likewise be taken for the 
components —say OAl and ON. Then we 
would obtain the parallelogram ODAE, Irom 
which il follows that the loree may be the 
resullanl of two other forces Ol) and OE.

Therefore the problem as it is staLed is 
indeterminate and additional conditions must 
he included to obtain a single solution lor each specific case, as 
shown in the following examples.

1. Rosolve force Q (Fig. 18a) into two components Pt and P2, 
whose lines ol action M N  and ST  intersect with the action line 
of Q al poinL 0.

By altering the point of application of force Q to point 0 
we obtain vector OC - - Q. Then we construct a parallelogram 
OACB on that vector by delineating two lines from point C, 
that is, CD parallel to MN  and CA parallel to ST. The resulting
vectors OA and OB will designate the sought component forces 
Pj and P2. YS
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2. Resolve force Q (Fig. 18ft) into two components of which 
one, P,, is defined in magnitude and direction.

We extend the lines oi action ol the two given forces to their 
point of intersection 0 and construct vectors OA - Px gnd

OB <J. We then connect li and /I and delineate ()(J || AB  
and li(] || MiX, thus obtaining the desired second Component 
P <)C.

Can a given force lie resolved into components, each of which arts 
at a right angle to it?

Illustrative Problem 6. A vertical load P of 1,200 kg is supported by 
a triangular bracket AJiC. Find the iorees acting on A B  and BC if 
AB — GOO nun and AC — 800 nun (l-'ig. 10).

Solution: the forces acting on the indicated elements are compo­
nents of force P and directed along these elements. Hj constructing tile 
parallelogram BEDP  on vector 111), which represents force P, we obtain 
bolli components P, and P . The first is directed irom point B  towards 
point E, that is, from A along the support A B  and tends to stretch ilie 
latter. The second component BL-' is directed towaids point C, that is, 
towards the point which fixes the element BC and therefore lends to 
compress that element.

lly measuring the I wo components by Hie same scale as used in des­
ignating loree P, we can find their magnitudes.

Tlie.se magnitudes can also be found by calculation, as follows.
Since triangles AJIC and BED are similar, then

N
s '

s '

Fig. 18

Oral Exercise

BE 1 \ AB  000 _  _3
BD P ~~ AC "  800' 4

hence

1\ =■- -- P =■ — x 1,200 = 900 kg.

Fui thcrinore.

BD P ' AC
ED P.. BC ft>00! + 8002 1,000 5

800 '  800 " 4
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and
IK = 4  P =  4  1.200 -  1,500 kg." 4 4

Illustrative Problem 7. Slide-block 1\ (Fig. 20) which is subject lo the 
aefion of force P, is moving along a straight, horizontal bar AH at an 
even speed. What reacLion does the bar exert on the slide-block?

Solution: the reaction we seek is perpendicular lo the bar, i.e., it is 
directed from it vertically upwards. We resolve force P into two compo­
nents CE and CF, of which one is perpendicular, and the other parallel 
to AH. The parallelogram of loices CEDI'  so formed is a rectangle, of 
which side CF represents the downward pressure of the slide-block 
on the bar, and side CF represents Ihe foice ailing in the same direction 
as the movement of the slide block*.

Assuming that force P == 80 kg and tin angle a which it forms with 
the bar is equal to 60°, then / DCF — !'0° a — 30°.

From the right triangle DCE we derive

hence Ihe leaclion sought is equal lo (it).3 kg and acling opposite lo 
force N.

Illustrative Problem 11. In Fig. 21, line AH represents the axis of the 
cross section of Ihe wing ol an airplane tiavcllmg horizontally along the 
line ////,. The pressure of ihe air N pcipcndieulur lo Ihe win,, is des­
ignated bv Ihe vector OC. Find the lilting power tlial Ihe air exerts 
on the plane.

Solution: Hy resolving A into Iwo components, we obtain vertical 
P, =  OD and horizontal P„ — OF. The lirst gives Ihe magnitude oT the 
vertical pressure of Hie air and is equal lo the lifting power of the plane.

22 . The Composition of Several Forces Lyinj| in One Plane 
and Intersecting at One Point

The* principle of the parallelogram can also he employed 
to solve problems involving more Ilian two component forces. 
By moving any two of the forces along their lines of acLion 
so as to have a common point of application and consliuclin# 
a parallelogram of forces, Ihcir resultant 1^ can he found. Then 
the next force is moved to the common point of action and

* This force is in equilibrium due to the iorcc of friction induced on 
the surface of contact between the slide-block and the rod.

CF ■= CD cos 30° 80 x 0 8G6 -- G9.3 kg,
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combined with resultant It to obtain R2. Thus we continue 
with the rest of Lhe iorees until finally by combining the last 
component wilh the resultant of all the other iorees we obtain

the resultant oi the whole system. 
The order in which we combine the 
forces will have no influence on 
the final result, but bf course the 
partial resultants will differ.

Fig. 22 shows a system of four 
meeting Iorees P4, I*2, P3, andP4 
whose hues of intersecting action 
are at point 0. lly transferring 
the points of application P4 and 
1*, 1o this same point and con­
structing a parallelogram OBlKF1, 
we obtain our first partial result­
ant R, Oh j. This we combine 
with iorce P„ which we have also 

transferred to 0. and obtain the second partial resultant R2-- 
— Oh. Finally, by const meting parallelogram OLMIIj on 
vectors Oh and 0HX of foiees It, and P„ we obtain lhe result­
ant R - OM for the whole system ol ioices.

L

The forces need not necessarily be combined in this order. 
We could first have combined Px and P2 and then combined 
P4 wilh their resultant, etc., and the final result would have been 
the same.

There are other methods ol combining concurrent forces. 
Let us take four forces P4, P2, P3, and P4 (Fig. 23).
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First delineate two perpendicular coordinates xx and yy 
through a common point oi' application 0 (see Fig. 2‘.ia). Then 
we resolve each of the given forces into two components whose 
liifes of acLion coincide with axes xx and yy. By connecting the 
perpendiculars Aax and Aa,, irom point A (Ilie end of the vector 
of force Pt) with axes xx and yy, we resolve Pj into two compo­
nents 0ax and Oay. The process is then repeated with the other 
given forces. As a result we obtain four components ()ax, ()dx, 
Obx, and 0<\ acting along axis xx, and I lie same number of 
components 0bv, On,,, 0cv, and Ody acting along axis yy. In 
short, we replace the given forces by these eight forces.

Now we w'ork out the algebraic sum of the forces acting along 
tjacli of the axes xx and yy. For the forces acting along axis 
xx we obtain the resultant /1\. -Ob,.-\ 0rx - -0 u x - - 0dr, desig­
nated by vector OF in Fig. 2‘.\b. In exactly the same way we 
find the resultant of forces acting along axis yy, i.e., Ry - ()ry -{- 
+  Ody - '.)bv - Ody as designated in Fig. 2'.\b by vector OF.
In this way we reduce all the given forces to two, acting at right 
angles (orach other. By constructing the parallelogram OEGF, 
we obtain the desired resultant It designated by vector OG.

The magnitude and direction ol i bis resultant can be found 
by calculation without resorting to delineation.

Firstly, designate the angles lormed with axis rr by forces 
Px, P2, P,. etc., as a1. oc2, <x3, etc. From triangle A0av we obtain 
Oax - 0/1 ros«, / )l cosa,; in the same way we find that 
Odx -- cos Obx -FjCosa,, and ()rx Pa cos a3.

From the same triangles we find each vertical component of 
the given forces: 0<v - - OG sin <xa / ’, sin a.,, ()d„ l \  sin a4,
0by P.> sin x2, and 0ny F, sin lienee,

Rx P2 cos a2 | I'j ros a3 PL cos a, -/'|Cos a,; 
and Ry -- P3 sin cca ( F, sin x4 F» sin v., P, sin <xl.

The magnitude of resultant It is determined from triangle 
OEG as Lhe hypotenuse of a rigliL triangle:

U \rR* = HI■
Angle a formed by this resultant with axis xx is determined 
from the same triangle: Rv ---- Rx Ian a, from which tan a - •

In general, the resultant of a svstem of n forces meeting at 
one point is determined by the following equations:
R x --- P x COS oq -| P., COS 0C2 (- Pa cos 0C3 \- . . . t Pn cos <Xn  ̂ ^
R v Px sin «! -j-F2 s*n I ,siJ1 *3 r • • • f sin a;lJ

R - \ R i Y R l ,  (2)
t m  « =  ■ (3)
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Wherefore, the resultant of a system of coplanar concurrent 
forces is equal to the yeometric sum of two forces, each of which 
is the algebraic sum of the components of the system along two 
airs intersecting at right angles. *

The tangent of the angle formed by a resultant and a horizontal com­
ponent is equal to the ratio of the algebraic sum of the- vertical com­
ponents to the algebraic sum of the horizontal components.

Oral Pxcmses
1. If 1<X -- 0, and /?,, /  0, what is I lie magnitude and direction of the 

resultant?
2. If 1<X - /?,,, what will he Llie direction of the resullaut?
Illustrative Problem !). (liven a system of concurrent forces in which 

1 \ - 20 kg, P, -  2.r> kg, P, =- 30 kc*, and P, = 40 kg (fig. 23). The 
angles these forces form with the horizontal axis are a, =. 70°, a2 =  30°, 
a, — 20° and a, -- 00°, from which the resultant of these forces must 
be found.

Solution: llx and 7?,, are calculated through Equations (1): 
llx = 20 cos 70° -f 25 cos 30° -+ 30 cos 20° 40 cos 00° =

-- -- 20  ̂ 0.312 f 25 <. 0.800 + 30 0.04!) 40 x 0.5 =» 23 kg.
II,, -  20 sin 70° 25 sin 30° + 30 sin 20° + 40 sin 00° =
20 v 0.04 - 25 • 0.5 -f 30 < 0.342 -f 40 x 0.S00 = 13.0 kg.

The magnitude of the resultant, according Lo Equation (2),
H I 23”- f“ 13.0s -- 20.7 kg. 

and the angle a which it forms with Lite horizontal axis
■i o i •

tan a — .j.j’ 0.501, whence wo obtain * — 30°30'.

23. Equilibrium of u System of Coplanar Force* 
Intersecting at One Point

As we have already learnt above, a system of forces is in equi­
librium if each of its forces is Lhc equilibrant of all the others, 
that is, if each of its forces is equivalent Lo, and opposing, the 
resultant of the other forces. In combining forces according to 
the method shown in Fig. 22 we obLain a resultant OL equal 
in magnitude and opposite in direction to force P4 and the gene­
ral resultant is zero, i.e., the system of forces would.be in 
equilibrium.

For a system of concurrent forces to be in equilibrium, their 
resultant must be zero.

Let us see what conditions must be satisfied for this to hold 
true.

Let us return to Fig. 23. As we have already seen, resultant 
R can be defined as the geometric sum of the forces R* and R„, 
each of which is the algebraic sum of the components of the 
system obtained by resolving its forces along axes xx and yy.
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Therefore if the system is to he in equilibrium the condition 
YRl \ -R l- -0  must be satisfied. Since R% and R\ arc always 
positive quantities, this will be the case only if R* and R„ are 
eafri equal to zero.

lienee by employing Equations (1) we obtain the following 
conditions for Lhc coplanar system of convergent forces to be 
in equilibrium:
Rx -- PL cos <x1 [- P2 cos x2 \- Pj cos a, ' . . .  , Pn cos xn - 0 (4)
Rv — sin Xt | P2 sin x2 [ P3 sin xs j . . .  , P„ sin x„ - 0. (5)

Wherefore in order that a coplanar sgslem of convergent forces be 
in equilibrium, it is neeessarq and sufficient that each algebraic 
siim of the components of those forces along two perpendicular 
ares be equal to zero.

IHilstriillve Problem 10. Given a eo]>liin;ir syslem of convergent forces 
(I’ig. 24a) in which 1\ -- 23 kg, P, - = 27.5 kg, P, — 21.3 kg, I’, — 30 kg,
and } \  — 30 kg. The angles farmed bv their lines of action vviLh lhc
horizontal axis xx passing Ihrough lhc poinl ol inteiseclh'n of lhc forces 
are respectively a, — 20'’, a - OS0, a-, -  13°, a, — 30° and a- -  31°. 
Determine whether tile sjsleni is in equilibrium.

Solution: by applying Equations (4) and (3) wc obtain
Rx = P, cos 20° — P„ cos 08° - - P cos 15° — P t cos 39° f- 
+  P , cos 31° =  23 x‘ 0.899 27.3 x 0. 373 - 21.3 x 0.900 -
-  30 x 0.515 +  30 x 0.857 = 20.08 -  10.31 - 20.58 - 15.15 +
+ 25.71 =  40.39 -  40.34 =  0.03 kg Pa 0.
Ry = P, sin 26“ +  P, sin 68° +  P , sin 15° -  P, sin 59“ -  P5 sin 31“ 
=  23 x 0.438 +  27.5 x 0.927 +  21.3 x 0.259 -  30 x 0.857 -
-  30 x 0.515 = 10.07 +  25.49 + 5.52 -  25 71 -  15.45 =  41.16 -
-  41.00 =  0.08 kg pa 0.
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Therefore the system is in equilibrium*.
In Fin. 24ft this problem is solved graphically (the scale used is 

1 kg = 1 mm). As may be seem from the drawing, Rx =  0 and Rv =  0.

2-L L ines of Action of Three Non-Parallel Balanced 
Copluitar Forces that Intersect at One Point

Fig. 25 represents a body tinder the action of three balanced forces 
Pi, Pa, and Pa. Since any one of these forces is Lite equilibrant 
of the oilier Iwo, it must be equal and opposite to the resultant 
oi the oilier Lwo forces. If we transfer forces Px ami P2 lo their 
point oi intersection 0 and find their resullant OC. we may 
see I hat force I’3 must have the same line of action as resultant 
ll; in other words, iL must pass through the same point 0 at 
which P, and P, intersect. Wherefore, i/ three non-parallel forces 
lying in one plane are in equilibrium, (heir lines of action will 
interseil at one point.

Illustrative Problem If. \  man is filing a wmkpiecc K held in a vise 
(Fig. 2b). In orrlei that the Iile move cvcnlv, his hands exert torces P, 
ami P at eaeli ol its ends ([minis A and Ji) and thus overcome resist­
ance R ot the workpiece. In shojt, ioiees I*, and Pj compensate force R, 
and all liner fences meet at point O.

25. Questions for Review
t. What system of foiees is a concurrent system? .
2. Is there" only one solution to a problem in which a forde is to be 

resolved into two components if either the magnitude or the direction 
of one oi the components is given?

3. What is the answer lo Question 2 if both Lhe magnitude and direc­
tion of one ol the components are given?

4. What is the answer to the same question if the magnitude of one 
of the components and the direction of the other are given?

* Since our calculations have been approximate, we may neglect 
the quantities 0.05 and 0.08 kg, inasmuch as they arc of no importance 
as compared with the forces given.
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5. After the successive composition of forces 1*„ Fj, and P3, respec­
tively (Sec. 22, Fig. 22) by means of the principle of the parallelogram, it 
was found that the system was in equilibrium. What is the position of 
the line of action of resultan I It, and what is its magnitude?

9. The system of forces in Fig. 25 is in equilibrium. Uy constructing 
a parallelogram of forces P, and P„ prove that force P, is their equilib- 
rant.

7. Will a system of forces be in equilibrium if only one of the Equa­
tions (4) and (5) is satislied?

2(>. Exercises

iv
ol

/»,=  120 kg. 1\

'lie mag-
1 r.o 
180

3. Show five forces I’,. P3, P3, 
of application and whose lines ol action 
120°, 270°, 300°, and 3:30°, respective­
ly, with Lhc horizontal axis (lay out 
the angles counterclockwise), 
nitudes of the forces are 1\
P2 = 200 kg. />. 
and 1\ -- 80 kg.

4. Find the Tcsuliaid of two forces P, 
and P3, wffen each is 100 kg and llieii 
lines of action intersect at right angles.

5. Fig. 27 represents a cable lasl<*ned 
with load 1\ of weight G suspended Ironi 
culate the force P exerted on each halt ol 
a - GOO nmi, and lhc weight G ol load

6. The workpiece .1 in Fig. 28 l

and P5 with a common point
form angles of 30°

Fig. 27

at points A and li 
it in the middle. Cal- 
I he cable if L 5 m, 
l\ 100 kg.

being machined lengthwise 
on a lathe ]>v cutter U. A perpendicular force OC of 127 kg desig­
nated by X is acting on the cutting edge. Find lorces P̂  and Pt/ 
acting on the cutler in I he direct ion of I he axis ol the workpiece

and also perpendicularly to it if angle <p between the cutting 
edge and the workpiece (called the main angle in plan) equals 35°.

7. Find the forces acting on supports A li and HC of the 
triangular bracket in Fig. 29 if AB  =  800 mm, AC — 1,200 mm, 
and P — 900 kg.
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Fig. 31.

8. Load Q weighing 200 kg (Fig. 80) is suspend­
ed from joint B beUvceu two bars fastened on 
hinges A and C. Find the magnitude .and direc­
tion of the forces acting on the two bars, 

ft. In Fig. 81 live forces are applied at point 0:
I \  = 20 kg, l> 

88.8 kg. and 1\ 
and *a -- 00°. The

P4==

and P4 coincide and 
directed vertically downward. Find

40 kg, I \  - - 80 kg,
- 58.8 kg. Angles x v — 45° 

lines of action of forces Px 
ire horizontal and force P5 is 
the resultant.

i. n  \  i> t  i n  h i

COPLAXAR PARALLEL FOllLES, AM) THE MOMENT 
OF A FORCE

27. Composition of Parallel Forces Aelini) in One 
Direction

The principle of the paiallelogram oliMously «annot lie 
applied Lo Lhe com]iosition of parallel forces. To arrive at a 
principle for the composition of two parallel forces we must
replace them by two intersect­
ing forces having the same 
action as the given forces.

LcL us assume \\e aie to lind 
the resultant of the two parallel 
forces Px and P2 m Fig. 82.

We connect the points of 
application A and B of the 
two forces with line AB  and 
resolve Px into two arbitrary 
components AB and AF, ol 
which the firsL is directed along 
line AB. We then resolve force 
P2 in such a way as to make 
its component BG also acL 
along line AB  and have Lhe 
same magnitude as force AE. 
Then its second component

U M 0, N V

Fig. 32

BII will be fully determinate. Since the components AE and BG 
have been constructed equal in magnitude and acting in oppo­
site directions, they will therefore balance each other, it Jdien 
follows that forces Px and P2 can be replaced by forces AF  and
BII which are acting at an angle.

We transfer the points of these two forces Lo Lheir intersection 
at 0X, that is, we lay out 0XK — AF  and OxL — BII. Then
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we resolve each of these forces in two directions: UD parallel 
to AB, and 0,2 parallel to the lines of action of the given forces 
Pj and P2. As a result we obtain four forces 0,A/, 0,2V, 01S, 0,7\

Ft is apparent that triangles 0,2V/7y and EAC are equal to 
each other because 0 1K - AF  and the adjacent angles arc 
equal. From this it follows that MI\ — AC, and since MI\ --- 
■= 0 ,S, then 0,6 -  AC, i.e., 0,6 - P,. And since the triangles 
are equal, it also follows that 0,21/ AE.

In the same wav wc can prove that 0,T I*2 and 0 ,jV - ~BG.
Therefore, since 0,21/ and 0,2V are equal and opposite, they 
are in equilibrium. Accordingly, the resultant of forces 0 ,K —- AF  
apd 0,L — BH can he expressed bv the algebraic sum of the 
forces 0,6 and 0,T, and since these two forces are equal in mag­
nitude, respectively, to the given forces P, and P2, 1 lie resultant 
of forces AF  and Bl) is expressed by l \  -f- l \ .  However, the 
action of forces AF  and Bl) is the same as the aclion of forces 
P, and P2. Hence we conclude I hat the resultant of forces P, 
and P2 is aqual to t heir sum and we have t herd ore determined 
its magnitude. Now if remains for us to find the position ol point 
0  at which the line of action of resullant 0,2 and line A h  inter­
sect. Since triangle 0,A0 and 01KS ace similar, it follows that

or if we considei that 0,6 represents the magni-
tude of force P,, we ihen obtain =  •

In the same way we obtain the proportion
013 _ OxO_
1 L P ,

By dividing the first proportion by the second ami bearing 
in mind that KS — TL, we obtain

OA P.
on ~  p,

If we designate a, as the length of OA adjacent to the point 
of application of P,, and &, as the length of OB, the proportion 
will become

’ 1L. — 1Lft, -  p, •
We then delineale line A,#, through point 0 perpendicular 

to the lines of action of the given forces and designate a as segment 
OA, and segment 0B X as b. Since triangles OAA, and 0BBx
are similar, we obtain hence, — = whence it fol­
lows that

P%a =  P2b,
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Wherefore, the resultant of two parallel forces having the same 
direction is equal to their sum, is parallel to them, and acts in the 
same direction, L.e.,

R =.P1 | l \ .  (b)
The point of application of the resultant divides’ the line that 

connects the points of application of the given forces into a ratio 
invcrselq proportional to their magnitudes.

In other words, the line of notion ol the resultanl passes 
between Lhe lines ot aolion ol the component forces at distances 
inversely proportional to their magnitude, i.e..

(L — 1L 
b ~  p, (8)

By multiplying the means and the extremes of Eqs (7) and 
(8) we oblain

J \a} -  />,&,,
J\a - P,b. (8a)

For some problems Equation (8) may be presented in a more 
convenient torm by expressing it as a derivative proportion: 
a I b _  P, i P,

b ~  P,
By exchanging the means, we obtain p° ' „ - - ■*2 H“ / I I i
An exchange ol the means in Equation (8) resulls in

a __ b

Consequently^--^ -= ~  , and since Pl -( P, is equal

to the resultant It, then a A b -- ~  •u 11 “j
Oral Exercises

1. Docs tho derivation of F.qs (0) mul (8) depend on tlic magniludcs
of forces AE  and JiG (Fig. 32)? ,

2. WhaL will be the position of point 0, through which the line of 
action of the resultant passes (Fig. 32), if I*, and Fo are equal in mag­
nitude?

28. Composition of Parallel Forces 
Acting in Opposite Directions

Assume it necessary to find the resultant of two parallel 
forces Pj and P„ (Fig. 32a) acting in opposite directions when 
P, ^  P2. Solution: we replace force Px by two forces—force
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1*2 applied at point B  and equal in magnitude to force P2 but 
acting in the opposite direction, and force R which is equal 
in magnitude to the diflercnce P1— P2 and applied at the
poiat determined by the ratio • Under these condi­
tions we may regard force as the resultanL of the two parallel 
forces P x— P2 and P«. However, lorcc P2 being the equilibranl 
of force P2, it follows that the given system ol forces has been 
reduced to the one force R - Px —P2. Ilencc this is the desired 
resultant. In short, the tnarfiuludc ol 
the resultant has been found as

~ Pi — P2- (6a)
.Having chosen the point of apph- 

calion of force R so thal the dis­
tances OA and AR  satisfy the con­
dition

OA
AH

I Il<
wc convert 1 his condition into a derivative proportion and 
oliLain

_  OA_____ Sy2
AH 4- OA ~ H + IK '

Bv taking rq to represent OA. and bl to represent OB and 
bearing in mind that force P2 is equal in magnitude to force 
P2 and that R is equal to the dilterence l \  — P2, we obtain

ii i _  I' ‘±L — f
b, ~~ 1\ ~P h P. ° r '/», ' P, '

By extending the perpendiculars A A t a and B l\  —b 
from points A and B to Llie line of action of resultant R, 
we obtain similar triangles A A L0 and BBl(), from which it 
follows that

(i, _ a
bl b ’

and Equation (7) may then be expressed as

from which
P,a -■= P2b.

Wherefore, the resultant of two parallel forces acting in opposite 
directions is equal to their difference, is parallel to them, and acts 
in the direction of the greater force.

The line of action of the resultant lies beyond the larger force 
at distances from the component forces equal to the inverse propor­
tion of these latter forces.
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If it is necessary to find the resultant of a system of parallel 
forces of which some are acting in one direction and the rest 
in the opposite direction, the simplest method is to first combine 
those acting in one direction and then those in the other direc­
tion, and finally combine their two resultants.

Oral Exercise
As tlie magnitude of P2 approaches that of Pt, what will be the posi­

tion ot point O (Fig. 32a) through which the resultant B passes, provid­
ed tlie points of application of I \  and P2 remain the same?

29. Resolution of a Force into Parallel Components
The resolution of a force into two parallel components is just 

as indeterminate a problem as the resolution of a force into 
components directed at an angle; additional conditions must 
be given in each individual case, such as the points ot appli­
cation (or lines of action) of both components, or the point of 
application (or line of action) and magnitude ot one of the com­
ponents, or the point of application of one of the components 
and (he ratio ol their magnitudes, etc. The problerfi will then 
become determinate and can be solved by applying the equations 
used in the two ioregoing sections.

Let us assume it necessary to resolve force P (Fig. 33) into 
two components Pj and P2 acting in one direction, with the magni­
tude of force P, given. The distance between the action lines of 
forces P and Pj is equal to a. The magnitude of force P2 is found 
from Equation (6):

1\ P -  Pv
The distance x between its line of action and force P is found 

through Equation (8), according to which Pxn P2x, whence

o

Pi mx —\Pz

Fig. 33

Illustrative Problem 12. A load G weighing 1,200 kg is travelling along 
a beam resting on two supports A and B  (Fig. 34). Find the bearing 
loads P, and P2 exerted by the load on each support if il comes to rest
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at a distance a — 1,500 mm from the leit support. The length of beam 
L = 4,500 mm.

Solution: as the load moves, I he bearing loads on the supports change 
and when it is at the extreme lelt, iLs enlue weight will rest on support 
A. As iL moves from lelt to right the heaung load on the left support 
decreases while that on the right increases and’at I lie extreme right the 
entire weight of the load will be borne by support B.

Therefore force G is the resultant ol the components 1’, and P, acting 
in one direction, and so bv applying Eq. (8a), we Iin<i that, in the given 
position of the load,

P Gu
I.

1,200 > 1.500 
1,500 400

and
.  I \  -  1,200 100 -  800 Kg.

The reactions al I he supports are equal to P, and P m magnitude 
and act in Hie opposite direeLion.

HI). The O u tre  of Coplannr Parallel Forces

(liven o SNslem ol coplanar paiallel hoeos P]f IV, P3, and P4 
(Fig. 35). tty combining lorees P, and P, applied al points A 
and B, we lind the Inst partial jesul ant It, appliecl al ()1. 
After eoniieelmg poin' and the point 
ol application^ ol force P,, we combine 
this lorce with Jlj and thereby obtain 
the second pailial iesnltaut IF. 15y 
going through the same ])rocoss with 
this force and the last component P,, 
we obtain the result ant It ol the entire 
system, with the point oJ application 
at O.

Now Jet us assume that all the gi\en 
toices arc rotated about I heir points 
of appliealion through a Ireely-chosen 
angle a in their plane, as indicated 
by the dolled lines. Since Pj and P2 
liave not changed in magnitude and 
their points of application remain the 
same, the point of application <)x of
resultairl 11, also remains the same. The point of application 
C of force P3 likewise remains unchanged, from which it follows 
that the point 02 of application ol their resullunt Il2 is also 
unchanged, lly carrying this line of reasoning to its conclusion 
wc see that the point ot application 0 ol resultant 11 of all 
the forces also remains the same.

If all the forces in the system arc rotated through the same 
angle, their resultant will also rotate (lirough the same angle and 
its magnitude and point of application will remain unaltered.
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The point of application of the resultant 0  is called the centre 
of parallel forces.

Wherefore, the centre of parallel forces remains unchanged no 
mailer what their direction if they retain their magnitude and 
points of application.

0

31. Moment of a Force in Respect to a Point
We know from experience that il is easiest to get a work­

piece gripped in a vise if we apply pressure on the handle as 
lar as possible from the axis of rotation 0 of the screw (Fig. 36). 
A greater force will ha\r to be applied at point /l, Ilian at A 
to produce an equally tight grip. Hence the rotating action of 
a force with respect to the axis of rotation 0 depends not only 
on the magnitude and direction of the force, but also on the 
distance of the line ol action of force P Jrom that axis.

The quantity used in mechanics to measure the rotating 
action ol a force is called I lie moment of a force.

Assume a force P to be applied to a body (Fig. 37). From 
any freely-chosen point 0 v\e extend a line OA perpendicular 
to the action hue ol the Jorcc. The product of the magnitude 
of the iorce and the length of the perpendicular is railed Lhe 
moment of the force P with respect Lo point (). Hv denoting M 
as Lhe magnitude of the moment, we then obtain

M -- Pp, (9)
in which P represents the magnitude of the force, and p is the 
length of the perpendicular connecting point 0 with the line 
of action of the force.

The point 0  with respect Lo which the moment of force has 
been taken is called the moment centre, and the disLance p from 
the moment centre lo the action line of the force is called the 
arm of the force with respect to the said point. The product of a 
force and its arm is called the moment of the force with respect 
to a given point.

Since force is measured in kilogrammes and the arm in units 
of length (m, cm), the moment of a force is expressed in kilo­
gramme-metres (kg-m) or kilogramme-centimetres (kg-cm).
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From what has been said it is apparent that the larger the 
magnitude of a force and the larger its arm, the greater is its 
tendency to produce rotation with respect to a given moment 
centjc. If the moment centre coinrides with Lhe line of action 
of the force, Lhe moment of the force will be zero since its arm 
will amount to zero.

Let us assume that force P2 and arm produce the moment 
Mv and the second force P2 and arm p., produce the moment 
M 2 with respect to the same point. Then J \p1 and AI2 - -

lJ2p2. Furthermore, let us assume that the two moments 
are equal, i.e., that P1pL P-iPi- From this it follows that

11 -  Pl  .
Pi P,

Wherefore, when moments oj forces with respect to one and the 
same point are equal, the magnitudes of the forces will be inversely 
proportional to their arms.

In order fully to determine the action of a force on a body, 
it is necessary to lake into consideration not only its magnitude, 
but also th^ direction in which it tends to produce rotation. 
Thus in Fig. 37 the mutual positions of the force and the moment 
centre indicate liiaL they tend to pioduce clockwise rotation. 
If force P were acting in the opposite direction, or if point 0 
were on the other side of the action of the force, the momeriL 
would tend 1o produce counterclockwise rotation.

Hereafter we shall call a moment positive it it lends to pro­
duce clockwise rotation, and negative if it tends to produce counter­
clockwise rotation.

Oral Exert ises
1. Will a moment of force wilti respect to : gi\cn moment centre

change if the point of the force is altered atom its line oT action?
2. On whnl line are points situated will) re 

sped to which the moments of the foice are 
zero?

3. Gan forces of different magnitude pro­
duce equal moments with respect to one and 
the same centre? Under what condition?

Illustrative Problem 13. A workpiece is 
being machined on a lathe by means of a 
cutter A ..(Fig. 38). The distance I from lhe 
cutting edge to the base of lhe tool is (iOmm, 
the vertical componentP  of the pressure exerted 
on the cutting edge by the workpiece is 900 kg.
Find the moment of force P with respect to 
point 1) where the cutter is fastened in its 
support.

Solution: the moment tending to rotate the cutter (the “bending 
moment”) is found from the equation M - J’l =  900 x 60 = 
= 54,000 kg-mm =  5,400 kg-cm. It can be seen that as the length of 
the moment arm p increases (the [distance from the cutting edge to 
the base of the tool), the bending moment will also increase.
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Illustrative Froblem 14. In the preceding example, P is the force the 
workpiece exerts vertically upon the cutter and causes the reaction P' 
of the cutter on the workpiece. This reaction is equal and opposite to 
the force P. Find the moment of the force P' with respect to point 0 
on the axis of Ihe workpiece il its diameter 1) SO min.

Solution: in this case the arm of the sought moment is equal to
9 "P'Dand the moment M  =  — — =  900 x 40 =  36,000 kg-mm = 3,600 kg-cm.

Under the action of this moment the workpiece (together with the 
spindle with which it is lightly joined) will tend to twist. This is called 
torque.

32. Moment of a Resultant
Assume wc have two parallel forces Pj and P2 acting in the 

same direction and that their resultant R has been found 
(Fig. 3‘.l). Let ns Ircely choose a poinl C as Ihe moment centre. 
The moment of the resultant R with respect in this point will be

MIt - Hr -  ( l \  | I\)r. (a)
Let us express the moments of the component forces in respect 

to Lhe same point 0:
Mi\ -  l\(a  -c) -  — l \n  |- I \ c ;

P>d> i r) Ptb | P2r.
Ily adding Lhe members ol Lhe right and left parts of the 

two equations we obtain
Allx -I il/,. l\b  - l \a  [ (1\ | l\)c.

fly applying Equation (8) we derive
I\b  - l \n  — 0.

Therefore the sum ol the moments of the component forces 
is equal to (1\ |- P2)i. Hul as may be seen from (a) above, Lhe 
moment of the resultant is also equal to (P1 +  the moments 
having been taken together with their algebraic signs.

11 is easy to see that we would have arrived at the same solu­
tion no matter where wc had taken the moment centres in the 
same plane (say at L,. C2, C3, etc.).

If there had been more than two parallel forces, then by com­
bining them in succession and applying the same principle as 
above for each partial resultant, we would finally find that the 
moment of the resultant is also equal to the algebraic sum 
of the moments of all its components.

We have therefore proved an important relationship for 
moments of forces in general, and in the particular case for paral­
lel forces acting in one direction. In more detailed courses on
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theoretical mechanics this relationship is proved to hold true 
for any distribution of forces in a plane.

Wherefore, the moment of the resultant of a coplannr system 
of forces is equal to the algebraic sum of the moments of ilie compo­
nent forces with respect to one and the same moment centre.

This may be expressed for an n number oi forces by the follow­
ing equation:

Mu -  Mpt +  Mpt Mp, | ... I Mi‘n. (10)
In using this equation it must lie borne in mind that the al­

gebraic sign of the moment oi each iorco must lie retained.

C,o

0C2

Fig. 3<J

I

1
I

I— —— x
log. 40

Illustrative Problem 15. Find U11 icsiilt.iiit of Ihe pniallil forces 
P 1 =  30 Kg, — 53 kg, and iJn -  70 Kg, 1>> using 1'.qiiation of inoinenls 
(10), 1 lie distances between llieir fines of loiee being c/, — 80 nun and 
«2 — 250 nnn (Fig. 40).

Solution: the magnitude of resuftanl 11 -P , +  Pz -  /», -- 30 f
+  70 53 — 47 kg and, coiisequenU.N, is direcLed upwaids.

Lot us take (lie moment centie oil I lie line of action of force P, and 
let x denote the unknown arm of the lesuttant. Then 1 lie equation of 
moments is - I l x  = J-’.a, —/*,(«, H a,). I10111 which, aftei substituting 
figures for the letters they represent, we find x — 401 mm.

33. The Couple
Let us now return Lo the composilion of two parallel forces 

acting in opposite directions. As lias already been shown in 
Sec 28, the resultant of two such forces is equal to their difference. 
Now left us assume that the two components arc equal in magni­
tude as illustrated in Fig. 41. In this case, according to Equation 
(6a) the resultant is zero. However, a body under the action of 
two such forces would not be in equilibrium. We Know that such 
forces would tend to produce rotation of the body. A good illus­
tration of such a system of forces is shown in Fig. 42 — two hands 
turning a reamer.

A system of two equal parallel forces acting in opposite di­
rections is called a couple.
4* 51



A couple possesses no resultant.
A couple is characterised by Uio magnitude of the forces con­

stituting it and by the distance between their lines of action. 
The distance between the action lines ol the forces forming a 
couple is called the arm of the couple.

The action of a couple on a body to which it is applied is di­
rectly proporLional to the magnitude ol the forces composing it 
arid to the lengih ol its arm. This action is measured by the 
moment of the couple and is I lie producL of the magnitude of 
one of the torces and the arm ol the couple. Therefore if we 
denote the arm ol I tic couple in ldg. 'll as a and its moment as 
M, we obtain the moment ol the couple as the expression M — 
=  Pxa P2a or, in general, the equation

M Pa. (11)
The moment of a couple, jus! as I he moment of a lorce, is

measured in kg-ni, kg-cm. etc. In older to determine the action
ol a couple, it is necessary to know riot

Pt /  only I he magnitude of its momenL, but
0  /  n*so Oucclion Oi which it Lends to
^<7, /  rolale the body. Just as wilh the moment

N'y / /  pz of a lorce, we shall consider the moment of
/  a couple to be positive if it lends to pro-

^ ... dace clockwise rotation, and negative iflog. 43 i i i -counterclockwise.
Fig. 4J represents a couple l’j and I*, wilh an arm a and where

the moment of the couple M J\a P2a. The moments of
forces comprising I he couple wilh respect to an arbitrary point
0  lying in the plane ol the couple are expressed as

MPt -- — l \a x
and

M r, P2 (a1 -f a).

Combining these two moments, we obtain 
MP, +  MP, - — fVh -\- P2 Ob +  a) ■=■ - P &  f  P2ax +  Paa.
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Since forces P, and P2 arc equal in magnitude, then

and
/V'i l\a  i ’0

M,.t r Mi>. Pjt.
Thus, the algebraic sum of the moments of forces Pt and P2 

with respect to poinl 0 is equal to the moment of the couple.
Wherefore, the momeni of a couple is equal in magnitude, and 

possesses llie same sign as the algebraic sum of the moments of Ike 
forces comprising it with respect to ang point h/ing in the plane 
of the couple.

A couple can be balanced uni if bg another couple which is equal 
in moment and opposite in sign. It (annot be balamed bq one 
force.

Oral Kxercisrs
1. (liven l\\o couples, tile arm of one oT which is unc-litlh tile length 

of the arnf ol llie oilier. Whnl would he Ihe nilio he tween (he lorces 
comprising Ihe couples il Die nioinenls of Die couples weie ecjualV

2. The arm of one couple is at Dries less Dian Ihat ol a second couple. 
The magnitude ol Die ..trees cum prising Die I j rst couple is n limes greater 
linn that of the second. Wind >■, Die r.dio ol Du monienls ol the iwo 
couples?

.Vi. Fqiiilibrium of a Doplanar System 
of Parallel Forces

Let us see what conditions a system ot paiallel foices in a 
plane musl salisty for a body to which they arc applied to be 
in equilibrium.

Assume a system of parallel lorces P,, P2, P3, P,, and P5 as in 
Fig. 41 a. As has already been shown, llie magnitude of Ihe 
resultant of forces P„, P;), and P, is equal lo llie sum of these 
forces. I$y combining them in succession we obtain Ihe line of 
action ol resultauL It,. Then we combine- lorces P, and P4 acting 
in the opposite direction and obtain Ihe other partial resullauLIL. 
LeL us assume that ll2 is equal and opposile in direction to llie 
first rcgultant R,. The sysLem is therelore reduced lo two equal 
and opposite forces and its resultanl is zero, which means that 
it is in equilibrium. If Ihe sum of the forces acting in one direc­
tion would not be equal lo the sum of Ihe forces acting in 
the other, or, in oilier words, it the algebraic sum of all 
the forces would not be zero, I lie system would nol be in 
equilibrium.

In Fig. 44b another system of forces is represented. Proceed­
ing as before, we obtain resultant It, of forces P,. P3, and P4, and 
then the second partial resultant It2 of forces P2, P5, and P„.
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These two resultants are also equal in this case, but their lines 
of action differ and they form a couple.

We therefore see that if a system of parallel forces is to be 
m equ;i,briuin, it is not enough for the algebraic sum of forces 
to be equal to zero; another condition that must be fulfilled is 
that the system is not reduced to a couple, i. ,c., that the 
moment ot the couple equals zero.

IIow can it be determined whether this second condition is 
satisfied?

II

1
I |
I I 
I I 

rr I E ', r I

I

It will be icralled fiom the pi eroding section that Lhe 
moment of a couple is equal to the algebraic sum ol the mo­
ments oi the Iohcs comprising the couple with respect to any 
point lying m its plane. This means that the obtained moment 
of the given couple will be equal to the algebraic sum ot the 
moments ot forces Rx and R2. Hut Rx is the resultant, ot the 
group of iorces Pt, P3 and P4, while R2 is the resultant of the 
second group of P2, P6, and Pfi, and it has been proved in Sec. 32 
that the moment of the resultant is equal to Lhe algebraic sum 
ot the moments ot the component forces. Hence the moment 
ot the resultant R, is equal to the algebraic sum of the moments 
of the iorces Px, P3, and P4, and the moment of the resultant 
R2 is equal to Lhe sum of the moments of the forces P2, P6, and Pa.

We then come to the conclusion that the moment of the couple 
to which the given system may be reduced will be zero if the

r, d
i MiI l)

r i
11

1'ig. 44
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algebraic sum of the moments of all the forces Plt Pa, P3, P4, P5, 
and P6 is zero.

Ifencc a system of an n-amounl of coplanar parallel forces 
will he in equilibrium under Ihe following conditions:

1) Pthe algebraic sum of all the forces musL he zero, i. c..

Pi I P 2 f + P „ - 0 ;  (12)

2) the algebraic sum of the momcnls of all the forces with 
respect lo any point in ihe plane of the system must be zero, 
i. e.,

+ Mr/ \  M„„ 0. (13)

]3oth of these conditions must be satisfied simultaneously 
for a system of parallel forces to he in cquilihiium.

Assume Ihe lever All, with ils fulcrum al 0 (Pig. 'Ilia), to 
be acted upon by forces and ()., al ils left side and by force 
P at ils right. For the lever lo be in equilibrium the conditions 
expressed in Eqs (12) and (13) must be 
satisfied. r£he forces P, Q,, and (E and 
the reaction of the fulcrum It are acting 
on the lever; then if the forces .tiling 
downwards are regarded as positive, bio.
(12) becomes

p -\ Qi I Qs n 0,
from which R P \ Qx ] Qs.

We have thus determined the reaction 
of the fulcrum. Now let us determine 
the magnitude of force P by applying 
Lhe second condition required to obtain 
equilibrium. By taking point 0 as I lie 
moment centre, Eq. (13) becomes

Pb OjUj - Q./i., 0,

from which P  -^'a* ^■a1
If all Ihe forces were applied on one 

side of tjie fulcrum (Fig. 45b), we would 
have

(?i +  0* — P — K - 0. from which P f /? - Ql 1 Q2.
To determine force P in this case, we will write the equation 

of«moments with respect to point 0  as follows:

Hi

R

---- i -----
Of T

Q,
a)

Qigi t~ Qt°t 
b

55

Qiai +  Qzaz ~ Pb -- 0 from which P



and the reaction at the fulcrum R — Q} +  Qz — P — Qi V Qz —
Qya, 4 QjOj

b ~
Now lei us fake anolher example.
Fig. 4G represents a beam lying horizontally on supports A 

and Li wilh one end extending beyond its support as an over­
hang. Forces Plt P,, P3, and P4 arc acting downwards on the beam. 
It is required to find the reactions at the supports R v and RB.

From Eq. (12) w'c obtain one equation with two unknowns:
n A I Rj, - J \  I IK  I IK  f  l \ .

First we will determine reaction RB by taking the algebraic 
sum of the moments with respect to point A:

Pi«  ̂ P» (<> -! b) | P3 (" I- M O -  lio (0 I h f- r | d) P- 
! Pt (a 1 b | c | (I -(- e) -  0.

Alter finding RB we inseit 
lind R

#8
P, Pz

- a “tL _____ 1■ l
7235 Wfr*

it in Hie first equation] and

*

* \ p> J* * Pb

c ___I____ i______ 1
4bz I |

L
Kit*. -Hi Fig. 47

Illustrative Problem 16. The beam lying on suppoits 4 atul 71 in 
Fig. 47 is acted on by loices P, 200 kg, P -  300 kg and P , = 250 kg. 
Find the reactions at the supports II i and 1IB if «, - 1 in, o, =  1.5 rn 
and a -= 2 in, and the distance 7. bt tween the supports - 5 in. The 
weight of one linear in of the beam is 20 kg and its length 3.5 m.

Solution: the beam is in equilibrium under the action of forces P,, 
P , P„ of its own weight acting dnectlv downwards, and of the 
reactions at the suppoits. First we must determine reactions IIa and 
IIa caused by foices P,, P , and P .

Since the reactions ail upsvaids, Eg. (12) becomes
l \  + P, 4- />, P'A R'p =  0, i.e., li'A -f P'n 200 +

! 300 + 250 -- 750 kg.
We obtain the second equation by icdueing to zero the algebraic sum 

of llic moments with respect to any point in the plane of the forces. 
For the sake of simplicity we will take point A as the moment centre, 
wilh respect to which I lie inomenl ot reaction It i is /.ero:

F ,«i-t P go , 4- (it ) +  PaCiij 4 1- «j) -  H’b L  =  0;
substituting numerical values, we obtain

200 x 1 4- 300 x 2.5 4- 250 x 4.5 -  Ii'B x 5 =  0,
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from which
R'd =  415 kg »nd R'A =  750 - 415 -  335 kg.

If we hud'taken the moment centre on the line of action of force 
P* the equation of moments would have become

R'a > 1 +  300 x 1.5 -r 250 x 3.5 -  4R'b -  0,
from which

4/f'a - R \  -= 1.325.
In solving this equation in combination with the equation R'a +  R'n — 

=  750, we would have obtained the same result.
The weight of the beam itself is 5.5 \  20 — 110 kg and is distributed 

equally between the two supports, lienee the full reaction Ha at support
A is 335 -|- V " - -300 kg and the reaction I I a t  support li is 415 +
•+ 55 — 470 kg.

215. TIio \Iom ent of n Force in llespeet 
to an Axis

Fig. 'IN// rcpresenls n vertical .shall OO, eapalile ol revolving 
in ils beamings ami Inning al its upper cml an elbow OA forming 
a right angle AOO, with Ihe shall. \l ]>oinl /I foree P is applied 
which, j ns I as Ihe axis nj Ihe elbow, lies in Ihe plane MN and is 
perpendicular lo Ihe axis ol shall OO,. Under llu* action of this 
force Ihe shaft begins lo levolve.

N

No\v lei us assume that force I* does not lie in I he plane MN 
hut acts at an angle wiLh il (Fig. 18b). Let us resolve Ibis force 
into two components: AC in the plane of rotation of elbow OA, 
and AD lying parallel to the axis of the shall OOr 

It is obvious thal force AC will tend to make the shaft rotate, 
whereas force AD will tend lo push the shaft downward in line 
willi ils axis (to avoid this the lower end oi the shaft is con­
strained by a thrust bearing). It is evident that in the first case 
(Fig. 48a)ilis the entire forcePthat rotates the shaft, while in the
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second case it is only one of its components. In the first case 
the tendency of the force to produce rotation is measured by 
its moment with respect to point 0, which is equal to Pa and 
where a represents the arm (the length of the perpendicular 
OB extending from rotation centre O to Lhe action line of ttie 
force). In the second case the tendency of force P to produce 
rotation is measured by the moment of force with respect 
to the same point 0, and is equal to ZVh in which ay represents 
the arm of the force with respect to point (). Component Pj of 
force P is a projection of force P on plane AIN, perpendicular 
to the axis OOv The moment of force P,, equal to P ^ ,  will be 
the moment of force P with respect to the axis.

It will he found that if a force lies in a plane peipcndicular 
to an axis, its moment with respect to the axis will be cquqj 
to its moment in relation to the point where the axis intersects 
the plane. From Fig. 48b it is apparent that the moment of force 
P decreases as the angle CAB increases. For that reason it is 
of greater advantage to apply a force so that it wilt act in a plane 
perpendicular lo the axis of rotation of a body.

llf». Questions for lleview

1. What is a moment of force with respecl lo a point?
2. ts iL possible Lo select a point in iclalion lo which Hie moment 

of Toree will be zeio? Is there only one such point?
2. What is lhe relation between lhe moments ol 1 fit* resultant of a 

system of parallel forces and the moments ol iIs components?
4. What conditions must a svslein ol parallel forces satisfy if it is 

lo be in equilibrium?

117. Kxereises

10. Given two parallel forces P, and P2 acting in one direction 
(Fig. 40). The distance / between their lines ol action is 120 mm. 
Find the line of action and llu* magnitude of the resultant, if 
Pi — 48 kg and I \  - 144 kg.

11. Solve Problem 10 with P, and P2 acting in opposite direc­
tions.

m

soo

iso-j- zso~ -iso-
'

MO MO

SOO
700

58
Fig. 49 Fig. 50



12. Find the line of action and the magnitude of the result­
ant of the system of parallel forces shown in Fig. 50 (forces are 
denoted in kg, and lengths in mm).

13. Find the resultant of the system of parallel forces repre­
sented in Fig. 51 if Pl — 100 kg, P2 
P4 =  300 kg, and a =  300 mm, b --- 
= 600 mm, and c — 200 mm.

14. A beam lying freely on two sup­
ports A and Ti (Fig. 52) is under the 
vertical action of forces Px — 300 kg,
P2 -= 300 kg, P3 -  150 kg, and P4 -  210 kg.
Find the reactions of the supports 
caused by these forces if at - 1.8 m, 
a2*— 0.9 m, a3 -- 0.9 m, I -- 4.5 m and 
L  =  6 m.

15. The fulcrum of lc\cr A R in Fig. 53 is nl point O and is 
under the action of forces l)1 120 kg and P, - (10 kg. The 
distances between the lines ol action of I hose lorccs and thej ful-

JV̂, I 3 - uw

.

Pi Pz

a ■--- b —-
PJIP*
c

Fig. a t

crum are al — 300 mm and a2 — 375 mm. Whal must lie the 
magnitude of a force Pn applied at end Ji of the lever to keep 
the lever in equilibiium if its length / 900 mm? What will
be (lie read ion R of I he fulcrum (assuming the lever ilself to 
be weightless)?

C II A l ' T L  n  IV

CENTRE OF GRAVITY, AND STABILITY OF BODIES• ’ i
38. Centre of Gravity, and Centre 

of Parallel Forces

The force of the earth’s attraction (gravity) ads on all Ihe par­
ticles of a body. Gravitational forces always act on the particles 
of a body in a line directed towards the centre of the earth 
and therefore converge. But the angle of deviation from the 
parallel is extremely small, amounting to only one second along
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a meridian on Hie earth’s surface for two points situated 31 m 
apart. And since bodies with which engineering mechanics 
is concerned are infinitesimal as compared with the radius 
of the earth, the forces of gravity acting on their particle^ are 
considered parallel.

When we combine all the elementary gravitational forces 
acting upon all the particles of a body, we obtain their result­
ant. This resultant of the forces of gravity acting on all the 
particles of a body is called the weight of the body. The point of 
application of this resultant is called the centre of gravity of 
the body.

It will be seen that the centre of gravity is also the centre 
of parallel forces, and as already explained, holds true no mat­
ter what the direction in which Lhe forces act if only they remain 
parallel. From this it follows that the centre of gravity of a body 
remains unchanged irrespective of the position of the body with 
regard to the earth’s surface.

Itt). O u tre  of (Jravily of O rla iu  Bodies 
of Simple Form

In many engineering calculations where the weighL of bodies 
musL be taken into account, it is necessary Lo know Lhe exact 
position of Lhe centre of gravity. In some eases it is very easy 
to liiul the centre of gravity.

Let us investigate several instances where bodies are of simple 
geomeLric form.

1. The centre of gravity of a sphere coincides with its geometric 
centre. The truth of this statement is apparent from the fact 
that the resultanl of all the elementary gravitational forces 
acting on the particles along one diameter passes through its 
centre, which is also the centre of the sphere.

2. The centre of gravity of a right circular cylinder (Fig. 54). 
Let us make a cut through any arbitrary point 0 perpendicular 
to axis f W  Taking a particle A/, in this section we then choose 
another particle AL on the same diameter and at an equal dis­
tance from the centre 0 of the section. It follows that Lhe result­
ant of lhe elementary gravitational forces acting on Lhesc two 
particles passes through the centre of the section. Following 
the same procedure with respect to any point of the cylinder, 
we come to the conclusion that the centre of gravity of the whole 
cylinder lies on its axis 0 j02 and at half its altitude at point C.

The centre of gravity of a right regular prism (Fig. 55). By 
reasoning as in the ease of the above right circular cylinder, 
we reach a similar conclusion, i. e., that the centre of gravity 
of a right regular prism lies on its axis and at half its altitude.

But there is one important factor to be borne in mind. It is 
evident, from what has been said, that we assume the elementary
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gravity forces acting on the particles as being equal in 
magnitude. This presupposes that the body is uniform 
throughout Such a body is known as homogeneous*. If this condi­

ii - f h
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F
-)/
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tion is not satisiicd, the process of finding I lie ccnlrc of gravity 
becomes complex, as may be •’ecu from the following example.

Illustrative Problem 17. big. 50 repre.senls a cylindrical shall with 
a length L  =  1 , 0 0 0  min and made of two materials of different specific
graviLy. Along its length / -  - ‘ 500 mm it is made of aluminium withA
a specifie gravity y , =. 2 . 0  g/cu cm, 
DJi is made of steel with a specific 
gravity y„ = 7.85 g/cu cm. Find 
the centre’of gravity of the shaft.

Solution: if the shaft were hom- j  
ogcncous, its centre of giavily - 
would be on its axis and halfway 
along its length, i.e., wiliiin section 
D a t  a distance / =  500 mm from 
its end. But in the case in hand it 
will be necessary to determine the 
weight of each component of the 
shaft before rinding its true centre 
of gravity.

By first*denoting the s i  of the 
cross-scction of the shaft as F, the

while the remainder of its length

-------  L ----------------- (
—---- L ~ -- In Ic.____ i n.

---i- -o~<^  —---
-a — | b

Gz

I-'i l

Fly, =-weight of its aluminium part AD  will then be expressed as O, — *■,_.— 
«= 2.6 F I  g, and the weight of its steel part DJt as G, =  F I  y. — 7.85 F I  g. 
The point of application of the first force G, is C, in Lhe middle of AJD, 
and tha t  of the second force G, a t  point C2 in tin* middle oi DB. The 
distance between points C, and Ga is 500 mm. In order to find the overall 
centre of gravity C of the shaft we must find the poiul of application

* Henceforth it shall be assumed that  a body is homogeneous unless 
the contrary is stipulated.
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of tho resultant of the two already obtained parallel components, as 
follows:

— 2V7-T ft' 0111 a = 3b; and since a +- b = 500 min,

then a =  375 mm and b =  125 mm.
Hence the sought centre of gravity C of the shaft lies a t a distance ofI

c =  -Tj- -f a — 250 +  375 =  025 mm from its left end.A

40. Centre of Gravity of Plane Figures

Fig. 57 represents a homogeneous disc of uniform thickness, 
i. e., a cylinder of small height as compared to ils diameter. 
It is apparent from what has already been said that the centre 
of gravity of Ihe disc lies in the centre of its middle section MN  
dividing its thickness in half. Therefore instead of the whole 
disc we may deal with its middle section, where we may assume 
all the material of the disc to be concentrated. Hence we may 
regard the centre of gravity of this disc as the centre of gravity 
of the material area ol a circle. In exactly the same way we may 
regard the centre of gravity of a triangular plate AFsD (Fig. 58) 
as the centre of gravity of its middle section, i. e., as the centre 
of gravity of the area of a triangle; and so forth with other plane 
figures.

Now leL us consider methods of finding the centre of gravity 
of a number of plane figures.

B

N

E
Fig. 57 Fig. 58

1. The centre of gravity oj the area of a circle lies in its geometric 
centre.

2. The centre of gravity of the area of a triangle lies aL Ihe inter­
section of its medians.

Given triangle A BD (Fig. 58). We delineate median BE 
connecting vertex B with the midpoint E of its base AD. Then 
we delineate segment KL  at any arbitrary place parallel with 
base AD. Since the triangle BKL  is similar to BAD, then 
KCt =  C.rL. Hence the resultant of all elementary gravity forces 
acting on all the particles lying along segment KL  is at point 
Cy, the intersection of median BE  with that segment.
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F o llo w in g  the same procedure with respect to any other linear 
segment parallel to base AD, we see that the-centrc of gravity 
of Lhc triangle lies on median JIE.

Now let us delineate another median AF  to the side DD. 
Using the same method as with median BE, we find that the 
centre of gravity also must lie on this median. From this we 
conclude that the centre of gravity of the area of a triangle lies at 
the intersection of its medians.

In geometry it is proved that the point of intersection of the 
medians of a triangle divides them in a ratio of 1 :2 , i. e., 
CE —- 1/2BC and CF — \/2AC. Fiom this it follows that the 
centre of gravity C lies at a distance UK - 1 / ‘.iJiE or CF --1/3AF, 
i.e., at a distance of one-third the 
lfngth of a median from the side to 
which it has been dehnealed.

3. The centre of gravity of the area of 
a parallelogram (Fig. 5b).

Delineate,diagonals At) and BE.
The diagonals of a parallelogram are A 
divided ifl their midpoints by their 
point of inlerseelion. lienee segment 
AC of diagonal At) is a median of tri­
angle ABE , and segmenl Cl) of the same diagonal is a median 
of triangle BDE. For this reason the centres ot gravity Ux and 
C2 of the-e two triangles he on the diagonal AD, and the centre 
of gravily of lhc whole parallelogram lies on this same diagonal. 
In the same way we can prove that the centre of gravity lies 
on the second diagonal BE.

Wherelore, the centre of gravily of the area of a parallelogram 
lies at the point of inlei sect ion of its diagonals.

Obviously this deduction also rotors to the rhombus, the 
rectangle, and the square, since all these are terms of the 
parallelogram.

4. Knowing how to iind the ccnLre of gravity ot the area of 
a triangle and of parallelograms of all types, we can find the 
centre of gravily of any figure that can be divided into such 
elements.

Let us assume we want to find the centre of gravily of the area 
of a freely chosen quadrangle (Fig. 60).

We first divide the quadrangle inLo two triangles ABD and 
ADF1 by the delineal ion of diagonal AD. Wc then delineate 
medians to the midpoint of side' AD, mark the centres of grav­
ity Cx and C2 of the areas of the two triangles and connect 
them by means of segment CyC2. Next wre divide the quadrangle 
with a second diagonal BE, forming triangles ABE  and BDE. 
By repeating the above process^We also obtain segment C8C4. 
The desired centre of gravity is found at the intersection of this 
segment and segment CyC2.
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Illustrative Problem 10. Find the centre of gravity of the try square 
shown in Fig. 61.

Solution: the centre of gravity of the plank /  of the square lies a t the 
intersection of diagonals AE  and BD, and the centre of gravity of leg I I  
lies at the intersection of diagonals DI. and KM .  The centre of gravity C

D A i

1 i
u
ii

i c,

t
i i

A f / . * tJJ

Fig. <)1

of a.whole square lies somewhere on (me C tC . In order lo find point C, 
we must divide line C tC, so a-, to obtain a lalio inversely proportional 
to Lhe weights of the two sides of I he square, or, since the square is 
homogeneous, inversely proportional to their volumes. The volume of 
plank I -- (300 - 40) < 30 x f> 30. 000 cu mm, while the volume 
of leg I I  =  120 x 40 < 1h 72,000 cu mm. Hy dividing lhe segment 

in such a way as to satisfy the condition
C C 72— -gjj-, we obtain the centre of gravity C.

41. Practical Method of Determining 
the Centre of Gravity of a Plate

Let us assume it necessary to line! tlu* centre of graviLy of 
the flat plate of irregular outline as shown in Fig. 62. We sus­
pend it from its corner A by the cord KA  and when it comes

lo rest it will he in a state of equi­
librium. The weight of the plate will 
lie equal to the reaction from the cord 
aL poiul A. These two forces have a 
common line of action which coincides 
with the vertical line AD and on which, 
therefore, lies the centre of gravity. We 
then delineate this vertical line AD on 
the plate and then suspend the plate 
from some other point, let us sayFig. G2
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corner B, and following the same piocedure we delineate the 
vertical line BE on the plate Since the centre ol gravity nmsL 
lie on both BE and AD, we coin hide that it /bust be at point 
L of then intersection

42. The Stability of a Bodj IIa\ iiitj a Point or mi Axis
a** Support

Make this experiment take some pointed object, lei us say 
a centie-punch, which is <-ym trie d in ichlion to its longi­
tudinal axis ind stand it \ci mulls 
on its sliaip end upon a hoi 1/ mill 
smlace MJV (Fig bln') In this posi 
tien the weight (1 ol the punch, applied 
at its cenlie ol giaxitv ( , will Ik ecpial 
to the leaction at the hoii/oulul ])l me 
But we know that it \\o 11ms stand 
the punch sulieallv, the moment ssc 
release oui hold it will begin to I ill 
This is expruned In the I ic ( tbit whe u 
the axis ol 1 lie punch h ims its seiLicul 
position, a ’moment ol tone caused n\ 
the weight (i is indue c * 1 whn h te mis to 
rotate the punch about its point ol 
support A (Fig (> ib) ^

Jlus position ol a body, in which 
theshghlesl lone is sulliennl to upset 
its eejuilibimm, is Known as the stale 
of unstable equilibrium

7 he (liana lei istn of Hus sink of 
unstable equilibrium is that wlun ilie bodq knots this position its 
centre of qiamtij is loimnd

Let us investigate another example Hit ball lepiesented 
111 Fig bl is made ot two matuials of ddluent specdu gravity, 
the specific gravity ot the m derial ol segment Is. being the

655 -  8018 -
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greater. The centre of gravity of the ball will therefore not be 
at its centre 0  but at some other point C lying on the radius 
OD which is perpendicular to the separation plane AB  (Fig. G4a). 
In the position shown in Fig. 64a the weight G of the whole 
hall is equalised by the rear Lion from the point of support applied 
to the hall at point J).

If we turn the hall so that it takes the position shown in 
Fig. til/;, we will see that its weight G induces a moment equal to 
Ga in respect to the point ol support f)v which will act in such 
a direction that the centre of gravity will he lowered when we 
remove our hand, then-lore the hall will he induced to turn hack

until it reaches its original position (Fig. til a)* in which it will 
he again in a stale ol equilibrium.

A position to which a body returns alter the torce which 
has disturbed its equilibrium has ceased to act, is called a state 
of stable equilibrium.

It is i luirueleristic of this slate of stable equilibrium that its 
centre of gravilg is raised under the influence of the force disturb­
ing Us equilibrium.

If this tin]I he placed in the position shown in Fig. 64c, it 
will he in the position of unstable equilibrium similar- to that 
of the centre-punch shown in Fig. G.'la.

Finally, ii a body is given support at its cenlre of gravity, 
its weighL w-ill he equalised by tlie reaction from the support 
no matter what position it is in. For example, the ring (Fig. 65) 
suspended at the point of intersection of two cords in its middle 
plane will remain in a state of equilibrium in any placed posi-

* Actually lti<- ball will assume this position only alter rolling back 
and forth several times.
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tion because its centre of gravity will remain always unchanged. 
In the same way a homogeneous ball in any position will remain 
in a state of equilibrium when plaeed on a horizontal plane.

£ position in which a body remains in equilibrium, no matter 
what its position wilh respect lo a support, is called a slate 
of indifferent equilibrium.

It is characteristic of indifferent equilibrium that the centre 
of qravihj remains at the same heiqld no matter what the position 
of the bod]f.

All the above classes of equilibrium refer lo a body supported 
at one point. Now let us examine a ease when a body is supported 
on a fixed axis around which it can Ireely rotate. Vssume that 
the plank A in Fig. (Kin is fastened lo a shaH Ireely supported 
iM bearings*, if we mo\e the plank so that its position Incomes 
as shown in Fig. (>(>/>, its eenlre of gravity will have been dis­
placed higher. If lelt to ilselT, under the action ol Ihe moment 
of its weight (la, the plank will rotate back, and alter swinging 
back and forth a few limes will lake up ils original position (Fig. 
()(»«) which is Iherefore a stable position. If we arrange the plank 
in the portion shown in Fig. tide, a slight force is all that will 
be needed to start il rotating and its centre ol gravity will drop 
until finally the plank lakes a stable posilion. Thcreiore its 
original position was one ol instability (Fig. libr).

binally, if the plank were held on Ihe shaft in such a wav that 
its centre of gravity coincided with Ihe axis of the shaft (Fig. 
GGd), il would always be in a slate of indiffer­
ent equilibrium no matter what ils posilion.

As w'c shall sec later, il is ollen necessary 
for machine parts revolving about a tixed axis 
to be arranged in a slate of indilfercnl equilib­
rium. This process is known as balancing.

Illusirali\i‘ Problem I ft. Fig. (17 .shows a light 
rod suspended on axis O and holding a disc 1\ whose 
weight is C 5 kg. This pendulum is pulled lo 
the posilion shown in Ihe figure and I hen released.
Find the magnitude of the foree acting on il at 
the instant if begins to swing lo a posilion ol 
stable equilibrium. The centre ol Ihe disc is at a dis­
tance a — 2 0 0  mm from the vertical, and OC — i.-,,, 1:7
- / -  340 111m. h'

Solution: we will neglect the weight of the rod and consider I hat the 
centre of gravity of the pendulum coincides with the eenlre of disc C. 
\Ve then resolve the foree of the weight (J into components C!i, acting 
along the rod, and CD perpendicular to il. As is apparenL from the 
drawing, component Cli cannot induce the -pendulum lo swing, but 
the second component CD, which is tangeni to (he arc described by the

* The bearings are not shown in the drawing.
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Widius OC, will induce Ihe displacement of the centre of gravity of the 
disc in the direction of C,, Ihe position of stable equilibrium.

Since /  CAD — /  AC li =  /  EOC, therefore A CAD  ~  ACEO, 
hence CD : CE — CA : OC. Accordingly, the component we arc seeking

C A CE _  Ga 
OC ~~ I

5 x 200 
“ 340 ' 2.94 kg.

If the angle of inclination a had been given instead of distance a, 
we would have Imind magnitude u — EC lrom the right triangle OEC, 
whose leg EC - OC sin a.

'I’llis piohlim can be solved more simply by applying the deduction 
made in Sec 31: the momcn 1 ol toiceG with respect to axis O is equal to 
(in, and the moment ol component CH is ycio (ils line of action inter­
sects axis O, and ils aim is /.eio). Whence On - PI, fiom which P  =  
the result we have already oblaim d.

V,i. The Stability of n Hndy on a Horizontal 
Surface

Fin. (58 represents a body K with ils base supported on a 
horizontal surlaee I\IN. If we rolale il about edge E, its centre 
of gravity () will rise and describe the are (X’,. if we take our 
hand away, the body will rolale in reverse* about the same edge 
li and rrlurn lo ils original position AliDE which is accordingly 
a position of stabihlij. la this position the weight of the body is 
equalised by the reaction lrom the surface. This will be Lhe ease 
Lill we place the body in position Alll1J)lE indicated by the

dolled line and in which its centre ol graviLy is on Ihe vertical 
plane passing through edge E. If we take our hand off the body 
while it is in this position it will begin lo rotate cither to the 
right or to the left and the centre of gravity will drop until 
it reaches the lowest point possible. Wherefore position AyByDyE 
is one of unstable equilibrium.

Let us investigate under what conditions a body will main­
tain a position of stable equilibrium: assume that a parallel-
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epiped of weight G is standing on its base KLMN  on a horizontal 
surface (Fig. 69). Assume we apply a force P to the body with 
the line of action lying in the middle plane AGUE. In respect 
to‘edge NM  f his force will induce the moment Pa, in wliich 
a = EF  and is the arm of the force P. The tendency of this 
moment to till over the parallelepiped about I lie edge NM  is 
counteracted by the moment of force of its weight G which 
has the same edge NM  for its moment eenlre. The arm of this 
moment b E li and is lound by conslrinding a perpendicular 
to the line of aelion of the force of gravity Irom point E. The 
condition that must be satisfied for I lie parallelepiped to main­
tain its equilibrium is that the algebraic sum ol these two 
foments with respect to point E be equal to zero:

Pa Gb 0.
The moment of force P is the lillini/ moment, while the moment 

of force G is Ihe slain hi;/ moment. II Pa Gb. the block will 
rotate round edge .\M , hut it Pa <, Gb it will maintain its 
stable portion on the surlaee.

If Pa <  Gb, then P <. , from which we see dial Ihe greater
the moment of slabililv and the shorter I lie arm of loree P with 
respect to axis NM. the more stable Ihe body will be.

In calculating the stability ol cianes, dams, retaining walls, 
smokestacks, etc., there must always be a dclinilc reserve of 
stability which is expressed by the ratio

in which Mn is the moment of slabililv, and Mr the tilling 
moment. This ratio is called the coefficient of stability. It is 
apparent from what has been said that this coefficient must 
always be greater than 1.

However, [rom the above it must not be thought that the 
weight of a body always contributes to its stability. Fig. 70« 
represents a body AliDE which will overturn about the edge 
E under the aelion of its own weight G which induces a tilting 
moment Ga. fn order to keep the body in the position shown, 
a forre'musl be applied which will induce a moment equal in 
magnitude and acting in the opposite direction. It is seen that 
the body will fall over because the line of action of the force 
of gravity intersects the supporting surface beyond the base of 
the body.

In Fig. 70b the body is similar in height to that of Fig. 70a 
but is stable because the action line of the force of gravity passes 
through the supporting area within the base of the body. Whereas 
the body in Fig. 70c has the same area of support as that in Fig. 
70a<butis also stable because its centre of gravity has been lowered.
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Wherefore, a body on a horizontal surface is in a position of 
stable equilibrium if the resultant of all the forces acting on it, 
including its own weight, intersects the area of support within 
the configuration of the base. •

The greater the area of its base and the lower its centre of gravity, 
the more stable the body.

Illustrnlivr Problem iiO. The weight (J of it will I .1 BDE  which is rectan­
gular in cross scclion (Fig. 71) is evpiessed l>y vccloi CFiiml lho greatest 
wind pressure b\ vcclor l\ /,, botli \eclors being drawn lo Lite snnu scale, 
(dieek I he stabililv ol I lie wall.

Solution: we displace the I nice of wind pressure ;i Ion <-■ ils line of aelion 
lo I he ecu Ire of giawls ( ’. and linn consirucl ii pai allclogi am of loices 
(in this case ii jcdangle) on the veclors of loices I* and (1. Since llic aelion 
line of file ii'sultanl It inlcrsccls the supporting :ue;i AE  within the 
configuration of I he base, Ihe wall will maintain ils eondilion of stable 
equilibrium.

W.  Questions for Itoiicw

1. Will fhe cen I res ol gravity of two homogeneous bodies, bolli of 
.similar shape and dimensions lml made of materials possessing differ­
ent specific gravities, be m the same posiliun?

2. Will the centres ol giavilv ol Lwo cylinders of similar dimensions, 
one homogeneous and the other made ol horizontal layers of materials 
possessing different specific gravities, he in the same position?

3. A rectangular Irame AJICD has two sides AD  and /i(7«made of 
one material, and the oilier lwo sides /I B and CD of a material of differ­
ent specilic gravity. Will Ibis frame have Ihe same cenlie ol gravity as 
a fiame made entirely of one material?

4. W'ill Ihe ring in Fig. (in retain its eondilion of indifferent equilib­
rium if Ihe poinl ol intersection of the cords by which it is iiung docs 
not lie in its mid lie plane?

ft. Will the metal strip in Fig. Odd be in a condition of indifferent 
equilibrium if II geomeliic axis of the shaft Lo which it is lixed does 
not pass tinougli llic midpoint of ils width?
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45. Exorcises

16. Find the centre of gravity of the area of a triangle ABC 
wilji sides AB  120 min, BC 00 mm, and AC -  150 mm.

17. The triangle in F\. 16, made in I he form ol a frame, is of 
homogeneous wire of uniform cross-section. Find its centre oT 
gravity.

Ifint to solution. Draw vectors at I lie centres of gravity of 
the sides, proportionate to their lengths, then I in d the centre 
of these parallel forces.

18. Find the centre of gravity ol a trapezoidal plate A BCD 
(Fig. 72) whoso dimensions a (it) mm, b 20 mm, and r =
= 10 mm*.

10. Solve similarly for Fig. 78, Du I willi dimensions a 
-- 60 mm, b 20 mm, r 20 mm, <1 10 mm.

20. Solve similarly loi Fig. 71. but with dimensions a
-- 60 mm, b 20 mm. r
- 20 mm, <1 10 mm.

21. Fig. 75 shows a disc 
with two bosses ol equal 
size on either side. Find ils 
centre of gravity.

b

t

A ------ a ------- —* 1

Fig. 74

22. The casl-iron disc A in Fig. 76 has a boss whose centre 
of gravity is at a distance a 290 mm from the axis ol the disc. 
Find the weight of the load K fastened Lo the disc, at a distance 
b =  420 mm from the same axis and mi the same diameter in

* Exercises 18 to 20 are to be solved by the method given in Sec. 40, 
item. 4.
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order to keep the disc in a state of indifferent equilibrium in 
respect to its axis; Hie dimensions of the boss d — 80 mm and 
c 100 mm, and its weight y - 7.25 g/cu cm.

28. Fig. 77 represents a pillar with a bar fasloned to its top, 
forming an angle a -.80’ with the horizontal and subjected 
to the action of force t) 200 kg. The pillar is square in cross- 
,section willi one side a 0.5 m. lls height h d in, and r -- 
- 200 mm. Find I he filling moment of the pillar tfith respect 
lo edge K and also its coellicieril of stability if 1 cu m of the 
pillar weighs 2,200 kg.

Hint lo solution. Resolve force P into vertical and horizontal 
eomponcnls.

c n \ e t  ii n  v 

FIIICTIOX

'd !. Harmful Frictional Kesislauee

We know from experience tlial I he amount of energy required 
to pull a load across a surface depends on the character of the 
surface: it is much easier to pull a loaded sledge over packed 
snow than over bare earth, or a cart over an asphalt road than 
over a cobbled road, etc. For whenever an object moves in re­
spect to another against which it is pressed with a certain force, 
it gives rise to a force opposing the motion. This force is called 
I riel ion.

lienee Hie resistance to the motion of two bodies in contact with 
one another is determined bi] friction.

Let us assume that a workpiece is being machined longi­
tudinally on a lathe. If there were no friction between the car­
riage and I he bedways, the force transmitted to the carriage 
by the feed mechanism would he expended on the cutting proc­
ess alone. However, part of this force is exerted in overcoming 
friction, which means that more power must be expended by 
the motor. Accordingly, friction is called detrimental resistance.
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When a body moves and encounters the resistance of a sur­
rounding medium like air or liquid, this kind of resistance can 
also be considered detrimental; and the faster the body moves 
the  ̂greater will be the resistance. There are also other forms 
of detrimental resistance. Whereupon it is very important to 
know what measures can he taken to counteract resistance, 
and in particularly friction.

However, it must he noted that although friction is accepted 
as detrimental, it is frequently a necessity, as we shall see further.

\ 1 .  Sliding and Rolling Friction

There arc several types of Inchon. Let us illustrate.
‘Imagine a point on the carriage ot a lathe located on the sur­

face where it is in contact with I he bedway. As the carriage 
moves, this point will < oincidc with a 
countless number of points on the 
bedway lying on a straight line along 
which the carriage moves. This kind 
of movemtnt is called sluhnq and 
the frielion arising from it on I lie 
contiguous surfaces r  called sliding 
friclinn.

The movement ol a wheel on a rail (Fig. 78) is an entirely 
diflcrent maLtcr. Assume that al a ceilain moment poinl I \L 
on the wheel will come in contact with poinl K, on the rail. 
After an inlerval, two other points will come into contact, let 
us say Tj1 and L,, then points il/) and M,, and so on. IT the seg­
ments of the arcs Aj Lt, L tMA. etc. are equal to corresponding 
segments I\2L2. A2M2, etc., then this kind ol movement is ''ailed 
rolling. Characteristic of rolling is that each point on one of 
the contiguous bodies comes into contact with a definite point 
on the other bodv, and the resistance that thus arises is known 
as rolling friction.

If the arc segments /v,/,,. L iM v etc., are not equal to segments 
K2L2, L2iU2, elc., we would then have a combination of rolling 
and sliding and the friction produced will also be of both kinds.

Sliding friction is sometimes called iriclion of Lhe first type, 
while rolling friction is known as friction of the second type.

We thus see that sliding and rolling are two entirely different 
kinds of movement, for which reason in each case the resistance 
is likewise different.

[•ig. 78

Oral Exercises

1. Name the kind of friction produced in each ot the following 
instances:

a) a shaft revolving in the bushings of a bearing;
b) the spindle of a lathe revolving in roller or ball bearings;
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c) the rotation of a workpiece ayainsi the (lend centre of a lathe.
2. What kind of friction is developed belween the wheels and the 

ground when the wheels turn wiLhoul moving a ear?

411. Music. Laws of Sliding Friction, 
and flic Coefficient of Sliding Friction

9

Friction is a complex physical phenomenon ami the. amount 
of il produced in each case depends on a number of factors. 
Led us examine several of the factors which apply to.sliding friction.

Make the following simple experiment. Place a known weight 
on a small square plale lying on a horizontal surface (Fig. 79). 
Attach a spring dynamometer to I he plate hy a cord and put 
the whole in motion hy pulling the dynamometer. 11 will require

a definite force lo make the plale move at an even speed; (lie 
dynamomeler will indirale this force which will he equal and 
opposite lo the loree of resistance lo the motion, that is, lo I he 
force of sliding Inelion. II will also he seen 1 ha I at the instant 
jusl before. I he plale begins to move. I lie dynamomeler will 
indieale a greater force Ilian when the plale subsequently be­
gins lo move smoothly. Frielion is caused hy (lie pressure' of 
the plale on (he supporting surface, i. e., by the wcighl of the 
load and fhe plale acting perpendicularly lo (lie supporting sur­
face and called normal pressure.

The following laws of sliding friction have been established 
experimentally:

1. Total frielion is proportional lo normal pressure. Experiments 
show that the force of frielion F increases or decreases in exactly 
the same proportion as I he sum weight Q of I he. plate and the 
load. This means Unit the force of Iriclion comprises a certain 
part of normal pressure and can he expressed by the .equation

~q~ A or F fQ. (11)
'I’he factor / represents the eoejjinent of sliding friction, or 

the coefficient of frielion of llie first type. Whereupon it may be 
said that the force of slid ini; frielion is equal lo normal pressure 
multiplied by the coefficient of sliding friction.

Since lorces Q and F are expressed in the same units, the coef­
ficient of sliding friction is an abstract quantity.
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2. Let us repeal (lie experiment but with a larger plate. If 
we choose the load so that the weight of the plate and the load 
is the same as before, we shall see no change in the force neces­
sary to move the plate. This means dial the force of friction is 
the same as in the firs I experiment.

Wherefore, the force of friction does not depend on the area of 
contact.

This can be expressed dillerenlly. If we represent the area 
of contact in the first experiment by -S', cm-, and in the second 
experiment by S., cm2, then the force i/ acting on 1 cm2 and 
called specific pressure, can he expressed in the lirsl case by
<7t and in the second case by r/, - -[! •O i * ’ j

Wherefore, the force of slidini/ friction docs not depend on spe­
cific pressure.

3. r.onlinning our experiments with the plate, wo )ind that the 
amount of friction will change if either the plate or the hori­
zontal supporting surface are of dilferenl materials. For example, 
if we use a planed supporting surlace in one case and a polished 
surface in the second, it is obvious Hint in the latter case there 
will be less Iriclion. Furthermore, there will tie less friction 
between lubricated surfaces than between dry ones.

Wherefore, if nomad pressure is awhamjed. total friction 
unit depend on the material oj lh<‘ conloilini/ bodies, the finish 
of tluir srrfaies, amt the nature and amount of lubrication.

I. Finally, total fiution docs not depend on slidini/ velocilij, 
allliou<ili the force neeessan/ at the start of slidini/ is (prater than 
when momentum (retained motion) has been achieved, as has 
already been slated at the beginning. For which reason a dif­
ferentiation is made between static and kinetic friction.

Approximate eocllieienl values of sliding Iriclion for dilJercnt 
materials under various conditions are given in Supplement. I.

Oral Hxcruses
1. Knowing only normal pressure, is it possible It) e'-lablish the amount, 

of friction ttiaL can lie developed?
2. What nmsl he known in order to lind the amount ol friction that 

can be developed?
Illustrative Problem 21. What force will tie necessary to slide a wooden 

box weighing 1 ,2 0 0  kg over horizontal pine boards if Ibe coefficient of 
friction /  — 0.007

Solution: using Kq. (1 I) we obtain
F ■=- 0.3 X 1,200 -- 3(H) kg.

The force required can be no smaller than this, but it will take a 
somewhat greater effort to start the box moving.

Illustrative Problem 22. To a solid east-iron block is applied a force 
P =  2 kg along the same line of movement which causes it Lo slide at 
a constant speed on horizontal guides; weight of block (j - 2 0  kg. 
Whal is the coefficient of friction?
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Solution: using Eq. (14) we obtain

Illustrative Problem 23. A cast-iron block wilh a weight G ■= h  kg 
is moving a t constant speed along a horizontal cast-iron surface under 
the action of force P  =  23 kg (Fig. 80). Find the coefficient of friction 
if the force P forms an angle a — 14° wilh the vertical axis.

Solution: (ho force of friclion is the result of the action of normal 
pressure and which is Lhc sum of the weight of the block G and the verti­
cal component of force P. First we must find this component. From 
AAliC  we ohtnin Q = P  cos a.

Hence the full normal pressure Q, — () +  G =  P c  os a + G. I t  
follows that the force of friction F  — QJ - (P cos a +  G)f. When 
speed is constant, the motive loice T  -= P  sin a and is equal to the force 
of friction, i. c., ,

(/•* cos « H G) /  =  P  sin a.
from which

P sin a 
' P cos oc I G

23 sin 14°
23 cos 14° f  12

23 < 0242
23 /  0.tl7 -|- 12 =  0 . 10 .

Illustrative Problem 24. Fig. 81 represents a block K  sliding at con­
stant speed down an inclined plane .471/1 under its own weight G. Find 
the coeflicienl of friction when <t - 400 mm and h = 100 nun.

Solution: resolve the force G into two components: Q perpendicular 
to the inclined surface A I) , and P parallel to AD. The force of friction 
F  =  fQ and is equalised by tlie component P. We must determine this 
component.

From the similarity of triangles EIIC and ADD  wc evolve
■— =  —  , from which P = Q — • h a  v a

Since this component is equal to the force of friction, we obtain

0 7 T - /0 •
from which the coeflicient of friction /  =  — =  =  0.25.a 400
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49. Dry and Fluid Friction

The force of friction depends on the condition of contacting 
surfaces. If the surfaces are dry they will conic into direct con­
tact with each other as shown in Fig. 82; no matter how smooth 
the surfaces seem to be, they will always retain irregularities 
whose magnitude will depend upon polishing precision. Under 
the action of force Q these iricgulanlies wall undergo deforma­
tion, the protrusions ol one surlacc squeezing into Lhe hollows 
of the other. This interlocking of contact surlaccs will give 
rise to cohesion and resist the relative motion ol both surfaces. 
Such resistance is called dry fnclion.

Now let us assume there is a layer ol lubileant between the 
contiguous suilaces as shown in Fig. (88. If the layer a is thick 
enough, it will completely separate the suifaces Ali and CD 
and their irregularities will not come into contact with one an­
other; instead ol resistance between smtace nicgularilies, there 
will be interaction between the particles of lhe lubrwant. This 
kind ot friction is called fluid fnclion. It is easv to umleisland 
that in this case there will be less jesislance to id,line movement 
than in the case of dry friction. It is also obvious that there will 
be less heat produced and less wear ol conlac mg machine parts. 
That is why lubricating directions lor machines must be strictly 
observed.

As shown by experiment, the thickness ol the lubricating layer 
ranges from 6.005 mm to 0.05 mm.

Phenomena connected with fluid friction between machine 
parts were first thoroughly investigated towards the end of 
the past century by Lhe outstanding Russian scientist N. Petrov, 
the author of the Hydrodynamic Theory of Friction now used 
in calculations concerning lubrication ol major contacting parts 
of machinery.

Such calculations for determining the lorce of friction must 
take into account the mutual speed of contacting surfaces, nor­
mal specific pressure, and the thickness ot the lubricant as well 
as its viscosity (which latter characterises the adhesion between 
particles).

a

77



Friction is sometimes intermediate between the dry and 
fluid kind; this occurs when the lubricating layer does not com­
pletely cover the irregularities oT contiguous surfaces, in which 
case it is called either semi-dry or semi-fluid friclion, depending 
on which il more closely approximates.

0
50. Coefficient of Rolling Friclion

There is one feature that distinguishes rolling from sliding: 
since theoretically a cylinder comes into conlacl with a Hat 
surface along a straight line, and a hall and a Hat surface touch 
al one point, great pressure1 dcvclopcs al lliese places on both

bodies and deforms them 
there. The schematic diagram 
in Fig. SI shows how a cylin- 
<hr is llallened along are ab 
as il rolls over a straight 
surlace. pressing into the 
supposing piano and de- 
\ eloping a rid*(e in Jronl 
which resists the rolling of 
the cylinder. There are also 
oilier I actors that cause 
resistance to rolling, one of 
which involves irregularities 
on both eonlaiding surfaces 
(the larger the irregularities, 
the gnsiter I lie resistance).

Now lei us see how lo determine the amounl of resistance 
developed lo rolling. The roller represented in Fig. 8J is under 
the action ol load Q (which includes its own weight), and also 
of force I* acting horizontally at a height h above the supporting 
surface. Jly translerring both Ilicsc lorees to point A the point 
where their lines ol action intersect we construct our paral­
lelogram of forces and obtain the resultant R represented by 
vector AD. If the roller is to be in equilibrium, some other force 
must be applied to equalise the resultant R. Such a force is Lhe 
reaction i\ of Lhe .supporting surface acting normally to the con­
tiguous surfaces (that is, perpendicular to their tangent) at point E. 
For forces R and X to be in equilibrium they must be equal in 
magnitude and opposite in direction. Hence forces R and X 
are equal in magnitude.

We resolve torce X inlo two components EE and EG, acting 
horizontally and vertically, respectively. It is evident that tri­
angles EHG and ACD are congruent. Tberelorc EE is equal in 
magnitude to force P, and EG lo force Q. We thus obtain two 
couples, P and EE, and 0 and EG. These couples must be in
7S



equilibrium, and their moments must be equal and have opposite 
signs. The moment ot the firsL couple is Ph and is positive. The 
moment of the second couple is Qk (where k represents the distance 
between the point of application of reaction N and the vertical 
plane passing through tiro axis of 1 lie roller) and is negative. 
Since Lhe equation of these moments is/-Vi-- Qk, we find the mag­
nitude of force P needed to overcome, the resistance to the motion 
of the roller as follows:

k ^ --  (15)

The magnitude of arm k of tlie couple will depend, above all, 
on the hardness ol I lie materials of -which the two contiguous 
boflies arc made and also on the condition of their surfaces. 
Accordingly, the magnitude of k is taken as the inefficient of 
rolling Inchon. As distinguished Irom I lie coeflicient of sliding 
friction. it is a denominate ipianlitg expressed in linear units 
(cm, mm). It goes without saying that k and h must both be 
given in the same units.

If force I* is applied at the level ol centre 0. then in Hq. (15) 
h will be equal to the radius It of the roller and

Po -  • (IG)

Hut if force P is applied at point M at the height li, which lat­
ter is equal to diameter I), then

P„ (17)

From what has been said it is evident that Ihe harder the con­
tiguous bodies and the more polished their surfaces, the smaller 
will be Ihe eoellieienl of rolling friction.

Coefficients ol rolling friction for a few materials are given in 
Supplement 11.

In order to find Ihe force necessary to move a wheeled vehicle, 
iL is necessary to take into aciouni the sliding friction devel­
oped between Lhe wheels and their axles in addition to the roll­
ing friction developed between the wheels and Ihe road (or 
rails). In solving problems of this kind a ionnulu is used expressing 
the relationship between the traeLive effort P and normal pressure 
IV acting on the axle, which also makes allowance for both roll-o i
ing and sliding frictions:

P -  /<Y. (18)
The coefficient / is called the general coefficient of friction.

Oral Exercises
1. What is Lhe chief difference between the coefficient of sliding fric­

tion and the coefficient of rolling friction?
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2. Is it more advantageous in rolling to apply the motive force P 
nearer to the supporting surface or farther from it?

Illustrative Problem 2S. A wooden drum together with its contents 
Weighs 1.2 tons. What force P must be applied to it a t  the height of its 
axis to keep it rolling a t  a constant speed over a horizontal wooden 'floor 
if the diameter of the drum D =  1.5 m.

Solution: by expressing the weight of the drum in kilogrammes and 
its radius in centimetres and applying a coefficient of friction of
0.08 cm, we find that P  0.08 x 1,^ °  =  1.3 kg.

If the same load in a wooden box is pulled over a wooden floor and 
the coefficient of sliding friction lor wood upon wood /  0.3, Ihen the
force needed would be

P -= 1,200 x 0.3 =  (500 kg.
Illustrative Problem 2(>. IL is well known tha t  the dimensions of bocMcs 

alter with changes in temperature. This factor must be taken into account, 
among other things, in planning sleci bridges. 
Since a bridge musl have Lwo supports (or 
“ chairs”), one ol I hem musl be made movable. 
Fig. 83 represents schematically such a movable 
chair: between I lie lower immovable shoe A and 
the upper shoe B, attached to the, bridge gird­
er, cylindrical rollers are inserted/

Assuming the force Q transmitted by the 
bridge Lo the support to be 200 tons and the 
diameter of the rollers d to be 150 mm, and that 
all elements of the support are made of steel, 
find the force of resistance P developed by the 
support when the bridge lengthens in the summer 

and contracts in winter.
Solution: in the given case the rollers aic moving along two surfaces 

ab and cd. Since both shoes are of the same material, the coefficient of 
friction is the same for both, and the sought force of resistance P  is 
equal Lo F 1 + F.., with F, representing rolling friction on surface ab, 
and Fj tha t  on surface cd. Using Kq. (17) we obtain

c p u u , <

A
Fig. 83

/*’, + F k Q +jG  +
d d

where G represents the weight ol one roller.
The weighl of the rollers arc neglected since they are insignificant as 

compared with force <J; by taking k — 0.00(3 cm, we obtain

P  -  k 2Q
d 0.00(5 x 2j<_200,000

15 =  1(50 kg
acting along the length of the bridge.

51. Function of Friction in Nature 
and in Engineering

As we have already said, resistance caused by friction is con­
sidered undesirable only in a comparative sense. For without fric­
tion it would be impossible to walk even on a level surface or 
for locomotives to move on rails. Nor would any object stay 
put on an inclined surface nor nails hold boards together, etc.
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In engineering, friction plays a double funcLion. On the one 
hand it is detrimental because it creates added resistance to 
the motion of machine parts; to overcome Lhis resistance it 
is ngcessary to expend additional energy which could otherwise 
be used for the work of the machine. On the other hand iriclion 
plays a positive role, lor without iriclion, nuts and bolls would 
be useless, belts would not liansmil rotational motion, etc.

Therefore, we must reduce lnction between moving machine 
parts to a minimum and increase Inchon to a maximum in other 
parts wdiere it is desnable.

51*. Oiiestions for ltc iiru

U Blocks li and (J an lu n g  on the hon/onlal suil.ne .1 (lug. 8 fi). 
The lorec oT fnction bolwi-en H and A is ri pii-sonlrd b\ F,, and hr I ween 
Ii and C by F . V lone I1 is .irling on block 
C. Stall bow the two blocks will m o\r  in llu 
lollowing tim e eases-

a) when lone  l‘ is less Ilian F bill mine 
than F,;

b) when fo u r  F is Ii ss lh.ni F, bill moie
Ilian F.; •

c) when lone I* is Joss than iillu-i F, in I' .
2. In rig. St, will loin 1* shilc I lie loll i

instead ot lolling it? NMial would lx nm-ssais 
to slide the loliei?

o.‘{. K\ reises
24. To maintain the i oust ant speed ot 

horizontal .surlace, it inquires a la Ug loice applied m the di­
rection ol the moving load. NVhal is the coilln-jcnl ot tnclion?

25. If there were no rolleis between shoes 1 and Ii in Ulus'ra- 
tive Problem 26 (Fig. 85), how much greater would loin* I* be, 
considering that the eoellicient ol diy lnction ol steel upon steel 
/ --- 0.15?

A
hie. Sti

a 120 kg loud o\cr a

* 3
777?

Fig. 87

I
i:

h'lg. 88

26. A force P is applied to a block of weight G -- 20 kg In one 
case force P acts upwards at an angle « - 85n to the horizontal 
(Fig. 87), and in the other downwards (Fig. 88). What must 
be the value ol P in both cases to keep the block moving at a 
constant speed if the coefficient of Iriclion / - 0.25?

27. A steel sliding block of weight G — 10 kg is rising at a 
constant speed between cast-iron guides (Fig. 89) under the
G -  5018 - 81



action of force P which forms an angle a — 30° with the 
vertical axis. Find the magnitude of force P if the 

'M guides are lubricated (/ — 0.08).
^  28. What would be the solution to Exercise 27

if ihe si eel block were sliding downward at a 
constant speed?

29. A load on a steel plate is 
over a wooden surface with the aid 
whose diameter 100 mm (Fig. 90).
P required ll the combined weigh! 
and the sleel plate* equals 300 kg, 
ol fndion between the plale and Ihe rollers 
I: 0.009 cm and the coellieient ol friction be­

tween the rollers and the wooden surface Ay 0.23 cm ft he weight 
of the rollers is to be neglected).

30. WliaL must he Ihe angle « of Ihe inclined plane in

I
l-'ig. 8!)

being moved 
of steel rollers 
Find the force 
G of the load 
the coefficient

Fig. 91 so that the cylinder, whose radius is it, will roll down 
at a constant speed under Ihe action of ils own weight il the 
coefficient ol rolling frielion equals A?
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KINEMATICS

' 11 \ i • r i h \ i
THE TRAJECTORY OF A PARTICLE 

lHSPLACEMEXT WO TIME

51. Fundamentals of Kinematics

Assume ll necessary losel a lathe lor I lie longil inlimil machining 
of ;i shall. This nuisl be done so 111:11 correel culling speed and 
feed are assured wil h a gi\on I hickness ol lire chip, j.e., so llial 
lire I lAnnlii'r of revolutions are liansimlled lo Ilio shaft 
and the culler ad\;Mices I he required drslanee during eaeli 
revolution. This operal’on is aceomplrslied bv sell ini' I he devices 
that actuate Lhe spin He and lie- rainage (both driven by 
the motor).

In doing all this no calculations aie mark* concerning the forces 
acting on lhe various parls of lire hillie. fn other words, lhe 
problem is solved through kinematics, llial branch of mechanics 
which I reals ol motion independent of lhe lorccs causing it. 
For kinematics deals with space and lime as inseparable from 
motion.

In order to determine lhe posilion ol a body in space it must 
first be known how lo determine the position ol anv one ol 
its points at a given moment ol lime. Therefore in order lo 
study the motion ol a body as a whole, it is lirsl necessary lo 
establish I lie kinematic relationship between the elements of 
movement of one of its particles. For I his purpose kinematics is 
subdivided into kinematics of a particle and kinematics of a body. 
We shall see, however, that it is sullicient in many cases io 
know only the motion of one particle in order to solve problems 
concerning the motion of a body as a whole.

55. Trajectories and Their Influence 
on Principal Types of motion

A moving point occupies different positions in space at differ­
ent moments of time. A continuous paLli described by a point 
in motion is called the trajectory of the point. The form of trajec­
tory is one of the factors serving to classify its motion.
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If the trajectory is a palli confined to a plane, it is classified 
as coplanar. The pal 11 described by a point on the rim of a wheel 
rolling along a straight track, or by a point on the culler of 
a lathe, arc each examples ol a coplanar trajectory. If the path 
does not fall into one plane, it is called spatial. An example 
of such a path is a point on a nut being screwed .onto a bolt, 
or of a poiid on I lie cut ling edge of a drill. If the path is a straight 
line it is called rerliiinear as distinguished from curvilinear 
(when it desnibes a curve), (hirvilinear motion may be. of different 
kinds according to Lhe shape of 1 he cuive described by the 
particle: it is circular if the path is a circle or a segment of a 
circle; or iL may be elliptical, helical, etc.

Onil llxrrases  •
1. Name the Kind nl motion lor a point on cacti of the following 

items:
a) the revolving .spindle ol a lathe;
1>) the culler ol a lathe (lining longitudinal Iced;
e) lhe culler ol a lathe when u irKing with a template;
d) a drill clamped to lhe tailsIoeK ol a lathe while it is drilling.
2. <ii\c examples ol oilier Kinds ol motion. 4

lliusirnlhc Problem 27. Assume that a straight line On, tangential 
to a circle, rolls on tile eiicumI'erenee of the circle without sliding. Plot 
the curve traced h\ point O on the line (I'm. P2).

Solution: assume 1'nstly that point O is in contact with the circle; 
after an interval of lime some other point a on the line will come in

Wc then plot ares Ol, 12, 2.1, etc., on the circle. Since a tangent is 
perpendicular to lhe radius of a circle a I the point of contact, wc delin- 
cate perpendiculars to the radii at points /, 2, ft, etc., and then plot 
lm„ 2m , 3m ,, etc., equal to arcs Ol, Ol 4 1:1, O l + 12 -\- 23, etc., thus 
obtaining points m,, m , ;;i,, elc., lying on the path of point O. It will 
be found more convenient lo divide the circumference into several equal 
segments and then lay out the required number of segment lengths on 
the respective tangents. , ..

Since only lhe chord of an arc can tie measured with a compass, the 
greater the number of segments into which we divide the circumference
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the more precise will be the curve we construct. The curve thus obtained 
is called the involute of a circle, or a developed curve.

Accordingly, if a straight line can roll without slipping round the 
edge of a disc in the way we have already described, its points will describe 
trajectories in the form of involutes of a circle.

An involute of a circle can he constructed in another way: take a 
flat disc O (Fig. !>3) and fasten to it one end of a thin string, to the other 
end of which a sharp pencil is laslened. Then wind the string round the 
disc and place it on a sheet of papei with the pencil at point .4. Holding 
the disc firmly in place on the paper, begin to dmw a line with the pencil 
while unwinding the strine, keeping il taul all the time. The curve obtained 
will be an involute. In the position shown in Fig. !)3 the pencil has drawn 
the segment AK  of the in\o!ule, the length MK of the string being equal 
to the length of the arc M A.

Involute curves are wideh used in m.uhine engineering, particu­
larly in designing gear wheels, where Hit* piolilcs ol the teeth are in most 
cases obtained through such emves.

5G. Determining the Distance Traversed hv a Point 
According to It*. Position*, on (lie Trajectory

A trajectory alone is not xiiflirieiil to completely define 1 lie 
position of^i particle. We mnsl also know ils clisplne<*meii! during 
a given interval ol lime and also ils direel ion; llml is, we arc 
interested in ils cnrrenl loca­
tion on. the trajectory.

Assume (lie curve ,1/1 (Fig.
94) to lie the pnlli described 
by parLiele M .  Wo shall ealeu 
late the displacement oT tin* 
particle at different momenls slarlim 
point 0,  called the orii/in.

Lei us assume lhal al momenl /, 
a t  poinf M q, a distance of from tin

M0 .B
to

Fie.  Pi

Irom any fixed reference

the moving parlicle was 
origin 0, and at moment

/i was displaced from righi to lei I and is at poinl M ,,  a distance 
of ax from the origin but in I he opposite di/eelion. Furl liermore, 
let us assume* that llic parlicle again changes ils direction and 
moves from left to right and al momenl I. is al poinl (). It billows 
th a t  during tlie entire lime interval I lie pailiele M  traversed 
a distance equal lo I he sum of I he ares

(t0 f a. | n, I 2av
Since *a parlicle may oecupv positions of equal distance on 

either side of the origin, ils displacements must be identified 
by algebraic signs; if a displacement lo I lie rigid of I he origin 
0  is considered positive, I lien one lo the lei t will lie negative.

Illustrative Problem 211. Point M is moving along a rectilinear path 
at such a speed that iLs displacement s from the origin at all moments 
of time satisfies the equation s =  2o 4 7/ U", in which s is the dis­
tance from the origin expressed in centimetres and I is the time in seconds. 
Find the positions of the point on its path nL moments of time t„ = 0 see, 
f, — 1 sec, fj — 2 sec, /, ---- 3 sec, t, — 4 sec, and /6 = 5 sec (Fig. 9o).
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S o lu tio n : assume point 0  to be the origin. To find the in it ia l displace­
ment from the origin when /„ =  zero, we substitute zero fo r t  in the 
equation, and find Hint -slt — 25 cm from point O. This means th a t a t 
I he firs t moment, M  was n l position M 0 or 25 cm to the righ t of origin 
<). .Substituting I, 2, .'i, 4 and 5 sec for / in the equation, we ob tn irf the 
respective displacements 28 cm, s -  23 cm, .s-,^10 cm, s, =  - - l l c in ,

Ms m 3U-j
r— — Ss - --------- Sz

—-------So-----*
-- ---------- S r

Mo

w

Fig. b5 C
and  .ss, t() cm.  T h i n  l i t  us plot posit ions If, ,  M , V/,, M, a n d
A/, ol tin1 moving point  at those moments ,  t ’osilive d isplacement s  are 
laid out  1o the rigid of the oi igm and  negat ive ones to the lelt.  The d is ­
tance I raveised by  the point  m live seconds beenmis  in this  ease A/0A/, -I 
\ Af,/W, -  .s, | s, f s, 28 25 ■+ 28 H 40 - 71 cm.  In ['ip.

1)5 displacement s  aie laid out at a scale ot 1 : 10.

57. IMoltiiiji a Trajectory According to (ihen 
Coordinates

II has j11si been demonslrnled (hut in order to find the posi­
tion of a moving particle at any moment  it is necessary to lay 
oil' i ts displacement on I lie Irajeelorv Iron) I lie origin.

The next ipicslion is, what mlormalion is needed Lo plot the 
t ra jectory ilsell?

Assume line A H  (Fig. ‘.Hi) lo rep resin I a eoplanar trajectory. 
Dclinealc axes Or and Of/ perpendicular lo each oilier. At a 
certain moment of lime /„ the moving particle will be al the 
initial position A, I lien at moment /t it will lie at position M u 
al m om ent/ ,  at position M etc. Now from .4, A/,, A/2, etc., 
plol the perpendiculars An,,, A/ , r/,, M  >n2, etc., to axis Or, and 
perpendiculars Ab0, M ,b ,, etc., to axis Of/. It will be found
that the lengths ot these perpendiculars determine the position 
of Ihe moving point a I a definite moment.

Therefore by using two axes perpendicular to each other, 
we are able to plol the Irajeelorv if we know the length of the 
perpendiculars. Each segment ol these perpendiculars, giving 
the distance of tlie particle Irom the axes Ox and Of/, is called 
a coordinate, and the axes themselves are coordinate axes. Each 
segment Oa„, Off,, Off,, etc., which indicates the distance of the 
particle from the axis Of/, is called an abscissa, while Die axis 
Ox is known as the axis of the abscissae.

Linear segments Ob0. Ob,, 05,, etc., indicating the distance 
of the particle from axis Ox are called ordinates, and axis Oy 
is called the axis of the ordinates. In short, by delineating the

86



abscissa ami the ordinate of the moving particle for a given 
moment and constructing perpendiculars, we find the position 
of the particle at that moment at the intersection of the pcrpen- 
diciflars. Then by drawing a smooth line through the points 
thus acquired, we obtain the palh of Hie moving particle at the 
chosen scale.

Illus tra tive  Problem 21). A pa ilic le  is m o m iu ; along a tra jectory deter­
m ined by coordinates fiom  I he equations

in whieli the coordinates x and ;/ are given in eenlnnelies, and the lim e 
t  in seconds. Id o l the tra jectory for the lus t live siconds.

S o lu tio n : lirs t we delineate the eooidmale axes O r  and Oi; (1 *'i . !)7) 
and then calculate the coordinates lot the in itia l moment, t - 0 and lor 
the moments .it the end of the l i is l ,  second, Lhii (1, etc., seconds. Sub­
s titu tin g  0 tin I in the equations given, we lim l Hint x 0 and i/ — .r> cm. 
Using a scale ol 1 : 10, we delineate Irom point O the segment O M „  -  
— 5 mm on axis O ij. Then su lis tilu lin g  one second for / in I lie equations, 
we obtain x, 2 cm and i / ( 8 cm. Accm dm gly, by using I tie scale
chosen, we lay out abscissa On, 2 mm, and on the pcipendieular delin­
eated to <7, we lav m il the ordinate u , M ,  - 8 mm. As a result we obtain 
the second point I f ,  on the li. i | te lo rv . Jtepeatiog this piociss lor all 
live  seconds we obtain six points on tile tra jcc lo iy . Hy jo in ing a ll these 
points bv a sinoolh euive, we obtain the sought tra jecto ry*.

I t  must be noted that when the tra jectory is known, the position of 
a particle a t any momeiiL dm mg the in te rva l I — 0 to / — 5 see can be 
found. Thus, i f  we wanL to delcim iue the position ol a particle at t =

4.5 see, we can calculate the abscissa x -  2 - 4.5! --= 40.5 eni, lay it out 
to scale (Oo4 5 — 40.5 mm), and then delineate the perpendicular a t po int 
<7,,. lienco, poiuL i t / , , is the required position of the m oving particle.

IL is frequently convenient to represent the displacement of 
a moving particle from ils origin in relationship lo lime hy means 
of a rectangular system of coordinates.

*  I f  the points in  any part of the tra jecto ry  are found to be too fa r 
apart to draw a smooth curve, i t  w ill been necessary to take some in te r­
mediate value, such as / =  2.5 or 3.5 seconds, etc.

x -  2/J and ;/ — 5 , 3/,

Og r‘< 3z
I'ig . Mli

58. The Displacement-Time Graph
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Assume1 1 lint the path of particle M  is represented by curve 
AB  at a deiimte scale (Fig. 98a). Points Mp M2, M3, etc., will 
denote the positions of particle M  at moments tv t2, t3, etc. 
The initial position is M0 and the origin is point 0. *

By employing a rectangular system of coordinates Ot and 
Os at a suitable scale (Fig. 986), the axis of the-abscissae Ot

will represent the lime ol displacement, while the axis of the 
ordinates Os will represent the distance ol displacement of par­
ticle M trom the otigin 0. Alter laving out the intervals ol time 
denoted by etc., wo chart perpendiculars to them, repre­
senting the displacement ol the moxing particle trom the origin 
0 *1 îio corittsporiding moment ot lime. Displacements to the 
right oi point OyFig- 98a).will be regarded as positive, and those 
to the Iclt as negative. Positive values are plotted above axis 
Ot (Fig. 986) and negative ones below. By joining the points 
found in this way (m0, mv m,, etc.) by a smooth line, we obtain 
a curve which instantly shows the displacement of the moving 
particle from origin 0 (Fig. 98a) at any moment of time from 
t -  /„ — 0, to t /„.
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The curve acquired in this way is called a displacement curve 
(Fig. 1)8 b) ami shows graphically I lie displacement of the moving 
particle from a fixed poinl of reference. It illustrates that aL the 
initial moment when t 0. displacement is represented by the 
ordinate ()mu and, according to the chosen scale, is equal lo arc 
OMa in Fig. 98a; displacement then increases at moment 
/2 where it is ccpial to (lie ordinate Then it diminishes to 
zero at moment I- (in Fig. 1)8<i point 3/- coincides with 0. that is, 
particle M passes through poinl 0 as it moves from right to 
left), and subsequently Hie particle, continuing to move in the 
same direction, passes into the area ol negative displacement 
and at moment l7 reaches its greatest distance /7m7 from the 
origin, equal to the length ot are OM- as shown in Fig. 98a. 
AC this moment the point changes its direction and approaches 
the origin and at moment /, aligns with point ().

Thus we see that ordinates corresponding to positive displace­
ments lie above Iheaxisot the abscissae, while ordinates corre­
sponding lo negative displacements arc below.

The distance ol the particle Iroin the origin can be determined 
for any infant ol lime on (lie displacement curse. For example, 
at the inomcnl ol lime /,, it is expressed bsr ordinate l,mr

The displacement 'uirsc also makes it possible to determine 
the increment of displacement of the particle dining any interval 
of time. Therebv it is also known ns I lie iiirnc of the trajectory 
or the (Ksphucmcnl-timr (jiapli.

r*i). O ucslions for Hcviciv
1. Naim I lie kind ol lra |eclorv p opl.im ir or spnli.il) di.sciibed by a 

point on Hie b illow ing items, a) I lie c lunk ol a Ini lie, i>) Hie chuck ol a 
d rillin g  machine, e) I he pnlli j  ol a machine lool, d) a die slock when 
c u llin g  Ihreads l>% hand.

2. Name the Kind ol l ia p i lo is  (reel ilmear < i ( m \  ilin ea i) desciihcd 
by a point on the lo jlow ii'e  items- at the lacing lool on a lathe, b) the 
ram oT a shaping imu bine, e) llie  load screw ol a lathe, and the ha lf-nu t 
in the apion.

3. NVliaL is the displacement fion i the lis t <1 lc lerince  poin l ot am ov ing  
point fo r a nionienl ol tune when I lie displai '-men t c iu \e  intersects 
the abscissae axis;

• (50. Exercises

31. Draw the involute of a circle. 10 mm in diameter, generated 
by a straight line rolling onr e around the circle’s circumference.

32. A particle is moving in a rectilinear trajectory in such
a way lhat its displacement s from the lixed reference point 
satisfies the equation .s 20 , 7/ 3/5, in wdiich s is expressed
in centimetres and / in seconds. I’sing a suitable scale, plot the 
path of the particle at moments lY - 1 sec, l2 — 2 sec, t3 - 3 sec, 
/4 =  4 sec, and /, -  5 sec.
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33. The trajectory of a moving particle is determined by the 
coordinates x - KM and // -- 10 {- 9/, in which I is the time in 
seconds. Plot the trajectory.

34. Describe the motion of the particle represented by th e  
displacement curves in Figs 99 and 100, stating a) whether the 
particle is moving incessantly or whether at some' interval of

time i t  is motionless with respect to the origin, b) at what inter­
val of lime it approaches the oi igin in the area ol positive displace­
ment, c) a t  what interval of time iL approaches the origin in 
the area ol negative displacement, d) whether or not the particle 
passes through the origin and at what moment, c) at what moment 
of lime the particle is lurlhcst from the origin

t i i \ p i i n \ 11
R E C m iX F V K  AIOTIOX OF A PAItTIFLF

(>1. Filiform Motion
The simplest kind of motion of a particle is when Us trajectory 

is a straight line, in which instance the, particle is said to have 
rectilinear motion. But as we have already noted, a knowledge 
of the shape of its trajectory is not sullicient to tully define Lhe 
motion of a point. It is also necessary to know its displacement 
from its origin, i.e., Irom its lixed point of relerence.

Assume that a particle in Lraversing a rectilinear trajectory 
AJi (Fig. 101) is at the initial moment at M0 —a distance of 
OMn — .v„ from I lie origin 0. As it moves to the right it comes 
to point M, at moment /p a distance ol ()Mt .s,, and at momenL 
/2 at point M2 a distance of OM2 s.,, from the origin. Accord­
ingly, during the inLcrval of time /„ the particle covers 
a distance sl s0, and during the inLcrval of time l2 — <x a 
distance s2 - - .sx. Dividing the distances traversed by the corre­
sponding intervals of time we obtain -tj—— and ——f- •*1 ro •« h
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Let us assume that the above ratios are equal:

/ 0
This would mean that the distances covered by the particle 

are equal during equal intervals of lime. When this is true, 
Lhc molion is said to be uniform . and the length of the path 
traversed by I he particle increases as many limes as the corre­
sponding inteivals ot lime Jn brief, we may say that when a 
particle possesses uni form molion the distance it turner ses is directly 
proportional to the lime expended.

A Mg Mi Mz

o.m Of —
C,

1 ie' 101 ,

If /, *1 ll /,„ then s. *1 i •N) that is, when
a particle possessed urn form motion, the distances it I inverses dun n y  
equal internals of lime are equal m each other.

(52. Velocity and Displacement 
When Vlolion Is Uniform

Lei s designate lhc general displacement of a particle possessing 
uniform motion lor a gi\en interval of lime t Accordingly, the 
greater the distance v traversed and lhc It ss time expended during 
this displacement, the faster will be the motion or velocity. 
Then if we designate -wlorilv as />, we obtain

s
Tv - -r

is ex'pressed by 
by a particle is divided by

(19)
a quotientthat is, velocity of uniform motion 

obtained when the distance traversed 
the time expended.

If at the inilial moment the particle is al a distance s„ from 
the origin, anil at the end of the interval of time I is at a distance 
s from the origin, then its velocity will he expressed as

i> =  - (20)
From this cquaLion we obtain

s - .y0 +  vt. (21)

in which s0 represents the displacement of the. particle from the 
origin at the initial moment. If the position of the particle at the
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initial moment, is taken as the origin, the displacement s„ will 
be zero and the distance traversed will be

s — vt. .(22)

Wherelore, the distance traversed by a particle engaged in uniform
motion is equal to its velocity m ultiplied by the lim e ’in which the
distance is covered.

Since distance is measured in units of length, therefore veloc-
. . .  . unit of lengthily is expressed as •■' 1 u m l  ol lime

If the metre is taken as the unit ol length and the second as 
the unit of lime, velocity is expressed as if length is in
kilometres and time is in hours, velocity will be etc.
Velocity may be converted from one unit inlo another, as for 
example:

Ism 1,000 111 _  1,000 111* . ,
h r  (it) mill  00 lit) see  " °  1

Velocity is determined no! only by its nnmericaf value but 
also by its d u n  lion. Therefore velocity is a vector quantity**. 
In the case of rectilinear motion, velocity is direeLed along the 
trajectory in I lie direction of motion.

Il l i i s l r i i l ivo P r o b l e m  :J0. A 1,000  m m  sli .i l l is b e i n g  m a c h i n e d  oil a 
l a t h e .  I f  t h e  s p i n d l e  e x e c u t e s  SOU r e v o l u t i o n s  p e r  m i n u t e  a n d  t h e  t e e d  
is 0 . 2  m m  p e r  i n v o l u t i o n ,  h o w  l o n g  will  it l a k e  t h e  c u t l e r  to  p a s s  d o w n  
t h e  e n l i n  l e n g t h  ol  t h e  s h a f t ?

Solution: liist the veined's ol the culler must tie lound. \t 800 rpm 
llie culler mows al tile ink of 0 2 - 800 100 linn per min. that is,
its velocils is

, mm o . lot) m m
To execute the whole operation, I he cutter must move along the length 
of the bedwav lor a distance s -  1,000 mm. Accordingly, llie required 
.. . 5 1,000 .tune t — — — =  0.2.) mm - Omni l.r) sec.

v 1()0

(»3. The Graph Illuslrating Displacement and Velocity 
for Uniform Motion

Let us consider how to plot a graph expressing the relationship 
between displacement and lime for uniform motion.

Delineate a rectangular system of coordinates with the time 
axis Ot and the displacement axis Os (Fig. 102o). Lav out on the

* We know from algebra th a t =  ab' >, therefore velocity m ay
sometimes be expressed as m x sec-1, m x m in-1, etc.

** Vectors of velocity are designated just as vectors of force (Sec. 11).

92



ordinate axis the segment OA representing at a definite scale 
the displacement of the moving particle at 1 he initial moment 
from the fixed point of reference. Then hv applying F<[. (21), 
calculate the displacement s of the particle from the origin at 
moments tv t2, f3. etc., and construct a displacement-lime graph 
as was shown before. We will thus find that Ihe line passing 
through points A. m,. m,, etc., is straight. From this it follows 
that to construct the line AH, it is sulticient to lav out the linear 
segment OA representing the displace­
ment .s0 ot the particle at the 
initial moment, and the ordinate 
of one other moment. Ity thus con­
necting the two points with the line 
Ati we obtain in graphic lorm the 
relationship given in Fq. (21).

With such a diagram it is possible 
to determine lor any given moment 
the displacement ol Ihe moving 
particle Irom the origin and Ihe 
distance it fens covered. For instance, 
its displacement at moment I, is 
represented by the ordinate / ,/n„ ami 
the distance covered in Ihe inb‘i- 
val of lime /,, is shown by 
segment i’2nu.

Now let ns lake another rec 
(angular system ol coordinates 
(Fig. lOL'/i) where Ihe axis Ot rep­
resents lime as belore, and Ihe ordinate axis On shows velocity, 
all al an appropriate scale (ordinate Oa).

Since the velocity is unilorm, it can be illnsliated by a stiaighl 
line ab from point a parallel with Ol.

These graphs illustrate an instance Alien Ihe particle is moving 
in the same direction as its initial displacement .s0, as laid out 
from the origin, and when the movement is positive. In this case 
the displacement ol the particle has increased Irom the origin. 
But if motion were in the opposite direction, its velocity would

4)
fiu. tug

V

+
0 » t

a v=constant

03
Fig. 103 Fig. 104



be negative and Eg. (21) would take the form
s - A'o vl. (23)

Accordingly, (he displacement: of the moving particle fronr the 
origin would diminish with time (Fig. 103) and its velocity while 
remaining constant would become negalivc; lienge the linear 
segment representing it would be constructed below axis Ot 
(Fig. 101).

Since I lie displacement-lime relationship in expressed by a 
straight line, uniform motion obeys the jnineijile of the straight 
line.

Oral J xciuses
Displacement-lime graphs loi I wo pa ■ tides having unilonn motion 

arc plotted at similar scales both for lime and displacement. The line 
A B for one particle lorms a greater aiudc with hoii/onlal line AC (Fig. 
102</) than lor the oilier. \MiaL can be said about the vilocilies of these 
two pa i tides?

I l lustrat ive Problem :tl .  A workpiece 2,800 mm long is being machined  
on a p laner  wi th a cu t t ing  speed ol i>p  -  2 1 m mm and a speed on the 
r eturn s l ioke  ol i \  -.'10 m nun.  C o n s h n d  lie displai i m in l - t i in e  and  
vclocil .s-ll ine g raphs  •

Solution: at the velocities indicated, the lime required for the cutting 
stroke

2.8
21

2
vp- min lo

2_
"lf> x (50 see — 8  see,
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while the time required lor the return stroke

- 2.8 7 7nun k GO see =  5.0 sec.JO to 7o
\\p  delinenle axes Ol, O.s ami Ol, ;md Or (F'ig. 105). On the Ol axes 

we lay out the lime at a scale ot 5 mm — 1 see; on axis O.s we lay out 
displacement at a scale1 ol 1 : 100; and on axis Or we take a scale of 
1 mm =  20 mm see lor the xeloeilv

At the end ol the euMill) second, displaeenn nl ol anv particle in the 
workpiece is 2,800 mm liom tile oiigui (Fin. !0."u/, point 11). Alter this 
the workpiece moves m the opposite direction, and m 18.b see is at its 
initial position at poinl o U

Velocity v = 21 m nun dad mm s< e and is lonslanl lilt the end 
of the eighth second (poinl b in Flip l05/i), alter winch il ch.ingcs in sign 
(the planer’s table beams lo move in Ihe opposite diicclion).

U4. Variable (or Anii-tuiform) Million, 
and \seraj|es of Velocity and Acceleration

When a  p a r t i c l e  c o m t s  d i l l e r e n l  d i s t a n c e s  in e q u a l  i n t e r v a l s  
of Lime, il is s a i d  to have vaiiahlr, o r  non-uni [mm. mol  ion.

Let .sq represent the displuremenl ol n particle Irom the origin 
tit the moi^cnl /,, and ŝ  show its displaeemenI a! moment l2. 
Then the distune e covered dining I lie mlerval ol lime I, tl 
will lie equal to s, - .s,. B\ dividing tins distance* liv Ihe corre­
sponding lime interval, we olilam a velocity v„„ called average 
velar11g for the given interval ot lime:

(24)

Actually in the given example the particle does not travel at 
a constant velocity during tin* entire lime interval. Average 
velocity i>„, is merolv the speed at which the particle would 
Iraverse the same distance fvq .•>,) in Ihe same interval of time 
(/2 - - /,) it it moved at a uinlorm speed. Therelore average veloc­
ity does not give the mluul velocities nl which the particle 
moves at various moments of lime. Nevertheless, in engineering 
it is oil i'll necessary lo know average velocity.

Variable motion (tillers Jroin average velocity in that it refers 
to a verg small interval uf lime; hence the actual velocity of a 
parLicle having variable motion is instantaneous for the given 
moment. But if from a given moment of time I the motion 
should bCcome uniform, the instantaneous velocit y at lhal given 
moment would be equal Lo its succeeding unilorm motion.

From this it is apparent that the smaller the interval of Lime 
in Eq. (24), Ihe closer will the average velocity he to instantaneous 
velocity.

Since the velocity of a particle possessing variable motion is 
not constant, it is continually receiving a certain acceleration 
which may he either positive or negative. In the first instance 
velocity will increase, while in the second it will decrease.
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If a I nioineii! /L the velocity is uv and al moment /2 it is v2, 
the difference in pilot itg v2 vl divided by the interval of lime 
t2 — lx will lx iqual to the average aneleiahon aav foi that interval 
of time

<hv v v,
t- ~  '■

(25)

.Jiisl as with xelodly. I lie srnallei I lie inteival oi time t, tv  
the (loser will he I lie a\ei«u{e ac celei.ilion lo instantaneous 
acceleration

Similar lo velocity. aecdciahon is a \e(lor quantity Anri it 
the sign ol arcelei.ilion is Llie same as Dial ol veloulv, il will 
have llu* same direction as I he motion II, on the (onliaty, its 
sign ddleis, then its dm (I ion will he opposite to the motion 

As we see from hq (2a), acceleration is expressed by
mil l  ol li unti l  
mil l  ol l inu unit ol time ne11 ol li n"Lli 

(mill ol linn )-
d i m s ,  it v e l o c i t y  is c x p i e s s e d  as  m si c , th e  m e a s u i i r ig  un i t  

of a< ( d e r a t i o n  will hi m / s e t J in si ( “ ( lo  h e  r e a d  m e in s
pe l  se< onil pi i si i o m l ) <

Illustrative Problem :12. llu i.mi ol a sliipmg machine, moving non- 
unifoi mlv, < omple les a e idling stioke ol 100 mm m 1 2 > si c Hv dividing 
1 2 a si c mlo S t cju il mili \ als il \v is loiiiul IlnL dining Ihc lnsl inteival 
the c ult< i moved a distinct til s, 22 mm, in llu si t oncj interval il 
movtd s s, =71 22 1') mm, m llu I In i cl niltival it moved
,s, s UM 71 lit mm, in II.. louilli mUival llu movtimnl 
was sA s, — 200 l i t  Mi mm I mil llu avti igt vtlocilv ol Ihe 
lam loi lilt c nine 1 2 > st t and linn loi < it h ol 1h lout equal mlcivals 
ol ttu given lime

Solution tin aveiag. u h u i l v  loi llu en lm I 2 ) St e. will he

i\„ mm set 10 2 m nun

Pot llu lns l  inteival  ol tunc /, /,
22 < 8Vav, =  i , , ,  1 11 mm si e 8 1) lii/nun

hoi Ihe second inteival  ol lime I /,
j(| ^

Vqo, . 214 liim/sec — J8 82 ni/iiim1 *- e)
l ’or l lu  t h u d  inteival  ol time / /

Dava =  ^  403 inm/sei — 24 10 m/mm

For  the lour th iiilciv.il ol tune I,

V a u
hi) \  8 
" 1 2f> pa 422 m m  see -= 2 > 34 m /min.

Thus we see th a t the average velocilus foi scpaiate intervals of time 
greall> diffci nol only liom each othei, bu t also fioin the aveiage 
velocity for the entire stroke of the lam.
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65. Uniformly-Variable Morion.
Velocity and Acceleration

The simplest form of variable motion is that which is uniformly 
valuable, i.e., when the change in velocity is equal for like inter­
vals of time. To express this in another way it may be said that 
variable motion, in respect lo which acceleration is constant, is 
uniformly accelerated.

Let us see bow the velocity of a uniformly-accelerated particle 
is determined for a given moment.

Let the velocity of the moving parlicle at the initial moment 
be If the acceleration is a. then the increase in velocity during 
the interval of time / will be at. lienee, the velocity at the end 
otj the interval will be

v, -  v0 [- al. (26)
If the initial velocity of the parlicle />„ 0, the final velocity

will be
vt at. (27)

But it rffusL he borne in mind that acceleration may be either 
positive or negative. If it is positive, it will have the same direc­
tion as the motion, end the motion is then known as constant 
acceleration. If it is negative, its direction will lie opposiLe lo the 
motion and the molion is then said Lo have constant deceleration. 
In the latter case, acceleration is written with a negative sign 
in Eq. (26).

Oral Exercises
1. How (loos llio velocity of a moving point Ituit possesses miiformly- 

variabie motion change if acceleration is positive?
2. How does it change if acceleration is negative?
Illustrative Problem A train travelling al n velocity of *15 kni/lir 

began going downgrade and increased ils vchcily to 54 km/hr in 
1.5 min. Find ils acceleration.

Solution: applying Eq. (20), initial velocity r„ — 45 km/lir 
=  12.5 m/scc and the interval of lime I — 1.5 min = DO sec; velocity at 
the end of this interval will be

vt — ''no = 54 km/lir --- 15 m.'sec.
Substituting for numerical values, wc obtain

15 =  12.5 + a x 90, from which a — = 0.028 m/scc2.

66. Displacement When Molion Is Uniformly
Accelerated

Having found how to determine velocity at tiny given moment 
for a moving particle possessing constant acceleration, let us 
now find its displacement. We shall begin by expressing Eq. (26)
7 -  9016 ■ 97



graphically to show the relationship between velocity, accelera­
tion, and time.

We shall use the rectangular system of coordinates 01 and 
Ov (Fig. 106), with time as the axis of abscissae and velocity as 
the axis of ordinates. Wc have already seen (Fig. 1026) that 
when motion is uniform (which means that velocity is constant) 
the velocity-time graph is a straight line parallel to thtf time axis
Oi. When motion acquires constant acceleration, this line will

be sloping and form an 
angle with axis 01.

At Ihe initial moment 
when t -- 0, the velocity 
ol the particle will be equal 
to a0. Therelore wc delin­
eate the linear segment 
OA on axis On, thus rep­
resenting to scale the 
magnitude ol the velocity 
at that moment. When 
motion has acquired con­
stant acceleration, the 
increase in velocity will be 
proportional in time. 
Hence, after calculating 

J,,«- too the velocity for a certain
moment of Lime, we con­

struct the perpendicular at the corresponding point on the 
abscissae axis and on it we lay out the velocity to scale. 
Then we plot a straight line through point A and the point 
obtained, thus constructing a velocity-time graph which expresses 
the principle for changes in velocity.

In order to iind displacement s of a moving particle during 
a given time interval /, we divide this time interval into several 
equal parts (Oil dc ej = . . .). Then by adding the initial
velocity and the final velocity for each of these parts and dividing 
the sums by 2, we find their average velocity. In this way we 
calculate that during Ihe time interval Od there is uniform motion
with velocity expressed by the ordinate n1m1 — A ; during
the time interval de velocity is expressed by the ordinate nam2 ~

dD + eE , «• tu= ----— , and so forth.
Then we delineate a straight line through point ml parallel 

to axis Ot. In the resulting rectangle the base Od expresses the 
interval of time in which the motion takes place, while its alti­
tude n1m1 shows the velocity. Accordingly, the area of the rectan­
gle, measured at a corresponding scale, will give the displacement 
of the particle moving uniformly during the interval of time
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Od. This area is equal to the area of the trapezoid OADd because 
nj/TJi is *ts middle line.

Therefore the displacement of the particle during the Lime 
interval Od is represented by the area of the trapezoid OADd. 
In the same way we can prove that its displacement during 
interval de is represented by the area of the trapezoid dDEc, 
etc.

Hence the path traversed by a particle possessing constant 
acceleration during the time interval as shown by the linear 
segment OC, is given at a corresponding scale by the area of the 
trapezoid 0A11C bounded by the ordinates equalling the initial 
and final velocities, the velocity curve (when (he motion has 
constant acceleration, by the line AH), and the lime axis.

Oh this basis we may say that displacement
„ _  c0 + v, .. s -  2 i.

and if we replace vt by i'0 -| at, we obtain

s =  v j t ■ (28)

From Fig. 106 we see that component v0t is expressed by the
area of the rectangle OAA-fi, and the second component by
the area of triangle A BAlt inasmuch as ,1, B represents the increase 
in velociLy at, while AAj is the time t.

Therefore, the displacement of a particle possessing constant 
acceleration is equal to the product of the initial velocilg and time, 
plus half the product of the acceleration and the square of time.

Sometimes in determining displacement it is more convenient 
to use a different equation derived from Erf. (28) as follows. 

From Eq. (26) we evolve
/ i ’< .a

If we substitute this value for / in Eq. (28). then

from which

s V0 in -  i>o
a 2

S V ’l  l ’o
‘2a (29)

Accordingly, the displacement of a point is equal to half the differ­
ence of the squares of the final and initial velocities divided by 
the acceleration.

It should be understood from the above that the value of 
acceleration must be inserted into these equations with the 
correct sign: if the motion possesses constant acceleration it will
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have a plus sign; but if it is constant deceleration, then the sign 
will be minus.

If at the initial moment of the interval of time from which 
rcierence is laken the particle’s speed is zero, then v0 =  0 should 
be used in Hqs (28) and (29), in which case

s -  4* * ’ (3°)
and

2a (31)

If the particle moves with constant deceleration and stops at 
the end ol t seconds, then vt 0 in Eqs (26) and (29).

The same units of measure must be used on both sides ifi all 
equations. Lei us lake Eq. (28) as an example. If the left side is 
expressed in metres, the tirst member of the right side will be
in ,n X sec in, and the second member -1. X sec2 =■ m.see sec*
We thus give all the members of the equation the same units of
measure.

Oral Exercises
1. What will be I lie direction ol line Ali in Fig. 100 when motion 

possesses constant deceleration"?
2. Aie all the members ol Eq. (29) in the same units of measure?
Illustrative Problem 114. While Ira vellum at a speed of 45 km/hr a 

train began going downgiade al a constant acci leiation and covered 
the entile 2,500 in ol downgiade m two minutes. What was Lhe train’s 
acceleration on I lie downgiade and at what speed was it travelling when 
it reached level track.

Solution: the train’s initial speed o0 — 45 km/hr — 12.5 m/sec. By 
employing Eq. (28) we obtain

2,500 =  12.5 \  120 f °— , from which a = 0.139 m/sec*.

Hence the tiain’s acceleration a =■ 0.139 m/sec* and when it reached 
level trackage it was travelling at a speed of

a, „ = 12.5 + 0.139 « 120 = 29.18 m,sec =  105.1 km/hr.

fllustrutUc Problem :15. A tiain was travelling at a speed of 72 km/hr 
when the brakes weie applied. It then travelled with constant decel­
eration for three minutes bclore it came to a dead stop. Hofr far did the 
train travel fiom the time the brakes weie applied till it came to a dead 
stop?

Solution: employing Eq. (20) in which the final speed vt =  0, we deter­
mine the acceleration a: v0 — 72 km/hr = 20 m/sec, and t =  180 sec,

whence we derive 0 =  20 + a x 180, from which a =  m/sec*.
Now Eq. (28) can be used to find the distance the train travelled after • 

braking:
180*s = 20 x 180 -  — =  1,800 m =  1.8 km.9 x 2
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Illustrative Problem 36. A train was travelling at a speed of 54 km /hr 
when its brakes were applied, from which time it travelled 900 m with 
constant deceleration before it came to a dead stop. How long did it 
lake the train to stop after the brakes were applied?

Solution: we find acceleration irom Eq. (29):

If vt — 0, v0 = 54 km h r = 15 m'sec, and s 900 in , we obtain 
a =  — 0.125 m/sec*. B y  using lsq. (2(1) in which r>t — 0, vn =- 15 m/sec, 
and a =  -  0.125 m, see®, w- oblain t =  120 sec - 2 m in.

67. Vertical Motion Under 1 lie Force 
of Gratify

The vertical motion oT a bodv* under I lie force of gravity is 
an example of rectilinear mol ion will) constant acceleration. 
When a body is thrown upwards with a certain initial velocity its 
motion will be evenly retarded, i.e., its velocity will gradually 
diminish; and when ii has reached a certain height the body will 
pause for an instant and then begin lolling with constant 
acceleration? Acceleration due to gravity is always the same 
—9.81 m/sec2 and is designated by the tetter q.

In order to apply ruinations (26-81) deduced for uniformly- 
variable moLion, the acceleration of gravity q is used instead of 
acceleration a, and with the appropriate sign as a prefix.

A body projected vertically upwards with an initial velocity 
p0 will acquire constant deceleration inasmuch as the force of 
gravity acts in the opposite direction, in which case g must be 
used with a minus sign and Eq. (26) will he

>h f’0 -  gt (32)
The height h which a bodv thrown upwards will reach from 

the initial momenl, is found through Eq. (28) as follows:

h = v j --  ’ (33)
while Eq. (29) gives

(34)

When the body reaches its highest point, its velocily vt becomes 
zero and accordingly Kq. (32) becomes

o  o =  gt>

* The motion of a body may be regarded as the motion of its centre 
of gravity and the body considered a material point.
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from which
(35)/ =

Wherefore, the lime consumed for a body to rise to its highest 
point is equal to its initial velocity divided by the acceleration of the 
force of giavily. In this case Eq. (34) becomes

h =  ^ (36)
irom which

"8 2<7 h.
or

"o \'2gi>. (37)
Wherefore, initial velocity is equal to the square root of twice 

the product of the height multiplied by the acceleration of gravity.
When a body is falling lieely, ils movement coincides with 

the direction of gravity acceleration, lor which reason it then 
possesses constant an deration, and gravity acceleration g must 
therefore he used wilh a plus sign.

II the initial velocity of a lading body is zero, then j;0 — 0, and 
Kqs (27), (30) and (31) respectively become

i’i qt. (38)

h ,,r- (39)

h -=.

(40) we obtain

d
'Mi (40)

- 2 qh.

"i \>2qh. (41)
Wherefore, the velocity of a body at flic end of its fall is equal to the 

square root of twice the pioducl of gravity acceleration multiplied 
by the height of the fall.

A comparison of Eqs (37) and (41) will show thqt vt = v0.
Wherelore, the final velocity of a falling body is the same as its 

initial velocity but opposite in direction.
Fig. 107a shows the displacement-lime curve of a freely falling 

body with an initial velocity v0 =  0; the time axis 01 is divided 
into equal segments each of which represents 0.5 sec, while each 
division of the displacement axis Os represents one metre. Using 
Eq. (39) and taking succeeding numerical values of t as 0.5 sec, 
1 sec, etc., and g as 9.81 m/sec2, we will find corresponding displace­
ment of a body from its initial position, i.e., 1.226 m in 0.5 sec,
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4.905 m in 1.0 sec, 11.036 m in 1.5 sec, and 19.62 m in 2.0 sec, 
etc. By constructing the ordinates for these moments of time, 
we then obtain a number of points to connect with a smooth line 
CM* which is accordingly the displacement-time curve. If. for 
example, it be necessary to find how far the body fell in 1.75 sec 
after the initial moment, we find the point on the axis of abscissae
that represents the moment and 
construct a perpendicular to it to 
find its displacement.

Fig. 107A is a velocity-lime 
graph. As is apparent from Eg. 
(118), veloritv changes in direct 
proportion to time, i.e., the rela­
tionship between velocity and lime 
is expressed by a straight line. Eet 
us then employ Eq. (38) to lind 
the velocity at some given moment, 
for instance, at the end of the first 
second iq — 9.81 X 1 ~ 9.81 ni/sec 
and plot a Velocity-lime graph to 
a scale. Since the velocity at the 
initial moment is m o, "<edelineate 
013 irom the origin through the 
point obtained. This is the ’velocity- 
time curve.

Illustrative Problem 37. bioin wlial 
height would a body fall it it takes 
ten seconds 1o reach Die giound, and 
what is its velocity at the final mo­
ment?

Solution: from liq. (39)
. 9.81 < 102/, = - 2-

And from Kq. (38)
v, =  9.81 \  10 -

490.5 m 

i. 1 ill /sec.

60. Questions for Review
1. Whal is the difference between non-uniform motion and uniform 

motion?
2. Slate the law governing the displacement of a uniformly-moving 

particle from the origin.
3. State Lhe law governing the change in velocity of a particle possess­

ing uniformly-variable motion when its initial velocity is /.cro.
4. When is aceelciation considered positive and when negative?
5. What kind of motion has a body when projected upwards?
6. What kind of motion has a freely falling body?
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69. Exercises
35. A workpiece is being machined on a planer tyhose cutting 

stroke is 1,500 mm. It takes the machine nine seconds to complete 
a cutting and return stroke. Find the velocity vea of the cutting 
stroke and velocity vrB of the return stroke if the latter is twice 
the former.

3(>. One minute after leaving the station a train had travelled 
450 rn with constant acceleration. Find its acceleration a and 
velocity v. it,

I *  **2t250m

<h
V*Q t, = 5mtn B

Fit-. 108

37. A tiain is travelling iroin A to D along the strfrtch of track 
represented m Fig. 108. Its imlial speed at A is zero. It takes the 
train 5 minutes to cover the level stretch ot track AB  which is 
2,250 m m length, and 2.5 min to cover the downgrade BC which 
is 3,000 m in length. On reaching C on the level stretch, the brakes 
are applied and the train stops 2,500 m beyond, at D. Find the 
deceleration on stretch CD, Ihe time il takes the train to get 
from A to D, and its aveAge speed lor the whole distance.

38. What height will a si one reach, and how much time will 
its entire ihght take (upward and downward) it it is hurled verti­
cally upward with an initial velocity o0 -  39.24 m/sec?

39. Draw the displacement-lime and velocity-time graphs for 
a body hurled vertically upward with an initial velocity v0 — 
=  19.02 m/sec.

2.500m TT

( II \ 1 -  T 1, H VI I I

THE COMPOSITION OF SIMPLE MOTIONS 
OF A PARTICLE

70. Compound Motion, 
and Absolute and llelntive Motion

Let us assume that an overhead crane (Fig. 109) is transporting 
a load along a factory shop. The crane travels the length of the 
shop in the direction of the arrow A. At the same time the crane’s 
crab, to which the load is hung by means of the hook K ,  is moving 
athwart Ihe overhead crane in the direction shown by arrow B .
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It is seen that the motion of the load is the sum of two motions at 
right angles to each other: the motion of the overhead crane 
with respect*to the earth, and the motion of the crane’s crab 
with respect to the overhead crane. Hence the motion of the 
load is compound and its nature depends upon the motion of the 
crane and its crab, i.e., upon component motions. The motion of 
the overhead crane in respect to the earth is called absolute mo­
tion, while that of its crab in respect to the crane is known as 
relative motion.

If ttal crane moves a distance KA in respect to the earth and 
the crab’s hook simultaneously moves a distance K B in relation

Fi«. my

to the crane, it may be said that the displacement due to absolute 
motion is equal to 1\A, while Die displacement due to relative 
motion is equal to KB.

Since all bodies are actually always in motion, then all kinds 
of motion dealt with in mechanics are relaLive and m each individ­
ual case we arbitrarily assume one or another body to be mo­
tionless. .In most instances the motion oi a body is measured in 
relation to the earth and we call the motion ol that body absolute. 
Thus in the cited example the mo\emcnl of the load in respect to 
the overhead crane is relative motion, while the movements of 
the crane itself and the load relative to the shop is absolute 
motion.

In this example the motion of the load is conditioned by both 
absolute and relative motion and it is such compound motion 
that we most often have to deal with in machines. However, 
mechanics is also concerned with the motion of bodies that are
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not connected with each other. For instance, let us assume a train 
leaves a station. Subsequently, after a sufficient lapse of time, 
another train will be sent out after it along the same track so that 
the two trains will al no time approach each other closer than 
safety permits. In solving such a problem the thing I hat interests 
us above all is the relative speed of both trains and -the distance 
between them.

71. The Composition of Uniform Collincnr Motions
The simplest case of compound molion is that of two collinear 

components having cither the same or opposite directions.
Fig. 110 represents two bodies 1 and 2, in contact along pl t̂nc 

AB. At the initial moment, point M2 on body 2 is in contact
with point AI1 on body 1. Let us 
assume lhat the two bodies are 
moving at the same lime in such a 
way lhat at moment t point M t has 
moved from leif to right for a 
distance s, in respect to*an immov­
able suriace, and point il/2 has 
moved a distance s2 Irom right to 
left in respect to point M v In other 

Idfi. tto words, the displacement ol point Af2
due lo absolute motion from left to 

right is designated by Sj, and displacement due lo relative 
motion from right to left i»indicaled by s\.. What is the resultant 
displacement of point M2?

To answer this question we reason in the following way: 
assume lhat point AL was not displaced in respect lo point M v 
in which case its absolute motion would also be equal to s1 and 
would be aeting from lefl to right. Hut since point Ah was ac­
tually displaced in respect lo il/t from right to leTt for a distance 
.s2, then its displacement in respect lo the immovable plane, that 
is, its resultant displacement from lefl lo right, becomes

s Si -  st.
Obviously if both displacements had been from left^to right, 

the resultant displacement of point ilf2 would also have been 
from left Lo right:

s =- Si |
By considering displacement from left to right as positive and 

displacement from right to left as negative, and assuming that 
both displacements had been from right to left, we would compute 
as follows:

- s -
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By resorting to the same reasoning in dealing with any number 
of component motions, we would find that in compound reclilinear 
motion the absolute displacement of a point is equal to the algebraic 
sum of the component displacements. This can be expressed by the 
following equation:

S ~  S1 +  s 2 +  s 3 +  • • ■ +  sn> (42)
in which each component displacement must he prefixed with 
its proper sign.

Assume that all component displacements have uniform mo­
tion and occur within a certain interval of time I. We shall denote 
their velocities as vv t>2, v3 . . .  v„. Whereupon s1 - vj, s2 =  1>2t, 
, =  v3t .. ., sn =  v„t. By substituting these values for the displace- 

nfenls in Eq. (42) we obtain
s -- Vyt \ -  vJL ) v 3l  I- . . .  H v nl  (|)1 I />2 | i>, | v n) t ,

g
from which -j - \ n2 | u3 I . . .  \ vn.

However - j ~ v 's ^ ie velocity ol the compound motion
and also uniform. Accordingly,

v o1 H- i>2 I <»9 I ■ • • I i>n- (/l*‘l)
W herdore, if the <omponenls of compound motion me (olhnear 

and unifoim, the velocilij of the ((impound motion is equal to the 
algebraic sum of the velocities of the components.

Oral Lxcrcises
1. If a pailicle possesses two kinds ol motion, cun its absolute displace­

ment be /eio at any moment, and under wlial conditions?
2. At a cerium moment, point M ,  on body 2 in Fig. 110 is in contact 

with point ill, ol body /, aflei winch pomLM, moves from lelL to right 
for a distance s,, and point mo\es from rigid to left for a distance 
Sj in iespcct Lo point M, during thc same interval of time. Find the abso­
lute displacement ol M  and lls dilection in each of the following four 
cases: a) when s, >  s„, b) when .s, <  s_, c) when s, ■= s:, d) when s, 0.

Illustrative Problem 3(1. Town II is situated 22.0 km down the river 
from town A. A  boat makes tlie trip iiom A to 13 in 1.5 hr, and from 
B  to A in 2.5 hr. Assuming the motion of the boat to be uniform, find 
the velocity of the current v„ and the velocity of the boal v l with re­
spect to the water.

Solution: velocity v2 represents the velocity of the boat in relation 
to the water, irrespective of whether I he water is flowing or standing 
still. Therefore in moving wilh the current, the boat moves with an 
absolute velocity, in respecl to the bank, of a, -f a.. in moving against 
the current the absolute velocity of the boat is a, vr Hence wc have 
two equations:

(«! +  v.) x 1.5 =  22.5 and (a, -  a,) x 2.5 = 22.5.
By solving these equations we obtain a, =  3 km/hr and a2 =  12 km/hr.
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72. The Composition of Rectilinear Uniform Motions .
Which Are at an Angle to One Another

Now let us learn how to combine rectilinear uniform motions 
when they are directed at an angle to one another.

Assume that we have set the longitudinal feed of a lathe so as 
to give the carriage an axial displacement of AH (Fig. Ill), and 
as it moves we actuate the cutler with a constant crosswise move­
ment by turning the handle of the cross feed. Thus all points 
on the culler receive two motions—the absolute longitudinal mo­
tion of the carriage and the relative crosswise motion of the cross 

Iced. Let us investigate the motion of apex 
A of the eulter. Assume that during a certain 
interval of time the apex and the carriage are 
displaced to position Mv while in the rela­
tive motion of the cross feed the apex is 
displaced to position N Let us assume that 
these two displacements are successive: apex 
A is first longitudinally displaced for a 
distance AM { along the axis £hd then it 
moves a distance MxAl -- AN , crosswise.

Fitf. ill As a result of these two displacements,
apex A reaches point Av

Thus position A,, which has been taken up by apex A of the 
eulter, becomes the vertex ot the parallelogram AM-lAlN1 (in 
this case a lect angle).

Similarly we find that during the next interval of time the 
point ol the cutter is displaced to point As which is Lhe vertex of 
the parallelogram AXM2A2N2, and so forth with subsequent 
displacements.

We shall prove that the displacement of the cutter’s apex 
from position A to position A, is rectilinear, i.e., that the diago­
nals AAX and A,A2 lie on the same straight line. Assume that 
displacements AM,, AN, and M,M2, N,N2 occur in equal 
intervals of lime. Then M,M.t -  Ail/, and N XN2 -- A,N2. 
Since A,M2 M,M, and M2A2 - N,N2, therefore the triangles 
A,M2A2 and AMlAl aie congruent and /  A2A,M2 =  /_ A1AM1, 
that is, the linear segments A,A2 and AA, lie on the same 
straight line. It also follows from the similarity of the same 
two triangles that these two linear segments are equal to each 
other, which means that point A in its compound motion receives 
equal displacements in equal intervals of time; in short, it is clear 
that the compound motion is as uniform as its components.

By dividing the displacements by the time which they con­
sumed, we obtain the velocity of eachone. Hence, if AMx represents 
the velocity of the absolute motion and AN, the velocity of the 
relative motion, then the diagonal A A, will indicate the direction 
and magnitude of the velocity of the resultant motion.
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1{g9
Wherefore, ihe resultant motion of a point having two rectilinear 

uniform motions is rectilinear and uniform.
The resultant displacement of a point is equal in magnitude and 

direction to the diagonal of a parallelogram constructed on the basis 
of component displacements.

The resultant velocity is equal to the diagonal of a parallelogram 
constructed on the basis of component velocities.

It can be proved that if the components of a motion have an 
initial velocity of zero and are uniformly accelerated and rectilin­
ear, the compound motion will also he uniformly accelerated 
and rectilinear.

Illustrative Problem 119. What should he the ialio between the veloc- ' 
ities of the longitudinal leed v, of a lathe and the cross feed v. in order 
t(f cut the truncated cone AlK'.Ji shown in Fig. 112cc If 1) = 80 linn, 
d = 60 mm, and / -- 100 nun?

Solution: the velocity oi longitudinal displacement ol the culler added 
to the velocity of its crosswise displacement will give Ihe velocity of the 
compound motion towaids the cone, i. e., will he acLualcd along the 
diagonal ot the paiallelogram A lFlE,E consliucled on the bases of 
component velocities A tE t and A J i\ (Fig. 112/)).

From the similarity of triangles A ,F lE, and AFE  it follows thht
A >FL\ from which, after subsliLuting the numerical values
AF BF

AF  =  100‘itim and EF = =  2~~ ^  ,nin’ we

lTom wllich S=  = 10. 10

Hence the ratio of longitudinal feed to cross feed should he
Illustrative Problem 40. The plunger K under the action' of-rbd f /  

in Fig. 113a is in reciprocating motion between fixed guides, at a veloc* A-
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ity p, =  60 mm/sec. There Is a roller in the groove A B  of the plunger 
to which is fastened a sliding follower M  that slips up and down*be­
tween immovable guides. Find velocity v2 of the follower if,the groove 
AJ3 forms an angle A BC with the line of’inotion of the plufiger and if 
BC =  a =  120 nun and AC =  ft = 30 mm. 4,

Solution: the resultant motion of the follower M  may be regarded as 
a compound motion: the absolute motion of the block moving from left 
to right during the given moment, and the relative motion bf the roller 
in the groove of the plunger. We therefore construct a parallelogram of 
velocities on the bases of the velocities of the motion components (Fig. 
113ft). Ily taking any arbitrary point A, and choosing a scale, we lay 
out vector A,A2 representing the velocity v, ol the plunger and from 
the same point A, we delineate a sLraight line parallel to the velocity 
of the follower M to point C, where iL intersects with line A.C, which 
is parallel to the axis of the groove AB, and then complete the parallel­
ogram A lAtCIB l. It is evident that the component A,B„  which trans- 
mils the velocity to the con tie of the roller in respect to the piunger,'is 
directed from right to left, as it should be: for if the plunger were 
moving from left to right, the motion of the roller in respect to Lhe 
plunger would be in the opposite direction. Uy measuring the diagonal 
AjC, oT the parallelogram and multiplying its length by the chosen veloc­
ity scale, we obtain the velocity of the follower vr

This vclocily may also be found by calculation, as follows. From 
the similarity of triangles ABC and A lB lCl we may calculate

A,C, _ B,C i a2 _ a,
AC '  ~  ~BC~ ° r IT  ~~u  ’

from which
ft 30 ,v =.-o, — = 00 x =  15 mm/sec.' a 120 '

73. Ucsolving a Velocity into Its Components

In mechanics it is frequently found necessary to carry out the 
reverse of the composition of velocities when it is required to 
resolve a velocity into two components. In its general form this 
problem is as indeterminate as the resolution of forces, but in 
each specific case it is solved in conjunction with additional data 
(direction of component velocities, magnitude and direction 
of one of these, etc.), as may be seen from the following exam­
ple.

Illustrative Problem 41. Drops of rain slrikc the windows of a rail­
way carriage travelling al a velocity v, and leave streaks that form an
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with vertical (Fig. 114). Find velocity v, of the rain­
drop!? th  respect to the earth.

Solution: in respect to the window, each diop is moving vertically 
downwards with a vclocilj \ and hon/ontally with a velocity vj hut 
in the direction opposite to that of the movement of the tiain. lienee 
we can construct the parallelogiam ACBD (Fig. 113), we lay out vector 
AD  representing velocity vj, delineate a sliaiglit line at an angle a — 30° 
to the vertical, and then plot a vutical line down fiom point D. These 
two lines intiisict at point B 'I hen wc finish the parallelogram by deline­
ating side AC whuli lcpu&culs the vtiouly of the raincbop v\ at the 
same scale as vectoi AD  By calculation wc then lind that a2 — a, cot a.

74. (Jiieslions for IU*\iow
•

1 The carnage ol a lathe is mo\mg horn nglil to hfL with a ccitnin 
velocity The cioss feed is si I paiallil to the axis ol the lathe and is 
moving fiom left to light with tin sann Mlocilv What is the lesultant 
velocity of th< tulle i?

2 What would be tin answci Lo Dilution t it tin cioss Iced were set 
at an angle lo tin axis of tin lathi ?

3. The btl^of an i si daloi mints upwaitl willi a velocity v, and a 
man Is walking clown tin istalaioi with a vtlonlv v„ What is the lesult- 
ant vtiouly with wlui li the man m ous m tin lollowmg thne cases- 
a) when v >  u,, b) when n <■''a,, and i) whin u a,?

75. Exercises

40. A. sleamci, whose speed is 10 hmdn is plying up a river 
that has a cuiienl ol 4 km/hi Wh.il is the iesiill.ini velocity of 
the steamei, and what
would it be it it were 
plying through slilJ watei ?

41. A steamer plying 
downstream c overs 30 km 
intwohouis In still water 
the steamer’s speed is 
12 km /hr. IIow far could it 
have travelled upstream 
in the same Iwo hours9

42. The’plunger A in 
Fig. 116 moves between
fixed guides in reciprocating motion under the action oi rod B 
The end of the follower C is sliding in fixed guides and is pressed 
to the inclined surface of the plunger by a spring Find the speed 
v at which the follower moves when the speed of the plunger is 
600 mm/min and if a — 300 mm and b 50 mm. Also find 
speed Vj with which tne end of the follower moves on the 
inclined surface of the plunger.
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C H A P T E R  IX

CURVILINEAR MOTION OF A PARTICLE

70. Uniform and Non-Uniform Curvilinear Motion 
of a Particle

Thus far we have been treating rectilinear motion. Now let 
us examine a more complex kind of motion when the traj­
ectory traversed by a particle is a curved line in one plane. 

Fig. 117 represents such a Lrajcctory. At the moment of time 
the moving parLicle is at point Alv and at the moment of time

/2 it is at point AI2. Therefore, during 
the interval between tx and /2e the 
particle has traversed a path as repre­
sented by Lhe curved line MXM2. If the 
motion is such that the particle trav­
erses equal distances in equal intervals 
of time (however small such intervals 
may be) the motion wilj be uniform. 
Otherwise the motion will be 'non- 
uniform, or variable. The major differ­
ence between curvilinear and rectilinear 

motion is that in the former the path traversed by a moving 
particle is composed of curved segments instead of sLraight ones.

77. The Velocity of a Particle Possessing 
Curvilinear Motion

The rate of velocity of a particle possessing curvilinear motion 
is determined in the same way as for one of recLilinear motion, 
except that it will be a quotient derived by dividing the trajec­
tory s curved-line segments by corresponding intervals of time. 
Thus, when the motion of the particle displaced from point M x 
to point M2 (Fig. 117) is uniform, its veloeily is expressed as a 
quotient obtained by dividing the length of the arc MXM2 by 
the time taken by the particle to traverse that distance. If the 
motion were non-uniform, this quotient would represent average 
velocity. And the shorter the arc the closer that average
velocity will be to Lhe actual (instantaneous) velocity of the 
particle.

Now let us learn how to determine the direction of velocity of 
a particle having curvilinear motion.

When a particle has rectilinear motion its direction remains ■ 
constant, whereas with curvilinear motion its direction continu­
ally changes according to the curvature of its trajectory. From 
this we conclude that the direction of its velocity also changes.

How then is the direction of velocity determined?
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Let us assume that at the moment the moving particle is at 
position Mx (Fig. 117), the constraint causing it to diverge from 
a rectilineal path were removed. Obviously from that point the 
particle would move in a straight line; to be exact, it would be 
a straight line tangent to its trajectory at point M v From this 
it follows that its velocity too will be directed along that tangent 
in the direction of the motion of the parlicle and can be repre­
sented by vector vx at a delinite scale. In the same way the vel­
ocity of the particle at point M z can lie represented by vector 
v2 in the direction of the tangent to its IrajecLory at that point. 
Wherefore, the direction of velocity of a pat tide possessing curvilinear 
motion is tangent to its trajectory at the point unrespondmg with 
the given moment of tunc and is the same as the direction of its 
mqhon.

By way of illustration, let us imagine we are swinging a stone, 
tied to a cord, in a horizontal circle. A.L a certain critical speed 
Lhe cord breaks and the motion ol the stone changes Irom curvili­
near to rectilinear, directed at a tangent to its curved trajec­
tory and with the velocity it had I lie instant just before the 
string brol^.

711. Acceleration of a Particle Possessing 
Curvilinear Motion

Assume a particle to be traversing I lie curved trajectory AB  
in Fig. 118u. At one moment it is at point Mx and at the succeeding 
short interval of time At* lL is at point M2. Let velocity Vj of

Ci

the particle at point Mx be expressed by the vector M LC and 
at point M2 by vector Now let us determine the
change in velocity during the interval of lime At, proceeding 
as follows (Fig. 1186). Delineate vector M1I)l from poinL M„ 
equal to vector M ZD of velocity v«, that is, equal in lengLli, pa­
rallel to, and having Lhe samejdircction. Then resolve velocity v2 
into two components (according to the principle of the parallel­
ogram) one of which, vlt will have a known magnitude and

♦The sign J, the Greek leiler “delta”, is usually used to designate 
small quantities.
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direction. In the parallelogram MXCDXE, the side MXE will 
represent velocity v' which expresses the change in velocity of 
the moving particle in the interval oi time At during which the 
particle moved Irom point Mx to point M z. Then by dividing 
velocity v' by the Lime At, we obtain the average acceleration1 aav:

aa« — (44)

The shorter the interval of time At, the closer will be the 
average acceleration to the acceleration of the particle at the 
instant it is at point M x in its trajectory.

Thus we] see that acceleration of a particle hainng curvilinear 
motion, unlike its veloi itij, is not diret ted along the tangent to the 
trajeilori] hut forms an angle with it hjwg inside the curvaturi of 
the trajectory.

70. Tany cut ini and Normal Acceleration

A

We have learnt that acceleiation along a curved trajectory 
defines the change in velocity both in magnitude and direction, 
for which reason it is known as total at (deration. We shall see later 
that in solving problems concerning curvilinear motion, it will 
be found necessary to consider, separately, acceleration due to 
changes in the magnitude of velocity and that due to changes 

in the direction of velocity caused by the 
curvature ot the trajectory.

Fig. 1186 illustrates both such kinds of 
acceleration. On the velocity vector MlDx 
we lay out segment M XF equal in magni­
tude to vector vx — M,C. It will be found 
thaL segment FDX expresses the change in 
the magnitude ot velocity of the particle, 
whereas segment CF expresses the change 
in direction of the velocity.

Assume that acceleration a of a particle at 
position M (Fig. 119) is expressed by vector 

MC. JusL as in velocity, we resolve this acceleration into 
two components by the principle of the parallelogram, one 
along the tangent to trajectory MT at point A1, and the 
second in the direction of MN  perpendicular to the tan­
gent. As a result we obtain the rectangle MDCE in which 
MD expresses acceleration at while the vector ME  shows acce­
leration an.

Wherefore, acceleration having the same direction as the tangent 
along which velocity is directed expresses a change in magnitude of 
velocity and is called tangential acceleration at, whereas acceleration
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directed perpendicular to the tangent represents a change in direction 
of velocity and is called normal acceleration an*

From this it follows that it the tangential acceleration of a 
particle is in the same direction as its velocity, the particle possess­
es positive acceleration, if it is in the opposite dneition, it 
possesses negatese acccleiation and the motion ot the particle 
is retarded, and if it is /eio, then the motion is uniform

Accordingly, possible cases ol motion ol a puilule in a plane 
may be tabulated as follows:

Acceleration

1 •Belli kinds of 
acceleration, 
i.e., a( and an

( linific in Vilouty

both in in igiiiltidc 
and din (lion

Motion

ClUVll l IK II ,
non unilm m

2 Acceleiatnm 
an only

in dm  ( tion (uivilini ai, 
unitoim

3 Accelt ration at 
only

in in lgnitudi ice tilinc n, 
iion-utuloi til

If there is no acceleration ot cithci lonn, inolion is rectilineal 
and uniform.

There is a simple relationship Ik tween total arc delation and 
its components. From the light tnungle M(JJ (Fig 119) it follows 
that CD MD tan a, in which a is the angle formed by total 
acceleialion and the tangent Hence

an — ci[ tan <x (45)

Since the leg of the triangle is equal to the hypolenuse multi­
plied by the sine of the opposite angle oi the cosine oi the adjacent 
angle, we obtain

an a sin a (40)
. at ^  a cos a (47)

Finally, according to the Pythagoiean Theorem,

a -  1faf | a* (48)

* '‘Normal acceleration” is so called because a line perpendicular 
to a tangent at tbe point of contact is called a “normal”.
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80. Normal Acceleration of a Particle 
Possessing Uniform Circular Motion

Let us investigate a specilic case of curvilinear motion (when 
the trajectory of a partirle moving with constant velocity is in 
the form of a eirele with radius U (Fig. 120). In this case there is 
only normal acceleration an, since tangential acceleration a( is 
zero (ease 2 in the tabular representation given above).

Proceeding as m Sec. 78, we obtain the component v' of velocity 
v2 expressing a change in velocity in the lime interval At during 
which the particle traverses the arc N1XM 2. Since the particle is 
travelling with uniform velocity, vectors M^C and A12D1 are equal 
in magnitude and, as distinguished from the general ease previously 
presented, the vector M represents a change in the direction

of velocity.
—r 'thus we see Lhal, under these condi-

tions, M^Dli Imms an isosceles triangle, 
/  £  since M }C. In the same way

/  | AlyOAl, is also an isosceles triangle
t YV because OA/x and OM2 an', radii of the

o^---------“ -Azj same cucle. Furthermore, these two
I triangles are similar since / M 1OM2 — 

Ion- — / Mil)E  (their sides being mutually
perpendicular) and therefore the remain­

ing angles ol one triangle aie equal to the angles of the other 
triangle.

From this it follows lhal
Mdl A/,/J

A/, 1/ UM
from which

MJ<: -  M,M., (a)

The velocities vx and v2 ol Ihe parlicle at points M x and M2, 
expressed by the vectors M tC and M2F)V are equal in magnitude. 
By designating this magniludc as />, we obtain M2DY = w2 — v. 
By also Inking into account lhal OM2 It and by substituting 
these values in Kq. (a), we obtain

M Ji ^  F- MxMy

By dividing both sides ot the equation by the time At during 
which the particle moved from Alx to M2, we obtain

M,_IS o_ M ,M .
At R  X At w

The le|t side of the above equation expresses the average accele­
ration for the given interval of time. As this interval decreases.
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average acceleration will approach normal acceleration an, in 
which case the chord ,A/1A/2 may he assumed to be equal to the
corresponding arc and the quolient will represent velocity a.
A substitution of these values in Eq. (1>) offers the equation in 
its final form:

«n =  ~  (49)

In this way we have obtained the following important rela­
tionship: normal acceleration of a parlnlr momnq in a circle is 
equal to ils velocity squared, divided bq the radius of the circle. 

Now let us see wind units are used to express Ibis acceleration.
The numerator in Eq. (49) is expressed in (111,11, =1 '  '  '  1 un it of lime /

(unit of length)1 
(unit of linii')- hence the measunng unit of an will be

(unit of length)' 
(unit of time)2 (unit ol length) unit of length 

(unit of liinc)2

i.e., the same measuring noils as used 1 or acceleration ot rectili­
near motion (See. 61).

This acceleration is auected towards tlw lentre of the circle in 
which the particle is hancllinq (lor winch reason il is sometimes 
called centripetal).

111. Total Acceleration ot a Parlicle 
iMoiinij in a Circle

The above, ease is of a pailn le moving in a circle with constant 
velocity. Bui it motion is non-nnilorm, then aside trom nonnal 
acceleration as determined by Eq. (lb), (lie parlicle will also 
have tangential acceleration coinciding with I he tangent in either 
direction. If the magnitude of Ibis acceleration is constant, mo­
tion will be uniformly accelerated and displacement ol the part­
icle for any interval ol lime will he lound through the formulae 
for rectilinear motion as deduced in Sec. 60 and will be equal to 
the length of the arc traversed.

In uniform circular motion, total acceleration is the same as 
for normal acceleration. In non-uniform curvilinear motion, total 
acceleration is determined by Eq. (48) as the square root of the 
sum of the squares of tangential and normal acceleration, while 
the angle they form with the tangent is evolved either by 
Eq. (46) or (47).

Illustrative Problem 42. A parlicle is travelling in a circle whose 
radius R  =  1 m. It possesses a conslauL tangential acceleration 
of 0.2 m/sec!. At the initial moment ils velocity is v0 ^  0. Find 
the velocity and acceleration of the particle at / =  3 sec after the begin-
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ning of its motion, and determine the distance the particle covers in that 
interval of time.

Solution: by employing Eq. (27) we find velocity va at the end of the 
third second: i

=  ntt =  0.2 x 3 =  0.6 m/sec.
Normal acceleration, according to Eq. (49), is '

77*, 0.36 .  . ,an — —  =  —j— = 0.36 m/sec*.

Total acceleration at the end of the third second is found by 
Kq. (48):

a =  Va) +  n* 1̂ 0.04 + 0.129 =  0.412 m/scc*,
and the tangent of the angle it forms with the contacting tangent is 
obtained by Eq. (45): “

tan a a,i   0.3(5
at 0.2 1. 8 ,

irom which o — 61°.
The distance covered bv the pailicle in three seconds is found through 

Eq. (30):

1)2. Questions for Itcview
1. Whnl is (lie ilncclnm of velocity, in respect to its trajectory, 

of a pin lick having euiviimenr motion?
2. What is individually expiessed by tangential and normal accele­

ration and whnl is Lhcir dncclion?
3. Is it possible lor a paitirle with curvilinear motion not to have 

tangential acceleration? Is it possible ior it not to have normal accele­
ration ?

4. What is uniform motion that possesses acceleration?

i).‘J. Exercises
43. A parlide willi an initial velocity of zero moves for 5 sec 

with constant acceleration in a circle whose radius is 2 m and 
covers a distance of 3 m. Find its velocity 
and its tolal accelerations at the end of the 
filth second.

44. The particle in Fig. 121'abandons 
position A with an initial velocity of zero 
and, moving with a constant accelera­
tion is at position B  in three seconds,
0.45 m from position A, after which it 
travels with a constant velocity in a circle 
whose radius is 0.5 m. Find its .velocity 

v and ils acceleration at Lhe opposite point C (AB  is 
tangent to the circle).

Fig. 121
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C H A P T E R  X

SIMPLE MOTIONS OF A HARD BODY

84. Tlie Difference Between the Motion of a Hard Body 
and That of a Particle

Thus far we have studied the motion of a particle. Now we 
shall examine the simplest motions of a hard body which we 
have already classified as an unchangeable system of material 
particles.

When a body is in motion its various particles traverse different 
trajectories with diverse velocities and accelerations. By way of 
illustration let us take the slider- 
crank mechanism shown in Fig. 122.

Crank 1 is iastened rigidly to shaft 
0 and turns with it. It is hinged, by 
means of erankpin A, to one end of 
connecting rod 2, Ihe oilier end of 
which is hijiged by means of pin B 
to slider 3, moving in fixed guides 
KIj. As the crank turns, its particles all describe circles of diffe­
rent radii and const piontly move with diverse velocities, 
whereas the particles of the slider describe identical rectilinear 
trajectories and with an identical velocity. The connecting 
rod moves in its own way and quite ditierently trom either the 
crank or the slide; its right end in the centre of the erankpin 
A describes a circle whereas its left end in thecenLre of pin B 
moves in a straight line. The trajectories executed by the rest 
of its particles arc curves of various shapes

In this chapter we shall learn bow 1o solve problems concerning 
the simpler kinds of motion of a hard body, assuming in all cases 
that the body possesses plane motion, which means Llial all its 
particles describe trajectoiics parallel to one and the same fixed 
plane. All the elements of the mechanism just examined possess 
such motion, since the particles of these elements continuously 
trace paths lying in planes parallel to one and the same vertical 
plane.

115. Linear Translation
We shall begin by examining the simplest case of the motion 

of a hard body.
Imagine a train moving on straight rails; all points on the train, 

with the exception of the axles, wheels, and other elements whose 
motion is relative in respect to the bodies of the cars and the 
locomotive, are tracing identical trajectories; these trajectories 
are parallel to the rails and consequently parallel to each other. 
This is also true of all the particles in the slider 3 of the slider-crank
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mechanism in Fig. 122 inasmuch as the guides KL  are straight. 
The same may he said of all the particles in the mobile jaw of a 
parallel vise and other mechanisms of the same nature.

Now let us lake up a more complicated example. The plafe B 
in Fig. 123 can travel either to the right or to the left on the flat 
horizontally fixed guide A, as shown by arrows 1. The plate C to 
which rod /) (ending with roller E) is rigidly fixed can slide back 
and forth on guides on the surface of plate B in a direction 
perpendicular to the lower guide A, as shown by arrows 2. The

roller E attached to C travels in a curved 
groove Gil in plate F which is part of A.

Assume plate B to be moving along 
guide A ; obviously the motion of plate C, 
(I ue lo I he curved guide Oil, will be 
relative to plate B and be compounded 
with the motion of plate B itself in the 
direction of arrows 7. As a result of these 
two motions the trajectories traversed by 
all poins on plate C or rod D will be 
identical and parallel lo guiefe GIT. For 
instance, a ireelv-selccled point K  will 

trace the trajectory KnK'n, and point I. will move along the 
path L J ele. Thus, plate 6' and all particles connected with it 
trace identical and parallel paths'.

If we select any line on the plate C, for example J\L joining 
points K and L. or any other line joining two points on the plate, 
they will remain parallel lo themselves when the plate moves. 
The same may be said ol any line joining two points on the train 
mentioned above, or on I lie caniage ol a lathe, or the jaws of a 
vise, etc.

Wherefore, ivticn a hind hod if moves m such n way that any line 
joining any two of ils ponds moves parallel lo itself, the body is 
said to have motion of translation.

In any motion of translation of a rigid body each point of the 
body will possess the same motion, that is, the same displacement, 
velocity, and act deration at any instant.

On the basis ol all this we come lo Lhe following important 
conclusion: the relationships we have already deduced for 
moving points can be used to solve problems concerning motion 
of translation.

If the trajectory of any point of a body describing motion 
of translation is a straight line, the movement of the whole 
body is said to have rectilinear translation. If, on the other hand, 
the trajectories arc curves, then the motion is called curvilinear *

* This kind of motion is made wide use of, such as on lathes which 
work with a template, or for the machining of bodies of rotation having 
a curvilinear profile or conical surfaces.
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translation. Such is the motion of plate C in the example 
above.

A specific case of curvilinear translation is circular translation; 
here in  points describe circles of an 
equal radius. This is illustrated in 
Fig. 124. Crank A is fastened 
rigidly to shaft 0; plate H is hinged 
to the other end of. the crank, its 
centre of gravity being lower than 
the axis of the hinge 0,, and occupies 
a verlical position under its own 
weight. When the crank moves about 
axi^ 0. plate B will move in such 
a way that any line KL joining two 
of its points will mo\e parallel to 
itself, and points A, L. etc., will 
describe circles of an equal radius.
Hence the motion ot plale li is 
circular translation.

Oral Iixeruvs
1. Wlial is the motion nl 1 ho ram ot 

a shaping machine, oi ihr table ol a 
planing machine?

2. What is the motion ol the cut h i -T'st i iln d in See. 72 (tug. tit)?

86. notation or a llody Around a Fixed Axis, 
and Anqulnr Displacement

Now let us study the rotary motion of a body when the axis 
of rotation occupies a lixed position.

Assume body A in Fig. 125 io be rotating about axis O which 
is perpendicular to the plane ot the drawing. Also assume that 
point I\ of the body occupies position Ku at a certain moment. 
As the body rotates, tins point will describe a circle with a radius

ol OI\t) equal to I lie length oT a perpen­
dicular drawn Jrom the point to the axis 
of rotation and called the rotational 
radius.

Now let us delineate a plane through 
point K and the rotational axis. This plane 
will move wilh the body A. Assume that 
this plane occupies position ()K0 at the 
initial moment, and, alter a certain 
interval of time, moves to position 0Kt 
and forms a certain two-facet angle <p =  
—- A'oOA’j. This angle is formed by the 
initial and final positions of the rota­
tional radius. In the same way a planeFig. 125
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passing through any point L  and the axis of rotation will, in 
the same interval of lime, form the same angle <p as it moves 
from the initial position ()L0 to the final position OLv 
Therefore the angle formed hy the swing of a body about its 
rotational radius is the same for any point of the body for the 
same interval of time. This angle serves to measure* the rotation 
of the body as a whole and is called its angular displacement 
during a given interval of time.

87. Angular Velocity and Angular Acceleration
If a rotating body forms equal angles with the rotational 

axis in equal intervals ol time, its rotation will be uniform; 
otherwise it will be non-uniform, or variable.

Assume that the angular displacement of a body is equal 
to (py at the end oT a time interval /,, and rp, at the end of a time 
interval lit both being measured from the same initial position. 
Then its angular displacement for the interval ot time i2 - 11 
will be equal to rpt. We lind its average angular velocity
for this interval oi time by dividing the angular displacement 
by time as follows:

-  \  I' • (50)

Here it is not amiss to repeat what was said in Sec. 64 concerning 
the average velocity of a point Inning non-uniform motion: the 
smaller the interval of lime !, the closer the average angular 
velocity to the instantaneous velocity at the time moment tv 
Accordingly, the angular velocity of a point having non- 
uniform rotation is not constant. Let the angular velocity of a 
given point be eq at the instant of lime lL, and «>., for the inslant 
of time l2. It then follows that the change in angular velocity 
during the interval of time t, - /, is w, uq. The ratio between 
the change in angular velocily and the interval of time in 
which it took place is called average angular acceleration and is 
expressed as

__  (On * <W,

r“" ~ 77“  77 (51)

If acceleration possesses the same sign as angular velocity,
the body will have positive acceleration; otherwise its rotation
will be retarded.

Since angular displacement is measured in angular units,
the measuring unit for angular velocity will be
unit ot angular measure , c ,--------— ----- ■—  and for angular acceleration will beunit of time ”
unit of angular measure .. f .. unit of angular measure
-------- unTl^bTlime-------- : un lt ° f time = -------- (uHIt’oTtl'mej*--------
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88. Linear Velocity of the Points of a Rotating
Body

Wb have learnt that all points of a rotating body describe 
trajectories in the form of a circle. Geometry shows that the 
greater the radius and central angle, the greater will be the length 
of an arc. Since all rotational radii of a rotating body turn 
through the same angle, the length of the trajectories traversed 
by points situated at different distances from the axis of rotation 
will vary and be proportional to the rotational radii. For instance, 
the length of the arc K0Kl described by point K in Fig. 125 
is as proportional to the length of the are LQL1 described by 
point L as the rotational radius OK is to I ho rotational radius 
OL* Thus the various points of a rotating body receive different 
displacements in equal intervals of time. From this it follows 
that the velocities with which the points are displaced will also 
depend on the length of their rotational axes. Wherefore, the 
velocities of the points of a rolahnq body are also proportional 
to their rotational radii.

The veloftty with which a point on a rotating body moves is
called its linear velocity and is expiessed as '

Accordingly, the angular velocity ot a body is a measure of 
the rotation ot the whole body as well as all its points and is the 
same for all rotational axes. Whereas the lineal velocity of 
points situated at different distances from the lotahonal axis 
will differ. From this it is lurther concluded that their acceler­
ation will also dilfer.

89. Uniform Rotation of a Body Around a Fixed
Axis

If the angular displacement of a body is the same lor equal 
intervals or time, it is said to have uniloim rotation. It is evident 
in this case that angular velocity will be constant.

Assume that a body rotates uniformly for an interval of time t. 
Then its angular velocity will be

a) =  . (52)

The unit of measure used to express velocity will depend on 
the numerator and denominator ot the right half of this lormula: 
if angular displacement is expressed in degrees and hme in 
seconds, then angular velocity will be expressed in degrees per
second {— -̂1 . If time is in minutes, then it will he , etc.' sec / min
In this book Ihe angle <p will henceforth be expressed in degrees.

Eq. 52 is sometimes expressed in a different form. The radian
(a unit frequently used for angular measurement) is the central
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angle whose arc is equal to the radius of a circle. By designating 
i  as the value of the radian in degrees, and R as the radius of the

%7tR •arc corresponding to if, we obtain x =  R, from which 
x =  l«0° , ,  57°17'44".

71

Whereupon the angular displacement expresse'd in radians 
would be -o — 1 gQO- <p°, and the angular velocity

71 © °  1

w 180^ x  t x  see ‘
In engineering, uniform rotation is almost always expressed 

in number of revolutions per minute and designated as n (rpm 
of the rotor of an electric motor, of the spindle of a lathe, etc.), 
in which case angular velocity is expressed as follows: when 
a body makes one revolution per minute, it turns through 360° 
in one minute; if it makes n revolutions per minute, it turns
through 360/1 degrees and in one second it turns Ihrough =
- 6 /i degrees. Hence if a shaft revolves aL the ratejyf n revolu­

tions per minute, it means that its angular velocity
to —- 6 n K — 360/jsec-

cleg
nun (53)

Let us examine the motion oJ separate points of a uniformly 
rotating body. Fig. 126 represents a sheave which executes n

rpm about its geometric axis 0. Let 
us take point K on the outer nm of 
the sheave, the diameter of which 
we will denote as IJ. When the 
sheave executes one revolution, the 
point /v will describe a circle of 
diameter /); this means that its 
trajectory will be equal to nD, in 
which n is the ratio of the circum­
ference to the diameter of a circle. 
By executing n rpm, the trajectory 
traversed by the point will equal 
ttDii and in one second would

Since the diameter of the
is given in millimetres,' the

, n Dn 
be -60" 'Fig. 120
sheave

linear velocity of point K will be
n l ) n__

60 x 1,000V = m/scc. (54)

All points on the outer rim of the sheave (those farthest from 
the axis of rotation) will have the same linear velocity, known 
as the peripheral velocity of the sheave.



Now let us take a point L lying at a distance r from the axis 
(but not on the rim).

We obtain the linear velocity of the point L  by following the 
samp line of reasoning as with point K:

°L =  GO x 1,000 nl/sec-

By dividing v by vL we obtain
a__ D_

i ’ l  ~  '

Wherefore, the lalio of linear velocities of points on a rotating 
body is equal to the ratio of tlieir diameters, or, which is the same 
thing, of the radii of the circles they describe.

Eq. (54) expresses the peripheral velocity oi a body (or the 
linear velocily of its pomLs) depending on the diameter and 
number of revolutions per minute. II il is necessary to find the 
number of levolutions when the diameter and peripheral veloc­
ity are known, the equal ion becomes

n 00 _x 1,000e_
7t 1)

rpm. (55)

When peripheral velocity and the number ol revolutions 
per minute are known, the diameter in millimetres is lound by 
the following equation:

n  00 /  l,00()e , r a\D — —  ’--nun. (56)rr n '  '
Velocity in Eqs (55) and (56) is given in m/sec.

Oral Lxercises
1. Two points, one twice the distance from the axis as the other, 

lie on the same radius ol a rotating body. What c the latio of velocities 
of the two points?

2. What is the ratio of their normal acceleration?
Illustrative Problem 43. A sheave with a diamcLer 1) ~ 2,000 mm fixed 

rigidly to a shaft whose diameter d -  12ft min, is rotating uniformly at 
a rate n =  240 rpm. Find the peiiplicral vcloutics v, and o ol I he sheave 
and the shaft, respectively, and tlpe normal acceleration of a point on 
the rim o{ the sheave.

Solution: applying Eq. (34), we find the peiipheral velocity of the 
sheave as follows:

3iDn 3.14 x 2,000 x 240
1 -  60 x 1,000 — 00 x 1,000 25.12 m/soc.

Peripheral velocity of the shaft is either found m the same way, or 
solved on the basis that Ihe linear velocities arc proportional to the
diameters: from which we obtain vt =  v t~jj =  25.12X2 qqq =
— 1.57 m/sec.
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The normal acceleration of a point lying on the rim of the sheave 
Is calculated by using Eq. (49), In which case the diameter must be ex­
pressed in metres because velocity is given in m/sec:

Un D/2
2v1 
D

2 x 25.12* 
2 = 631 m/scc*.

Illustrative Problem 44. How many revolutions per minute must be 
transmitted to a high-speed steel drill of 14 mm in diameter in order 
to bore into soft cast Iron at the rate of 50 m/min (the cutting speed for 
drilling is equal to the peripheral velocity of the drill).

Solution: by applying Eq. (55) we obtain
1,000a __ 1,000 x 50 

nD 3.14 x 14 1,137 rpm.

Illustrative Problem 45. What diameter must a sheave be given if it 
is to attain 1,500 rpm and have a peripheral velocity of 22 m/sec? 

Solution: Eq. (56) gives us '

I) =■ 60 X 1,000a
Tin

60 x 1,000 x 22 
3.14 x 1,500 =  280 mm.

90. Diagrams Showing the Relationship 
Between Peripheral Velocity, Diameter, 

and Number of Revolutions

v  m/sec I r.pm.

In spite of the comprehensiveness of the foregoing equations, 
their use involves tedious calculations which must be often ex­
ecuted in the workshop (as, for instance, in determining Lhe number

of revolutions to be imparted to the 
spindle of a lathe for a given cutting 
speed). Therefore in solving prac­
tical problems it is more convenient 
to use diagrams which make it 
possible to find desired magnitudes 
quickly and with sufficient accuracy.

Diagrams which plot the rela­
tionship between peripheral veloc­
ity, diameter, and number of rev­
olutions are known as nomographs. 
With their help peripheral velocity 
may be found if the other two 

magnitudes are known. For example, if the diameter D =  800 mm 
and the number of revolutions n — 300 rpm, peripheral velocity 
is found by inspection to be v =  12.5 m/sec (Fig. 127).

In practice, two types of nomographs are widely used—radial 
and logarithmic. The plotting of nomographs and their use 
in practical calculations is explained in special courses on produc­
tion technology.
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91. Uniformly-Accelerated Rotation of a Body 
Around a Fixed Axis

When a change in angular velocity of a rotating body is equal 
for equal intervals of time, the body is said to possess unijorm 
acceleration. If angular velocity is on the increase, the body is 
said to have uniform positive acceleration; if it is on the decrease, 
the body is said to possess uniform negative acceleration, or 

, uniform deceleration.
By comparing the rotation of a body with the rectilinear 

motion of a material point, we iind that angular displacement 
in the former is analogous to rectilinear displacement in the 
latter. In a similar manner angular velocity and angular accel­
eration, which are characteristic oi rotation, correspond to the 
velocity and acceleration oi a body possessing rectilinear motion. 
Therefore the equations giving the relationship between angular 
displacement, angular velocity, and angular acceleration can 
be deduced in the same way as accomplished lor displacement, 
velocity, and acceleration ol a particle ol unilorm rectilinear 
motion (Secs Of) and 00). Such an operation will yield the lollowing 
formulae:

Angular velocity at moment t
a>i (o„ | d, (57)

in which w0 is inilia] angular vehxilv, and c is angular accel­
eration, which is constant when lotalion is unilormly accel­
erated. If initial angular velocity o0 0, then

wt -  t /. (58)
Analogous to Eq. (28), we obtain angular displacement for 

time I:

<P =  1 £  ' (59)

and in accordance with Eq. (29)
_ r.jf cujt 

^  2e (60)

Finally, if initial angular velocity is zero,
e/J (61)

and
( u j

v  -  S5 •
(62)

Illustrative Problem -46. A sheave begins to rotate with 
eration at 12.5 revolutions for the first 5 seconds. What 
and peripheral velocities at the end of that lime it its 
=  2 ,0 0 0  mm?

uniform accel- 
are its angular 
diameter D —
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Solution: we firs t find  angular displacement, bearing in m ind th a t 
one revolution corresponds to a tu rn  of 360°:

p =  360 x  12.5 =  4,500°.

Since the in it ia l angular ve loc ity  is zero, we use Eq. (61) to fin d  angular 
acceleration:

e =  1? =  -  $ ? -  =  360 deg/sec2.

Angular velocity a t the end of the f i f lh second is found  through* 
Eq. (58):

<os =  et =  360 x  5 =  1,800 dcg/sec.

This angular ve loc ity  corresponds to =  5 rev/scc. Hence theooU
periphcia l ve locity at tha t moment

2t2,000 x 5Vi = 1,000 -  =  31.4 m/sec.

Illustra tive  Problem 47. A sheave w ith  a diameter of 1,200 mm rotates 
a t the rate ol n  =  400 rpm. When power is cut off, iL continues to rotate 
w ith  uniform  deceleialion, coming to a stop in 2 nun 30 sec. Determine 
the number o l revolutions i t  executed alLei power was o t o il, and the 
tangential acceleration ol a po in t on its run duung the same in te rva l 
before stopping.

S o lu tio n : the angular ve locity ol the sheave aL the moment o l tra n ­
sition from unilorm  motion to nnilorm  deceleration is found by using 
Eq. (53):

o>0 =  bn -= 6 400 =  2,400 deg/sec.

To l i iu l  the angular deceleration we use Eq. (38), b u t instead of the 
fina l angular ve locity, wc apply the in it ia l ve loc ity :

t
2,400

50 deg/sec2.

Now we can lin d  the angular displacement through Eq. (61):

16 x 1502 .
<p =  —  2 -  =  180,000 degrees.

Inasmuch as one revolution equals 360°, the sheave has made 
180,000
-  o,t„  =  o00 revolutions.360

To find  Langcntial acceleration on the run ol the sheave, we calculate 
the lcngLh of the arc corresponding to angular acceleration e =  16 deg/sec2. 
The diameter of the sheave D  being 1,200 mm =  1.2 m, theh the length 
of Lhc arc corresponding to a centia l angle of 16° w ill be

jrD IG  j i l .2  x  16 4jim =  m.

Therefore the tangentia l acceleration on the rim  is

4 x  3.14 -  . ,-----^ -----pa 0.17 m/sec2.
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92. Questions for Review
1. W ha t is m otion of translation? Name the d iffe ren t kinds of trans- 

la tio n .
2i I f  a ra ilw ay carriage passes from n rectilinear to a curv ilinear 

track, can its  m otion s til l be called translation?
3. I f  the same ra ilway carriage passes from a rectilinear horizontal 

track to  a rectilinear inclined track, can its motion s t i l l  be called 
translation?

4. W hat k ind  of motion does the fool-rest of a bicycle pedal have?
5. Does the magnitude of angular ve loc ity  depend upon the m agnitude 

of the ro ta tiona l radius?
6. Does the magnitude of linear ve loc ity  depend upon the magnitude 

of the ro ta tiona l radius?
7. Two cylinders of d iffe ren t diameters are ro ta ting  about th e ir  

geometric axes. W hat ratio  should there be between the number of revo­
lutions they a tta in  per un it ol time so tha t the ir pe iipheia l velocities 
lem ain the same?

8. Two sheaves of d iffe ren t diameters execute Ihe same number of 
revolutions per m inute. W hat can be said about their angular and peri­
pheral velocities?

93. Exorcises
45. If a sheave lias a diameter of 160 nun and its motion is 

uniform, what must lie its rpm lo achieve a peripheral velocity 
of 24 m/sec?

46. A sheave is turning at liu rate ol 1,500 rpm and with 
a peripheral velocity ot 22 m/ser. What is its diameter?

47. A steel workpiece with a diameter of 60 mm is being 
machined on a lathe with a high-speed steel cutler. What is the 
cutting speed (peripheral velocity) if the workpiece attains 
1,140 rpm?

48. A brass workpiece 50 mm in diameter is being machined 
by a high-speed steel cutter at the rale of 430 m/min. Calculate 
the rpm of the workpiece.

49. A sheave with a diameter ot 1,100 mm had at one moment 
t =  0  a peripheral velocity of 9  m/sec and 1 2  m/scc following 
an elapse of 2.5 minutes. Assuming the eolation of the sheave 
to he uniformly accelerated, find the angular and tangential 
accelerations on the rim, and also the angular and peripheral 
velocities following an elapse of 1.5 min after the initial mo­
ment t — 0 .

50. A flywheel 1,500 mm in diameter atlaincd 60 revolutions 
in the first 45 seconds after starting. Assuming its motion to be 
uniformly accelerated, find its angular and tangential accele­
rations and its angular and peripheral velocities at t — 60 sec.

51. A flywheel turns at a speed ot 210 rpm. When power is 
cut off it continues to rotate but with uniform deceleration and 
stops after an elapse of 4 min 24 see. Find the angular accelera­
tion of the flywheel and the number of revolutions it executes 
after power was cut off.
9  -  5018



DYNAMICS

( II \ 1 I I H \l
rU\DUIL\TYLS o r  D Y W U U S

Definition ok by namies
In I he pi < (( diii'f s» < I inn on kmc mil  k s \\c studied the motion 

of a hard body and its \ n ions points Hut tin 11 ( in In no t hange 
in motion 01 is it is t illid Hu nit t hunt  al s i d e  ol a hodv, 
unless anol l iu bod\ (i l o i n )  is nt ing upon it fMuifloie in 
oidei to obtain a (omplcli pit tun ol llic inohon ol a body, wi 
musl  Know the i < 1 11 ion between ds motion and the tones 
at liny upon it I Ins pioblcm is (halt  willi m that section of 
met banns  Known as d \ n  i inus It m i\ ice oidinglv be s ml that  
dijnaimts dials until Hit mol ion of a both/ in tonnulion unth llit 
fonts ckIiiki upon 11

I h u e  aie I wo m ini hint* probh ms to lit 1 iKc n up in dyn nnu s 
1) determining the tones t int  i nisi the inohon ol i hodv on 
the basis ol the Kinemalns ol l int  inohon,  2) elite miming the 
motion llial ,i body ae l i n n s  undu the ai turn ol loiecs excited 
on it

US. The H ist Laii ol ’Ueelianies ( \ e u  toil's Liist Law)

Wc Know by (\pennient lhat a hotly at lest eannot change 
this state unless another boelv at Is upon it and that lL will con­
tinue in sut h a state lot an liitltlimlc time We also know that 
if a body possesses uniloun icthlineai motion, it requires the 
action ot anothu botlv to change this molion

Let us assume we have pushed a ball lying on the floor As 
we watth we see lhat it has acquired rectilinear motion The 
hauler the material ol which the ball is made and the smoother 
its suifaee as well as the surface ol the floor, the longer it will 
continue to inose in a shaight line and the less e hange will there 
be in its velocity If the ball weie in a vacuum it would continue 
its motion still longer 1  bus we see that the floor and surround­
ing air influence the ball, cause its motion to be non-uniform, 
and impart a negative acceleration to it.
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From this we deduce that if it were left to itself and were 
free of the influence of other bodies, the ball would have acquiredf 
uniform rectilinear motion with a velocity constant in magnitude 
and direction.

Thffe property of a body to maintain its momentum (or also 
its state of rest) is called inertia.

We have thus reached a conclusion expressing the substance 
of the Law of Inertia, or Newton’s Firsl Law: a body will remain 
in a stale of rest, or of uniform rectilinear motion, until some other 
body forces it to chanqe that stale.

It is important to bear in mind that I lie action of one body 
upon another need 110L necessarily occur through direct (visible) 
contact. For instance, a body projected horizontally will not 
exhydt rectilinear motion; it will achieve curvilinear motion 
due to the earLh’s invisible at traction.

96. The Basic l']<|iiulion of Dynamics (Yewlon’s Second Law)

Let us make the following experiment. The plunger }i in the 
guides A (Fig. ITS) can be forced to the right by tlie spring D. 
\Ve pull t.heplunger to the left ami fasten if in place by gripping 
its handle C with the screw K. We then place two balls, E and 
F, against the plunger..-Moth balls have the same diameter but 
their materials are of different specific gravity and are, there­
fore, of different weights. We then release the handle and the 
plunger jertes suddenly to the, right, simultaneously pushing 
the two balls in the same direction. We observe that they both 
acquire rectilinear motion, but displacement for each in the 
same inLerval ol lime is different: the lighter ball travels faster 
and outstrips the heavier one. If the balls had had the same spe­
cific gravity, they would have moved 
with equal velocity and been slopped 
by the resistance Lo Lheir motion, at an 
equal distance Lorn the initial position.

If we repenL this experiment but with 
the spring squeezed tighter (the spring 
pushed furLher Lo the let I. than in the 
first experiment), we shall see both balls 
move with greater velocity than before; b’ie. 128
nevertheless the velocity of the heav­
ier ball will steadily become less than that of the lighter one.

From these experiments we deduce the following: at the 
initial moment both balls are in a state of rest. Under the action 
of the spring which imparts equal forces to both balls via the 
plunger, they are put in motion but each with ils own velocity. 
In other words, under the action of equal forces, the two bodies 
received unequal accelerations, the heavier receiving lesser 
acceleration. Furthermore, by comparing the second experi-
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ment with the fyrst, wc see that a greater force nevertheless 
imparts more acceleration to one and the same body.

From this it is apparent that there is some kind of relation­
ship between a force and the acceleration it imparts to a hody. 
Let us make anoLher experiment to determine this relationship.

To the car A (Fig. 129) standing on straight and horizontal 
rails we fasten one end of a dynamometer B, th£ other end of 
which wc fasten to a cord C which we pass over pulley D and tie 
to a weight G1. Then we allow the car to move under the pull 
ot the cord caused by load G1 and make a note of the magnitude

of the force Fv indicated on the dynamometer. By studying 
the motion ol the cai (eg , measining the distances it travels 
in equal intervals of time) we find that it acquires uniform 
acceleration. We then iind the magnitude of its acceleration 
a, by means of the distance it Liavcls in a dclimte inLerval of 
time.

Then replacing load G1 by load Git we repeat the experiment 
and find that under the action ot the second force Pa as indicated 
by the dynamometer, the car receives an acceleration of oa. 
If the car is constructed so as to offer very little friction in its 
movement along the rails, we shall find as a result ol a number 
of similar experiments that the ratio between forces Px and Pa 
differs very little from the ratio of accelerations the lorces impart 
to the car.'We thereby establish that the magnitudes ot the forces 
arc directly proportional to the magnitudes of accelerations 
which they imparl:

P,
1\

Bxa2
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or, after replacing the middle members, ,
P P &=  a constant quantity.

No matter how many times we repeat 1 his experiment but 
writh different loads, wc shall see 1 hat Ihc ratio ot a force to the 
acceleration it imparts to one and the same body is always 
the same.

Wherefore, the ratio 0 / a force to the at (deration it imparts 
is a constant quantity for catty body. 11 wro denote this quantity 
by the letter m, wc obtain

or,
P mu. (03)

From this equation it follows lhal the greater the magnitude 
of m, the greater the loice required to imparl one and the same 
acceleration# to a body. The quantity m is called the measure 
of mass ot a body, or, to put it simply, the mass oJ a body.

Since according to the Law of Inertia a body lends to either 
remain at rest or retain its umlorm rectilinear motion, it is 
understood that when aeeeleiation is imparled to the body, it 
will resist thal acceleration; and I lie gi eater its mass, the greater 
its resistance. Whence the mass ol a body is considered to be 
a measure of its inertia.

Eq. (63) which cxpicsses Newton’s Second Law, is Ihc basic 
equation of dynamics and can be humiliated as Jollow's: force 
is equal to mass multiplied by atteleiahon. Moreover, acceleration 
attains the same direction as the tone imparting it.

Oral I 3 crusts

1. Tf the magnitude ol a force a< ling on a body is increased n Limes, 
how will it ellecl the accclci a lion ol the body?

2. The mass ol particle A is n times dealer than the mass of particle 
B, and the acceleration impelled to A is also n limes gi eater than that 
imparted to B. How much grcatei is the lorce imparled lo A Ilian to B?

97. Law of the Independent Action 
of Forces

Assume a particle to be moving with an acceleration ax under 
the action ot force Pj (Fig. 130) and that at a certain moment 
another force P2 begins to act on the particle. If the particle 
were under the action of force P2 alone, it would receive an accele-p
ration a2 =  — , in which m is the mass of the particle.
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However, we know that under the action of the two forces 
P2 and P2, the parlicleWvill move with an acceleration a repre­
sented by the vector ()C, which is also the diagonal of the paral­
lelogram OACJi, constructed on hoLh accelerations ax — OA 
and aa — Oli as two of its sides. In other words we mav say 
that the acceleration of a particle is equal to the geometric sum 
of the two accelerations.

I ’u'. l .to

By multiplying tlie two accelerations a, and a2 by the mass 
of the particle, we evolve the forces Pt and P2. Therefore we may 
regard the parallelogiam OACH as being constructed (to scale) 
on the vectors ol tones P, and P,, and a eel or (Hi as representing 

A (to the same scale) the resultant
ol the two component forces Px 
and P2.

From this we arrive at the 
(allowing deduction: if a mooing 
pat tide is under the net ion of .several 
fours at once, the aiLelcralion the 
put tale ret ewes is equal to the geo- 
niehic sum of the ateeleiations pro­
duced separately by each of the 
foiies acting on it.

Let us assume that a particle 
moMng under its own momen­

tum (its motion is unilmmh reelllne-ai) begins to he acted upon 
at a certain moment by a lone P hnung a constant direction. 
As a result, the particle will ren ive a given acceleration in the 
direction ol this latter loice. II the particle had been at rest 
when acted upon by the loree, it would have received a definite 
velocity in the direction ot the loree. But since it was also under 
the action ot its own momentum, its velocity will be Lhc sum 
ol the velocity produced by its momentum and that produced 
by loree P (assuming lhc latter had been applied lo the parLicle 
as if it were at rest).

This may be formulated as follows: 
have upon a particle does not depend 
is al rest or in motion, or wheth"i one 
upon it.

From this it also follows that il a particle is moving under 
its own momentum and a system ol lorces in equilibrium is 
applied to it, its motion will continue lo be uniform and rec­
tilinear.

This principle of mechanics is called the law of the independent 
action of forces, or the law of llie joint action offorces.

Ihe action that a force will 
upon whether Ihe parlirle 
ot several forces are acting
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98. Propositions Deduced From |he Laws 
of Mechanic^

TJie following set of propositions, confirmed by experiment, 
emerges from the laws of mechanics that we have investigated.

1. Assume a particle having rectilinear motion and being 
under the action of a force. According lo Newton’s Second 
Law, its motion will have accelerahon. 7/ the force should be 
removed, the particle will continue to move undir its own inertia 
(momentum) with u umjoim reitilinear motion and its velocity 
will be that attained at the time the force was removed. Such would 
be the motion of a train, travelling on straight horizontal 
rails, alter steam is cut olf and if I here were no resistance to 
its*motion. The smaller the resistance, the longer will the train 
move under its own inertia and the more nearly uniform will 
its motion be.

2. Assume that a particle has curvilinear motion. As is apparent 
from Newton’s iirsl two laws, such motion can oidy occur under 
the action of a force. If the foice is removed, the paiticle will 
continue io&nnvc. but m a shniqht line tanqent lo its path at the 
moment the force has been removed. An example of this is a stone 
tied to the end ol a cord and being wlulled around by a hand 
holding the other end ol the cord. II the cord breaks, the stone 
will lly oil in a direction tangent to the circle described by 
iLs centre ot gravity under the constraining action of the cord. 
A particle lorn oil a rotating grindstone will acquire the same 
motion.

d. Now tel us consider the motion ol a liaiu on straight and 
horizontal rails In order lor the tram to maintain unilorm motion, 
the locomotive must develop a definite tractive force to overcome 
the harmful resistance which is opposite in direction to the motion 
ot the train. It the tractive force is gicaler than this resistance, 
the surplus will imparl positive aecelei at ion lo the I rain and make 
it move taster-. Hut it the lesistance is gicaler Ilian the* tractive 
force, the surplus resistance will imparl a negative acceleration 
to the Irani, i.e., an acceleration opposite in direction to the 
motion of the train. 'This would cause the movement of the train 
lo tie retarded.

From what has just been said, the billowing important deduc­
tion can be made- since on the one hand the train possesses 
uniform rectilinear motion under the action of the tractive 
force of the locomotive, and on the other hand ot the force of 
resistance, and since both these torccs are exactly equal in mag­
nitude, the lorces are in cumlibriuni.

Wherelore, if a parti' le under the at turn of forces possesses 
uniform reitilinear motion, the forces will be m equilibrium, have 
no influence on its motion, and the particle will move under Us 
QWn inertia; and conversely, if the forces applied lo a particle
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a re  i n  e q u i l i b r i u m . i t  w i l l  e i t h e r  h a v e  u n i f o r m  r e c t i l i n e a r  m o t io n  
o r  w i l l  r e m a in  i n  H  s la te ^ o f  re s t.

This is one of the molt important principles of engineering 
mechanics. It simplifies all problems concerning rectilinear and 
uniform motion since it makes it possible lo solve them through 
the principles of staties. »

The following table schematically presents all the above
deductions.

Kind of Force Required to Move a Ma­
terial Point from Its Stale of Pest

The Resulting Motion of the 
Paiticlc

1. A force constant in magnitude and 
direction

1
Uniformly accelerated, recti­

linear

2. A foice variable in magnitude and 
constant in direction

Rectilinear

Unifoimly rectilinear molion 
along the tangent to iLs 
trajectory

3. A force which imparls non-unifoim 
curvilinear motion but which ceases 
at a given moment

4. A force which impails non-unifoim 
rectilinear motion hill which ceases 
at a given moment

Uniformly rectilinear motion 
Irom the moment the force 
ceases

Oral Exercises
1. A particle moving under its own inertia (momenlum) conies under 

the action of a constant force having a direction opposite to the motion 
of the particle. What effect will the force have on the motion of the par­
ticle ?

2. A particle moving under its own incrlia (momentum) comes under 
the action of two forces equal in magnitude and opposite in direction. 
What effect will they have on the motion of the paiticlc?

99. Units of Measure in Engineering 
and Physics

Eq. (63) expresses the relationship helween three quantities — 
force, mass, and acceleration. Acceleration is expressed in
(unit^ tVnfe)^' Since the basic unit of length used in engineering 
is the metre (m) and of time it is the second (sec), hence accele­
ration is expressed in — m X see- 2  (read metres per second 
per second).
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As for other quantities m the said equatio^we may choose 
either force or mass as the basic unit, and express one in terms 
of the other. If we take force as the basic unit and in the form 
of th* kilogramme just as we did in statics, then let us see how 
mass will be expressed.

PWe have already established the following relationship: m --- —•
By substituting I kg lor the toree I* and 1 ni/see2 for accele­

ration a, we may express the unit ol mass through these units as
i mkg : — ." SIC

kg  X SCC 
111

— kg x  m 1 x  see2.

This system of anils (kg, m, see) in which the unit of mass is 
expressed through these veiv units, has been adopted in engi­
neering and is called the cnqincemuj system of units. This is the 
system we shall heneeloilh use.

Now let us try taking the unit ol mass as our basic unit. If 
we use the gramme as this mill, Eq. (63) will give the following 
relationship for the unit ol loiee:
mill of forfe* (uni1 oT mass) ' (mill ol acceleration) —

. mill ol l eul*11l — n y .
(uni t  ol (iinc)-

In Ihe system of units as used m physics, I he mill of length 
is the centimetre and the mul ol lime is Ihe second, according 
to which the unit ot toree. called Ihe di/nr, is expressed as

cm og X g X cm x sec -.° sit-
This system is called Ihe pln/sual or absolute sijslem of units, 

or is simplified by the technical solmquet ('.(IS (centimetre, 
gramme, second).

100. Kelalioiisliip ltd  wren Mies 
and Weirjlil of a ltody

Let us assume I hat a body is falling tieelv in a vacuum where 
it meets with no resistance. As we know, a body tails because 
of the force of gravity, or in other words, ol ils weight. And 
since this force, acting upon it, is constant both in magnitude 
and direction, the body tails with a constant acceleiation.

Hence it is obvious that Ihe Basic Equation ot Dynamics 
(63) is also applicable to this case, when the aclivc force is graviLy. 
But instead of the tone P in Kq. ((>3) we .substitute the weight 
of the body G, and instead ot acceleration a. we apply the accele­
ration due to Lhe force of gravity g. Whereupon the equation 
becomes

G =  mg. (64)
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Since the m a ^ o f  a body is constant but its acceleration 
may be a diversfe quantity, the weight G of one and the same 
body may possess different numerical values along different 
latitudes of the earlh, a fact proved by weighing a body by means 
of a spring balance. From this we sec that Lherc is an appre­
ciable difference between the mass of a body and .its weight. 
All bodies have mass, and mechanics deals with the mass of 
all bodies as unchangeable. Hut the weight ol a body is determ­
ined by the gravity of the earth and varies along different 
purls of the earth’s surface, depending on the magnitude of 
gravitational acceleration.

Illuslrnlivc Problem 411. A body having an initial velocity of lOm/sec 
moves 200 m in 5 sec when a force or 20 kg is applied to it. What ŝ its 
weight (the acceleration due Lo gravity is taken 9.81 m/soc2)?

Solution: since the body possesses uniformly accelerated motion, 
we apply Kq. (28):

whence, by substituting cm responding numerical values, wc obtain 
a -  12 m,sec2, and the mass of the body

P 20 5 , .in - — - =  ,, Kg x m 1 sec-.tl JM o
Therefore the weight of the body

5<i m a. a — - x 9.81 -  10.3.) kg.

Illustrative Problem i!). \  lxidv of weight (1 - 29.43 kg is moving
under its own inertia at a velocitv o0 10 m si c. At a eeilain moment 
a force P -  2 kg is applied lo il a cling in the opposite direction to its 
motion. Find the vclocily ol I he body three seconds after the force 
P is applied.

Solution: since the force is acting in the opposite direction to the 
motion ol the bodv, the accel'ialion impailcd to it is negative and the 
motion of the body is miitorinly rclaidid. From liq. (20) we obtain

a, — vu <tl — 10 3n.
. . P ('. 29.13 . . .  . .Acceleration a -------, mass rn =- — — , - 3 kg x in ’ sec2,ill g 9.81olienee acceleration « ■= -jj m s“c= and the soughl velocity

i’j = 10 - 3 x - 8 in'see.

101. Law of Action and Reaction 
(X e iv lon ’s Third Law)

If body A receives a certain acceleration under the action 
of a force, it means that another body Ji is exerting this force 
on body A. Body B may act on A either in direct contact or at 
a distance, the latter as i% the ease of the force of gravity.
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L e t  u s  m a k e  t h e  f o l l o w i n g  e x p e r i m e n t .
W e  p l a c e  t r u c k s  A  a n d  B o n  r a i l s  , ( F ig .  1 . 3 1 ) ,  a n d  c o n n e c t  

t h e m  b y  a s p r i n g  C, t h e  c a r s  b e i n g  a t  s u c h  a  d i s t a n c e  f r o m  e a c h  
o t h A ’ t h a t  1 h e  s p r i n g  i s  s o m e w h a t  t a u t .  W h e n  w e  r e l e a s e  b o t h  
t r u c k s  s i m u l t a n e o u s l y  t h e y  m o v e  t o w a r d s  e a c h  o t h e r .  W e  m e a s u r e  
t h e  d i s t a n c e  e a c h  h a s  c o v e r e d  a n d  c a l c u l a t e  t h e  a c c e l e r a t i o n  
o f  e a c h  t r u c k .  W e  d e n o t e  t h e  a c c e l e r a t i o n  o f  t r u c k  A  a s  a1 a n d  
o f  t r u c k  B a s  av  A l t e r  c a l c u l a t i n g  t h e  m a s s e s  o f  t h e  t r u c k s  a n d  
c o m p a r i n g  t h e m  w i t h  t h e i r  c o r r e s p o n d i n g  a c c e l e r a t i o n ,  w e  f in d  
( p r o v i d e d  t h e  e x p e r i m e n t  h a s  b e e n  c a r i i e d  o u t  w i t h  s u f f i c i e n t  
p r e c i s i o n )  t h a t  t h e  e q u a t i o n  m g q  —  nua2 h o ld s  I r u e  t o  a  s u f f i ­
c i e n t  e x t e n t .

H o w e v e r ,  a c c o r d i n g  to  N e w t o n ' s  .S eco n d  L a w ,  t h e  p r o d u c t  
o f  m a s s  a n d  a c c e l e r a t i o n  i s  e q u a l  to  t h e  l o r c e  i m p a r t i n g  a c c e l e ­
r a t i o n .  T h e r e l o r c ,  w e  l in d  t h a t  a l o r c e  i ia s  a i d e d  o n  t r u c k  A 
f r o m  l e f t  to  r ig h t  a n d  a lo r c e  o f  th e  s a m e  m a g n i t u d e  h a s  a c t e d  
o n  t r u c k  B f r o m  r ig h t  t o  let I ( in  t h e  o p p o s i t e  d i r e c t io n ) .

T h i s  r e su lt  e o n l i r m s  t h e  T h ir d  L a w  ol M e c h a n i c s  (Newton's 
Third Law),  w h i c h  w h e n  s l a t e d  hi i c i l y ,  is  th a t  ait ion and icaelion 
aie equal.

T h e  i n t e r a c t i o n  o l  t w o  b o d i e s  is  t h e  resu lt  ol t w o  f o r c e s  w h i c h  
a r e  e q u a l  a n d  o p p o s i t e .  H e n c e ,  l o r e e s  a ct  m  p a ir s  w h e n  t h e y  a r e  
a p p l i e d  t o  t w o  i n t e r a c t i n g  b o d ie s .

W e  h a v e  a l r e a d y  s e e n  t h i s  l a w  a p p l i e d  w i l l i  r e s p e c l  l o  t h e  
e q u i l i b r i u m  ol b o d i e s  in  s t a t i c s ,  w h e n  w e  le a r n t  t h a t  t h e  p r e s s u r e  
o f  a  b o d y  o n  i t s  s u p p o r t  g i v e s  r ise  t o  an  e q u a l  a n d  o p p o s i t e  
r e a c t i o n .

102. Questions [or Ilcwew

1. Explain the I.aw of Inertia.
2. A force acting on body A is n times greater tlian a force acting on 

body B] the mass ol boilv B is n limes greater than the mass ol body 
A. What is the ratio between the accelerations imparted to the two 
bodies?

3. How is the unit of mass ixpressed in engineering and in absolute 
systems of units?

4. Under what conditions does a particle, under the action of a system 
of forces, acquire unilorni rectilinear motion?



103. Exercises
52. Find the mass of a body having a weight of 1,963 kg.
53. The tractive force of a locomotive, after allowing foi all 

resistances to its motion, is 1 2 , 0 0 0  kg and it imparts an accele­
ration to the train of a — 0.1 m/scca. What is the weight of the 
train and what will be its velocity following an elapse of 45 sec 
after it begins 1o move'?

54. What tractive iorce (including that needed to overcome 
resistance) is necessary to give a train, weighing 2 , 0 0 0  tons, 
an acceleration of 0.05 m/sec if the resistance to its movement 
amounts to 0.005 of the weight of the train'?

55. Three minutes after starling, a train weighing 1,200 tons 
is travelling at a speed of 40 Km/hr on a straight and horizontal 
track. What is the tractive loice ol its locomotive (considering 
it constant) it the resistance to its motion is 0.005 of the weight 
of the train'?

5(5. How long will it lake to stop a tramcar travelling on a 
horizontal track at a speed ol 35 km/hr and how tar will it travel 
after the brakes have been applied it all the resist*ices to the 
tram’s motion, including that created by the brakes, amount 
to 2 0 0  kg per ton ol weight ol the tram'?

( ii \ i* t  i n  x i i
INTRO DI CTION TO dynamics of a m aterial  point

104. 0 \  mimics of a Material Point

When we wvre investigating kinematics we found that if a 
hard body is rotating about a lived axis, its various points are 
displaced in circular tiajecloncs ol dillcrenl radii, velocities, 
and accelerations. But when a body possesses motion of trans­
lation, the elements comprising tins motion are exactly the same 
for all points on Ihe body. Hence, in considering motion of trans­
lation ol a body under the action ol applied forces, we may ignore 
its dimensions and take a point (usually its centre of gravity) 
which represents the place ol concentration of the entire mass 
of the body. As already explained at the beginning of‘this book, 
such a point, which is made to represent the body j.b a whole, 
is known as a material point.

However, Ihe use ol a material point is not restricted to 
motion of translation alone. It is also useful in more complicated 
types of motion; let us assume a ball is rolling on a surface. 
As the ball rolls, its cenlre describes a simple curved or straight 
trajectory, whereas its other points describe various compli­
cated curved trajectories. If, in solving the problem, we are 
interested only in the motion of the centre of the ball, we may 
considerable ball as a material point situated at its centre ana
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containing its whole mass. Accordingly, hen(jg|orth when speak­
ing of the motion of a body, we shall assume the body to be a 
material point whose mass is equal to the mass of the whole body. 

•
105. The Action of the Force of Gravity 

on the Motion of a Vertically-Projected Body
Assume a body to be thrown vci tiddly upwards. If it were 

not attracted by the earlh. it would ielaiu the velocity imparted 
to it at the initial moment, and move under its own momentum 
at a constant rectilinear velocity. BuL the body is acted upon 
by the force of gravity whose magnitude is determined by the 
acceleration g, which il imparls to the body, and by Ihe mass 
of «thc body.

Therefore the velocity of the body at any moment t during 
its flight upwards is equal to Lhc dillerence between the constant 
velocity v0 with which it would have been displaced under its 
own momentum, and velocity qt which it acquires at the same 
moment from the lorcc ol gravity. From this we derive 
Eq. (32), ajfeady slated in Lhc section on kinematics:

vi '//•
When velocity gt, as imparted to Ihe bodv by the lorcc of 

gravity, becomes equal in magmtinh to the velocity ot its motion 
due to inertia (momentum), the velocity ol the body will become 
zero. At that moment the body will reach its highest point and 
then begin to fall under the action ol gravity alone (if the resist­
ance of the air is not taken into consideration). The bodv will 
acquire uniformly-accelerated mo Lion and its velocity at any 
moment t will be equal to ql.

This is the explanation ot the kinematic relationships already 
mentioned in Sec. GO.

10(>. The Motion of a Body Thrown Upwards 
at an Angle to the llori/.on

Now let us consider a more complicated case of bodily motion 
under th \  influence of the lorce of graviLy: a body is thrown 
upwards iVt vertically but at an angle to the horizon (Fig. 132).

Assume'mat a body M is thrown from an initial position M0 
in the direc&m of N  and with a velocity v0, with its trajectory 
forming an angle a to the horizon. If Lhc force of gravity did not 
act on the bodv, it would be displaced with uniform rectilinear 
motion in thc\ircction of M0N  with a constant velocity v0. 
But the force of gravity causes the body to diverge steadily 
from a straight line so that at a given moment it will fall back 
to earth at a spot M  and at a distance of L — M0M from its 
initial position.
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_We resolve Ihe velocily v0, as represented to scale by vector
M0A, into two components: vohor in a horizontal direction 
and v0cerl in a vertical direction. Whatever may be the shape 
of the trajectory described by the body*, its horizontal compo­
nent of motion Mill be uniform because no force is acting upon 
it in that direction. In Lhe vertical component, hojvcver, the 
velocity of the body will noL be uniform and at any moment 
of lime can be expressed by the difference bet ween initial veloc­
ity Covert and velocity gt as determined by acceleration due to

N/
X

graviLy. The velocily v,,,( wilh which the bodv is displaced verti­
cally is found by means of Eq. (.12), which in this case becomes

^ v i r l  Voi 'trl fft*

Thus we see that Lhe vertical motion oT the body becomes 
unilormlv decelerated and at the inomenL when gt equals v0,„rt, 
the vertical component of the body’s velocily will become zero, 
at which moment the body will reach its highest poir.f. After 
this the body will begin to move with positive acceleration 
because of the increase in the verLical componcnt.^and at a 
given moment the body will strike the ground. &

Now what is the trajectory traced by the centn\; of gravity 
of the body?

We know from experience that it will be curvmnear, and we 
may plot its path by the following method; Ict ĵT represent the 
time elapsed while the body is in the air. We divide that time 
into several equal intervals tlf t2, t3, etc., ana indicate points

* It must be remembered that we are assuming this body to be a 
material jjoint.
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hM, MZ, h f3, etc., on line MQK  to represent Jthe hypothetical 
[/ositions of the body at moments /2, i3, etc., had' its motion 
been due only to inertia. And since such a supposed motion would 
have»becn uniform, -  «0/i, M0MZ — vbt2, M0M'3 — v0ta,
etc., and the height that the body attained would have been 
represented by the linear segments MlA1*, M'ZA2, M'3A3,
etc. However, under the action of gravity the bodv becomes 
displaced downwards with unilormly accelerated motion, cover-
ing the distance M \Ml -  during the interval tv distance
M3M3 during the interval T, -  2/,, and distance

al jM3M 3 = 0— during the interval 7' 3 = .‘J/,, etc. Thus the seg­
ments M \Mr d/Af>, ! \ t etc., are related to each other just 
as etc. [Sul f ,  2 etc. Consequently,
M;Ml : MaM3 - M tM„ etc., - l\ : 1/f ■ «)/?, etc., --- 1 :4 :9 ,  
etc. lienee, by plotting segments M2M, — 1
M3M3 =  9,1D11 vertlc,ally downward Irom points M \, M‘3, M'3, 
etc., wc obt,«n a number ol points lying on the trajectory of 
the moving body. In mm c detailed treatments on this subject 
it is shown thaL Lhe ppilt traced by this body marks a curve 
called a parabola.

Now l'l us find Hie lapse ol linn 7 lli.il is consumed l>v the body to 
move bom position M0 to position If, and d-I limin' the maximum 
height il al tains al !l anil the length ol ils flight L.

As a heads explained, the motion upwaids is unilormlv retard“d and 
al the highest point the vcilnal componenl ol vitouly is /eio. Accord­
ingly, vleli = o0,cr! — g 'l’ = U, fiom which T  -- , in which T'
is the lapse of time it takes the bodv to icach ils highest point. Since 
v m c r i  = e0 sin a, th1' time 111* 1) >d> likes Lo m ov iio'ii 111' initial to the 
hi host point is

j  , ^  t ip M i l  n.

It can easil> shown lliat lhe lime the body consumes in moving 
from ils Inwiest point to point M will be the same. Hence the time the 
body takes^p liaverse the whole palh from M0 lo M  will be

2ut sin a 
9 ~

(65)

The next steJLis to determine lhe height II attained by the body. 
When we use KqV(29), Vi must be taken as 7cio because at the highest 
point the final viatical velocity is zero. The initial velocity in this case 
is !>„ier( =  Va sin a.TLaiid acceleration a is the same as acceleiatioti g 
caused by the force v  gravity. All this offers us the following expression

* Segment M't A t has not been delineated in Fig. 132 to avoid compli­
cating the drawing.
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in order to determine the highest point the body reaches:

II Co sin2 a
' v

(6t.

And finally, wc find the distance L a t which tlic body is displaced. 
Since its horizontal component of motion is uniform, we may write

I- — vohorr .  • (a)
Velocity w0/,or is found as llm leg adjacent Lo the acute angle a of a 

righl triangle having a given hypotenuse v0:
Vofmr Vo

By substituting this value for i>0„o, and the value found above for the 
time of the flight T, we obtain

, 2/’„ sin a ejj ,, .L -  n„ eos a = — 2 sm a cos a.
g a

From trigonometry we know Ilia I the expression 2 sin a cos a is 
equal lo the sine of a double angle a, i.e., 2 sin a cos a = sin 2a; from 
which we finally obtain

L =  sin 2a. (67)
i t

Since 1 is the greatest possibl • valun for a sine when< mi angle is 60°, 
hence a body will cover ils greatest distance when ils angle of projec­
tion 2a — 90°, or a -  45°.

The vertical motion ol a body is a specific case of the kind of motio 
we have been examining. Indeed, \vh m moLion is along a vertical lim 
the angle a -- !)0° and 2a =- 180°, sin 180° 0. whereupon /. (
i.e., the body returns to ils initial position alter ils fall. Moreover, when
a =  90°, then sin 90° -= I and II - , which is the relationship already
obtained in Sec. 66.

Illustrative Problem 50. A gun files its projectile at an angle a = 30° 
to the horizon and wiLti a inu//le velocity c0 = 500 in /sec. Calculate 
the distance and lime of flight oi the projectile it the flight had been 
through a vacuum.

Solution: the lime of flight is determined by Isq. (63) as follows:

T s_300 sin :il)° 
9.8 pj 51 sec.

While the distance of the flight, according to F.q. (67) wM be

L = -^-sin 2a = ;’()0°(- sin 60° 22.07 km.g 9.81

107. Tangential and Normal Forces/,
When a Particle Moves in a Circular Tpvjcctory

Let us assume that the rod K, to the end oihtodiich 1 lie ball C 
is attached, is rotating in a horizontal planrf^about the axis 0 
(Fig. 133). If the centre of the ball mows about the circle 
with non-uniform motion, the change in irjfignitude of velocity 
will be expressed by tangential acceleration' a(, while the change 
in direction will be expressed by the normal acceleration an
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]\fj defined by Eq. (49):

We multiply each of these accelerations by the mass m of 
the ball. The product mrr, or the mass of the ball, multiplied 
by the tangential acceleration a„ gives the magnitude of the 
force T -  CD and which is directed along the tangent to the 
circle followed by the centre of the ball. This is called the tangen­
tial force. The factum man - _ A’ -
— CB expresses the centripetal or nminal 
force and represents the magnitude ol the 
forrt directed towards the centre.

Accordingly, the tangential force
T nm, (08)

and the normal force \
N -- ™’J (09) I'M. 133

These two forces are components ol the force 1‘ CA and 
arc represented by the diagonal of the rectangle ABCD equal Lo

mi>‘ * 
It ) \ (mu,)2 -- in u

I 1(‘ a2
t - (70)

If motion is uniform, a, - 0, whereupon the tangential force 
T — 0.

108. Inertial Forces
Let us assume that body B begins to act with a certain force 

upon body A when the latter is in a stale of rest. We have already 
learnt that this action will impart acceleration to body A. 
However according to the Law of Inertia, body A will tend to 
remain % a state of rest and thus display a certain resistance 
to a charoe in its state of rest. This resistance takes the form 
of a force «erted on body B by bodv A. In other words, we may 
say that tt\action of body B on body A gives rise to a reaction 
on the part\f the latter which, according to the Third Law of 
Mechanics, ^opposite in direction and equal in magnitude 
to that action

The reactionlexperieticed by one bodv from a second body 
to which it, a n \it  alone, is imparling velocity, is called the 
force of inertia.

From this the 'following important deduction is made. If 
body A receives acceleration under the action of body B, the 
force causing that acceleration is applied to bodv A; this force
1 0 -  ton — 145



of inertia is equal and opposite and applied to body B. Th  ̂
these two forces arc applied to different interacting bodies, fu 
which reason they dilfer from two equal and opposite forces 
applied to one and Ihe same body as heretofore discussed in ' 
the chapter Statics.

It must be finally emphasised that there can be no force of 
inerlia if (here is no force imparting acceleration to a body. 
Hence, the two lorees act simultaneously.

Pi L-noj------- A#'/x V' , , } 
K

Fig. 131

109. Inertial Forces in Rectilinear Motion 
of a Particle

Let us assume Dial the slider K in Fig. 134 is moving within 
straight guides under Ihe acLion ol the connecting rod L. We 
will apply the equation P - mu, where P represents the force 
exerted hy the rod on the slider, and a is the acceleration of 
the motion of Ihe slider. Force P gives rise to reaction OAĵ

ol the slider and which is applied 
to Lhe rod. According to Ihe Third 
Law of Mechanics, 21us reaction 
is equal and opposite to force P, 
Irom which it follows that its direc­
tion is opposilc to that of the 
acceleration of the slider. By desig- 

lliis reaction as P,, we obtain P, —- P -  ma. This
then will be Lhe lorce ot inertia developed by the slider and 
applied to the rod.

Assume that a locomotive and its tender are moving along 
a straight and horizontal track when, at a certain moment, 
the tractive force of the locomotive increases and 
imparts corresponding acceleration a to Lhe tender.
The additional force exerLcd upon the tender by Lhe 
locomotive is expressed hy P — ma, in which m is the 
mass of the Lender (which latter is considered as a 
material point, ignoring the roLalion of Lhe wheels and ^  
axles). It follows that trom the irionienL Lhe said trac- 
Live force increases, the Lender will begin to excrL oî

nating

Lhe locomotive a force of inertia Pt - — ma, 
direction of which is opposilc to force P.

a

Solution: a down ward-pulling lorce equal to thi 
G = 300 kg is acliug on the cable. As it descends,
a =  2 m/scc5, the cage develops a force of inerlia
=  61.2 kg which is transferred to the cabl;

146

1
Fig. 135

Illustrative Problem 51. The mine cage of weight 
— 300 kg represented in Fig. 135 descends into o' shaft with an 
acceleration ol 2 in/sec5. What is the pull ol the cable w/rre it is tastened 
to the cage?

eight of the cage 
itli an acceleration

300 x 2ma =  ----------  =
. 9and directed upwards.



Accordingly, the cable will be drawn taut by a force
R = Q _  Qt -- 300 -  01.2 = 238.8 kg.

If the cage had ascended with I lie same acceleration as when descend­
ing, Vic force exerted on the cable would be

R =  G + Qt = 301.2 kg.

110. Incrtiul Forces Acting Upon a Particle 
Moving in a Circular Trajectory

Wc have already learnl 'hat in general Ihe force applied 
to a particle possessing circular motion can be resolved inlo 
two components—one, the lorcc T tangent to the curve and 
the other, the force V normal to Ihe curve. The tautenLial force T 
imuarts to the moving particle an acceleration which deter­
mines its change in magnitude ol velociLv. while the normal 
force IV changes the direction ol velocity.

Hence, the following Lwo inertial lorces will he acting si­
multaneously on one body that imparls lo another body tangen­
tial and normal accelerations: tangential ineihat joire T, - -  T —
— — ina,, a^d ineihat force X, which latter is equal and oppo­
site to the normal lorce.

Let us investigate Lhe second ol Ihe two inertial force X, —in 
greater detail.

log. 13(i Fm. 137

Assui&thal Lhe centre of ball C in Fig. 1756 is moving in a 
circle, prflkelled by a light rod which is rotating uniformly about 
axis 0 . Snce in this instance tangential acceleration is zero, 
the balk is iking acted upon by the normal force X alone which 
compels it Amove in a circle. This force is applied Lo the ball 
at point akd is directed towards the centre O of the circle.

Simultaneoulw with force X, an inertial force X,, equal and 
opposite to it.^kacting upon the ball and represents the resist­
ance of the ball to a change in direction of velocity that it 
would have had d u  to inertia. This force which is applied to 
the rod at point c \a n d  directed from the centre along radius 
OC, is called cenlrifvmjl force.
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Since we regard the ball in this case as a material point sit 
uated at its centre of gravity C where the entire mass of tin. 
ball is hypothetically concenlrated, both forces N and N( may' 
be considered as being transmitted along their lines of action 
to point C, as indicated in Fig. 137. It must be remembered, 
however, that these forces are applied to diiferent bodies and 
for that reason cannot attain equilibrium.

The lorce which, due to inertia, a particle possessing uniform 
circular motion exerts upon a constraining body, is centrifugal 
force.

In accordance with Eq. (T9), the magnitude of centrifugal 
force is determined by the equation

iv, =  <7 t)

whereas the magnitude of tangential force or inertia
Tt -  mat. (72)

By applying Eq. (51). we can give the following form to 
Eq. (71):

JV _  m I2 _  -r*n*mU ,
^ 1 R I 30 ) — <J00 kk’ (73)

in which m — the mass of the particle;
n — tlie numhet or revolutions per minute;
R — the dislance, in metres, ol the particle from the 

axis or rotation.
Finally, if the mass of the particle is expressed in terms of 

weighL G, the equation lakes another lorm:

N, =  U.81 x W  =  ° - 0 0 1 1 2  GRn'- (74)
Oral Exercises

1. Under wlial conditions will the tangential force of inertir,’of a
moving paitiete base must.ini magnitude? JR

2. Answer Question 1 in res pee I to centrifugal force. sa
Illustrntive Problem 52. A round woikpiece 00 min in dia f^ r, ready 

for machining, is fixed between the eenlies of a lathe. The cy^Ang speed 
has been set at 425 m 'nun. What will be the magnitude off ne centrif­
ugal force as set up b> the rotation of the workpiece if its cenp e of gravity 
is shifted 1.5 mm lrom tlie axis of rotation* and its weight G 1.6 kg?

Solution: in order to employ Eq. (74) it will be necessary to find the 
rpm that must be iinpailed to the workpiece. By apply ,lg Eq. (55) we 
obtain A

1,000a 1,000 x 425n =
7 l D 3.14 x 60 2,257 at hi

Let us take this figure In round numbers, i.e., 2,2A& rpm of the spindle. 

* Such a deviation from the centre is callcdjtfcenlricity.
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We now calculate the magnitude of centrifugal force by means of 
Tq. (74), in which eccentricity R must be taken in metres, i.e., R =

1.5 mm =  0.0015 m :
• N t = 0.00112 x 1.6 x 0.0015 x 2,250* = 13.6 kg.

We sec that here centrifugal force will be 13.6
■ar - 8-J times the

weight of the workpiece. This will harm the centres of the lathe and in­
crease wear on the bearings ol the spindle.

Illustrative Problem oil. \  train that had been running along a straight 
track reached a curve. While the train had been travelling along the 
sLraight track, the weight of eaeli car was balanced b> the i ructions of 
the rails and both rails were earning equal loads. Hut when the train 
reached the curve a centripetal lorrc \  anise, which loreed the centre 
of gjavity of Ihe cars to begin 
moving in a curved line; 
simultaneously a cenliifugal 
force began to act trom the 
car wheels towards the mils 
and applied to the outer 
rail where it conies into 
contact with the linages ol 
the wheels. 9

Lei us assume that the 
centre ol cutvalure lies to 
the right, then the ccnliil”- 
gal force N* will ail on the 
left —the outer mil (Fig.
138a). This foiee Lends to 
wrench the inils loose and 
also relaids the motion of 
the train by causing meieased 
friction between the wheels 
and rails. It may even result 
can all this be avoided?

in the liaiu jumping Ihe hack. How

Solution: Lo overcome the bad eJleet of this cenliilugal foiee, .lie
roadbed is banked in older to imse the outer tail above the inner one 
(Fig. 1386) and attain a ditlerence m then heights h. 'I Ins height must be 
so ch^cn that the leaclion Q of Ihe mils against the cat is perpendicular 
to thc^ross-seelion of the loadbed, thus eliminating an> possible laLcral 
force tM t may tie exerlcd on the mils. 'I o achieve tins, Hie normal lorce 
N must^Eunl Ihe resultants ol the force ot giavily G and the reaction 
Q. Hy re fad ing  the car as a material point situated at its con Lie of gravity 
C, we dcA e the parallelogram CFDF in which the diagonal CD, which 
is horizon^ (it corresponds with the rotational radius), represents
the normal N  = —̂ — , where m is the mass of the car and R — the
radius of curvmure. Sides CF and CF represent, respectively, the weight 
of the car G =^mn and the reaction ol the tails Q.

We can nowvjalculnle the magnitude of /i the diflerencc between 
the height of thiMsils. From the similaritj of triangles CDF and ABKp L’ w  n CDs
we obtain ---- = m — whence h — Is is the width of the tracks ^  CF
as indicated in Fig. ,

Since CD is a sca \. representation of centripetal force N = *
and CF that of the reac

R
Q which may be determined as the hypotenuse
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X 1

of the right Iriangle CDF,  we obtain
, _  mo*s _   1____     mv*s

~  li(J “  R X + G2 ~  K + (mgy
which, after its proper algebraic transformation, becomes

Kg t H a*
ffsK*

The values v and/f as occurring in practice are such as to make ~2̂ ! 
a negligible quantity. For example, when v =  00 km/hr =  16.6 m/sec 
and Ii =  300 m, then — = 0.0080. Hence it can be ignored, thus 
greatly simplifying the equation, which becomes

11
v"s
Kg

It is to be seen from this equation that the Rreater the speed of the 
train and the smaller the radius oi curvature, the greater must be the 
height of the outer rail above the inner one. I

In planning railways, h is determined by both the average speed 
that a train is expected Lo attain on the given curve, and the radius of 
curvature.

111. Forees of Inertia as Applied 
in Einjinccriiig

The forces of inertia play a very important part in modern 
engineering with its high speeds and accelerations, ft is diffi­
cult to imagine a machine without some rotating part, and 
since rpm attain magnitudes of lens of thousands, centrifugals 
force is a faclor of particular significance. From Illustrative 
Problem 52 we have already seen that centrifugal force may reach 
several times the weight of a given body.

Assume that the centre ol gravity of a rotating body qtfweight 
G considered as a material point, is situated at a dhtfance of 
q from the rotational axis. According lo Eq. (74), if i/S-- 20,000 
rpm, then the centrifugal force N, will he equal to 4*38,000 Gq. 
If the weight of the body G is 1 kg and eccentricity Ms as small 
as 0.5 mm — 0.0005 m, then centrifugal force IV, *?I1 be equal 
to 224 kg. We thus sec that this force is 224 time/Tgreater than 
the weight of the body itself. This will cause & licit wear on 
bearings and shaft journals and also cause Jrafocking, all of 
which may result in a breakdown. Hence grew precision must 
be given Lo centerings of rapidly rotating /Machine parts to 
ensure that the centre of gravity lies exactly o^otational axes. To 
do this, the parts are either counlerweightey or surplus material 
is removed. This is known as balancing j f  part. For instance, 
if the centre of gravity of the sheave iij^yig. J39 is found not



be on its geometric axis 0 but at a distance of OC from it at 
i>mc point C, the centre of gravity can be shifted so as to make 

rit align with the axis. To do this, it is necessary either, to attach 
an dWded load at point A diametrically opposite C, or to reduce 
the weight of the sheave at point 7i on the same diameter by 
boring a hole of required dimensions in the rim. There arc spe­
cial machines called “centering machines” used to balance parts.

Fig. 1 10 represents a hearing A ready lor machining and 
fixed to a laceplale with an angle bar H. Although the centre 
of gravity of the laceplale coincides with the axis ol the spindle.

l'ig. 130

nevertheless when the angle bar and I he workpiece are mounted 
on the laccplate the centre ol gravity will slult to position C 
and throw Ihe whole svslcm out ol balance. To pre\cut the spindle 

^supports from being subjected to cent ulugal loicc, the svsl im 
m st be balanced. This is done bv attaching a counterweight 

A “along Ihe diam eter passing thrombi 0  an 1 C. My denoting 
th e ^ tf ig h t of the angle bar plus the' workpiece* as <i, and of 
the c^toitenveighl J\ as fi,, the billowing condition must be ob­
served PC - G^Ol); that is. Ihe moments of these two forces 
with rri^pct to axis (> must be equal.

112. Questions for Review
1. A IrainWeaves 1 lie station, (ravels on a straight and lioii/ontal 

track and grMUally gallic is speed until a certain moment when it will 
have attained^Lconstnnt speed. Answer Ihe billowing questions:

a) What forc^kare acling on (he locomotive’s coupling and on the 
couplings betwe^kcarriages, and how are these iorces directed?

b) Are these fakes equal in magnitude?
Answer separator for acceleration and constant speed.
2. Assume that a \a in , whose carriages have no brakes, was travelling 

at a certain speed a l \ g  a straighl and horizontal track when the loco­
motive brakes were apMed. What forces would arise between the carriages 
and what direction w o^l they have? Would these Iorces have the same
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while the second member represents its kinetic energy at the 
initial moment Hence Eq. (8 8 ) may be formulated as follows: 

The work done by a motive force in causing a given displacement, 
is equal to the increase in kinetic energy during that displacement. 

Let us investigate some specific cases. .
1. The above body is under the action of force P wfrich coin­

cides with the direction of its motion and the resisting force 
F; then the work done by the resultant of these two forces is 
equal to (P - F)s, and Eq. (8 8 ) becomes

or
(P -  F)s me? mcfi

~ 2  2 ""

Ps - T's mvj riwfi
2 2 .(89)

tli a I is, the work of a motive force is equal to the sum of work accom­
plished by the forte of resistance during displacement, plus the 
increase m In net u energy of the body.

2. If the body possesses unilorri motion, according to which 
v, — n0, then in the right side of Eq. (89) the difference

-----n™“ 0, whence Eq. (89) becomes
Ps Fs, f90)

that is, when their is uniform motion of translation, the work of 
the motive fotcc is equal to that done hy the force of resistance, 
in which ease the lunette eneigq lenuuns eonslant.

3. If the body starts lioin n slate of rest, i.e., when v0 — 0  
and the force ol resistance must be coped with, then Eq. (89) 
becomes

Ps Fs t "]'/ , (91)
that is, when initial speed is zero, the work of the motive forn^S 
equal to the sum of the work accomplished by the force of resijfimce 
plus the kinetic enerqy developed (tunny displacement.

This case corresponds to the lirst phase in the motion 4*a train 
(when tractive lorce is in action) as already discussed in the 
preceding section 129.

4. The body has acquitcd a definite speed and then proceeds 
further under the lorce ot resistance, according to which Ps — 
=  0, and Eq. (89) becomes

from which
_ p s i  . (92)

A t A t

that is, the initial kinetic energy of the body (at the moment the 
motive force ceases) is equal to the sum of the work done by the
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force of resistance during the given interval of time plus the kinetic 
energy the body possesses at the end of that interval.

Frym Eq. (92) it is apparent that rr2-. Whence
Vt <  o0, which means that the body possesses retarded motion. 
When all its kinetic motion has been expended, then
— 0 and correspondingly v, — 0 , that is, the final speed
of the body becomes zero and it stops. From Eq. (92) we ob­
tain - - Fs, which means that all the inilial kinetic energy

>, has been expended in overcoming the force of resistance.
•/ As is apparent from the left side of Eq. (87), kinetic energy 
<' mnsi be expressed in units of work (kilogramme-metres) and 
I indeed

mi>2 , w i ,  . . , „ .-  ̂ kg y  m 1 , sec- - m- > sec - kg-m.

Kinetic energy is of tremendous importance in engineering. 
/ Some illustrations ol its use will be investigated later.

O r a l I  r v n  i si ,s

1. Can two bodies of d i l i cm i l  mass t u n e  I lie same tom Lie energy? 
On " l i a l  condi t ion?

2. II the spen t  ol a l indv pnsS'Ssmg nmlorm motion of t ranslat ion 
1 is m c n a s i d  /■ tones,  wliaL change will I in re b" in its k i n d  if ene rgy?
j Illustrative Problem (»I. If the spnd ol a train is i>„, what distance 

.s will it liaV'I aibr the Inakis have lx en .ipplud? 
j  Solution: win n tile biak>“s are apjilii d I lie train’s kinetic energy
 ̂ T (,r> d wc denote 111'1 weight ol the whole liain as G, then its

~ « i n- G,,‘i.M ass m = — and 7 -- „g hj
denoting the lone ol fticLion as I' and the eoeflicienl of fricLion 

asTkwve obtain ironi Kg. (b2)

V /•'.s -- t i l '  o

Inasniueli as 7 =-- f(i which gives /(is =- <J"“ , then afLer eancelling 
G it becomes

We lints see lhat the distance s icguiivd to slop the train, by appli­
cation of its brakes, does not depend on the mass or the weight of the 
train hut merely on ils speed and coefficient of friction.

Illustrative Problem 65. A body sliding down an inclined plane AD  
(Fig 155) halls at point C, a distance of s from li along the horizontal 
surface. Find the coefficient of friction / if I he motion began without 
an initial velocity at poinL A which lies a distance I from B.

Solution: the velocity of the body at both positions A and C is zero, 
therefore its kinetic energy at these positions is also zero. Along segment

171



A B  the body is controlled by the force of gravity G and the force of 
friction F. Along segment BC, only the force of lriction is acling upon 
the body.

We first rind the kinolic energy tlinl the body acquired at the time 
it reached B. The work IV, done by iorce G during displacement / is 
expressed by PI =■ 07 sin a, and (lie work done by tlie force of friction

F is expressed bv IV„ — J'l = fQl =  
— /O' cos a.1. Hence the sum of work 
of (lie niolive iorce and tile force of 
resistance IV, + VV. — 0/ sin a — 

(if fens a. By equaling the sum of 
wmk and kinetic energy at point B, 
w  obtain

Fig. lb.) 0/ sin o (i/l cos a — mv2

Since the body expends Ibis kinetic energy completely in moving
n\v-along distance s, we obtain /Os - and finally e\olve

0/ sin o (,fl , o.s o - 
which, after enno llim’ 0, becomes

I sin o 
I  I d h  » | .s/

Os,

12)1. The Energy of a Itoily \lo\ing.
Under (lie Force of (iia\i(y. INileiilinl Energy

The law ol Hie Irnnsformalion of kinelie energy is obviously 
also applicable lo I he Iorce ol giawly.

When we 111 row’ a si.me upwards, we imparl a definite ve­
locity lo il or an aimmnl ol kinelie energy corresponding to 
the initial \eloei(v. This energy, if I here were no rcsislanee 
from the air, would lie expended entirely in raising the ston 
to n delinile heiglil, Hint is, would be disbursed in work 
overcome' the force of grnvily. Wlien I he stone lias risen 
heigh I il will have lost all ils kinelie energy and il s velocik^vill 
become zero. Aller Ibis the stone will begin lo fall, ils^inetic 
energy increasing in proportion lo ils \elocily and it will strike 
I lie ground will) Ihe same \elocily Ilia! il had al the beginning 
of its upward mol ion, as already explained in kinematics (See. 07).

lly employing Eq. (S8 ) and denoting Ihe upward motion 
as a, - 0  (Ihe \elocily al the highest point) and Ihe'downward 
motion as nn 0  (the initial vclocilv when Ihe stone begins 
to fall), we obtain the following Iwo equations:

Ph - — -™’0 during the upward motion 
and (93)

Ph -- -m’L during downward motion, 
wherein h is the height the slonc reaches.
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6'(/ix - iu )
n ivi nw} 
~2 ~ 2 (91)

(;/?i i ~2 Crh2 ; (95)

This upward motion is analogous to the motion of a train 
without tractive force expending all its kinetic energy in over­
coming resistance. The downward motion is similar io the mo­
tion'of a train travelling wiLh an excess of tractive force over­
coming resistance, and as a result acquiring kinetic energy.

Assume that a body of w'eighL (« and mass m is falling to the 
ground from a given height. We denote Lwo positions Ol and 
0 2 of the centre of gravity of the body ( 1 m ,g. loti). We also de­
note /ij as the height ol tin- centre of gra\ilv vlun at position 
Oj, and lu as the height at position (),. If I lie
velocity of Lhe falling body at O, is equal to ?>, 0,<j----p
and at 0 2 is equal to p8, (lieu the kinetic energy 
equation (88) for position I), will be

or

Wherefore, .(tier? a bodq is (ailing under lhe (orre 
of gravity, llie sum of I hr product oj lhe weight of 
lhe body nwlliphed by i ' s height /loin the (pound 
plus the kinetic energy the body possesses at that 
height, is a constant quantity.

The first Item ol the above sum, uhhli repre­
sents the amount o( work expended to raise the 
body to the given height, is called the potential tog. I.'ifi 
energy ol the body. The magnitude of this po­
tential energy depends upon the height, for which reason it 
may also be called the eneigy of position. The magnitude of ki- 

V^clic energy is determined by the velocity, hence it represents 
of motion.
detailed studies on mechanics il is demonstrated 

body is iinniug under lhe force of gravity, 
Eq. (95) holds true not only lor the body’s vertical direction 
but also for any other trajectory.

Wherefore, when a body is hinted upwards, the sum of its po­
tential and kinetic energy is lonslant at any height, independent 
of the shape of the trajectory through which il is moving.

From Eq. (95) we see that at the moment a body starts 
to rise, all its energy is in the form of kinetic energy (/?, -- 0 ), 
and when it has reached its greatest altitude (v., — 0 ) all its 
energy has been converted into potential energy which is again 
changed into kinetic energy when the body falls to the ground.

Thus, when a body moves upward and then falls back again, 
its energy remains constant in magnitude but changes from 
kinetic to potential and then back again Lo kinetic. This transi­
tion of mechanical energy from one form Lo another is a part

'm ' ' u u u  c i i n i ' y  ir* ui
xkx energy of mo 

TC^more detail 
lhat\Avlien a In
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of the general principle of the conservation of energy, first 
covered by the great Russian scientist M. Lomonosov.

The kinetic energy of a moving body is made wide use of in 
driving piles, forging metals, and many other kinds ofi.work 
in engineering. Sometimes the work is done entirely by kinetic 
energy of a freely falling body (the head of a pile driver, drop 
hammer, and the like). At other times, besides this energy, addi­
tional kinetic energy is imparted to the body during its fall 
(steam hammer, hammer, etc.).

The transformation of kinetic energy into potential energy 
and back again is not restricted to rising and falling bodies; 
by expending work in compressing a spring, we impart a certain 
amount of potential energy to it through its internal forces of 
resilience, which energy again becomes kinetic as the spring re­
turns to its original form.

Oral Exercises
1. What is the difference between potential mid kinetic energy?
2. If two bodies of the same mass are ."it different heights h, and nj, 

which will have the greater potential energy and how rnuch greater?
3. The velocity with which one body falls to the givund is n times 

greater than that of another. Mow much more kineLic energy has the 
first than the second?

Illustrative Problem 6G. Water enters a hydraulic engine at a high 
level and at a speed », =  4 m/scc and emerges at a lower level h =  1.8 m 
at a speed o, = 1 m/sec. The quantity of water passing through the 
engine per second Q =  (5 m*. What is the horsepower of the engine?

Solution: the engine receives its power firstly from the potential energy 
of the water and secondly from its kinetic energy. The potential energy is 
equal to 1,000 Qh and Lh-i kinetic energy is equal to

nwf md‘t 1,000(1
2 ~2 2g (t,J “  Vt)-

Hence the energy used by the engine in one second

N  -  1,0000 (h + = f >000 x 0 (1.8 +  kg-m/5̂ ror,
in horsepower, N  6 j 8 _|_ _ j _  205 hp.

129. Kinetic Energy of a Body Rotating 
Around a Fixed Axis

•

Assume that a body, to which any number of forces are applied, 
does not have motion of translation but rotates about a fixed 
axis. Let us see how we can apply Eq. (88) as derived for a mate­
rial point:

Do _  mvt _  mvo 
™  2 2

Since in motion of translation all points of a body move ip 
one way, this equation is applicable to the motipn of a body of
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inass m as h whole. In rotation, motion is mote complex because 
different points of the body, instead of moving in one way, describe 
various trajectories and possess different velocities and accel­
erations at one and the same time.

Expressed on the left side of Eq. (88) is the work performed by 
the force along a distance s. When applied to rotation, this work 
is given by Eq. (77), in which work is determined by the turning 
moment and angular displacement. As for the right side of the 
equation, the velocities v t and v 0 at the final and initial moments 
respectively, as well as mass m , must embrace each separate point 
of the body. Since the velocity of a point, as already explained 
in kinematics, is proportional to the radius of rotation, then the 
right side of the equation must contain the sum of the product of 
the mass of the particles multiplied by the square of the distance 
from the axis of rotation. This sum embraces all the points of the 
body and is called the m o m e n t o f in e r t ia  in respect to the axis 
of rotation. It is evident from the above that the unit of the mo­
ment of inertia is the product ol the unit of mass multiplied by 
the square of the unit of length, i.e.,

kg-m-1 see* X ma - kg-m X sec3.
In order to understand the physical meaning of the moment of 

inertia, let us consider the following example. Assume that two 
cylinders of similar weight and malerial but of dilferent diameters 
are fixed to similar shafts. We impart to both shafts an identical 
angular velocity and when the turning moment ceases to act, 
each shaft will continue to rotate at the expense of the kinetic 
energy imparted to it by each cylinder. If we observe the time 
consumed by each evlinder to come to a standstill (or count 

(the total number of revolutions made by each) we shall see that, 
4*th equal resistance for each specimen, the shaft to which is 
ffflJd the cylinder of greater diameter will rotate longer. This 
m ea^ that the kinetic energy of this cylinder is greater although 
its mass is the same as that of the other. This is because the cylin­
der of greater diameter has a greater moment of inertia. A very 
narrow disc will revolve even longer.

The moment of inertia of a cylinder rotating about its geometri­
cal axis I  — R  being its radius*.

From this we see that when the radius of a rotating cylinder 
increases n  times, its kinetic energy increases n3 times. It likewise 
follows that in order to impart to a cylinder of greater diameter 
the same angular velocity as to one of smaller diameter, there 
must be a greater turning moment for the former, or if both have 
an equal turning moment, it must be applied for a longer period 
Of time.

* The letter I Is the usual symbol for the moment of inertia.
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130. Governing an Engine. The Function 
of the Flywheel

Kinetic energy is of great importance in the work of machines.
As already explained, the less the work of the force of resistance, 

the greater will he the kinetic energy a body acquires 'under the 
action of a motive lorce. This also holds true for the work of a 
machine as a whole, inasmuch as a machine is made up of a number 
of interrelated moving parts. For example, let us consider a steam 
engine imparling motion to a dynamo generating electricity. 
If the amount of expended electric energy diminishes, the load on

the engine will also diminish. Hence, 
it the turning moment on the engine’s 
main shat I remains constant, there will 
be a surplus ol energy over the work 
ol the lorces oi resistance. This will 
cause an increase both in velocity 
and kinetic energy. It Iherelorc follows 
that the engine must be equipped with 
a device making it possible to maintain 
the desired rpm. Such a device is called 
a qovenwi.

There are different kinds of gover­
nors. Fig. 157 shows schematically one 

of the tvpes ol a centrifugal governor. To spindle A , which 
is rotated bv the engine's shall, is connected the crossbar 
B to which the arms ('. C are connected through pivots. Arms 
C--C, which bear the balls I) /), are in their turn attached 
through pivots to arms E E. These are connected at their other 
ends to the sleeve F which mav slide Ircely on the spindle. The 
arms C—C are drawn logether by the spring K. Thus each arm 
C is acLed upon by the following lorces: its own weight anc^ne 
weight of its connections ft Ik* arms E E, etc.), the weif i t  of 
the ball, the pulling lorce ol the spring K, and the centrifugal 
force developed by the ball. The spring can be regulated in such 
a way that at a prescribed number of revolutions the arms C -C 
will be in equilibrium and the sleeve F will maintain its position 
in respect to the spindle. II the rpm of the spindle increase, there 
will occur a corresponding increase in centrifugal force developed 
by the balls, arms C (J will stretch outward and arms E --E  will 
raise the sleeve F. The sleeve is connected through a special 
mechanism with the steam throttle or fuel intake. Thus any 
change in Lhe posiLion of the sleeve F will cause a corresponding 
change in the supply of steam or fuel. In this way Lhe rpm of 
the engine shatt are kept at the prescribed rate.

In piston engines (steam engines and internal combustion en­
gines) a slider-crank mechanism is used (turn hack to Fig. 122) 
in which thepisLon assumes the role of a slider. As will be explained
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later in Part II of this book*, the specific character attending 
the transmission of motion from the slider to the crank is that 
the latter rotates with variable angular velocity, the variations 
being periodic. In order to overcome this fault, a flywheel is 
fitted on the main shaft of the engine. This flywheel accumulates 
mechanical energy during one period and gives it up the next, 
thereby making rotation of the main shaft almost uniform.

Flywheels are also used when it is necessary to do work in 
a short time which otherwise world require a considerable increase 
in the power of the machine (for example, in heavy presses, giant 
shears for cutting metal, etc.).

It is therefore apparent from what has been said that the 
amount of kinetic energy that a flywheel can accumulate depends 
on tts moment of inertia—on its mass, diameter, and on how its 
mass is distributed; the further a certain mass is siLuatcd from 
the axis of rotation, the greater will be the moment of inertia. 
For this reason the rim of a ilywheel, unlike 1 haL of an ordinary 
sheave, is made massive.

^  131. Mechanical Efficiency
All machines are intended to overcome useful resislance (the 

resistance of metal to rutting, the lesistanre of a load to being 
displaced, etc.). We shall denote work done in overcoming useful 
resistance as W„. There are also various kinds of harmful resist­
ance in a machine (lrietion, resistance of the air). We shall denote 
the work done in overcoming this resistance as Wh. If a machine 
is to run uniformly, Ihe work of the motive force Wm! must be 
equal to that required to overcome all resistances, that is,

wmf -  W„ +  Wh. (96)
nThe motion of a machine is said to be cslablished if the velocity 

of alt its moving elements remain unchanged after each revolution 
of the shaft.

If Wml >  Wu -f Wh, then the surplus work is expended on 
increasing kinetic energy with a corresponding increase in ve­
locity. This occurs when an engine is being started, in which 
case Wu =  0  because there is no useful resistance.

When motive force is cut off, the continued motion will be 
due to the kinetic energy the machine has accumulated. If useful 
resistance also ceases, the energy will be absorbed in overcoming 
harmful resistance and, after a given time, the machine will stop**.

♦See Part II, Sec. 186 (p. 267)
** The science dealing with the forces acting upon the various links 

of machines is called dynamics of machines. Extensive research In this 
field has been done by the Russian scientists, N. Zhukovsky, K. Rerikh, 
N. Mertsalov, and others.
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Therefore a machine possessing established motion must satisfy 
Eq. (96).

By dividing both sides of this equation by W mf, we obtain
W u  , w h _  
w../ ^  Wml - (a)

The first member of the left side of the equation denotes the 
share of the machine’s work in doing useful work (work for which 
the machine is designed). This expression represents m e c h a n ic a l  
e f f ic ie n c y ,  which is a m e a s u re  o f  th e  u s e f u l  e x p e n d i t u r e  o f  m e c h a n ic a l  
e n e rg y .  By denoting it in the accepted manner by the letter 
tj, we obtain

ri = Wu
Wml m

The second member of the equation expresses the part of the 
work expended in overcoming harmful resistance. Accordingly, 
Eq. (a) may be given as

1  =  ' - ^ '  (»8 )ml
Thus We see lhal efficiency is always less than 1. **

Oral Exercises
t. When will the work done by a machine satisfy the equation 

Wmf =  Wu? What would its efficiency be equal to?
2. Can a machine do useful work if Wu =  W,,,/? What would its 

efficiency be equal to in 1 his case? .
Illustrative Problem 67. Under the aclion of force P, a body of weight 

G is displaced at a constant speed from position A to It on an inclined
plane (Fig. 158). Find its efficiency if the 
coefficient of friction / =  0.1, and the angle
of inclination a =  27°.

Solution: if motion is uniform, the
condition W mf  =  W „ +  must be satisfied. 
The useful work done in overcoming the force 
of gravity Wu = PI = G sin a I. The magni­
tude of the work done against the force of 
friction W), =  Qfl =  G cos a//. Hence,

W mj  = Gl sin a +  Gfl cos a,
and

T j =
Gl sin a sin a.

Gl (sin a +  / cos a) sin a + f cos a
By dividing the numerator and denominator of the right side by 

cos a, we obtain
tan a 0.51

n ~  tan a +  /  “  0.51 +  0.1 pa 0.84.

132. “Perpetual Motion” as an Impossibility
For many centuries fruitless attempts have been made to 

invent a machine which, if once started, would continue to run 
without a further supply of energy—the “perpetual motion”
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machine that would run without the application of any motive 
force. If such a thing were possible Eq. (96) would read

w n f  -  W u +  W h =  0.

From this it follows that such a machine would work for an 
indefinite length of time at a constant speed if Wu =  0 and 
W h  =  0, that is, if no work had to be done in overcoming resist­
ance. Let us concede that a machine does no useful work (Wu =  
=  0), in which case W h  =  0; ihis infers that neither should there 
be any work to overcome harmful resistance. This is impossible, 
for any movement of contiguous bodies relative to each other 
is always accompanied by harmful resistance. Accordingly, 
however small such resistance may be, the machine will expend 
the kinetic energy of starting in order to overcome this resistance 
and will inevitably come to a standstill.

Hence we see it is impossible to make a machine which would 
do useful work, or even only the work of overcoming harmful 
resistance, for an indciinile length of time without a further 
supply of e^rgy.

133. Impact

If a body in motion comes into contact with another body (either 
moving or at rest) the interaction beLween them is called im p a c t .

Experiment has shown that impact is accompanied by a change 
in form (deformation) of the colliding bodies. The 
magnitude of deformation depends upon the 
physical properties of the bodies. After impact, 
some bodies recover their original form, while 
others remain deformed. The ability ot a body 
to resume its original form is called e la s t ic i ty . It 
must be noted here that there are no perfectly 
elastic materials, just as there are no absolutely 
hard materials. However, some materials may be 
considered elastic (ivory, tempered steel) and 
others inelastic (clay, for example). Accordingly, 
there may be either an elastic or inelastic impact, 
depending upon the materials of the colliding 
bodies. .

Let us assume that a ball of mass m  (Fig. 159) 
is falling freely. After it comes in contact with 
a horizontal surface it becomes deformed for an 
instant. If the ball and the horizontal surface 
were both absolutely inelastic, the ball would remain motionless. 
If the ball possesses a velocity of vx when it falls on the surface,
its kinetic energy would be —1 and would be expended in the 
work of deformation.

m m .Gw  mWMMil.

A
Fig. 159
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Now let us assume that bolh the ball and surface are made of 
absolutely elastic materials. In this case the ball’s kinetic energy 
would be expended very rapidly in overcoming its internal forces 
of elasticity, that is, it would be expended in deformation* Ki­
netic energy would be converted into potential energy of the 
deformed body, after which the reverse would happen? the two 
bodies would recover their original form under the action of the 
force of elasticity, potential energy would again be transformed
into kinetic energy whose magnitude I~  = and the ball
would move in the opposite direction with a velocity of v2 equal 
in magnitude to the velocity v, which it had at the moment of 
impact. Ilencc, when such an impact is absolutely elastic, the 
velocity of rebound is equal to the velocity of the fall. If two elastic 
balls of the same mass are moving towards each other with equal 
velocities, after rebound they will move in reverse directions 
with the same velocities.

Now let us assume that impact is not absolutely elastic. This
means that the kinetic energy of the ball before impact^  A
will not be fully regained after rebound, i.e., from
which it follows lhat v2 <  v1 and the ball will rebound with a
smaller velocity. The relationship — k, called the coefficient
of restitution, describes the elasticity ot materials. For example, 
if the balls are ot wood, k 0.5; il of steel, k -- 0.77, etc.

134. Impact of a Freely Falling Hammer
Impact is a phenomenon that is taken advantage of extensively 

in industry since it makes it possible for one of two colliding 
bodies, if it has a small mass but a greaL velocity, to do a large 

'amount ot work with a small displacement. The work of a sledge 
hammer or a pile driver illustrates this.

Let us examine llie work of the drop hammer shown in Fig. 
160, the ram D of which and its die E drop freely under the action 
of the force of gravity. We denote the weight of these dropping 
units as G and the height of their fall as II. The velocity u1 which 
they have upon dropping is, according to Eq. (37), lq =  |/2gH, 
hence they acquire kinetic energy of —  — GH.

As has been explained in the preceding section, when im­
pact is inelastic, the velocity after rebound v2 is less than the
velocity of the fall vl5 according to which T—  <  , thatA A
is, part of the kinetic energy is expended in the deformation of the 
mutually colliding bodies. Since it is the aim in the proc­
ess of forging to deform the workpiece as mueh as possible.
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therefore the greater the hammer’s expended kinetic energy, the 
more efficient it will be.

During forging, the workpiece K (Fig. 160) lies on the anvil 
B  wfliich is mounted on a massive steel block C, which in turn 
rests upon a foundation. When the die hits the workpiece, it not 
only deforms it but shakes all the undersupports, which means 
that a portion of the kinetic energy is expended in displacing these 
undersupports. Obviously, the smaller this displacement, Ihe more 
effective will be the hammer’s energy.
From this it follows that all Ihe undersup­
ports of a drop hammer should be made as 
heavy as possible. In more detailed studies 
of mechanics it is proved that the efficiency 
of a drop hammer is expressed by the equa­
tion

V - ~ G -  (1 - A 2), (99)
T~ 1 1(r0

in which (J# 3  the weight of the dropping 
units of the hammer, G0 Ihe weight of Hie 
workpiece and ils supports, and It the 
coefficient of restitution. It is evident that 
with a greater Gn there will be a smaller 
denominator and hence the hammer will 
be more efficient. I'sually with a lively i.-1£r. p;n 
falling ram, fhe weight of the steel block is
made ten to fifteen, and even twenty, limes heavier than the 
weight of the ram.

Illustrative Problem tilt. A foiling  hammer, whose dropping units 
weigh G = 2,250 kg and lull limn a lieighL I I  -  t.5 in, ioigcs a work- 
piece in ten strokes. Find the amount oi useful mechanical eneigy W, 
if the weight of the steel block (i0 — 15 tons, I lie cocificicnt of restitution 
k  — 0.4, and the fiiclion loss ol encmv in the guides is 5%.

S o lu tio n : the kinetic eneigy of one stioke W, — 0.!)5 -- 0.05 G H  —

=. 3,206 kg-m. Ilence in len stiokes the energy expended usolully W - 
=  3,206 x 10 =  32,060 kg-m. We then lind the efficiency of the hammer 
through Eq. (99):

• -> -  - 3335— 7  “  -  °-4'> -  °-8-
45,000 +

Whereupon, the energy spent on forging alone Wv jj =  32,060 X 0.8r< 
«  25,650 kg-in.

135. Questions for Review
1. Explain why railway carriages and locomotives are equipped 

with bumpers.
2. It occurred that the last few carriages In a train had no brakes.
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What will happen when the train’s brakes are applied? Will the bumper 
springs between these carriages be compressed (deformed) all to the 
same extent?

’3. A body of weight G falls from height h, to height ht. What change 
is there in Its potential energy? '

4. If the shaft of a machine must change its direction of rotation 
at brief intervals of time, should it be equipped with a flywheel?

5. Why is not the steam engine of a locomotive in need of a flywheel?
G. What kind of motion will a machine have if at a certain moment

W mJ<  W u +  W h7
7. Is an efficiency r\ a- 1 possible?
8 . A body which comes into collision with an immovable barrier 

remains motionless. What is its kinetic energy expended on?
9. Explain why it is more advantageous, when cutting a workpiece, 

to use a heavy vise and a heavy workbench.
10. One of two drop hammers has a heavier anvil and foundation 

than the other. Which of the two will work more productively? *

13G. Exercises

72. A locomotive with a tractive force of 15,000 kg pulls a train 
weighing 1,500 tons along a horizontal track. Considering that 
the resistance to motion is 0.005 of the weight of £ e  train, find 
the kinetic energy it accumulates after an elapse of two minutes 
of starting, and the work performed during that time, assuming 
the tractive force to be constant.

73. After an elapse ol six minutes the same train reached an 
upgrade, moving against a resistance of 0.075 of its weight. If 
steam is cut off at the beginning of the upgrade, how long will 
it take the train to stop and whal distance will it have covered 
from that point.

74. After starting from the stalion, a train weighing 400 tons 
develops a speed of 72 km/hr when it had covered a distance 
s  =  1,600 m. Find the tractive force P, assuming it to be constant, 
and also the braking force F ,  if upon culling off steam and apply­
ing the brakes", the train travels another 2,000 m (assuming 
resistance without braking to be 0.005 of the weight of the train).

75. The weight of the dropping units of a drop hammer G =  3- 
tons, and of the workpiece, anvil, and other undersupports 40 
tons. Find the efficiency of the hammer if the coefficient of 
restitution k  —  0.4.
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. 137. Machines ami Mcclianisms

Assume that a threading lathe is cutting a thread on a workpiece. 
The rotation of Ihe electric motor is transmitted to the spindle 
of the lathe and then to the lead screw. The rotation of the screw 
is converted into motion of translation ol the carriage. By setting 
the lathe properly, we may obtain the ret|iiired rotating speed 
of the spindlw as well as the motion oJ translation of the car­
riage.

A system of interconnected bodies periorming prescribed mo­
tions is called a mechanism.

Each moving part making up a mechanism is called a 
link.

That link of a mechanism winch imparts motion Lo other 
links is called the driver, while those to which the motion is 
imparted are called the /olloweis, or driven links.

A metal-cut Ling lathe is put in motion by an electric motor. 
The motor receives electricity from the local supply and converts 
it into mechanical energy which Ihe lathe expends performing 
mechanical work to overcome useful resislanee (resistance to 
cutting). The electric motor in its turn receives electricity generat­
ed by a dynamo which is also put in motion by a unit of 
some kind (a hvdroturbine, an internal combustion engine, etc.) 
which is run either by the mechanical energy of a hydraulic engine, 
or thermal energy derived from fuel in an internal combustion 
engine, etc.

In all th^se instances wc find that the unit either receives 
mechanical energy and transforms it into some other form of 
energy (a dynamo), or receives some form of energy and trans­
forms it into mechanical energy (an electric motor, internal 
combustion engine, steam turbine), or performs useful mechanical 
work by means of mechanical energy supplied Lo it (hydroturbine 
and metal-cutting lathe).

A combination of mechanisms designed tQ transform energy 
into the form required and thus to do useful work is called a 
m a c h in e .
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Mechanisms are not only incorporated into machines, they are 
also used independently. For example, a clock is not a machine 
since it is not intended to transform energy or to overcome useful 
resistance.

138. Historical Survey of Machine Engineering 
in Russia

Long ago, in an age when machine construction was still in 
its infancy, talented Russians skilfully achieved practical solutions 
to complex mechanical problems. This was especially true at the 
time of Peter the Great, who encouraged many outstanding 
inventors in their woik.such as A Naitov, N Pilenko, M. Sidorov 
and others; Nartov invented the fust lathe with a carriage .and 
the first duplicating lathe Of the numerous Russian mechanics

I. Vyshncgradsky

of the 18th century, particular note must be made of I. Polzunov 
(1728-1766) for his steam engine.

The brilliant Russian scholar M. Lomonosov combined his many 
world-famous purely scientific researches with inventions in 
machine engineering, such as the spherolathe, a grinding machine 
and a facing lathe.



I. Kulibin (1735-1818) became well known for his major 
inventions in various branches of technology, particularly in the 
construction of different kinds of instruments.

Nefther was theoretical work neglected in the 18th century; 
the first treatise on mechanics to be published in Russia.was 
compiled by G. Skornyakov-Pisarev and appeared in 1722,

N. Pcliov

containing calculations lor the construe! ion ol levers, windlasses 
and other simple mechanisms.

Beginningwiththeendol Ihc 18th cent my, engineering mechan­
ics began to progress rapidly in Russia- a development which 
continued into the 19th and 20th centuries. Among the eminent 
scientists responsible for this advance were P. Chcbvshev, I. Vysh- 
negradsky, N. Petrov, M. Ostrogradsky, V. Kirpichev, N. Zhu­
kovsky and a host of others.

These achievements of Russian scientists and inventors in 
the field of engineering did not receive proper support in pre­
revolutionary Russia. But the Great October Socialist Revolution, 
which swept away capitalism and placed thp former privately- 
owned means of production into the hands of all the pflppfc, 
completely changed this situation,
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In his closing address before the Third All-Russian Congress 
of Soviets, delivered after his brilliant analysis of the historic 
significance of the Great October Socialist Revolution, V. I. Lenin 
said: *

“In the past man’s mind and genius provided a chosen few with 
all the benefits of technology and culture, while most ofhers were 
deprived of the essentials of education and development. But 
now all the wonders of engineering, all the achievements of 
culture, will be within the reach of all the people, and never 
again will the mind and genius of man be turned into a means 
of coercion and exploitation’’*.

M. Ostrogradsky

Lenin’s profound words are turning into reality before our 
very eyes. Each year labour-consuming processes are being mecha­
nised on an ever-widening scale in the U.S.S.R., where engineering 
is creating highly productive machines. This work is in close 
harmony with the policy of extensive automation — the highest 
stage of mechanisation.

In machine building, efficient Soviet-made automatic lathes, 
as well as entire production lines of unique design, are already 
in extensive use in the manufacture of machine parts.

On construction sites, walking draglines with a 25 m3 (and
* V. I. Lenin, Collected Works, Russ. ed.. Vol. 26, p. 436,
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Wore) capacity may now be seen; a Small but efficient crew on 
one of these machines displaces the work of from seven to nine 
thousand hand labourers.

Many efficient mining machines, particularly for the coal fields, 
were first designed in the Soviet Union. At the present time the 
coal-combine takes the place of several machines heretofore used

V. Knpicliev

separately in Ihe operations ol cutting, blast-hole drilling, and 
loading of the coal upon the convcyois. The U.S.S.R. now takes 
first world place in Lhe mechanisation of coal mining.

Greatstndes are being made in the Soviet Union in the production 
of equipment for electric stations, metallurgical plants, highly- 
efficient machine tools, automatic production lines, forges, all 
types of unique instruments and other machines.

These mechanisation processes, which are doing away with 
former labour-consuming hand operations, not only make work 
easier but also raise productivity to a very high level.

And now still greater events have occurred in the development 
of Soviet science and technique—the launchings of Soviet 
manned rockets into the outer space. For these space ships— 
Vostok-1 and Vostok-2 — are the forerunners of man’s flights, in 
the not-too-distant future, to the moon and the planets of the 
solar system—Venus, Mars and others.
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C HA P T E R  XV

THE INCLINED PLANE, THE PULLEY,
AND THE WINDLASS

The inclined plane, the pulley, and the windlass (als<* known as 
a winch) wcie among the very first engineering contrivances in 
technical history. They arc still used as integral parts of various 
machines and mechanisms and ior that reason we shall begin 
with them in making our acquaintance with the theory of mach­
ines and mechanisms. Until recently the inclined plane, the pulley, 
and the windlass were called “simple machines'’

139. The Inclined Plane

Assume that a body of weight G is lying on an inclined plane 
KM  (Fig. 161 a). We resolve the force of gravity G as represented 
by vector CA, into component CD perpendicular to KM, and 
component CB parallel to KM. The force CD is balanced by the 
reaction N directed m the opposite direction. Heife, the body’s 
motion on the inclined plane will take place under the action of 
forced!. If there were no incLion between the body and the inclined

plane, the body would slide down with a definite acceleration. 
In order for the body to be in equilibrium (to either remain at 
rest or to be displaced along the plane at a constant speed), 
a force P represented by vector CA’ and equal and opposite to 
vector CB would have to be applied to it. Thus the body can be 
in a state of equilibrium under the action of three forces — G,N, 
and P.

Let us determine the magnitude of force P.
By denoting the length KM  of the plane as I and the height 

LM  as h, we obtain, from the similarity of the right triangles
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K L M  and A B C ,

■xrr — from which C B  =  c a  = C A  •0  M L  K M  K M  I

And since force P is represented by vector CE which is equal 
in magnitude to vector CB, we obtain

P  =■ G • (100)

This equation can be given another form. By denoting the 
angle of inclination LKM  of the plane as a, we obtain from 
AKLM

h  — I  sin a, 

from which — sin a, and

P — G sin a. (101)
Let us look into a case when force P is not parallel to the

length of the inclined plane bul to its base KL (Fig. 1616). In
this case we rdolve force G into two components — one component 
CD perpendicular to the length of the inclined plane, and another 
CB parallel to its base KL. Just as before, from the similarity of 
the right trangles KLM  and ABC, we arrive at the relationship

CB  C A p i . i . ft?L , h
- jr j- r  =  -rrr- . f r o m  w h ich  C H = - C A - 1 - r = C A  —  <
M L  K L  K L  a

hence
P =  G J' . (102)

in which a is the base of Lhe inclined plane.
From AKLM  we obtain

h  — a  tan  a , from  which  — tan  a ,a
and P — G ta n  a. (103)

A comparison of Eqs (100) and (102) will show that the first 
way of applying force P is the more advantageous since its 
magnitude-is less, the same being evident from Eqs (101) and 
(103), because sin a <  tan a.

Let us assume that the body is moving uniformly up the same 
inclined plane. In this case the weight G of the body constitutes 
a useful • resistance which is overcome by the motive force P. 
Assume this force to be parallel to the length of the plane (Fig. 
161a). Since the sine of the angle cannot exceed 1, it follows from 
Eq. (101) that when a =  90 , inevitably P  <  G, that is, when 
force P is parallel to the length of the inenned plane, the inclined 
plane gives an advantage in fo rc e .  -This advantage is deter-
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mined by the ratio of the magnitude of the force of resistance 6  
to the magnitude of the motive force P, which according to 
Eq. (100), is represented by

G__J_
P  ~  h  ’

Thus, in order to raise a body to a height h — ML, force 
P must be exerted through the entire displacement I =  KM. 
We could raise the body to the same height h without the inclined 
plane if wc applied a vertical force to it, equal and opposite to 
the weight G of the body.

From this relationship iL follows (hat the greater the gain in 
force, the greater the loss in displacement, and vice verstf.

This is the “ABC” of mechanics.
The conclusions thus reached are also applicable to the second 

case examined above, when force P is parallel to the base of the 
inclined plane. 11 should only he noLed I hat since the tan 45° =1, 
force P, as is apparent form Eq. (103), will be smaller than 
force G when a. <  43°, whereas when x 45° the two forces 
will be equal, and when x -  45° lorcc P >  G.

Now let us compare the work performed by the forces applied 
Lo the body when its motion along the inclined plane is uniform. 
As already noted, the body is under the action of forces G, P, 
and N. From Fig. 161n it is evident that force G forms an angle 
ACB — 00° a to I lie incline. By employing Eq. (76) we obtain 
the work VVG performed by this force through displacement I:

\VG -- Gl cos (t)0° — a) Gl sin a.
The work performed by force P

VV̂ = PI =s= G sin xl =  Gl sin a.
The work performed by force N directed perpendicular to 

the motion, is zero. Thus we see, VVG — Wp, that is, the work 
of the motive force is equal to the work of the force of resistance.

Heretofore we have limited ourselves to uniform motion 
of a body up an inclined plane without taking friction into 
account. In actuality friction diminishes any advantage gained 
in force. Therefore besides force CB, the force of friction F — fN  
(in which / represents the coefficient of friction) is also directed 
opposite to the motion.

When force P is directed parallel to the inclined plane, 
force N =  G cos x, which means that the force of friction F — 
= Gf cos a.

If the body is to have uniform motion upwards, force P must 
be equal to the sum of the forces of resistance, i.e.,

P — G sin a -f- Gf cos a =  G(sin a +  / cos a). (104)
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Illustrative Problem 69. I t  Is necessary to  ra se  load G — 400 kg 9
distance of 0.5 m along two parallel Inclined beams each 5 m In length. 
Find the force required to do this work if the coefficient of fricuon 
f  0.15.

S o lu t io n :  with h  =  0.5 m, and I =  5 m (Fig. 161a), we have 0.5 
=» 5 sin a, from which sin a =  0.1, a«= 5°45', cos a =  0.995, and the force 
required

P -  400 (0.1 + 0.15 x 0.995) rv 100 kg.

140. The Wedge

The wedge is one form of the inclined plane and possesses 
the shape of a triangular prism (Fig. 162«). In a longitudinal 
cross-section of this prism the angle 
a Z. K M L  is considerably smaller than 
either of the two other angles. Edge K L  
is called the h ea d  of the wedge, while the 
side edges K M  and L M  are its cheeks.

Assume that the wedge, under.the action 
of force P, is penetrating into another 
body at afeonstant speed. The body 
resists the motion of the wedge. This is 
expressed by the reactions Nx and N2 
perpendicular to the cheeks of the wedge.
When examining the equilibrium of the 
wedge without taking friction into ac­
count, we find that forces P, Nx and N2 
balance each other. We delineate these 
three forces from any arbitrary point O, 
and on vectors 0 6 \ and ODv represent­
ing forces Nj and N2, wc construct the 
parallelogram OC1E1D1 (Fig. 162ft). If.the 
system is in equilibrium, the diagonal 
OE1 must be equal in magnitude and opposite in direction to 
vector OE representing force P. A comparison of triangles OC1E1 
and K L M  will show that they are similar because their angles 
are formed by mutually perpendicular sides; from this it follows 
that

P : N 1 : N t  =  K L  : M L  : K M .  (105)

If the wedge has equal edges as shown in the figure ( K M  =  M L ) ,  
then

N  K M
~ f T  “  ~KL ' ( W 6>

that is, the mechanical advantage in force is equal to the ratio of the 
length of the cheeks to the thickness of the head. The smaller the 

j angle oi the wedge and the thinner the head, the greater will 
be the gain in force.
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The properties of the wedge are used to advantage in various 
splitting and cutting tools. Later (Sec. 201) we shall study the use 
of the wedge in the fastening of machine parts.

It must be noted that the force of friction increases as the 
angle of the wedge decreases. For example, the splitting of wood 

with a thick-headed axe, instead of with an 
ordinary carpenter’s hatchet, is easier 
because the additional weight lends more 
kinetic striking energy and also because 
of the greater ease with which the axe 
can be pulled out if the wood is not entirely 
split.

Illustrative Problem 70. What would be, the 
magnitudes of forces Nt and N2 during the uni­
form displacement of a wedge K L M  (Fig 163) 
possessing u thickness KL = 25 mm and length 
LM  =  200 mm when under the action of force 
P =  50 kg, it there were no friction?

P K L  25 1Solution: from Eq. (105) we obtain = =  oqo =  "8 r̂om
which N, = 8P =  400 kg. 1 ®

From the same equation we obtain

N, K M  _  /252 + 200*
KL ~  25 403 kg.

111. The Lever

Let us examine the simple case of a straight lever (Fig. 164) 
to which are applied two parallel lorces I* and Q acting perpendic­
ular to the longitudinal axis AR. Point 0, called the fulcrum, 
is at distances a and b from the points of application of forces 
P and Q.

Two conditions stated in Sec. 34 must be observed to keep the 
lever in equilibrium: they are a) Eq. (12) - the algebraic sum of 
all forces musL be zero, and b) Eq. (13) — the algebraic sum of 
the moments of the forces must also be zero.

The first condition is expressed as
P | Q R 0, from which P ~\ Q — R,

in which R is the reaeLion at the fulcrum*.
Since the algebraic sum of the moments of all the forces with 

respect to fulcrum O is zero, then
Pb -  Qa 0,

or
_Q_ b
P ~~ a

* The weight of the lcve#ds ignored in this case. 
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that is, the forces are inversely proportional to the-arms of the 
lever.

Now let us take a more complex example when the forces 
P anth Q are not directed perpendicular to the axis of the lever 
(Fig. 165). We resolve force P into two components — BL 
acting along the axis of the lever and BK acting perpendicular 
to the axis. Repeating the process with force Q, we obtain forces 
AE  and AF. If the fulcrum is constructed so that the lever 
cannot be displaced in a horizontal direction, the resultant of 
forces BL and AE  will be balanced by the horizontal compo­
nent of reaction R at the iulcrum. Therefore if the lever is to

remain in equilibrium, it is required that the algebraic sum of the 
moments of the other forces with respect to any point should 
be zero. By taking point 0 as the centre of the moments, we 
obtain

I\b  =  QYa. (i)
From point 0  we delineate lines O M ^ a l and ON — bx 

perpendicular Lo the lines ot action of forces P and Q. Then 
comparing the right triangles OMA and AFC and also ONB 
and BKD, we see that they are similar pairs because their acute 
angles have mutually perpendicular sides: A OMA oo A AFC, 
and A O N B tn  A BI<D, from which it follows that

OA" O M _a ,
° r  -Q  =  q \  > W h c n c e

In the same way we obtain Ptb — Pbv
Substituting these expressions for PjZi and Qva in the above 

Eq. (a) we obtain
Pbl =  Qo1, or £  =  (108)

We thus see that we have obtained an expression analogous 
to Eq. (107), the only difference being1 that included in it are
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t h e  a r m s  o f ' t h e  m o m e n ts  o f  fo rc e s  P  a n d  0 w i th  r e s p e c t  t o  t h e  
f u lc r u m ,  in s t e a d  o f  t h e  a r m s  o f  t h e  le v e r  a  a n d  b.

N o w  le t  u s  i n v e s t ig a te  a  g e n e r a l  c a s e  w h e n  t h e  le v e r  is  n o t  
s t r a i g h t  (F ig . 166). 1

W e  re s o lv e  t h e  fo rc e s  P  a n d  Q r e s p e c t iv e ly  i n to  t h e  c o m p o n e n ts  
B L ,  B K  a n d  A F ,  A E ,  o f  w h ic h  B K  is  p e r p e n d ic u la r  t o  O B  a n d  
A F  is  p e r p e n d ic u la r  t o  O A .  T h e n ,  r e a s o n in g  a s  b e fo re ,  w e  
a r r iv e  a t  t h e  s a m e  e q u a t io n  (1 0 8 )* .

I n  t h e  a b o v e  c a se s  t h e  f u lc r u m  0  w a s  s i t u a t e d  b e tw e e n  th e  
p o in ts  o f  a p p l i c a t io n  o f t h e  fo rc e s . T h is  t y p e  o f  le v e r  is  c a l le d  
a  le v e r  o f  th e  f i r s t  k i n d  a s  d is t in g u is h e d  f ro m  o n e  o f  th e  s e c o n d  k i n d  
w h e n  t h e  p o in ts  o f a p p l ic a t io n  o f t h e  fo rc e s  a r e  o n  t h e  s a m e

side as the fulcrum (Fig. 167). By applying Eq. (12) to a lever 
of the second kind, wc delcrmino the reaction of the fulcrum R 
from the equation

Q - - P — R -  0, 
whence R - Q — P. (109)

Then taking the algebraic sum of the moments of the forces 
with respect to point 0, we obtain Qa — Pb — 0, whence

Pb Qn. (110)
If the lines of action of Lhe forces were not perpendicular to 

the axis of the lever, or if the axis of the lever were not straight, 
we should have obtained lhe same result as for a lever of the first 
kind.

Wherefore, in all cases when a lever is in equilibrium, the forces 
P and Q applied to it are inversely proportional to the distances 
between their lines of action and the fulcrum.

*  The reaction of the fulcrum may be determined as follows. As 
already shown in Sec. 24, the lines of action of forces P, Q, and R intersect 
a t one point U .  Hence the line of action of the reaction is known. By 
constructing a parallelogram on the force P and Q we obtain their result­
ant. The reaction OS will be equal and opposite to It.
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From this it is apparent that the lever, in allowing a lesser 
force to balance a greater one, achieves a mechanical advantage. 
It is also easily understood that the displacement of the point 
of application of the lesser force P will be as much greater than 
that of the point of application of force Q, as the magnitude of 
Q is greater than that of P; here again the “ABC” of mechan­
ics is valid.

Bearing in mirfti that there is friction between the fulcrum and 
the lever, we conclude that the useful woik the latter performs 
is somewhat less than the work performed by the motive force.

Levers are not only used to conveit a lesser force into a greater 
one, but also for advantage in displacement. For example, by 
displacing point A a certain
distance (Fig. 167), we dis- B

property of a lever is frequent­
ly utilised in the construe- i'ig l<>8
tion of meas^ing instruments.

The lever is extensively used m machines and oilier mecha­
nisms, and also in devices of all kinds.

Illustrative Problem 71. Ann a ol the b en t leva AOli in Fig. 168 is 
80 mm in lcnglh, mid mm b is 3(H) mm. Whal should be the magnitude 
of force P acting at an angle ol = 'JO3 to aim OB in oidei to balance 
force Q = 120 kg acting at an angle oi a 30° to aim OA?

Solution: in employing Uq. (108) we must take ft, = b =  300 mm, 
a, — a sin a =  80 sin 30° -  80 x 0 r> -  10 mm, and Q — 120 kg. After 
substituting these valius in I he equalion we obtain

The mechanical advantage obtained from a lever can be 
increased considerably by using a system of several interconnect­
ed levers.

Let us consider the two levers foiming the system shown 
in Fig. 169* To the end Ji of lever AB  with fulcrum a second 
lever with fulcrum ()2 is iaslened by means of strap BC attached 
to its end C. By applying force P to end A we obtain force Qt 
on end B, equal to the relationship

This force is transmitted to end C of lever C02 on which the 
acting forces will be determined according to the relationship

place point B a distance as 
many times greater as arm b 
is greater than arm a. This

142. A System of Levers. The Differential 
Lever

P b>
a
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Qjfca =  Q2a2, from which force Q2 obtained at point D is

Replacing Qt in this expression with the value just evolved 
for it, we obtain

G. =  -p |& -  d l l )
If there had been three levers then

Q* , etc.

Thus the mechanical advantage obtained by a whole system 
of levers is equal to the product of the numbers expressing the 
mechanical advantage produced by each lever in the system.

Fig. IK!) Fig. 170

If we look two levers witli a ratio between the arms of 
=  — 10, Lhe mechanical advantage obtained by Lhe system

would be -jj- =  102 — 100. Accordingly, a displacement of 0.1
mm of point D would displace point A a dislance of 0.1 X 100 =  
= 1 0  mm.

However, such a system of levers is extremely cumbersome. For 
this reason a variation is used, called a differential, or floating 
coupling.

Assume that lever AC (Fig. 170) wilh a fulcrum D has a cross­
piece EF  suspended from it by two straps AE  and BF. A force 
Q is applied at poinL K in the middle of the crosspiece, and force 
P, its equilibrant, is applied to the long arm of the lever at point 
C. Let us determine the relationship between these two forces. 

Since force Q is applied at the middle of the crosspiece EF,
a force is acting on each strap — one at point A and another
at point B. Let us write the conditions required for the lever 
to be in equilibrium, using Eq. 12, since all the forces are parallel:

“ 2  a + T <Z- a> + Pb==0>
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or
Q (i _  a -  a) + Pb =  Q -  fl) + Pb =  0,

whence

Q ~  p  ~~r •
" “ T

By denoting the distance between the line of action of force 
Q from the fulcrum as d, i.o., d a - -!> , we finally obtain

Q ^ P - -  ( 1 1 2 )

It is seen lhat the mechanical advantage will he equal to 
the ratio of the bigger arm Cl) of the lever to the distance be­
tween the two vertical straight lines delineated through the mid­
dle K of the crosspiece and the iulcrum. Since this distance can be 
made infinitely small, theoretically an iniinitely great mechan­
ical ad v an c e  can he ohlamed.

Systems ol' iloating couplings are used, lor example, in decimal 
and centesimal scales.

Illuslrntivr Problem 72. I11 Ihe flou ting  k ' \ u  just studied, the arm 
b =  1,000 111111, arm a -  251 111111, and I -= 500 m m ; llien  d - 251 —

—  =  * nim. S ubstitu ting  these values in F.q. (112), we obtain Q =

= 1,000 P.

143. Fixed and Movable Pulleys
A pulley is a sheave on the rim of which there is a groove 

for a rope (or sprocket teeth for a chain). The simplest type is 
the immovable pulley, the geometrical axis of which remains 
fixed when it is in operation (Fig. 171).

Assurhe that the rope (or chain) has a load to he raised Lhat 
exerts a force Q at one end of it. To determine the force P which 
must be applied to the other end of the rope in order to balance 
force Q, we may regard the pulley as a bent lever AOB having 
arms of oqual length because AO -- OB — R, R being the 
radius of the sheave. The conditions for equilibrium of this lever 
with respect to its fulcrum 0, is PR - QR, from which

P =  Q-
Thus in an immovable pulley neither the force nor the veloc­

ity changes in magnitude; only the direction of the force changes. 
This is advantageous in many cases. For inslance, instead 
of raising a load by pulling it upwards, it is much more con- 
"enient to use such an immovable pulley which makes it possible
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to do the same -work by applying to the rope the same force 
directed downwards. Due to harmful resistance, the efficiency 
of this pulley is ordinarily from 0.8 to 0.9.

A m o v a b le  p u l le y ,  so called because its axis is displaced Vrhen 
it is in use, is shown schematically in Fig. 172. A rope, one end 
of which is fastened to a stationary hook K ,  passes round the 
sheave L from below; a motive force P acts on its other end*. 
The force of resistance Q (such as the weight of the load) is applied 
to the casing of the movable pulley in which its axis is rotating.

Let us work out the relationship between the motive force 
P and the force of resistance Q. Let us consider the diameter 
A B  of the pulley to be a lever of the second kind, turning about 
point A  under the action of force P. By applying Eq. (110), 
in which we substitute diameter A B  instead of b, and radius

that is, the  m o tiv e  fo rce  is  e q u a l to  h a l f  the  fo rce  o f  re s is ta n c e .
Obviously in this case also, the gain in force is lost in displace­

ment. Indeed, in order to raise the centre of the pulley to a 
height of O O l —  h , the free end of the rope must be pulled a 
distance of A A X +  B B 1 — 2 h , which means that the point of 
application of force Q receives a displacement only half of that 
received by the point of applications of force P. Furthermore, 
the work performed by force Q is Q h  =  2 P h ,  and the work 
performed by force P is P 2 h ; in other words, the work performed 
by the motive force is equal to the work performed by the 
force of resistance, which is as it should be.

* Since the movable pulley is ordinarily used to raise loads by means 
of a force acting downwards, a second fixed pulley M  is shown In the 
illustration.

Fig. 171 Fig. 172

(113)
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144. Systems of Pulleys 
and the Differential Pulley Block

Juft as in levers, pulleys are combined into systems to increase 
their mechanical advantages. Fig. 173 represents one of these 
systems: it consists of several (in this case three) fixed pulleys 
rotating in the casing K ,  and the same number of movable 
pulleys rotating in the second casing L .  The rope, one end of 
which is fastened to the hook of the first casing, is passed round 
all the pulleys in succession, while to its free end M  the motive 
force P is applied. In the present case force Q is distributed 
among six segments of one and the same rope, in which the 
tension must obviously be the same throughout the entire
length. It follows that a load-^- is acting on each segment of
the rope, and the force which must be applied to the free end 
of the rope to keep the system in equilibrium will be

p =  0 . =  _ e _ .
6  2 x 3

If there h f̂t been four pairs of pulleys in the system, force
P would be =  2 x 4 ’ Thus we see that the mechanical advantage
is equal to twice the number of movable pulleys. And if the 
movable block had n  pulleys, the motive force would be

But, according to the rule already learnt, the displacement 
of the point of application of P will be 2n  times the displacement 
of the point of application of the force of resistance Q.

Instead of having the pulleys on separate axes and arranged 
vertically one above the other, they are usually arranged several 
in each casing and on one horizontal axis (Fig. 174).

Systems of pulleys (fixed and movable) grouped in blocks 
and with a rope or chain wound about them are called tack le .

Just as there is a differential lever, there is also a differen­
tial pulley block as shown in (Fig. 175). The upper fixed block 
is made double with two stages of sheaves of radius R  and r. 
As is evident from the illustration, this block and the lower 
movable block are connected by an endless chain; from the 
lower block the chain is passed to the larger sheave in the upper 
pulley and then goes down in the form of a freely swinging loop 
M ,  one segment of which is meant to be pulled by hand. Then 
the chain is passed upward and around the smaller of the sheaves 
in the upper block and down again to the movable block.

Let us see what forces are acting on the upper block so as 
to find the relationship between the motive force P and the 
force of resistance Q.
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Under the action of force Q, forces = P2 =  — are created
in each segment I  and I I  of the chain. Assume that the upper 
block makes one revolution at which time the work of the motive 
force P is W — P 2nR. During the same interval force Pj 

performs work '

i

Fig. 173

W, =  Pr2nr =  — 2nr -  Qnr.
Finally, I he work of force P2 is

W2 =  Pj2nR - -2- 2nR =  QnR.

Fig. 175

The first two forces are motive forces, while the third is the 
force of resistance. Since the work of the motive forces must be 
equal to the force of resistance, then

2nPR nQr -  nQR, or 2PR +  Qr -  QR,
from which we obtain the force acting on segment A of the loop:

p = 0 '\T T = Q H- i r :' <1 1 5 >

in which R and r are the respective radii of the larger and smaller 
sheaves of the fixed block and D is the diameter of the larger 
sheave.

Since the difference between R and r can be made infinitely 
small, a great mechanical advantage may be obtained witn 
this block.
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Illustrative P̂roblem 73. WhaL must be the diameter of the smaller 
sheave of the fixed double block in a differential block to obtain a mechan­
ical advantage of -p- = 8 , if the diameter of the larger sheaye D ■= 
= 2 0 0  mm and efficiency rj — 0 .8 ?

Solution: from Eq. (115) we obtain —- =  j^——r > and after taking 
harmful resistance into account, the mechanical advantage will be

which, after substituting numerical values, becomes 8  ■ ")t~ ’
in which r = 80 mm, and the diameter of the smaller sheave will be 
160 mm.

145. Simple and Differential Windlasses
A simple device for obtaining mechanical advantage is the 

windlass (Fig. 176); a drum K (Fig. 176«) is fixed lo a shaft 
rotating in two bearings. The shaft is rotated by the crank 
L  fastened 19 one end of it As the shall rotates, the rope M, 
one end of which in fastened to the surface of the drum, is wound 
around the latter and overcomes the force ot resistance Q. Let 
D denote the diameter of the drum, s.ud a I lie length of the crank 
at whose end the force P is applied (Fig. 176/)). The relationship

between forces P and Q can be found by equaling the amount 
of work each executes during one revolution of the shaft. The 
work of force P is expressed as WP =  P2na, and the work of 
Q as Wq =  QnD, where D is the diameter of the drum. Accord­
ingly, P2na =  QnD, whence

* = 0 -§  (116)
The differential windlass with its stepped drum (Fig. 177) 

gives a much greater mechanical advantage than the simple 
type. Let D denote the diameter of the larger step, and d that 
of the smaller.
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When the crank is turned clockwise, the rope will be wound 
on the larger step and unwound from the smaller. By disregard­
ing as  ̂negligible the converging lines of the segments of rope 
dropping to the movable block, we shall assume that^each
of them is subjected to a force P x =  P 2 =  - y . Let us {prmulate
an equation for the work of the motive power and that of the 
force of resistance.

The work performed by force Px during one revolution of the 
drum Wj =  PxnD — -y 7rD, the work of force P2 as applied to

the smaller step VV2 — P2nd =  nd, and the work of force 
P as applied to the crank W  =  P2na. Hence

2nPa t- ~Q d =  ^  .
from which

P  =  0 - ^ = 0 ^ -  (H7)
whence R  and r are the radii of the larger and smaller steps of 
the drum, respectively. Thus we see that we have formulated 
the same expression as for the differential block.

i
Illustrative Problem 74. A differential windlass has a two-step drum 

of diameters D =  350 mm and d =  300 mm. What length must the 
crank be in order to raise at a constant speed a load Q = 200 kg with 
a force P =  16 kg, if the efficiency of the windlass i/ =  0.6?

Solution: by including the force of friction in Eq. (117), the latter 
becomes

in which P = 1 6  kg', 0.6, Q= 200 kg, Jl =  175 mnvand r—150 mm. 
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By restating the equation and then substituting corresponding values, 
we solve for the length of the crank a:

Q(R ~  r)
2P tj

200 x 25 
2 x 16 x 0.6 pa 260 mm.

146. Questions for Review
1. If a body on the inclined plane shown in Fig. 161a is moving up 

the plane at a constant speed and the plane is lengthened but with 
the height h remaining the same, what change will there be in force P?

2. What change will there be in the magnitude of force P exerted on 
the wedge in Fig. 162 if the thickness of the wedge head is decreased but 
with the length of the wedge and the speed ot its application remaining 
the same?

3r Which will be the greater mechanical advantage: when force P 
is applied perpendicularly, or at an angle, to the arm of a lever?

4. If the length of the arms of Ihc bent lever AOB (Fig. 166) are 
equally increased, will there be any change in the magnitude of the force 
P required to keep it in equilibrium?

5. What will be the total mechanical advantage obtained by a system 
of three levers, one of which gives a three-fold, the second a five-fold, 
and the third a seven-fold mechanical advantage?

6. State thJIadvantages of the differential lever.
7. What difference is there between the mechanical advantage obtained 

by a fixed and a movable pulley block?
8. What is a tackle?
9. What are the advantages contained in ihe differential block; 

in the differential windlass?

147. Exercises

76. A load G =  200 kg is moving uniformly up an inclined 
plane with an angle of inclination a = 30°. What must be the 
magnitude of the motive force P directed parallel to the incline 
if the coefficient of friction / — 0.10?

77. Using the data in Ex. 70, determine the efficiency of the 
inclined plane.

78. Two loads of weigh L - -  10 kg and G2 — 15 kg are 
on inclined planes with angles of inclination of and «t2 an(l are 
connected with each other with a cord passed through a fixed 
pulley (Fig. 178). If angle -  30° and the two loads are in 
equilibrium (neglecting the force of friction), what is angle a2?

H in t to solution: remember that forces P: and P2 are equal 
in magnitude.

79. If the angles of inclination ax and «2 in Fig. 178 are 30° 
and 45°, respectively, and the force of friction is disregarded, 
what must be the ratio between the weights Gx and Gt when 
they balance each other?

80. In order to find the distance x  from the end A  to the centre 
of gravity C of the rod A B  in Fig. 179, the end A  was suspended 
to a fixed point E  and then the rod placed so that it rested on 
scales at point I). Find the distance x  if a =  300 mm, the weight
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of the rod G =  1.5 kg, and if weight Gx balancing the rod on 
the other pan of the scales is 1.0 kg.

81. Derive Eq. (108) for a straight lever of the second kind.
82. Derive the same Eq. (108) for a bent lever of the second >nnd.
83. What force P must be exerted on the differential lever in 

Fig. 170 to balance a force Q =  1 ton, if A D  =  D B  =*250 mm, 
E K  =  249 mm, K F  —  251 mm, and D C  =  1,000 mm?

84. Assume that the tackle in Fig. 174 has five movable blocks. 
What force P would be required to raise a load pf 200 kg?

85. What mechanical advantage would the differential block 
in Fig. 175 give if the diameters ot the sheaves are D  =  360 mm 
and d  —  320 mm?

86. In Fig. 177, showing a diflerential windlass, D  — 300 mm, 
d  =  250 mm, a —  400 mm, and its efficiency t? — 0.7. What 
force P is needed Lo raise a load of 500 kg?

TRANSMISSION OF POWER RET WEEN PARALLEL SHAFTS

In order to transmit motion to the moving links of a machine, 
mechanical energy is needed. This energy may be imparted to 
the machine in different ways. Hut usually it is done by an adjac­
ently installed electric motor, in which case it is said that the 
machine has an in d iv id u a l  d r iv e . But someLimes mechanical 
energy is imparted Lo several machines at once through a single 
shaft known as the t r a n s m is s io n  s h a f t  acting as a g r o u p  d r iv e .  
And frequently one machine is driven by several electric motors, 
as in very large machine tools and other kinds of giant machin­
ery. Both in individual and group drives, devices whose func­
tion it is to impart diverse angular velocities (rpm) to the driv­
ing shafts of the machine are sometimes mounted as intermediary 
links between the electric motor and the machine.

In short, various mechanisms which are referred to under 
the general term of t r a n s m is s io n  are used to impgrt mechanical

Fig. 178 Fig. 179

C H A P  T h  n  XVI

148. General Principles of Transmission
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energy both to machines as a whole and to their individual 
links.

The most common kind of transmission is that which trans­
mits »tational motion from one shaft to another.

The position of Ihe shafLs in relation to each other may differ: 
their axes may lie in the same plane, or in different planes. 
If the shafts are in the same plane, they may either intersect 
or be parallel to each other.

Let us begin our study of the various kinds of transmissions 
with the simplest form — when the axes of the shafts lie parallel 
to one another.

149. Transmission Through Pliant Connectors

Flat belts, sometimes ropes, are used to transmit rotatio­
nal motion between parallel shults; these belts arc wound about 
wheels, called sheaves, which are fixed to the shafts.

Assume that the rotation of shafL in Fig. 180 is to be trans­
mitted to shaft 0 2. We fasten two sheaves, opposite to each 
other, to the shafts and wrap an endless belt A B D F E C A  round 
the two in such a manner that it is stretched tightly about their

rims. With ample friction between the 
belt and the sheaves, the rotation of 
one shafL will be transmitted to the 
other. The shafl (and sheave) O x which

causes the motion is called the d r iv e r . while the shafL (and 
sheave) 0 2 which receives the motion is called the fo llo w er , or 
d r iv e n  unit.

Angles A O ^ E  and B 0 2F  subtending arcs A C E  and B D F  
where the belt is in contact with the rims of the sheaves, are 
called the a n g le s  o f  co n ta c t.

The greater the angle of contact, the better will be the trans­
mission of rotation, inasmuch as the arc of contact between 
the sheaves and the belt will be greater. For this reason belt
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transmissions are always designed so that the angle of contact 
is as large as possible.

Assume that shaft I  (Fig. 181a) is the driver and shaft I I  
is the follower. With the direction of motion as shown 'tin the 
drawing, the upper segment of the belt will be pulled taut and 
lie almost in a straight line since it is transmitting the force 
that is rotating the follower, whereas the lower segment will be 
slack and sag under its own weight. If the direction of motion 
is changed, as shown in Fig. 1816, it will be just the opposite— 
the upper side will sag. A comparison of the angles of contact 
on the driving and driven shafts in the two drawings will show 
that it is greater in the second case. Hence, here transmission 
of rotation will be more efficient. It follows that the lower seg­
ment of the belt should always be the driver.

The belt connecting the sheaves should be as pliant as possible; 
this type of transmission is called t r a n s m is s io n  th ro u g h  p l ia n t  
co n n ec to rs .

150. The Speed Ratio and Transmission Number 
in Transmission Through "

Pliant Connectors

In making calculations corcerning transmission of rotational 
motion, a coefficient showing the ratio between the angular 
speeds of the two given shafts or, in other words, between their 
rpm, is used. This ratio of rpm (or ratio of angular speeds) of 
two shafts between which motion is transmitted is called the 
sp e e d  ra tio  and is denoted by the letter i.

Of the two connected shafts, one is the driver and the other 
the follower. Therefore the speed ratio must be so stated as to 
indicate the order in which the shafts are referred. For this pur­
pose indices, consisting of the numbers of the two shafts, are 
affixed to the letter representing the speed ratio. If it is a ratio 
of rpm of the driven shaft to rpm of the driving shaft, it is stated 
as

. <ii. n ,
l*.i =  ^  =  7i7 (118)

If on the contrary the ratio is that of the rpm of the driving 
shaft to the rpm of the driven shaft, it will be stated as

C D , n- * —
n, (119)

The latter ratio, that is, the ratio of rpm of the driver to 
rpm of the follower, is called the t r a n s m is s io n  n u m b e r .

It is thus apparent from Eq. (118) that when n t =  1, zfl>] =  nt ; 
we may therefore say that i9>1 shows the n u m b e r  o f  r e v o lu t io n s  
o f th e  fo llo w e r  to  o n e  r e v o lu tio n  o f  the  d r iv e r .
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Finally, by multiplying Eqs (118) and (119), we obtain

x iw =  f x j - = l ,  (120)
1

whence z21 — 1 1 £
that is, the speed ratio of the duving shaft to the driven shaft and 
of the driven shaft to ttu dnving shaft are reciprocal to each other.

Oral I'cerci&es
1. State which shaft of the following throe cases has the greater angular

speed: when 1 ; when ! , , < ! ;  when i , t, =. 1 .
2. What is the liansnussion number when ->= 1?

151. Kinematics of Transmission wilh One Pair 
of Sheaves

Lei us re I urn to Fig. INI and assume that the belt, wound
about the two sheaves, neither stretches nor slips. Under such
conditions the motion ot the bell will be the same at all its points 
and be equal Jft> the speed ot any point on the rims of either 
ol the sheaves. In other words, the peiiphoral speed ol sheave 
II  will equal the peripheral speed ot (he duving sheave /, from 
which we evolve the billowing equation.

T  J )  ,11 i (  T l  11 l \  T\ /  4 (S |  \

M) -  (,0 ’ or A " i -  A 'L .  (121)
that is, the product of the dianwlei of the diwer and its rpm is 
equal to the produil of the followei and its rpm. Fiom 11ns we may

determine lh£ speed ratio of f2il (the relationship between rpm 
n2 of the follower sheave and rpm nr of the driving sheave):

i. ii, Dj ( 122)

that is, the speed ratio of the two sheaves is in inverse ratio to their 
diameters.

As is apparent from Fig 180, the driving and driven shafts 
both revolve in the same direction. This type of transmission 
is called an open-bell drive, as distinguished from the crossed-belt
14 -  5018 209



drive when the belt is crossed in the form of a figure 8 (Fig. 
182). In the latter case the two sheaves will revolve in opposite 
directions.

Eq. (122) shows the relations between four quantities: the 
diameters Dl and /)2 of the two connected sheaves and their 
respective rpm. If three of these quantities are known the fourth 
can be evolved.

Illustrative Problem 75. The driving sheave on the shaft of an electric 
motor has a diameter of 180 mm and rotates at 1,000 rpm. If it were 
required to drive another sheave that must rotate ni =  320 rpm, what 
must be the diameter of this follower sheave?

Solution: from Eq. (122)
.. ni , g. 1,000 , .i.= 1) .—L = 180x --paSOO mm.1 n, 320

Illustrative Problem 70. If an electric motor aLtached to a sheave of 
300 mm in diameter transmits n — 400 rpm to a driven (follower) 
sheave of 500 mm in diameter, how many rpm will Lhe sheave on the 
motor attain?

Solution: from Eq. (122)
fiI) o(I0n l = n = 400 < 3()() & 7.)0 rpm.

152. Kinematics of Transmission 
with More than One Pair of Sheaves

Wo can determine the speed ratio Tor any number of sheaves by 
calculating it conseouti\ ely for each sheave in the train of sheaves.

' Assume that rotation
is transmitted from shaft 
(7, to shall Oi (Fig. 183) 
by means of sheaves Dx 
and D2, I)3 and Dv Ds 
and /?„. It is seen from 
the drawing that sheaves 
I)t, 1)_j, and /)6 are drivers 
while sheaves I)s, Z)4, and 
D6 are followers. The speed 
ratio between shafts O-

andand Oj is i2il’ — ^
rpm n2 of shaft ()2 is n„ =  

Z),
=  " i '2.i ^  ni of •

In the same way we may find the speed ratio between shafts
0 and O, which is i3 2 - - f?’ and the rpm n3 of shaft 0a is

' 3 — ,£2l3,2 — 1£lt2,1̂ 3,2 — q '— n,iq» — n.i i. Jh
~D,
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Finally, the speed ratio between the shafts of the last pair 
of sheaves is i4 3 -- jy  and the rpm ni of the last driven shaft 0 t is

n i =  n 3l 4,3 =  n di,lh,2^i,3 =  ^  ~J)‘ *  ~J)~ '

By denoting the speed ratio between this shaft and the driving 
shaft 0 t as i4il we obtain

n4 =  n j til =  n, X JJ; X £  (123)
in whieh

li,i =  n — i)~ X /)'t * j-)~‘ (124)

Wherefore, the total speed ratio is equal to the piodud of all the 
individual speed ratios (i.e., (lie speed ratios between adjaeent 
shafts'). The rpm of the diwen shaft is equal to the rpm of the driving 
shaft multi plied by the ratio of the piodud of the diameters of all 
the driving shafts to the piodud of the diameters of all the driven 
shafts. ^

Of course, changing I lie order ol I he multipliers and mulli- 
plicants will make no diHerenec in the Jinal product. From this 
it follows that we can change Urn places ot any two sheaves 
whose diameters are in the numerator or denominator of the 
right part of Kqs (12.5) and (121). This means that the rpm of 
the driven shalt will not change if either the driven or driving 
sheaves are rearranged among themselves. But it is also obvious 
that driving sheaves cannot be put in the place of driven sheaves 
or vice versa. For instance. I he sheave ol diameter 7)t cannot 
be put in the place ot that with diameter D,, or sheave De in 
the place of I)v elc., for this would change the total speed ratio 
and consequently the rpm ot the driven shall.

Illus tra tive  Problem 77. Shaft O, leccives rota tiona l motion from  an 
electric m otor w ith  a sheave 7), having a diameter ol 180 mm and which 
atta ins n , — 1,.j(J0 rpm tlum igh  sheaves T) — a JO mm, D , =  160 mrn, 
and D .  =  400 mm. F ind the to ta l speed in lio  i . . and the rpm of shalt O,.

180Solution: according to Eqs (123) and (124) we evolve /,,, =  g jg  X 

X jgQ =  - j^ - .a n d  n i  =  =  1,500 x  — ■ =  200 rpm.

153. Statics of Sheave Transmission
Now that we have grasped the kinematics of the transmission 

of rotational motion by means of sheaves, let us turn to the 
statics of such transmission so as to determine the relationship 
between motive forces and forces of resistance.

Let us return to Fig. 180. In order that there should be suffi­
cient friction between the belt and the rims of the sheaves, a
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definite tautness must be maintained in the belt. After the sheaves 
have begun rotating, the driving segment K of the belt becomes 
still more taut, while the follower segment L of the belt loses 
some of its tautness. Let S! represent the pull on the tighl^side 
and S2 the pull on Lhe slack side. Both these forces act on the 
driven sheave and consequently two similar forces of'the same 
magnitude but of opposite direction arc acting on the driving 
sheave.

The turning momenl or, as we shall henceforth call it, the 
torque, which imparls rotational motion to shaft ()i will be

" ’- - ( S ,  - S 2) n2 ■

The dilterenee in taulncss S , -  S2 is called Lhe effective pull 
of the belt and is denoted by Lhe letter P.

Thus we find that the torque on the duven shaft
n.

Mi — P  2 
From Eq. (122) we obtain

(125)

— and M, --- P1 1 'h l >2.l 2 2'j.l
As already slated, two similar forces Sj and S2 are acting 

on 01; hence, the torque on the driving shaft will lie
M X^ P  D2' -

and after equating Lhe expressions for M1 and 71/,, 
obtain

we finally

(126)

Wherefore, lhe torque on the duven shaft is equal to the torque 
on the drwinq shaft divided bij the .speed ratio i21 between them.

It is simple to prove that Eq. (126) similarly applies to any 
number of pans of sheaves.

Assume that the Inst driving sheave oT diameter Dl (Fig. 
183) makes one revolution. Eq. (121) shows that this would 
cause the last driven sheave of diameter De on shaft Ot to execute 
i41 =  i2>i/a2i4>3 revolutions. The work done by forces Si and 
S2 on the driving sheave will be VV4 - (At — S^nDy = P^nD^ 

The work done on the driven sheave Da at the same time by 
forces S'y and S2 will be VV4 («S’i -- S'2)7rDti41 =

And since VV4 =  \Vlf we obtain P1D1 VVVi,i> from which
M4 i f f , _____M,_____

*4,1
(127)

Wherefore, the torque on the last driven shaft is equal to the moment 
on the first driving shaft divided by the total speed ratio between
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them, or, in other words, by the product of all the individual speed 
ratios.

Eqs (126) and (127) do not take into account the loss due 
to Harmful resistance in the drive. Such resistance reduces the 
mechanical energy imparted to the driven shaft, and conse­
quently decreases the torque and effective pull. If these losses 
are taken into account, Eq. (126) becomes

n, (128)1 ,1
in which tj is the efficiency ot transmission.

For belt transmission the value of tj tangos horn 0.01 to 
0.985.

Oial r'xcrcisa
1. If the speed idlio t t , ^  1, wli.il < ,m lie said id the torque oil the 

driven shall — will it he giealci or less Hum Hie loique on tile driving 
shaft?

2. Answer Question 1 it / 1.
Illustrative Problem 711. If the elecliie motor in Ulus ti a Live Problem 

77 transmits flower A' =  7 4 kw, l aid  the loique on shaft 0, and the 
eifeclive pull on sheave [)r

Solution: If I he molin’ power A 7.4 kw - 7.4 ' 1.3(>?«10 hp 
and if rt = l,o00 lpm, Ihe toique in 'he chiving shaft will he, according 
lo Eq. (83),

M t - 710.2 4.77.) kg-m.

By applying Eq. (127) we obtain tin loique on shall 0

-  V ' 1.77."» -  3,->.812 kg-m'a,, to
and the effective pull P t on sheave I)4 will be

2Af,  2 - 3.1,812 
D,~ ~ 400

1 70 kg.

151. Colt Transmission with Variable Speed 
Ratios

It is ircquentlv necessary that a driving shaft, rotating at a 
constant speed, transmit varying speeds lo the driven (follower) 
shaft. Onc'of Hip widely applied methods to achieve this is the 
use of stepped pulleys.

Let us lix two stepped pulleys, with slops ol diiferent diameters, 
opposite each other on Ihe chiving shalt I and the driven shaft 
I I  as shown in Fig. 184. With this arrangement the belt can be 
shifted so as to run on any pair of steps <7j and Dv d2 and Z)2,
etc. In this way different speed ratios are obtained: iail =  jj-*
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There will be as many speed ratios as there are steps on the 
pulley. It is readily understood that for a drive of this kind the 
belt must be the same length no matter which of the paired 
pulleys it runs on. To achieve this, the following equation fciust 
hold true:

d\ +  Di — di +  D2 — ... ds +  Z)5. (129)
Wherefore, the sum of the diameters of the steps opposite each 
other must be the same in all cases.

I -Sriver

Let n represent the ipm ot the driving shaft. With the use 
of five-step pulleys we can transmit tive dillerent speeds to the 
driven shalt, as follows

d, d r/
ni — n jji ’ rh ~ ~ n n -> n3— T)

i d 3and n5 -- •

But it must be understood thal an unlimited variation of 
speeds cannot be obtained between n5 anil n,. In oLlier words, 
the speed variations imparted to the driven shaft will difier 
sharply from each other instead ot being gradual. Other methods 
are used to shift speeds gradually. Fig. 185 illustrates one such 
method.

We connect the belt to two frusta-cone drums arranged in 
opposite directions and with base diameters of Dj-and D2. When.
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the belt is at the extreme left, the speed ratio will be itiI =
while when at the extreme right it will be i2>1 =  . Thereby,
the sffeed ratio may be made to range anywhere from 
. D i * /)«
**•1 =  i>7 *° ls>1 ~  dT '

A variant of this method is to make the drums with curved 
sides instead of the straight-lined frusta-cone.

There are also other methods of achieving infinitely-variable 
speeds in transmitting rotational motion between parallel shafts.

155. Transmission with a Belt Tightener
Ver*y often the distance between the driving and driven sheaves 

of a machine is made as small as possible so as to decrease the 
general size of the machine. But this lias a bad ellect on the 
bell drive inasmuch as it leads to a decrease in the arc of contact 
on the smaller sheave (usually the diiver), and which, in its 
turn, results in slip.

The arc of contact of the smaller shea\e is decreased also 
because of the increase in the liansmission number.

For satisfactory opeiatnn, the ordinary belt drive must have 
a transmission number ol not more lhan d (in exceptional cases 
it may be 5), but often the rpm must be slowed down to less than 
one Ihird. Thin has resulted in the introduction ot drives with 
belt tighteners.

Assume shafL (>l in Fig. 18(i to be the driver and shaft 0 t the 
follower. With rotation in the direction shown, segment K of the 
belt will be the taut side, and L will be the slack segment. An 
idler-pulley M  is car­
ried on arm A of a bent 
lever, and to arm B of 
the same lever a weight 
N is fixed. The lever 
balances freelv on its 
axis 0. Since the centre 
of gravity of the lever 
is situated to the righl 
of axis O, th^ arm B of 
the lever is pulled dock- 
wise and the idler-pulley presses against L and tightens it.

It can be seen thaL the idler-pulley increases the arc of contact 
on both sheaves and reduces slip. Load N  can be shifted to any 
position on the arm of the lever to regulate the tautness of L 
as desired. The use of the belt tightener has another advantage: 
ordinarily, any belt will stretch with use and must be often short­
ened. But the employment of a belt tightener makes this unnec­
essary because tautness is kept uniform in the belt.
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But the greatest advantage of a transmission with a belt 
tightener, as compared to an ordinary belt transmission, is that 
it allows an increase in the transmission number (up to ten and 
sometimes even more) and at the same time keeps thc%whole 
drive compact. Belt tighteners are designed in various ways. 
Axis 0 of the lever is often made to coincide with the geometrical 
axis of shaft Ox; this is better 1o a certain extent. In small power 
transmission a spring is often used in place of the weight N.

13fi. Flat and V-Shaped Hell"*
Belting is made of ditferenl materials and varied rross-sections— 

either flat or V-shaped. Inasmuch as belting is subject to tension 
it is made in different thicknesses singlc-ph/ and double-ply —

depending on the effective pull 
it must undergo.

Single-ply leather belLs are 
made ot strips oi leather glued 
together into a continuous 
length (Fig. 18®) and ranging 
from 8.0 mm to fi.5 mm in 
thickness and as much as 800 mm 
in width. If calculations show 

that single-ply belling will not he strong enough, double-ply 
is used. This consists of Lwo layers of single-ply belting either 
glued, or sewn and glued, along its entire length.

At the present time, Hat textile bells, impregnated with 
rubber, are in wide use. They are made of ddlereul kinds of 
fibres (cotton or wool).

Glued joint 
Fig. 187

Three methods arc used to faslen the ends of flat belts: gluing, 
lacing, or metal connections. The ends of a leather belt arc scarfed 
for a length of 100-200 mm and when put on the sheaves must 
be placed as shown in Fig. 188, in which the letters ab mark 
the glued joint. For textile belts impregnated with rubber, the 
joint is cut with a step. *
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V-beltst which occupy a special place in transmission, consist 
of one or several bands ol Irapesoidal section (Fig. 18'J) and are 
used instead of flat belts. Cross-sectional area varies, depending 
on^he dimensions a and h; the smallest dimensions are 10 and 
6 mm, and the largest 50 and 30 mm, respectively. V-bell drives 
are used when centre distance between shafts is short and trans­
mission numbers are large.

157. Chain Transmission

Chain transmission is a special variation ot Ihe^plianl connector; 
the belt is replaced l>v a chain whose links mesh with the teeth 

of a sprocket wheel, pre\ ent slipping, and ensure 
a constant speed ratio. Chains are used for 
high transmission numbers (up to 15) and can 
imparl aa_much us 5,000 lip. 'they are mostly

Fig. 11)0 Fig. 1D2

used when the dislancV'be-lween centres is short. But they are 
also employed when the centre distance is as much as 8 m.

Various types of construction are used lor I lie chains, depend­
ing on their intended function. Fig. 100 shows a type of roller 
chain. The drawing shows that the chain consists ot flat pin- 
conneeted links A and rollers B. The rollers are freely mounted 
on bushings and when the drive is in operation tliev mesh with 
the teeth ot the sprocket wheel (Fig. 101). Double- and multiple- 
width chains of this kind are used tor heavy-duty transmission.

The loollwd chain shown in Fig. 102 is1 an improved type 
which works very smoothly and makes great speeds possible. 
It is also .called the noiseless chain.

The possibility of regulating tautness is also incorporated into 
the construction of chain drives by means of tightening-pulleys 
and other devices.

158. Friction Transmission Between Parallel Shafts

The belt drives we have studied thus far utilise friction between 
the belt and the rim of the sheave. But the force of friction can 
act directly without recourse to a pliant connector if the cont-
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acting parts are pressed to each other with sufficient force, 
resulting in a friction transmission.

Fig. 193 represents two smooth cylindrical rollers fixed to 
parallel shafts Ox and 02. If two equal and opposite forces Qtmd 
0' are applied to the shaft centres, they will cause friction between 
the surfaces of the rollers, the magnitude of which will depend 
on the amount of applied pressure, the material of which the 
rollers are made, and the condition of their surfaces. This friction 
contact will cause the driven shaft to revolve. If friction is in­
sufficient to overcome the resistance oi the driven shaft, the 
cylinders will slip against each other. Accordingly, if the drive 
is to work satisiactorilv, it must lie so built as to create the

greatest amount of Iriclion. Various materials are used in the 
construction ol the rims: both may be of cast iron or one may 
be of cast iron or steel while the other of “Lextolite”, etc. 
Fig. 194 shows a pair of friction wheels of which the smaller is 
made ol leather rings compressed longitudinally by means of 
two washers.

When there is no slip, the peripheral speed of both drums 
will he alike. 1 lenec in this case Eqs (12t) and (122), which were 
evolved for drives with pliant connectors, are fully applicable 
without rcservalion.

Eq. (129), in which il/x is the torque on the driving shaft 
and i2l is the speed ratio between the two shafts, is also appli­
cable.

FricLion rims can likewise operate without being in immediate 
contact with each other. For instance, rotation can be transmitted 
through a steel or leather ring pressed between the two rims 
(Fig. 195).

Illustrative Problem 79. Power N ■= 1.5 hp is transmitted by shaft 
0 , to shaft 0 , (Fig. 195). The diameter of the driving wheel, which attains 
n, =  200 rpm, is D, =  400 mm. Both rollers arc of cast iron (coefficient 
ot friction / =  0.15).

Fig. 193 Fig. 194
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Find the 'diameter D* of the driven wheel if It must attain n, =» 
=  1,000 rpm, the required pressure Q, and the torque on the driven shaft. 

Solution: through Eq. (122) we find the diameter of the driven wheel:

Dt hii = D,-^- =  400 200
1,000 80 mm.

To determine force Q, first the effective pull P transmitted by the 
wheels must be evolved; to find this, we must calculate the torque. 
From Eq. (84) wc obtain the torque on the driving shaft:

M, =  71,620 —  = 7 1 , 0 2 0 =  537.15 kg-cm.n, 200 °
Hence the effective pull

2 M ,  

7f, -  “W
1,074.3— — = zn.oo Kg.

Pressure Q is determined through the equation P =  fQ, from which

0 = J  = -(j-frf =  179 kg ’ or 180 kg.

It should be noted that 180 kg is the minimum possible pressure.. 
Depending on working conditions, a reserve must be added to Q 
so as to make up for irregularities in the work of the drive. This required 
reserve force may be as much as 100%, in which case force Q must be 
twice 180 kg, that is, 300 kg.

Torque A/r on the driven shaft can be d*tcrmmed in various ways: 
a) since effective pull is alike for both wheels wh m there is no slip, 

we find M. by multiplying the effective pull P  by the radius of the 
driven wheel:

A/ 2 =  P  — = 26.86 x — =  107.44 kg-cm;

b) we can obtain the same result by using Eq. (126):

Af, Af, _  _A#j_ = 537.15
*2,1 "" ® 107.43 kg-cm*;

'll
c) finally, we may find the torque through Eq. (84):

M, =  71,620 —  -= 71,620 x — — =  107.43 kg-cm.Jlj • lfVvU A,
* T he neglig ib le d isc re p an c y  of 0,01, kg-cm  is caused by t h e ^ u n d  

nu m b ers  u sed  in  d e te m in in g  E,
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159. Friction Transmission with a Variable Speed Ratio

Friction transmission is especially practical when it is employed 
to give the driven shall variable speeds from a driving*shaft 
revolving at a constant speed.

Assume that the two cones in Fig. 185 arc mounted one above 
the other on parallel shafts with a small intervening space. 
Instead of a belt we will use a ring on the lower cone. When the 
ring is pinched between the two cones (as shown in Fig. 195) 
the rotation of the driver will be imparled to the follower. By 
sliding the ring along the length ol the cone we can obtain any
rpm of the driven shaft, ranging from to n, ■

Fig. 19(5 represents another tvpc of iniinitoly-variable fric­
tion transmission between parallel shafts. Assume shaft I  to 
be the driver and shall II  the lollowcr. Discs .lj and A2 are 
fixed to the ends ol the shalts. Between the discs there is an 
idler-pullev II which can be moved along the shall on which 
it is mounted and laslened in the position required. Assume that 
shaft / executes rpm. 11 tlieie is no slip between the discs 
and the pullev, the peripheral speed of the pulley (when it is in 
the position shown in the drawing) will be equal to the speed of 
any point on disc Ax lying on a circle with a radius ol li'; that is, 
its peripheral speed

»i
2 r/V'n, 

00 mm /sec.
The same speed will be attained on disc Aa at any point lying 

on a circle with radius li"; this speed, at n2 rpm of the disc, 
will be

2-rlVn ,v ,— - -jjj- - mm/seo.
Since o2 - y,, then

ho ' "no

or R'rix - R"nz from w'hich
IV
li" '

Thus wc see that the speed ratio is equal to the inverse ratio 
of the distance of the middle section of the pulley from the 
geometrical axes of the shafts. The greatest possible speed ratio
i21 is — , while the smallest possible is With the aid of * r2 *̂2 
this mechanism it is possible to obtain any speed of the driven
shaft, ranging from /q to n1~ -

It is easy to understand that the driven shaft will rotate in 
the same direction as the driver.
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Assume that Fig. 197 represents two pairs of frusta-cones 
At and A2, and Bt and Ba, fixed to driving shaft I  and driven 
shaft II, respectively. The cones are mounted in sliding key- 
ways *8nd the distance between each pair can be adjusted by 
a special device. Both pairs of cones are in contact with a steel 
ring C (shown in cross-section). The driving cones, when pressed 
to the ring, will make it rotate through Iriclinn and the ring 
will transmit the rotation to (he driven cones and through them 
to the driven shaft II. When the ring is in the position shown

in the drawing, the

If the cones on the driving shall arc moved further apart 
and the second pair of cones moved closer together, radius R1 
will decrease and radius Ii2 will increase and the speed ratio 
will diminish correspondingly. In this way, within cerlain lim­
its we can obtain any rpm on Hie driven shaft although the 
driving shaft is rotating at a constant speed1'.

Sometimes it is required that the rpm. transmitted by the 
driving shaft to another shall on the same axis, be changed. 
Such a transmission is shown schematically in Fig. 198: driving 
shaft I transmits rotation at variable speeds to shall II, lying 
on the same axis. Two friction cones A and li with concave 
sides are fastened to the shafts. Two rollers C and D are clamped 
between the*sides of the cones. The driving cone A transmits 
rotation to the driven cone B by means of these rollers which 
rotate about their axes. The shafts on which' Lhe rollers are mount­
ed can be adjusted to any required angle with respect to 0 X 
and 02, contact between the rollers and the cones taking place 
along circles of dilferent radii on the side surfaces A and B

* Transmissions of this construction arc also made with special 
kinds of V-bclts, chains, etc. in place of the ring.
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and with a corresponding change in speed ratio. The speed ratio 
for the position of the rollers, as shown in the drawing, is

The above are various examples of friction transmission in 
mechanisms used for infinitely-variahlc speeds of rotation and 
are called friction speed variators. They arc widely used, partic­
ularly in machine tools.

Oral Exercises
1. Docs tlic speed ratio of the drives shown in Figs. 195 and 197 

depend on tlie diameter of the ring?
2. Does the speed ralio of the drive in Fig. 19fi depend on the dia­

meter of the 7-oJler 7??
3. In what direction does the driven cone rotate in relation to the 

driving cone represented in Fig. 198?

1(50. Spur Gears
If we take a cylinder and cut regal arly-shapsrd grooves at 

equal distances from each other around its surface, we shall have 
a spur gear.

X/Zz

Fig. 199

If we put two such gears together so that the teeth of one mesh 
into the spaces of the teeth of the other and mount both on 
shafts 0 i and 02 (Fig. 199) rotating in stationary bearings, one 
of them, the driver, will put into motion the second, the follow­
er. In this instance the teeth are cut on the external surfaces 
of the cylinders; such gears are called external gears, as distin-
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guished from internal gears, such as shown m Fig. 200, where 
the teeth on gear I mesh with gear II whose teeth are on the 
internal surface of the cylinder.

When these gears rotate, it is as if two cirCffee with centres 
(?! and 02 are rolling against each other without slipping and always
coming into contact at a cer­
tain point P lying on I he line 
of centres Ol and 02. These 
circles bear the name of pitih 
circles and correspond with I he 
circumferences oi the friction 
wheels already shown in Fig. 
193. They differ from the latter, 
however, in that there may 
occur a slip between the 1 riel ion 
wheels, whereas there can be no 
slipping along the pitch circles 
of spur gears since the teeth 
prevent it. From This it is clear 
that toothed gearing is more 
dependable when torque is great 
and the speed ratio must be 
maintained with precision. Fig. 200

1(51. Speed Halio and the Transmission Number 
of Toothed Gears

Since there is no slipping beLween pilch circles when toothed 
gears rotate, we may therefore applv the same principles m 
determining their speed ratio as for linding the speed ratio of 
a belt or friction drive and thereby obtain the same Eq. (122):

in which, in the given ease, I \  an 1 D3 correspondingly represent 
the diameters of the pitch circles ol the driver and lollower gears.

It is clear that diameters J)1 and D« must be known to deter­
mine the speed ratio. But piLch circles are not visible on gears 
and it would be very intricate to measure their diameters. Hence 
the formula must take a dilferent form.

Since the teeth of the gear are arranged round its circumference 
at equal distances, these distances correspond to the arc of the 
pitch circle stretching from a point on one tooth to a correspond­
ing point on the next tooth, or (which is the same;, from the 
cehtre or edge of one tooth to the centre or edge of the next. 
This distance is called the tooth pitch and is designated by the 
letter t (Fig. 199). Obviously gears thaL mesh must have the 
same pitch. The tooth pitch is equal to the length of the pitch
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circle divided by the number of teeth. Thus by denoting the 
number of teeth as z, we obtain

33y equating the tooth pitch of the driving gear and the tooth 
pitch of the driven gear, we evolve

Z]l' 7 T l ) or

whereupon the said Eq. (122) becomes

(130)

i n
n (131)

Wherefore the speed rulio of a pair of gears is inversely equal to 
the ratio of the number of their teeth, or, which is (he same thing, 
inversely equal to the inlio of the diameters of their pitch circles.

This applies both to external and internal gears, the only 
difference being that in external gears the driver and follower 
rotate in opposite directions, whereas in internal ff>ar they ro­
tate in one direction.

102. Kinematics of Drives 1‘ossessiny 
More than One Pair of Gears

We will henceforth sehemali 
corresponding to its pilch eirel 
ing the gear will also denote tl

The conventional indication 
shown in Fig. 201t>.

Fig. 202 represents a train ( 
is the driver. For conventional

•allv represent a gear by a circle 
' (Fig. 201), and the leller denot- 
c number of its teeth. II the gear 

is lixed immovably to the 
shaft, we shall mark its rim 
with a cross (Fig. 201u).

dears need not necessarily 
be immovablvfixed tothe shaft; 
they are often mounted on a 
key which moves in a keywav 
in the shaft, or the gear may 
be moved along a spline fastened 
to Lhe shaft. In both such 
cases the gear rotates with 
the shaft but ran be fixed 
at any point along its length*, 

for this method of mounting is

f gears, from z, to za in w'hioh z1 
brevity we shall put a sign x be-

* This method of fastening gears to shafts is frequently met with 
in machine tools.
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tween the letters representiny years that arc meshed'toyetheh, 
and a lony flash -  between those representing years on one shaft 
or on a common bushiny Acoordinyly, the chain of years shown 
in Fig*202 may be written schematically in the following way:

Zi X Zi — z3 X z4 -  z„ X z„.
Assume that the driver z,, attached to shaft Ov makes n, 

revolutions per minute and it is necessary to find Ihe rpm ne 
of the last driven year z8

n s  2 0 2

We obtain the ipm of shaft Ot through Eq (131)
. n z,"z =  - J •

On examining shaft 03 we see that it m  eives rotation by 
means of gears z3 and z4, of which the fust is a driver. Their
speed ratio, therefore, is i32 =  —, and the rpm of shaft 03 is

Z4

ns ~  nzh z =  nih,ih 2 ~  ni 7" x 7” •
z i *4

Gear ze receives rotation from gear z5, their speed ratio is 
i4(3 =  and the rpm of shaft 04 is

n i —  ^ 3 l 4,3 =  n i l 2.1l 3 l 1l,3  =  n i ~  X  “  *  ( 1 ^ 2 )
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The quotient obtained by dividing the rpm n4 of the last driven 
shaft 04 by the rpm nx of the first driving shalt will be the to­
tal speed ratio i4il; hence it will be

( 4 1 fa , 1*8 2*4,3■ 0 * ^ )

According to our line of reasoning it is therefore apparent 
that Eqs (132) and (133) can be applied to any number of pairs 
of gears.

Wherefore, the total speed ratio is equal to the product of the 
individual speed ratios of all the pairs o/ gears in the train.

But it must be noted that the direction ol rotation of the 
last driven gear is Lo be taken into account: for it is clear Lhat 
if there is an even number ot axes between the first driver and 
the last driven gear, the former and the latter will rotate in 
opposite directions; and il there is an odd number of axes be­
tween the said exlieines, they will rotate in Ihe same direction. 
In the I rain of gears we have just considered there are two in- 
termediaiy pairs ot gears (z2Zj and z4z5), therelore gear z# ro­
tates in the opposite direction to driver gear zv

A comparison of the above equations wilh «£qs (123) and 
(124) will show that the kinematics of toothed gears and of 
drives with plianl connectors are alike. That which was said 
in Sec. 132 concerning the airangement of the driverand the driv­
en wheels also applies to the trains ot geais we have just con­
sidered.

Oral Ext'iu.ses
1. If wo reverse I lie* pl;ic-( s of geais z, ;in<l z , will il change the rpm 

of shall 0, shown m tig. 202? Will it change the lpm ol shalt Os?
2. Will tin- ipm ol shall <), he changed il z, and z3 are each increased 

m limes; or if z, is mcieased m times and z, is decioased by the same 
amount; or if z1 and z0 are each mcieased in limes?

Illustrative Problem SO. The I rain of geais shown in Fig. 202 consists 
of a gear possessing z, — 20 teeth mounted on diivmg shalt Ov and of 

five oilier g< ars whose number ot teclh are z, = 
=- 50, Zj -  00, z, = 00, z, = 23, and z„ -  100. What 
are the ipm n3 and nt of shalts Oj and 0 4, if n, is 
equal lo 1,500 rpm?M Ivm

* tua1
^Z

Solution:
n, = n. z.z. = 1,500 : 

and
n, = n, z 'z,Zy =  1,500 x

20
50

30
'60 ,= 300 rpm

Z,ZaZ6
20 x 30 x 23 
50 x 60 x 100 = 75 rpm.

. , Illustrative Problem Al. 1 he driving gear on shaft I
Fig. 203 in j.]g. 203 possesses z, = 14 teeth. The number of 

teeth on the olhi r g< ars is z2 = 70, z, = 15, and z4 = 
= 45. It the driver shalt attains n, = 750 rpm, what are the rpm of shalt 111"!

Solution: n3 — n. Z.Zj
z,z. = 750 x 14 x 15 

70 x 45 = 50 rpm.
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163. Statics of Toothed-Gear Transmission

Now let us determine the relationship between torque and 
effective pull in parallel-shaft gear drives, just as we did for 
drives with.pliant connectors.

Assume that shaft Ox transmits rotation to shaft ()3 (Fig. 204) 
according to the scheme z} X ^  ~ "3 X Eet us iind the torque 
on shatt 03 if the torque on shaft 0 1 is Mv By denoting the pitch- 
circle diameter ot the gear on this shall as Ox, we obtain Lhe 
elleclive pull l*x of tins pilch 
circle as „ ,

n — A1* -  2M± 
1 n,

This effective pull will be 
transmitted to the teeth ul the 
driven gear z,. I lence the torque 
on shalt 02

= Px
/)„

Dl * 2P - — M l>2 1Vl1 1),
while the elfective pull P, on the pitch circle ul the second driver 
gear z3 will be equal to the torque Al2 divided by the radius 
ot the gear, i. e.,

21/
h,

h.
1 »,

x 1

r > ,  ‘
The same elfective pull is transmitted to gear z4 of pitch- 

circle diameter Dr Therefore the loique on shall ()3

M3 = 2 M n
1 h, X D,

21) ,
M,  ”  X hi

‘
From the above Eq. (1 .iI) it lollows that the diameters of 

two meshing gears are piopoi honnl to the number of their
teeth, i.e., and =  —, fiom which wc finally obtainUl Z\ J) 3 z3

M3 =  Mx — x y- ■ (134)1 Z1
But —-■ is inversely equal to the speed ratio i31.
Therefore

M3 =  , (135)' m

in which Mx is the torque of the first driver, A/3 is the torque 
of the last driven shaft, and i31 is the speed ratio.
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Wherefore, the torque on the driven shaft of a gear drive is equal 
to the torque on the driving shaft divided by the speed ratio.

If we take harmful resistance into account, we must include 
the efficiency of the drive in the equation. Accordingly, It be­
comes #

(136)

The efficiency will depend on the workmanship of the teeth, 
shafts, and bearings in which the slialts rotate. Loss due to

friction between well-meshed 
tcetli is not more than 1 per 
rent. *

Illustrative Problem 82. Fig.
205 represents the kinematic 
scheme of a winch with a hand 
crank. Shaft I is rotated by 
crank A. There arc two gears 
on this slialt, z, =  12 and z, = 
= 22. A block of Lwo gears z, =  
— 30 and z t = J?3 is key-mount­
ed on slialt /"/; z„ can mesh 
with z, and z, with z t. Gear 
z, =  12 meshes with the big 
gear z(, =- 72 on shaft I I I  which 
cairics the diuni H upon which 
the rope is wound. The drum can 
be rotated by cither of two 

schemes: shalL/ - z, /  z - z, x z0 -  />; or /  — z, x z, — z„ x zn — U.
Determine lhe following when the winch is woiking according to the 

first scheme: a) the elleclivc pull P that musL be applied to crank A to 
raise, with the aid ol a fixed pulles, a load G =- O.li Ions; b) the 
speed o at which Lhe load will rise it the crank is turned at the rate of 
n, =  25 rpm ; c) the power expended on the crank (the arm of the crank 
a =  300 nun, the diameter of the dium d =  200 mm, and the efficiency 
of the winch — 0.9).

Solution: 1. Accoiding to Eq. (130) the torque on shaft III

Fig. 203

M M,
V-

whence the torque on shall I  M , — Pa =  P  x 0.3 =  0.3 P kg-m;

3, 1
12 12

"  30 X 72 X 18
0.3P

and i] =  0.9. By restating the equation, we obtain M 3 =  —1y— X 0.9.
18

But on the oilier hand, =  G-^ =  000 x —  = 60 kg-m. Hence,
60 =  0.3 x 18 x 0.9 P, from which the effective pull P  =  12.3 kg. 

2. If the crank attains n, =  25 rpm, shaft I I I  will receive n„ =  rqij.j *  
25=  -rrr rpm, and the speed at which the load is raised will be equal tolO «
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the peripheral speed of the drum, i.e.,
ndn3 jr0.2 X 25 „ _.v =  -gQ- m/sec =  (jQ x =  0.015 m/sec 15 mm/see.

3. The pouer expended, as found by F.q. (82), is N  = —  , in which 4 /o
P is the force applied to the crank and d is the linear velocity of a point 
on the crank describing a ciicle of ladius a and which is equal to

_ 2 ia n ,  _ -r0.3 / 25
00 xT',000 “ “ 30

!*> 5 T v 0 1 on;Accordingly, JV = — - „„ ?«0.13 lip.30 \  /o 1

ll>i. Idler Gears
Fig. 206 represents Ihree inlenneshing gears r,, and z„, 

the former being I he driver. Let us determine the speed ratio 
between shafts 0, and O,.

The speed ralio between 
shafts 02 and ()1

In comparing shafts 0, and 
03, we see that of the mating 
pair of gears z2 and z.t. the Firm­
er is the driver and the speed 
ralio

Consequently, the total speed

h,i =  L..L • ~ - X I X ZzL •-J
Thus we see that the speed ratio between shafts 03 and Ot 

does not depend on the number ol teeth in gear z2 on the middle 
shaft ()2. lienee z2 is known as an idler qc<tr. By eomparing it 
with the other two, we lind that it is simultaneouslv a lollower 
with respect to gear zx and a driver in relation to gear z3. This 
is the distinguishing feature of an idler gear. Whether a gear 
is an idler or a working gear depends, of course, on the role it 
plays in a given chain ot gears.

Idler gears are used in two instances. In Ihe first place, if 
motion is to be transmitted between two shall.s spaced so far 
apart that the gears would have to he made very large, one 
or more idlers are used. With their aid rotation can lie transmit­
ted through any intervening distance irrespective of the diame­
ters of the working gears. In the second place, when gears zx 
and z9 mesh together directly, their shafts will turn in opposite
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directions. But if an idler year is used between them, the driven 
gear will rotate in the same direction as the driver. According­
ly, in the second instance idler gears are used when it is neces­
sary to change Lhe direction of rotation of the driven gear.

It therefore iollows that an idler gear is a (/ear whifh simulla- 
neouslg meshes with two other gears, and is a follower in relation 
to one of the gears and a driver with respect to the other. An idler 
gear does nut change the speed ratio beluieen the other two gears, 
bat it does change the direction of rotation of (he driven gear.

Oral Fxercises
1. Tt is ncccssniy for shall O, in Fig. 2(M> to Liansmil rotation to shaft 

0 1 in a din rtion opposite to its own. (oars z, and z, do not mesh with 
each oilier. I low many idJt i gems will lie neodid?

2. Will I hi- speed i id m i lM (I Mg 20(i) ( liange it gears z, and z, or z2 
and z, are inleiihangi d?

Illustrative Problem tilt. I 'in. 207 represents a liain of gears in which 
shall O, liansimls inlalmn to shall O, in lh" following way: a plate 
and its handle A Inrn lrci Iv on shall O,. 'lhe p'ate canies, on pins t>„ 
and 0 .„ Iwo geais z and z, which aie in lonslanl mesh with each oilier. 
z„ is also conslunlR in nu sli will) gear z, on shall ()t \\^*on Lhe mecha­
nism is in tile position shown in lhe (hawing, lotalion fiom shaft 0 , is 
not tiansmittid In cause z, is not in mesh with any of lhe other gears. 
If we pull the handle A in the direction ol arrow t, gear z2 will mesh 
with lhe chiving gear z, and lhe mechanism will wort accoiding Lo 
scheme z, - z„ z,. Rotation of lhe chivcn shall will be in Lhe direc­
tion of arrow

If we pull the handle A in the direction of arrow 2, the driving gear 
z, will be in mesh with gear z, and the mechanism will work according 
to scheme z2 x z, x z2 \  z,; gear zt will rotate in the direction of arrow 
2' (opposite to lhat in lhe first example). We thus sec that in the first
case there is one idler "gear and the speed ratio i4ll =•— ; while in the
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m
second case, with two idler gears the speed ratio i4il =  — but rotation

in the opposite dmction This nriangement is called a reverting 
mechantsm and is us"d in H i m ad (ulLiiig lathes to icvei sc the direction 
of the carnage and also to disengage it fiom the 1 lansmission.

Illustrative Problem C4. In the tiain of gcais illustiatcd in Fig 208, 
the dnving gear z, tiansnnts lotalion to (line gcais z,. z9, and z10 in 
accoidance with the following schemes 1) z, - z x zt , 2) z, x
x z x z, z„ x z- x z n, ‘1) z, " r, - r x z„ hind
the rpm of shalls O , (),, and O if the ipm ol s l n l l  0, equals n,.

Solution 1 I lie i pm of shift 0

2 '^lie ipm ol shill 0„

ne -  n, (giais z and - u< icll is)- - 0
3 I he rpm of shall O,

n — n, (g> n z is an lellei)Z Z ~ê

Ki.l. .Spiir-tiimr DiilVienlial Alcedimiisiiis

In llm gcai tiansmissioiis we* li i\e thus hi im esligaled all 
the component gcais icdate alieml kxed axes inel molton is 
transimtlul by one elmei V nioie eonipkx time shall now be 
examine: d

In big 20‘), n pie.se. ntmtf sue li a me e hanisni, (lie pan of gcais 
.1 and A aie mounted as billows mat 1 ievokes mound the 
hxeyl axis 0,, while uound (be same axis but mde penile ill ol gear 
A, an arm B (c died a spiihr) may linn in eillm dim Lion. To 
arm B gem A is mounkel on a pm (axis 0 ) mound winch ll lieely 
luins anel simultaneously me slits with g< n 1

Thus the iolalion ol gem A is a combination of Iwo rolalions. 
it rotales togethci wulh arm B anel it also lolates in relation to 
arm B. This arrangement allows us to select the number of 
revolutions of geai A and arm B, the diiection of rotation of 
each ol them and the number ol teeth on A and li, thus obtaining
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any desired rpm and anv direction of rotation of the driven 
gear K. Such a mechanism, which can combine several independ­
ent motions, is called a ililferentml.

The above described differential is the simplest tvpe & more 
complex mechanism of this kind is shown schematically in Fig. 
210. Gear A, which is part of bushing E, receives rotation from 
one source, while shaft I which receives rotation from a second 
source turns Ireely within bushing E. Fastened to the left end 
of shaft / is crank D on the end ol which is a bushing and in 
which shaft II  rotates. Gears Cand I) are fixed to either end of 
shalt II. C meshes with gear A, and D meshes with gear K which 
is on a separate shall I I I  whose axis coincides with shaft I. 
When shaft I rolales, gear C rolls around gear A and rotation 
of the desired speed and direction is transmitted through'gears 
D and K to shall III. The intermediate gears C and I) are called 
planetary geais. Geais A and h, around which Lhe planetary gears 
roll, are known as solar or central qcais.

There is a variation ot I his mechanism: gear A does not revolve, 
whereupon rotation is tiansrnilted to shall 7//Jrom shall / alone. 
This type of transmission is called a planelmy qtor train.

The ability ol these mechanisms to transmit rotation from a 
number of sources, the possibility ot their adjustment to obtain 
very low speed ratios as well as rotation in any direction, and 
also their compactness, has brought them into wide use in machine 
tools.

In the above examples the central and planetarv gears are 
external, but similar drives can also be arranged w'ilh internal 
gears.

1G(>. The Geometry ot Toothed Gearing
To express the pitch-circle diameter I) in relation to the tooth 

pitch t we use Eq. (130):
I ~rD

z
from which

D — — z. (137)

Accordingly, the distance A between axes 0, and 02 of the 
two meshing gears, as shown in Fig. 199, is:

A -  0,0 _ + n = -  x (138)
A 71 A

But when this centre distance is expressed through the incom­
mensurable quantity n, it cannot be calculated exactly and the 
fraction obtained is clumsy and inconvenient for practical use. 
Nevertheless, this measurement must be obtained with great
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precision when assembling a gear mechanism. For this reason 
a quantity called the module. expressing the relationship of the 
tootti pitch to n has been introduced. Since the tooth pitch is 
expressed in millimetres, whereas 7t *  an abstract quantity, the 
module is therefore also expressed in millimetres and denoted 
by the letter m Arcoidingly,

m =  —- rnm (139)

and the tooth pitch
t =  nm mm. (HO)

I}y adopting this quantify,
Eq (137) offers the following 
expression toi the duimetei oi 
the pilch circle

D -  mz, (HI)
that is, (he diameter of llu pitch 
circle in q&lrs, er pi esse el in 
millimetres, is equal to the 
module multiplied hq llu number 
of leelli

From Ibis a simple cxpiession 
is evolved loi I lie untie  dis­
tance

A - m z' £ r (142)

that is, the unhe dislaiue in millimetres is equal to the modjle 
multiplied bq half the number of teeth of the mcslunq qears.

The poition ol the tooth, extending beyond the pitch circle 
efgh (Fig 211), is called its point while the pail lying within the 
pitch cue lc fhlq is known as the tool \nd conespondingly, the 
radial distance h' from the pilch cncle to tie  top of the 
point is called the addendum, and llu ladial distance h" from the 
pitch circle to the hot lorn ol the tool is called the dedendum. 
These distances, relative to the module, arc

h' m, and (143)
h" = 1 2 m, (144)

hence the whole height of (lie tooth li -  h' i ir  2 2 m (145)
Knowing the addendum of I he tooth, then the diameter De 

of the circle against which the tips of all the teeth lie and which 
is called the addendum circle, can be expressed os

D, =  D 4  2 /i' ,
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which, after substituting the values of D and h' from Eqs (141) 
and (143), becomes

De = mz -J- 2m = m(z -|- 2), (^46)
that is, the diameter of the addendum circle is equal to the module 
multiplied by the number of teeth plus 2.

Wc find diameter Dt of the dedendum circle in the same way:
Dx — D — 2h" =- mz — 2.4 m -  m (z -  2.4). (147)

It is easy to see from the above that the following relationships 
are ohLained for internal gearing:

D0 -- D - 2li' - mz -2 m  m (z -2) (148)
and ‘

A  D | 2/i" - mz H 2.1 m - rn (z | 2.4). (149)
The tooth pilch I is measured along the pitch circle and is 

equal to the thickness of the tooth s phis the width of the tooth space 
S/s, in which the thickness of the tooth is equal to the widLh of 
the tooth space, i.e.,

s st, 0.5/ -  0.5 Tim. (150)
Besides 1 he gear dimensions indicated above, there is also the 

face width b (i.e., the width ol the rim ol Llie gear). There is no 
exact standard lor this dimension; it is selecled m each individual 
case according to the load to he borne by the tooth.

In the U.S.S.lt. there is an approved standard of modules 
(see Supplement III).

In tin* United Stall’s and (oral Britain, diametral pitch is used instead 
of the module. Diamelial piteli is expiessed in inches and is the quotient 
obtained by dividing the number ol teeth in a gear by the diameter of 
the pitch circle. In other winds, it ma> be said that dumutral pitch is the 
ratio of the number of teeth in a gear per inch of its diameter of pitch circle.

By denoting diametral pitch as p we then lore obtain

p — (in inches). (151)

If D and I be expressed in inches in the equation z 
equation be placed in the above Eq. (151), then

txD n . . .  n = z =  — (m inches),

that is, diametral pitch is equal to n divided by the tooth pitch expressed 
in inches.

To find the relationship between diametral pitch and module, we 
place D = mz (mm) into Eq. (141) and, bearing in mind that one inch =  
= 25.4 mm, we obtain

mz 25.4
r = z : -2SA--------

"j- and this

(152)
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We thus see that the module is the reciprocal of diametral pitch: 
the larger the one, the smaller the other. It may likewise be said that 
as the rnodul'* increases, the tooth pitch also increases, but with an 
incrc*c in diametial pitch the tooth pitch decreases.

Oral Exercises
1. Calculate the tooth pitch lor modules of 2 mm, 5 mm, and 10 min, 

respectively.
2 If / =  15 mm is the result evolved from calculation of a tooth 

pitch what is the nearest \aliu ol the module that corresponds to this 
pitch (see Supplement 111)?

Illustrative Problem 115. Calculations show that the tooth pilch of a 
gear ol 2 = (50 teeth should be appio\imatil>, but not h ss than, 15 min. 
Calculate the duel elements ol the geai.

•  i r>Solution: the module m pa—■ 4.7751. Hy choosing the nearestJT
largT modul* as m -  5 mm, we Imd that the addendum h' - 5 mm, 
the d 'dendum h" - 1.2 5 5 mm, tin hi mill ol the tooth /i —11 nun.
The tliu km ss ol th* loolh and width ol tin loulh span aie each equal 
to s - s(, — 0.5 Tin fh 7.8a mm. '1 lie dimictu ol the adduidum circle 
De = 5 ((>0 4 2) — 310 mm.

Illustrative tj^ohlem Ufl. Find lie module ol a gcai hy making the 
requued miasuii incuts.

Solution: we niensuic the diamelii ol the add’iuhim cncl* and lmd 
thaL it is, loi example, 125 mm. 11 the immhei ol teeth aie, tel us say,

12536, then the module will he m ,7 3 5 mm.35
Illustrative Problem JI7. A gi ar of z 15 teeLh and a module of 4 mm 

is to be made. \\ha( musL h. llie diamelii ol the linislud blank, and 
the culling depth ol the milling machine?

Solution: I lie lathe opualor must machine the blank accoiding to 
the diameter ol the adduidum cnile; Lins must he I)e - t (45 -f 2) = 
=  188 mm.

The milling machine opuatoi niusl cuL Ilu* loolh spaces to a depih 
equal to Lite lull height ol Ihe Lei th h 2.2 -- 1 = 8.8 mm.

Ki7. Cluof Forms of Spur-Gear lecth
In order that a mating pan ol gears opnale satisfactorily, 

the sides of the lecth on bolh gears are given precisely Ihe same
form. The curve ol Ihe side smi 
(Fig. 211). The piolile lor the 
must be designed so as to 
ensure uniformity of speed 
ratio for all moments of lime. 
The most common curve for 
this profile is the involute curve. 
Teeth of this shape are called 
involute teeth.

Gears are also distinguished 
according to their form along 
the face width, the most com­

ace oi a Loolh is called its profile 
tec Ih ol a pair ol mating gears

Fig. 212
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mon form being the straight spur gear shown in Fig. 212a. If the 
lines along the face width are slanting, the gear is called a helical 
gear (Fig. 2126). Often helical gears are cut as shown in Fig. „212c, 
where each tooth line along the face width is formed of two 
slanting segments meeting at an angle. This type is called a 
herringbone gear. Both helical and herringbone gears’ result in 
smoother transmission, and the herringbone type of teeth lend 
particular strength to the gear.

1G8. Intermittent Transmission of notation

In transmitting rotational motion it is sometimes required that 
the continuous rotation of the driver shaft be changed to intermit­
tent rotation of the driven shaft, the latter pausing fully a number 
of times during the course ol each revolution. One of the mecha­
nisms used lor this purpose is the Geneva wheel, a simple type 
of which is shown in Fig. 21.‘3.

The continuously rotating ciank A, which is fixed fast to 
shaft 0„ has a driving pin /) made to lit into the radial slots 
C in disc B which is part ol shat I ()2. As the pin entcS s one of these 
slots, the rotating crank forces disc B to turn until tlie pin aban­
dons the slot, at which moment disc li stops turning and dwells

in this position. But as the crank continues to rotate, the pin 
enters the next sloL and again imparts rotation to the disc as 
before. In this way as the centre of the driving pin D describes 
a circle around axis Ox as it rotates, it will successively enter all 
the slots in the disc in a radial direction, first approaching axis 
02 and then receding from it. The number of pauses (periods of 
dwell) made by disc B will depend on the number of slots in the 
disc. It there are three slots, the disc will rotate between each
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360°period of dwell through an angle =  - g - =  120°; if there are

four^lots, it will rotate through an angle (i — 90°, etc.
Thus, whereas the driver crank A will rotate uniformly, the follow­

er disc B will turn intermittently. When the pin lirst enters a 
slot, the velocity v0 of 1 lie centre 
of the pin will he directed towards 
the centre of the disc and the speed 
of the disc will he zero. The disc- 
will subsequently rotate with 
increasing speed till it reaches 
its maximum when the crank 
coiifcidcs with the centre hue 0,02.
Then a slowing down will occur, 
reaching a full stop when the 
crank is in position 01F and the 
pin abandons the slot.

However, this simple type of 
Geneva wheel is not entnely 
satisfactory. If for some reason
the disc should turn c 'er so slightly after the pin leaves a 
given slot, all the slots will be thrown out of line with the 
crank, and when the pin is again ready to enter a slot, the 
latter will not be in its desired position and the mechanism will 
break. To prevent tins, the mechanism must be constructed 
so that the disc is locked m position during each period of

dwell.
A mechanism of 

this kind, in which 
the follower shaft Ot 
makes one full revolu­
tion with six periods 
of dwell equal to six 
revolutions of the 
driver shalt Ov is 
shown in Fig. 214. 
Disc A and the crank 
aie fixed fast to shaft 
Ov Disc B has radial 
slots, between which

it is cut away by arcs cil, the radii of which are equal to 
the radius of disc A. Disc A is also cut away fare ab), making 
it possible to clear disc B and rotate unhindered together with 
the crank, as shown in the drawing. As the pin abandons a 
slot in disc B, the convex side ol disc A slides into one of the 
hollows cd, thereby locking disc B in position. Disc A itself, 
however, continues to rotate, its convex side sliding through the
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hollow in (}isc B. This arrangement is used in cinema apparatus, 
in the reversing mechanisms of machine tools, etc.

Another type of mechanism for transmitting intermil lent 
rotational motion is llie ralchet-and-pawl (Fig. 215). A teethed 
wheel A, called a ratchet, is fixed fast to shaft 0 which is to rotate 
intermittent ly. The pawl B turns freely on pin Ox of the lever C 
and is pressed to disc A by a spring (not shown in the drawing). 
Lever C is pin-joinled by means of ()2 to slider E which, in its turn, 
is pin-jointed by means of 03 lo the crank D rotating around the 
fixed axle ()A. If the leelli are shaped as shown in the drawing, 
the pawl will be driven into a tooth space when the lever C swings 
counter-clockwise and will Lurn the wheel through an arc depend­
ing upon the amplitude ot swing. When the lever swings in Llie 
other direction, the pawl will slide over the teeth of the ratchet 
without causing the latter to move. In order to ensure that 
shaft 0 will dwell absolutely motionless during the given 
moment, a second pawl K, on a tixed axle, is introduced. 
The pin 03 can be set to any position in the slot of crank 
D for the purpose of regulating the amplitude of swing of lever C.

Ratchel-and-pawl mechanisms are used a great cteal in machin­
ery, particularly in planing and other machine tools.

lfit). Questions for Review

1. What i.s the dillciciue lv'lwcen llie speed inlios i ,, and i'I>2?
2. If the speed ialio i ,, - - , wind is Llie transmission number?
3. The rpm ol llie dm rn shall in a diive with plianl connectors must 

be increased m limes. Wlnil change must be made m I he diameter of 
the diising .shease? In the diameter ol the diiven sheave?

4. If it were nccessniy lo change llie direction ol lolalion of shaft 
O, in the lied dm e shown in Fig. 183 while maintaining llie same direc­
tion of motion of shall 0 ,, how should il be done?

5. If slip is ignored, is there any ddlerence in the speed of the belts 
between sludls 0, and Os, O and Oj, and O, and 0 4 in Fig. 183, when 
the sheaves are oT difleient diameters?

6. Are the torque and the power on shafts 0„ O., and O, (Fig. 
18.T) the same? (Neglect haindul resistance.)

7. If the rpm of Lhe driver are constant, will the speed ol Ihc belt 
on the different steps of stepped cones be uniform?

8. Given two pairs of gears—one external and the other internal. 
The number of teeth on llie driven' and follower of the drst pair are 
each equal to llie number of teeth on Lhe corresponding gears of the 
second pair. What will be the diiierence in (lie relation of the driven 
shafts?

9. What rearrangement can he made in a train of several pairs of 
gears without changing the lull speed rnlio of the train?

10. How can one tell the difference between an idl'-r gear and a working 
gear in a train of geais? When are idler gears used?

11. Will the rpm of shafts Ot and Ob in Fig. 208 change if gears z% 
and zs arc interchanged?
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170. Exercises
87. Fig. 216 shows a belt drive: between shafts 0 j and Oa 

is situated shait 02, to which is iixed a sheave of diameter D2 
connected by a belt with Ihe driver sheave I)x on one side and 
by another belt with the follower 
sheave D3 on the other. What are 
the rpm of the driven shaft ll the 
rpm of the driving shait are 

88 Shaft Ox (Fig. 188) executes 
1,500 rpm. Calculate the rpm ol 
shait 04 and also the torque on
that shaft, if the following data 
is ^iven: power N 22.5 kw, 
diameters of the sheaves I)t 
=  300, D, =- 450, J)3 200,

-  800, — 200, and l)„ -

Plan

=  250 mm. Fig. 210
80. Using the same data given 

in Ex. 88, determine Ihe rpm of shaft ()l and the torque of 
that shait.

90. (liven the rpm of shaft I  nx - 7o0 and 800 mm as the 
distance beLween two shalls(Fig. 196) At wlial distanceRx from the 
axis of shaft I  must the ioiler Ii bi mounted if shait I I  is to 
attain n3 250 ipm?

Fig. 217

91. Shaff I  (Fig. 217) transmits rotation to shaft I I  on which 
are fixed gears zx to z7. On shait I, gear z0 slides in a keyway 
and is permanently meshed with gear z'0 which rotates on ah 
axis fixed to the housing A. By moving this housing along axis 
Ox so that it is opposite any one of the gears zx to z7 and then 
bringing gear z'0 into mesh with it, it is possible to transmit ro­
tation lrom shaft I to shaft II  at the required speed ratio. Write 
all the speed ratios that can be obtained with this gear 
train.

239



92. In th^jfjltin of qcars shown in Fig. 218 shaft 0, transmits 
/?! =  150 rpHl'To shafts 02. Ov and Ot Calculate the rpm n2, 
nv and n4 of these shafts if the number of teeth on the years 
is as follows • z1 — .'10, z2 =  50, z3 =  20, z4 — 50, zs =  25, z6 3: 50, 
z7 =  20 and zg — 45.

93. Calculate the torque on shaft 04 in Ex. 92 if the power 
transmitted N =  1.5 hp.

94. Calculate the rpm of shafts 02, 03. and Ot of the mechanism 
represented schematically m Fig. 219, assuming that shaft 
04 executes nx — 300 rpm.
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CHAJ> T E H  XVI I f «

TRANSMISSION BETWEEN NON-PARALLEL SHAFTS

Follower

171. Transmission of Rotation Between Non-Parallel Shafts 
Through Pliant Connectors

Now that we have studied the main types of transmisSlbn 
for transmitting rotational motion between parallel shafts, 
we shall investigate transmission of rota­
tion between non parallel shafts that inter­
sect at one level and also Lhose that inter­
sect at a distance.

Fig. 220 shows a belt transmission be­
tween two shafts that intersect at a distance 
and form an angle of i)0°. In this trans­
mission the centre lines of (he belt seg­
ments advancing upon the pulleys A and 
D must lie approximately in the mid-planes 
of these respective pulleys. Such an arrange­
ment is classified as a quarter-turn trans­
mission. Kxperience shows that this kind 
of transmission operates properly it the 
segment of Lhe bell receding 1mm the 
driver forms an angle a not greater than 
approximately 25° to the mid-plane of the 
pulley. This kind of transmission is also 
used between non-parallel shalls that in­
tersect each other at a distance at an 
angle other than t)0°, in which case guide 
pulleys are sometimes used.

172. Friction TraiiMiiission 
Between Non-Parallel Shafts

Fig 220
Transmission between non-parallel shafts 

can also be accomplished through friction 
gearing. Fig. 221 shows a transmission 
of this kind called rolling rones: on the ends of shafts I  
and II, whese axes lie in the same plane and intersect at an 
angle at point (), are siluated two rollers in Lhe form of frusta- 
cones. If sufficient friction is created under the action of axial 
forces Qx and Q2 the frusta will rotate without slipping. Let us 
see how to determine their speed ratio.

Assume that at a given moment the two frusta-rollers are in 
contact along line Bb. We shall take any arbitrary point M along 
the line of contact (Fig. 222), where two points on the surfaces 
of the two rollers coincide. The point on the driving roller K
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lies at a distance of M N t from the axis of rotation If this roller 
executes n x rpm, the velocity at thte point will be, according 
to Eq (54),

v1 — 2nMN1nl.
In the same way the velocity of point L  on the surface of the 

driven rollei
v2 2nMN2n2

l
If theic is no slip, the velocities of the two points vull be equal, 
e , 27rMNln1 2-tMJS/2n2 from which the speed ratio is

n 2-rirv,  u \ ,
n, 2 i M M  ~ l/JV, (a)

Let us denote l)l as I he diameter A B of the base of the driv­
ing cone, and c/x as the diameter ab of its apex The light trian­

gles OMSlt OBI , and Obf aic similar, tiom which it Jollows that
1)1 l>[

OM ~  01) “  Ob

Likewise fiom the similanty ol tnangles OMN2, OBG, and 
Obq we obtain

MN__ 1 0  _ bq 
OM ~  01) ~ Ob

If we devide the tirst group by Lhe second, we obtain
M N, _  BI  _  bf 
M N 2 ~  130 ~  by '
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By equating this with the above (a), we evolve
__ B F  _ b f

0  . ; ; ‘2>1 BG ~~ bg

But BF =  $ d  BG =  while bf = ^ , and bg = ^  . 
whereupon we finally oblain

£ - - £ - •  (154)
that is, the speed ratio between two rolling frusta is inversely equal 
to the diameters of their bases or their apices.

Friction transmission between non-parallel shafts can also 
be accomplished with variable speed ralios. Assume it necessary 
that shaft I (Fig. 22d) with a constant rpin transmit rotation 
to shaft II, and that shaft II  rotate at varying angular speeds 
as needed. We mount Lhe cone A on Lhe driver shaft with its slant­
ing side parallel wiLli shaft 11 to which wheel B is mounted on 
a sliding keyway, thus making it possible to set it into any 
position. If we denote Dx as the diameter of the cone in the sec­
tion corresponding to the centre line of wheel B, then the speed 
ratio between the shafts

ha =  (155)

Therefore at nr rpm of shaft I, the latter can transmit varying 
rpm to shaft II, ranging from a minimum of nx to a maxi-
mum of ■"0Fig. 224 schematically represents a friction transmission with 
a variable speed ratio for geared shafts whose axes intersect at 
right angles. Disc A, which is fixed to the driving shaft I, is 
pressed to the friction wheel B .which moves in a keyway and

16* 243



can thus be set into any position along *haft II. Accordingly, 
it is possible to obtain a circle of contact between disc A and 
wheel D of any radius Rx With the wheel in the position shown 
in the drawing, the speed ralio fi

i 2,i =  • - (1 5 6 )

It is obvious that if the wheel is moved to the right, the speed 
ratio will diminish; if il is set opposite to the axis of shaft /,

the speed ralio will be zero and the driven shaft will not rotate; 
if it is moved si ill furLher to the right beyond the centre of the

disc, the direction of rotaLion of 
the chiven sliatL will be the op­
posite lo that when the wheel was 

Mo the leiL of the centre and the 
speed ralio will increase as the 
wheel is moved further from the 
centre. Hence if the driving shaft 
is rolaling at nx rpm, the rpm of 
I he driven sliaf L n2 will range
from 0 to nt in either direction.•*'o

Illustrative Problem 1)11. Fig. 225 is 
a general view of a friction press. On 
the driving shaft 0  which can move 
somewhat in an axial direction, are 
lixed two friction wheels B  and C. 
The rim of friet'on wheel A, which is 
fixed fast to screw d, is covered with 
leather. Screw d turns in a threaded 
bushing fixed in the frame of the press, 

and to its lower end is attached the ram D in such a way that the screw 
can turn about its axis. The ram slides in guides.

Let wheel A be pressed against wheel B, and if the driving shaft 
is moved in the direction shown by the arrows and the screw has a right- 
hand thread, it will screw into the threaded bushing and Impart down-

Fig. 225
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•ward motion to the rafc with an increasing speed os the distance of 
wheel A from the centre <)f wheel D increases. When this stamping 
operation is finish°d, driver shafL O is shifted in an axial direction to 
the £ight with the aid of a special mechanism and wheel C becomes 
pressed against A.  Then the screw will begin to turn in the opposite 
direction and the ram will rise with decieasing speed.

173. Bevel-Gear Transmission
Let us assume that we have cut tec(Ii on a pair of rolling 

frusta-cones in such a way that if their edges were prolonged 
beyond the apices of the cones they would intersect at point
0  (Fig- 226). We would then have a pair of bevel gears. Axes
01 and ()2 of the gears in Fig. 227 intersect at 0. forming the 
an^le b. Bevel gears are moslly used heLween shafts that are 
perpendicular to each other.

Assume that the gear on shall / has teeth, that the one on 
shaft II  has z, teeth, and that the driver gear makes z„ rpm, i. e., 
n1 - z2; thereby z2 y  z, teeth would pass an immovable mating 
point of the gears and the driven wheel would therefore execute
— =  zY — n2 rpm. From this it iollows that

i2,1
!h .^  z_L 
" ,  Z, (157)

Wherefore, the speed ratio i2A of bevel gears, just as of spur 
gears, is equal to the ratio oj the number of teeth on the driving 
gear to the number of teeth on the driven gear.

As concerns the direction ol rotalion of bevel gears, it is de­
termined either wilh respect to their bases or their apices. If 
the bevel gears are external, the driven gear will rotate in the 
opposite direction to the driving gear.
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Bevel gears may be internal (Fig. 2281) as well as external.' 
If internal, the rotation of the driving and driven gears will 
be in the same direction. Internal gears are little used due to 
the difficulty of cutting hovel gears with the teeth on the inside.

Fig. 229 shows another type of bevel 
gear in which a conical gear A is in 
mesh with a loothed disc U.

Differential mechanisms are made with 
bevel gears just as they are with spur 
gears. Fig. 290 represents a simple type 
bevel-gear differential. Shall /, which is 
in one piece witli spider Ji, passes lrecly

0

I*iK. 228

through the huh of gear A. Gear A is mounted on the spider 
and meshes simultaneously wilh gears A and L, the laLLer 
being a part of shall II. When gear A and shalt 7, together 
wilh its spider, rotate, the two motions combine to rotaLe 
gear L together with shall 11. If gear A is presented from 
rotating, shaft II will receive rotation from one source of 
motion only -Irom shaft I. Gear h  is a planetary gear.

Fig. 230

Illustrutlve Problem 119. Fig. 231 represents bevel gears which allow 
the direction ol rotation ol the d m en  shall to be changed. A, and At, 
whose apexes face each other, form a double bevel gear capable of sliding 
along a key on driving shaft 1. Gear B  is pail of the driven shaft I I  

‘ which is perpendicular to the driving shaft. In the position of the double 
gear shown in the drawing, gears A, and B  are in mesh. But if the double 
gear is moved to the extreme left, gears A, and B  will be disengaged and
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A. will be brought into mesh with gear B.  I t  is evident th a t  shaft I I  
will then rotate in the opposite direction, although the driving gear 
will continue to rotate in the same direction. The speed latio in both
cases ^ l l l  be the same, i.e., —  . When the double gear is in the central
position, shaft I I  will noL lotate.

Illustrative Problem 90. Fig 2.'12 lllusli ates a bevel-gear drive intend­
ed to unpait  two angul.u velocities <>1 d ilfuent magnitude and direc­
tion to the diiven shaft I I  liom the uniloimh inlatmg chiving shaft
I. Gears A,  and A possess dilTeient minibus of t i l th  z, and z, (thus 
diffcnng fi0111 Kx. 89), and th in  aie two guns on the diiven shaft fi, 
and fl, with z and z4 Leith In the position shown in the diawing the 2
speed ratio but whin A. and A aie al the extreme left it12
will become itil =  —- and lolation will be in the opposiLe direction. 
When they aie in the cin tial position, shaft I I  will not lotate.

Illustrative Problem 91. 1-ig 2 H  shows a imchanism with an idler 
geai. D inei shall / liansmits lolation to shall I I I  bv mians ol gears 
A and II. II noshes m l ’in.illy with giai (. which is pail ol shaft I I I .  
Shafts 1 and I I I  aie coaxial (tiles lotate about one axis)

I t  is seen that gtai II is an ldlu Hence the speed latio i,,, =  z
and lolation of shaft I I I  is opposite to lli.it ol the duving shaft I.

174. The Screw
Let us cuf out ol paper a right triangle ABC (Fig. 231); the 

leg AB  will be equal Lo the circumierencc ol the cylinder shown 
in plan and elevation in Fig. 2'Ma. Let us wrap the triangle about 
the cylinder, whose diameter is denoted by d, in such a way 
that its apex A will coincide with some arbitrary point K  on 
the cylinder’s base, and leg AB  wtll lie along the base. Since 
AB  is equal to the circumference ot the cylinder, point B will 
coincide with point K and the initial point A, and the hypote­
nuse AC will rise around the side of the cylinder in a three- 
dimensional curve called a helix. Angle BAC is formed by
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the tangent to the helix and the plane of the cross-section of 
the cylinder and is known as the lead anqle a. of the helix. Leg 
BC is perpendicular to the base of the cylinder and occupies

Fig. 234

position KC. We thus sec 1 hat the distance belwccn two turns 
of the helix, measured along a line perpendicular to the base

of the cylinder, is a constant quantity 
called Ihe lend oj the helu and is desig­
nated by s.

From triangle ABC we obtain the rela­
tionship

s nd tan a, (158)
Ilia I is, Ihe lead oj the helix is equal lo ihe 
cireutufeieiue of Ihe eqhnder multiplied by 
Ihe lanqent of the lead anqle.

It is evident irom triangles ABC and 
AB jQ in Fig. 2'Mb that it the lead 
remains the same, the smqller the dia­
meter of the helix the greater will be 
the lead angle a,.

It we cut a groove of definite profile 
along the line of the helix, we shall 
obtain a threaded serew. The groove, or 

thread, may be triangular, rectangular, or square in profile, known 
correspondingly as V-thread, flat thread, and square thread. 
A screw has external and internal diameters d0 and d, respectively 
(Fig. 235). I t is apparent from what has been said above, that

Fig. 235

248



the lead angle of a screw with a given lead s will differ in its 
internal and external cylinders, lor which ieason it is classified 
on y^e basis ol its a\erage diameter, denoted by d.

Assume that after having delineated one helix 7iA,A2A3A4, 
we delineate another LBlin i li3Rv with the same lead angle 
(Fig. 23ti). It the second helix is started at point 7̂  exactly op­
posite the starting point ol the lirst helix, it will occupy

I ig. 2.5(>

I ig 2.17

Fig. 238

a position between the turns ot the lirst helix and cut its lead 
in halt. A Shrew threaded in this manner is said to have a double 
thread (Fig. 237). Tripie-threaded screws are made in the same 
way: between the turns of the first thread, two more Lhreads 
are cut at equal distances liom cadi other and trom the first

360thread, their angular distances from each other being  ̂ =
=  120°. In a quadruple-threaded screw the angular distance

360°between threads would be 4— — 90°, and so forth with addi­
tional threads.
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In a multiple screw, the pitch is the distance s between cor­
responding points on two adjacent threads and the distance 
between corresponding points on one and the same thread will 
be the lead. Hence by denoting the lead as h and the number 
of threads as r, then

h --sz .  (159)
Accordingly, for a multiple screw, Eq. (158) becomes 

h -  nd tana 
while the pitch becomes

.t(/ tan o

( 160)

(161)

In all the above cases tlie thread of the screw rises from left 
to right. Such a screw is said to have a nqhl-hand thread. If the 
thread rises Irom right to let I (Fig. 288), the screw is said to 
have a left-hand thread.

Oral Hxcrcises
1. The lead angle of llie Ihieacl on two eylindeis of dll Aren t  diameters 

is the same. What can be said o] llie lead?
2. The threads on two cyhndeis have the same lead angle but a differ­

ent lead. What can be said of the diameters ot the cylinders?

175. Helical-Gear and Worm-Gear Transmission
We shall now pass on lo Ihe sludv of gear transmission be­

tween shalls whose axes intersect at a distance and for which 
purpose helical (jeais aie used (Fig. 2,'!!)). A helical gear may

be regal ded as a mill tiple-t hi curled screw 
with involute teeth, the number ol threads 
ot which is equal lo the number of 
teeth (P’ig. 2‘10). Helical gears are mostly 
used between shalls which cross at a 
distance and form an angle of 90°.

Reasoning as in the case ol bevel gears, 
we come to the conclusion that while the 
driving gear makes one revolution, the
driven gear executes a turn of in
which zt is the number of teeth on the 

driving gear and z2 the number of teeth on the driven gear. 
Therefore the speed ratio for helical gear is

In helical gears one must understand the difference between 
normal and circumferential pitch. Let AB  and CF (Fig. 241) 
represent the pitch elements of two adjacent teeth on a gear,
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The distance between Lhem tn — BD and is measured perpen­
dicular to their length; this is called the normal pitch. The dis­
tance^ --- BF  and is measured along the pitch circle; this is called 
the cucumferenhal pitch. By denoting, as we did with the 
ordinary screw, the lead angle of the thread as a, we obtain 
from triangle BDF the relationship between these two pitches:

**-=/«, sina. (162)
A variant of the helical gear is the woim t/ear. The worm A 

(Fig. 242) is part of the duving shaft and liansmils rotation

to the worm geai B, wlm li is paiL ol Lhc d m e n  shall 11 is clear 
irom the illustration that tlit* woim is a (ylmdei with a screw 
thread cut into it, which tits into the tooth spaces of the mating 
worm geai. The worm may he single- oi multiple-threaded and 
either lelt-hand or light-hand, it is oIj m o u s  (hat the pitch of 
the worm and the worm gear are the same

Let us denole the number ol thieads on the worm as z,„ and 
the number of teeth on the gear as If zm 1, winch means 
that the worm is single-threaded, in one revolution it will turn one
tooth of the mating gear, that is, the gear will turn — of one  ̂ 0̂revolution artd the speed ratio

Liu — •

If the worm is multiple-threaded, it will turn zw teeth of the 
mating gear when it executes one revolutin, i. e., the gear will £
turn — of one revolution; hence, the speed ratioZq

_ ftp _ Zw
-gw — n — T nw zg

(163)
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that is, the ratio oj rpm of the worm gear to rpm of the worm is 
equal to the ratio of the number of threads oa the worm to the num­
ber of teeth on the worm gear.

It is thus dear that the speed ratio of worm-gear mechanisms 
is expressed similarly to the speed ratio of spur gears, the only 
difference being that the number of teeth on the driving gear 
is replaced by the number of threads on the worm. The spe­
cial feature of the worm-gear drive is its possibility of obtaining 
very small speed ratios.

The direction of rotation of the gear depends on the direction 
of rotation of the worm and direction oi the thread, i.e., wheLhcr 
it is right- or lett-hand.

Fig. 213 Fig. 211

angle of the thread on the worm and the coefficient of friclion 
between this thread and the teeth of the gear. The greater the 
coeflieient of lriction, the greater (he lead angle must be.

Fig. 243 illustrates the meshing of the worm and worm gear, 
where it can be seen that the thread of the worm in cross-section 
possesses the form of an equilalcral trapezoid.

Illustrative Problem 92. Fig. 244 shows schematically an ordinary 
index head of a hori/ontal milling machine. The worm A, which is part 
of shaft /, meshes wilh the worm gear B mounted on spindle I I  with 
which the workpiece is connected. Shaft /, to the front end of which 
is fixed the handle D, passes freely through the rigidly fixed index 
disc C. On disc C there are perioiations arranged at equal distances 
in concentric circles. The handle D can be set on the shaft I so that its 
dowel E aligns with any one of the perforated concentric circles. Assume
it necessary tliaL a workpiece executes of a turn. Ry setting the dowel
to align with the circle with q holes and by turning the handle along
that circle for a distance of p holes, we transmit £  turns to shaft I
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carrying the worm. If the number of threads on the worm is zw and 
the number of teeth oil Llie gear is zg, we obtain

from which — “a ■<1 =
The worm in index heads is made single-threaded as a rule, and the

number of teeth on llie worm gear is usually 40, i.e.,z,u — 1 and z„ =  40.
a i P 40Accordingly, =  —  •

Assume it is necessary to mill a gear with 28 tee til. By giving z its 
numerical value ot 28 in tins equation, we obtain

p _ 40 _  _10 _ 3
— 28 7 7

Accordingly, since we must give llie handle 1 ^ turns, we choose a
perforated circle on the disc corresponding to llie number of boles divis­
ible by 7, for example, 4!). We set llie handle with llie dowel K to align

.1 ‘> Iwith that circle and subsequently gi\e llie woikpieco I - 1 turns9 l 11.)
each time, i.e., we give it one full turn plus 21 divisions in addition.

176. The Universal Joint
The universnl joint is another mechanism that serves to trans-

sliafls. Fig 215 represents 
the ends ot shat Is I and II

init rotation between non parallel 
one such mechanism schematically: 
rotate in bearings M  and N (Fig.
245«). Shackles C and A are lived 
to Lhe ends of the shafts in snrh 
a way that the axes I I I  and 
IV  passing through the shackle 
holes are perpendicular to the cor­
responding sliatLs. The lilting of 
the ends of a right-angle spider 
into these holes completes the uni­
versal joint.

When shaft I carrying shackle 
C rotates, the shackle also rotates 
while its ends turn about axes 
I I I  and IV  and transmit motion 
to shackle A which is part of shaft
II. The driven shaft makes one 
turn to each turn of the driving shaft. Fig. 245/> illustrates the 
symbol used to represent this mechanism is kinematic diagrams.

However, the angular vclociLy of the driven shall is not con­
stant, because while the driver rotates at uniform speed, the follow­
er rotates at a variable speed.
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Sometimes a double universal joint (Fig. 246) is used to transmit 
motion between non-parallel, non-intersecting shafts (in auto­
mobiles, machine lools, etc.). In the double universal joint 
the two shafts I and II  arc connected by an intermediate, shaft 
I I I  by means of two joints AlB1C1 and A2B2C2. The axes of 
the shackles A, and A2 attached to the ends of the intermediate 
shaft must both be in one plane, while Lhe axes of shafts I and 
II  must be parallel to each other or be in a symmetrical position 
with respect to axis 0 /) , connecting Lhe centres of the joints.

It is frequently necessary to transmit rota­
tion to a driven shaft whose position is not 
permanent. Fig. 247 is a diagram of a mechanism .
used in such cases. Assume that the driven shaft 1
T T f’l tnnrfps  i t s  nnc i l  i nn  in  r e l a t i o n  I n  t h e  f l r i v i n o  c A

be able to vary in lcngLh: spindle D, which carries on one of 
its ends the shackle of universal joinL II, is made to slide in an 
axial direction into the cylinder C which is part of the shakle 
of the second universal joint A. There is a keyway in spindle 
D in which a key, fastened to the wall of the cylinder, slides 
freely. With this construction, shaft II  can change its position 
while receiving rotation through the variable-length link III, 
which is known as a telescopic joint. This type of mechanism 
with its two universal joints and telescopic joint, is used in cer­
tain kinds of machine tools.

1. Are the diameters ot the friction frusta, represented in Fig. 222, 
the same at points B, M, and 6?

2. Which of the mechanisms shown in Figs 223 and 224 makes it 
possible to change the direction of rotation of the driven ihaft while 
maintaining a constant direction of rotation in the driving shaft?

3. Is the pitch of a bevel gear the same, no matter at what point along 
the pitch elements it is measured?

4. Which is larger in a helical gear, the circumferential or the normal 
pitch?

Fig. 240 Fig. 247

177. Questions for Review
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6. What change occurs in the normal pitch of a helical gear if the 
lead angle is increased while the circumferential pitch remains the same? 
What will the normal pitch be when the lead angle a =  90°?

0. Jn one worm-gear transmission the worm is single-threaded, in 
anotffer it is double-threaded. II the number of turns on the worms 
and the number of teeth of the worm gears are the same, which ol the 
driven shafts will rotate faster, and how much faster?

170. Exercises
93. The diameter of the apex ol the friction cone, shown in 

Fig. 223, Dt - 280 mm, the diameter of its base IJ2 400 mm.

and of Lhe roller I)0 — 300 mm. The rpm ol the driver shaft 
I is n1 -  330. What are the maximum and minimum rpm that 
can he attained on the driven shaft?

90. In the fnelion tiansmission shown m Fig. 221, the greatest
possible distance R obtain 
able between lhe roller B 
and the centie of disc A 
is 250 mm; the diameter 
of the roller is 123 mm. If 
the rpm of shaft 1 is 
nt =  800, what is the 
maximum r̂ irn that can 
be obtained on shaft II  
of the drive?

97. Crank A of the wind­
lass in Fig. 248 turns with 
a peripheral velocity r>„ =  
=  0.785 m/sec. Calculate 
the speed with which it 
can move a load on the
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cable that winds about its drum if u -  250 mm, zx ~= 15, z2 =  
-- 45, and d — 180 mm.

98. A single-threaded worm executes 900 rpm and its mating 
worm gear possesses 45 teeth. Find the rpm of the gear. * ,

99. Solve H\. 98 for a triple-threaded worm.
100. From the driving shaft I in Fig. 249 rotation is trans­

mitted as follows: a) to shaft I I I  through shaft II  according 
to the schemes z, X z2 - : s X z*, or z4 X z?, or z, X z8; b) to 
shaft VII through shafts II, IV, V, and VI according to the 
scheme z, X z2 - z3 X z§ X z10 - zn X z12 - worm with threads 
z13 X Z)4- Shall I executes /q rpm. Find the rpm of shafts I I I  
and VII.

C l I A P T H n  X V I I I

CONVERSION OF ROTATION. INTO LINEAR TRANSLATION
AND VICE VERSA

179. Conversion of Rotation into Linear Translation
Motion in engineering is not limited to rotation. In machine 

tools the basic motion is rotation, but it is also converted into 
other kinds of required motion. For instance, the rotation of 
the driving shaft of a thread-cutting lathe is converted into 
motion ol translation for its carriage by means ot a train of gears 
and racks (lor longitudinal machining) or with the aid of a screw 
and nut (for cutting threads). The rotation of a sheave ultimately 
becomes linear translation for the table oT a planing machine, 
for the cutler of a shaper, etc. The conversion of linear trans­
lation into rotation is exemplified in piston engines, but on the 
whole is less frequently applied.

There are even more complex forms of motion often met with 
in machines, but in this chapter we shall study Ihc chief ways 
of converting rotation inlo linear translation, and vice versa.

180. Friction Mechanisms for Obtaining Linear 
Translation

A friction mechanism employed to obtain linear translation is, 
for example, one that transmits motion to the head of a fric­
tion stamping hammer (Fig. 250): the head 13 of the hammer 
is suspended from a board A of hard wood (usually beech or 
hornbeam) which is held pressed between rotating rollers and 
guided by slides. If the force of friction between the rollers and 
board is greater than the weight of the hammer and board, the 
board will rise when the rollers revolve in the direction shown 
in the drawing. The speed v of the board (if there is no slipping)
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will be equal to the peripheral speed of the rollers and is there­
fore

0  D =  Wx~i7ioo (164)
in which D is the diameter of the roller in mm, n is its rpm, 
and d is the speed of the hammer in 
m/sec.

The downward movement of the ham­
mer occurs under the action oi its own 
weight. As it falls the rollers aie moved 
apart by a mechanism not shown in 
the drawing.

Th£ motion of translation of the ingot /^ T X  
held between the rollers of a rolling mill, (Oil V
or of logs in a sawmill, etc., is based on I m ° ), "
the same principle. \

Illustrative Problem 93. The weight of the 
dropping puits of a furl ion h.immtr which is 
raised bv two^ioll rs Is G = 4">0 kg, Hie 
coefficient of friction bi tween the ioik is and 
the lifting boaid / = 0 45, the diamel, 1 of 
the roller D = 350 mm, ihe rpm of eadi 
roller n — 135, and thi forci raising the 1 Itmg 
board and the hammer must be doubk tli< n 
combined w< iphl What pn ssure 0 must b 
excited bi the i o I I t s  on th lifting boaid and 
at what speed will lh< boaid nsi ?

Solution: the fnction 1' b tween the lolhis
and the lifting board is 2IQ, wherein Q —
And since the force of fnction must b ' double 
the weight oT G,

Q =  2 G = ^ _  450 
y 2l f ~  0.45 R

The speed ul which the load Is laisecl 
;r350 x 135v =- 60 a. 1,000 m/sec fa 2.5 m/scc.

181. The Rack-and-Pinion
In the transmission just previously presented, motion was 

imparted under the action of friction. Now let us assume that 
we have cut teeth into the surface of the aforementioned lifting 
board and its rollers. We would then have a toothed mechanism 
consisting of a spur gear A (Fig. 251) and rack B. This kind of 
transmission is used to impart motion to the table of planing 
machines, the spindle feed of a drilling machine, etc.

It is obvious that the speed of the rack is equal to the peripher­
al velocity of the pitch circle of the gear, for which reason the
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former Eq. (164) is applied, but in a slightly changed form than 
in the case of friction transmission. My bearing in mind that the 
pitch diameter D = mz, then the speed of the rack

t t B i i  7tmzn , zrmznv — mm/sec00 00 00 V 1,000 m/sec, (165)
in which

m — module ol engagement; 
z — Ihe number of teeth on the pinion; 
n — rpm of the pinion.
The force P which transmits motion of translation to (he rack 

is easily expressed. If we denote I lie torque on shaft O of the 
pinion as M,, then the elieclive pull on the pitch circle will be

, in which /? is the radius of the pilch circle, hence
P • (166)

We have been assuming I hat the pinion is tiansmitling mo­
tion to the rack. The opposite is also possible when the rack, 
possessing motion of linear translation, transmits rot a Lion to 
the pinion. And obviously the relationship just obtained like­
wise holds true here; knowing Ihe speed of the rack we can cal­
culate the rpm of Ihe pinion by Eq. (165) and the effective pull

on the pinion, aecordingto thcforce 
applied to the rack, by Eq. (166). 
In both presented cases the pinion 
rotates about a lixed axis 0.

Fig. 251
M m m M i M m  

Fig. 252

Now assume that the pinion A in Fig. 252 is rolling on an im­
movable rack 13. Such a transmission is similar tq the rolling 
of a wheel oil an immovable surface. It is easy to see that in one 
revolution the pinion’s axis will move a distance / =. - jtD, which 
is equal to the length of its pilch circle, while in n revolutions 
(n may be a whole number or a fraction) it will attain a distance 
I -= TtDn. An example of a transmission of this kind is found 
in the automatic longitudinal feed of a lathe where, geared to 
an immovable rack rigidly fastened to the frame of the machine, 
is a pinion which is part of the shaft in the apron of the carriage. 
As the pinion receives rotation from the feed mechanism, it
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rolls on the rack and thereby transmits motion of translation 
to the carriage.

Finally there is the rark-nnd-worm transmission in which the 
worm^s the driving link instead of the pinion.

Illustrative Problem Fig. 2.")3 is a kinematic diagram of a rack- 
type. jack. When crank A is minted, shad 0, carrviiu 
rotate, (iear z, transmits motion to rack 
B  according to the scheme r, a -
— z., x zA — Zj x rack H. Kind I lie time 
t required to raise a load vertically to a 
height h -= 220 mm, if the peripheral’ spcml 
of the crank o„ — 0.8 m sec. the length 
(J,C oT the handle a — 250 mm, I he num­
ber of teeth on the gears 5, r. - 20,
~i ~~ 5. r., = 20, =- o, and tic nio<lml<- ol
the mating caek and gear m - I t mm. Also 
determine the lifting capacity 0  of I he jack 
if the force, exerted on I In* crank /‘
= 35 kg, and the efficiency of I he jack 
i] ~  0.75.

Solution: wilii a peripheral speed n0 - 
=- 0.8 in 'see, the c

30c0 .... r m=  — — 30.5 rpm.yd 1
between shaft O, 
shaft ()„ is /,

rank cxrcillcs n ,  -----

Tin s peril rat io 1 253
and ‘ lial'l ( ) u a

I
5 - 5 

20 20
1
10 ' 1 teller. i(S 1 he c

z-, al l tins n .  - " A m 30.5 1

Yh rpm.attains /i, rpm,
spoil d in glv, 1 lie v< rl iea I : I is place me n I of I lie i nek per min u le /i,
=  jT- - — —: ‘ --- 120 mm, and llie lime mailed10
load to a height h - 220 mm is 

220

crank C

(lorre- 
ym:r,n, — 

lo raise a

/ ^ 120 0.525 min. — 31.5 see.

To determine tile lifting rapacity 0, we use l-’.cp (130) Imm which 
we find I lie lorque on shaft O,:

, , M,  35 x 250
1
Hi

o.75 250 10 0.75 kg-mm.

The diameter of gear is /)-, = mz-0 — it 
to Kq. (lOti),

5 mm and, according

v n
35 250

1-fx
10 0.75 — 3,000 kg ~ 3 tons.

182. Kiuemalies of I lie Sercw-and-Xut Drive
The transformation of rotation inlo linear translation is widely 

achieved through a mechanism consisting of a screw and nut. 
Fig. 254 is a diagram of such an arrangement: a single-threaded 
screw 2 rotates in fixed bearings; the screw carries a nut 1 which
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slides in guides but cannot turn. When the screw turns once, 
the nut is displaced for a distance equal to the pitch s of the screw; 
when the screw revolves half a turn, the nut is displaced for a 
distance of 0.5s; and at a quarter of a turn the displaceihent is 
for a distance of 0.25s, etc. From this we may say that when

7)the screw executes y  turns, the nut moves for a distance

S = ^ s .  (167)

There is a mechanism of this kind, for example, in a thread- 
cutting lathe, where the relational motion of the lead screw 
is transformed into linear translation 
of a nut connected with the apron. j  <4

Fig. 2.')4

The principle of the srrew-and-nnt drive is used in other 
devices for the transformation of rotation into linear trans­
lation, an instance being the parallel vise illustrated in Fig. 255: 
screw 2 turns within nut /, which is immovably fixed to the base 

oi the vise Ji. Furthermore, screw 2 turns freely 
in the movable part of the jaw 3 and transmits 
linear translation to it, thus pulling it so as to 
pinch the workpiece between the immovable and 
movable jaws A and 3, respectively.

In the above illustrations the screw is the driv­
ing link. However, the opposite is also possible, 
where the nut acts as the driver. Fig. 256 is a 
diagram of a screw jack which works on this 
ptinciple: the nut 3 can turn freely in base 1 
but cannot move axially. Screw 2, passing 
through the nut, can move axially, but cannot 
turn. Accordingly, by turning the nut we impart 
linear translation to the screw.

Fig. 25G. It is quite obvious that in all these cases we
may apply Eq. (167), in which y  may denote

either the turning of the screw in the nut, or the turning of 
the nut on the screw. The direction in which the screw (or the 
nut, as the case may be) moves, depends evidently on whether 
the thread is right-hand or left-hand, and in which direction 
the screw or the nut is being turned.
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The screw-and-nut drive may also he used to convert linear 
translation into rotation. For instance, hy moving a nut in an 
axial direction, we can impart rotation to a screw if the lead angle 
is sufficiently great. The hand-drill shown in Fig. 257 operates 
on this principle: the screw 2 rotates together with the chuck 1 
when the nut 3 is moved along its axis.

Fig. 237

Incidentally, a screw-and-nut diive ot this kind will not work 
if the lead angle of the thread is small. A screw mechanism in 
which the screw cannot rotate under pressure ot Ihe nut. is 
called a self-locking mechanism.

Fig. 258 is s  diagram of whal is called a dilfercnUnl screw. 
Screw 1 has a pitch of sa along part a. and a pilch ot sb along 
part b. Part a of the si row rotates within the immovable nut 
2, and pari b relates willun nut ■'! wdiich cannot turn ImL can 
move in an axial direction. Assume that the direction of the 
thread on parts a and 
b is the same. Hy giving 
the screw one turn, we 
displace it axially with­
in nut 2 for a distance 
equal to the pitch sa.
If nut 3 had turned wit h 
the screw it would also 
have moved in an axial 
direction for a distance
of sb. However, since Ihe nut cannot Lurn, it moves along the 
screw in the opposite direel ion for a distance equal to the pitch 
sb. Consequently the absolute displacement of the nut with 
respect to the immovable guides is .s„ —sb. II the threads a and 
b were dissimilar, the displacement ot nut 3 would be sa -f st,

From this it iollows that it the screw rotates 
the nut will be displaced for a distance

—— vvW'»*»
WWZ//'///'///// 7)^//)$/--/,'///

Fig. 2.">S

for — turns 9

* =  f  (»- ± Sb). (168)

The minus sign is used when threads a and b have the same 
direction, and the plus sign when they have opposite directions.

It is readily understood that when both threads have the 
same direction, the displacement of the nut will be small because

261



forteach revolution it will only amount to the difference between 
the pilches.

All these simple screw mechanisms can he used in a. great 
variely of combinations, 'take Fig. ‘Jo!) for example: screw 2 
is prevented trom moving in an axial direction by hearing 1; 
on paris a and b of the screw the threads have the same pitch but 
are opposite in direction. Nuts ■>' and '■)" cannot rotate and 
when the screw is turned they will either move closer or furLher 
apart, in either case with equal speed. This kind of mechanism 
is used in a double-jawed drill chuck.

The lurnlnirlJc shown in Fig. JtiO works on the same principle. 
When the screw 2, which has a right-hand thread at one end 
and a lell-hand thread on the other, is tinned, the stirrups / ' and 
7" and tire iods (or ropes) connected with them will bb pulled 
together. Fig. Jtil also shows a luiubiickle. bu t W'ith another 
arrangement nl pails.

Fig. 201 Fig. 202

Illiislrntiw Problem 95. The screw / in Fig. 202 Inis a right-hand 
thread with a pilch s - 2..") turn. One of its ends is within the immov­
able mil ‘1 and I lie other rotates freely in I lie block 3 which slides in 
fixed guides. I low many times, and in what direction, /mist the screw 
he turned to displace llu* slidchlock lor a distance S — 81 mm fiom left 
to right?

Solution: — =  — tarns -32.1 turns = 32 full turns plus q s 2.3 
144°, all clockwise.

Illustrative Problem JIG. The screw mechanism shown in Fig. 258 
has a right-hand thread witJi a pilch .s„ — 4 nun on ils length a, while 
on length b it lias a thread of the same diieelion hut with a pitch sb = 
— 3.5 mm. If the screw is turned 45° clockwise, liow far will the slide 
block 3 he displaced, and in what direction?
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Solution: by applying Eq. (Ifi8) (with the minus sign because the 
threads are in the same direction) we obtain

S -- (4 — 3.5) — 0.0(525 mm.

Since the screw is turned clockwise, the slider moves from left lo 
right.

103. Statics of I ho Scrcw-aml-Xiil Drive

Assume tlint a force P is applied al point A oi the lever 3 
fixed to screw I and having an arm a (Fig. 2(>.'>). I’ndor the action 
of this force the screw will turn in the ngidly lived nut 2, moving 
upwards and overcoming nselul resistance Q. Express the re­
lationship between forces P and O.

As we have already pointed mil several limes. I lie work of 
the motive lorce must he equal lo I lie total woik done by the 
lorces ol resistance. For the lime being we shall assume that harm­
ful resistance is negligible and can llicicloie be 
ignored.

Now let ust*|uale the woik ol the motive lorce 
P and the loieo oi uselul icsislance, dining one 
turn of the screw.

When the screw is lurned oiua, the pond ol 
application A of lorce P dcsciibes a I i a |cm-I oi v 
equal to 2tw. Hence the woik perlormed by lorce P

\Y,> 2-r/»«.
I urn, I lie screw moves a\inll> lor 

pitch. Accordinglv, the 
toice ol icsislance O is 

the amount ol woik

During one 
a distance equal lo its 
work pertormed by the 
\Vq -  Qs. By equaling 
we ;el

2 nPa
whence

Vs

2n - P. (Kill) Fig. 2(>3

From this we conclude that the lom/ei Ihc aim of application 
of the motive force and llw smaller the pilch of the screw, the (jreater 
the mechanical adoanlai/e.

In order to actually express the obtained lorce (J, we must 
multiply the right-hand part of this equation by efficiency rj:

Q ~-27ijPt]. (170)

Eq. (169) may be presented differently. By expressing the 
pitch of the screw in terms ot its average diameter dao accord­
ing to Eq. (158) we obtain

s — 7iduv tan oc.
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By substituting this value for s in Eq. (169) we obtain

Q =  r r -  P> (171)* dao tan a « v '
that is, th e  lo n g er  th e  a r m  o f  a p p l ic a t io n  o f the  m o tiv e  fo rce  
a n d  the  s m a lle r  th e  average d ia m e te r  o f th e  screw  a n d  th e  ta n g e n t  
o f  the  lea d  a n g le , the  g rea ter  th e  m e c h a n ic a l  a d v a n ta g e .

Accordingly, when taking the force of friction into account, 
Eq. (171) becomes

0  =  ? J i r « p ”- <172>
Finally, the relationship we seek can be obtained in another 

form: since P a  is the moment of force of P relative to the axis 
of the screw (the torque M(), we may, thereby, write *

Q =  s ^ r ^  <173>
that is, th e  m a g n itu d e  o f the  fo rce  a c tin g  o n  the  screw  in  a n  a x ia l
d ir e c tio n  is  e q u a l to tw ic e  the  to rq u e  m u l t ip l ie d  b y  the  ef f i i  ie n c y  
c o e ff ic ie n t  a n d  d iv id e d  bij the  averaqc  d ia m e te r  o f  the  screw  
th re a d  a n d  th e  ta n g e n t o f the  lea d  a n g le  c o r re sp o n d in g  to  th is  a ver­
age d ia m e te r .

Since the lead angle ot the screw may be made sufficiently 
small, a great mechanical advantage ran be obtained with 
a screw transmission. With the aid of the screw and nut, we 
can make very strong fastenings with comparatively small
physical effort, ran hold workpieces in a vise, and apply the 
same principle to jacks, screw presses, etc.

The efficiency coefficient is calculated for each individual 
case, depending on the lead angle of the screw and the coeffi­
cient of friction.

Illustrative Problem 97. In the screw jack represented in Fig. 2G3 
the arm a =■ 800 min, efficiency *7 — 0.4, and the pitch of its screw 
s =■ 8 mm. What force P must be expended in order to raise a load Q =» 
=  3 tons at a constant speed*0 

Solution: from Eq. (170) we obtain

P Q.s 3,000 x 8
2j f d r ;  2ji800 x  0.4 kg

184. Thread Profiles *
of Principal Types of Transmission Screws

If we cut a screw across a longitudinal plane coinciding with 
its axis, the section thus obtained will be through the turns 
of its thread. A thread receives its name in accordance with the

* Screw jacks must be self-locking, which means that the screw must 
not turn under the action of an axial load. For this reasqp the efficiency 
of a screw jack is always less than 0 5.
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profile thus revealed in section. There are various types of profiles, 
corresponding to intended use.

If^he screw is to transmit motion, it is obvious that it must

fiossess the greatest efficiency.possible and the least mechanical 
oss. If the screw and nut are to be used for the fastening of all 

kinds of parts, they must be constructed so as to create the greatest 
possible amount of friction between their contact surfaces to 
keep the nut from unscrewing.

In more detailed courses of engineering mechanics it is proved 
that, other geometrical dements being equal, the loss due to 
friction is the least when the thread is icitanqular (Fig. 264) 
and the depth ol the thread /j is equal to half the pitch, i. e.,
when /, =r —. Such a rectangular thread is called a square thread.

The square thread has certain disadvantages, the greatest being 
the difficulty ol achieving precision in its manufacture, for 
which reason it is being displaced bv the Acme thread shown 
in Fig. 265. In cross-section this thread is an equilateral trapezoid 
with the inclination of its sides forming an angle of 3(r with 
each other. The technical terms of other elements of threads 
shown in Figs. 264 and 265 are descnbcd in Sec 200 and illus­
trated in Fig. 293.

185. Slider-Crank Mechanism
The slider-crank meihamsm shown schematically in Fig. 

266 is another means of transforming rotation into linear trans­
lation. The crank 2 which is part of shaft A turning in fixed 
bearings in the frame 7, is jointed to the connecting rod 3 by 
the crankpin B. The other end of the connecting rod is jointed 
by means of a wrist pin C to the slider 4 which moves in straight 
fixed guides. Thus we see that when the crank is continuously 
rotating, the slider will achieve reciprocal motion of translation 
and reverse its direction at the end of each stroke. Accordingly, 
during one revolution of the crank the slider will execute two 
strokes, first in one direction and then in the other—a feature
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of this mechanism which chiefly distinguishes it from other 
mechanisms presented in this chapter.

The slider-crank mechanism is also employed for Converting 
reciprocal linear translation intq rotation, as for instance in 
steam engines and internal combustion engines, where the driving 
link is the piston which, with the aid of a connecting rod, causes 
the crankshaft to rotate. In this arrangement another specific

factor must be coped with: 
when the slider 4 moves from 
left to right, the crank will 
rotate clockwise and when the 
slider lias travelled as lar as it 
can go, the crank will occupy 
position AB'0 before the slider 
begins travelling in the opposite 
direction. This position of the 

crank is called the dead centre. In order that the crank continue 
revolving past the dead centre when it is the driving link of 
a mechanism, a flywheel is used, which is a wheel with a heavy 
rim and mounted on the crankshalt. The kinetiewenergy of the 
flywheel keeps the mechanism in constant motion.

180. Kinematics of the Slider-Crank Mechanism
Now let us study the motion ol the slider when the crank is 

rotating umlormly.
Assume that the crank in Fig. 2(i7a is rotating uniformly in 

a clockwise direction. Wc shall lake A B0 as the initial position 
of the crank. From BQ we mark off with a compass a distance 
equal to the length of the connecting rod along the line on 
which the wrist-pin centre C moves, and obtain point C0 
which at the given moment coincides with the centre of the pin. 
This point is the extreme left position of the slider. To find the 
position of wrist-pin cenLre C at other moments of time, we 
divide the circle described by the centre of crankpin Hinto several 
equal parts, let us say 12. Then each part will represent an arc
equal to — of the circle through which the crank moves at equal
intervals of time while executing one revolution (prpvided it ro­
tates uniformly). In the course of its movement it will occupy, 
in turn, position ABlt AB2, AB3, . . . .  and finally return
to AB0 (its initial position). Now, with a radius equal to the 
length of the connecting rod BC, we will mark off points from 
Blt B2, B3, etc., on the straight line along which the wrist-pin
centre C moves. As a result, we find that after of a turn of
the crank, point C is at Cv having moved from its initial position 
for a distance Sj_ — CqCj; after two such intervals, the displace-

Fig. 2(ifi
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ment of point C will be S2 =  C0C2; after three intervals—Sa =  
=  C0C8, etc. When the crank reaches position ABt, point C will 
be at position C6 at a distance equal to the length of the connecting 
rod from point and corresponding to the extreme right position 
of the slider. Then the slider begins to move in the opposite 
direction (from right to left) and its distance from fts initial 
position steadily diminishes. Thus, position AB2 of the crank 
corresponds to the position of wrist-pin centre C at point C7 
and which coincides with point C6; position ABb of the crank 
corresponds to the position of wrist-pin centre C at point Ca, 
etc. When the crank returns to its initial position, point C will be 
at C0.

We thus see from this diagram that the linear segment CPt 
equals segment B0Bt, i.e., the diameter of the circle described 
by the crankpin B, while the diameter of this circle is equal to 
twice the length ot the crank. Therefore, by denoting the length of 
the crank as r and a stroke ol the slider as H, we find that

II -- 2 r, (174)
that is, in a slider-crank mechanism llie stroke of the*slider is equal 
to twice the length of the crank.

From what lias been said it follows that in order to find the 
position of the slider at a given moment, we must mark off from 
the crankpin centre at thal moment (using a radius equal to 
the length of the connecting rod) a point on the line described by 
the wrist-pin centre. And, vice versa, it the position of the slider 
is given, the position of crank can be found by marking off from 
the wrist-pin centre (using the same radius) a point on the corre­
sponding semieiiclc described by I he crankpin centre and connecting 
this point with I he centre of this circle.

Having located the centre of wrist pin C, we can now plot 
a curve representing its distance from the initial position C0, by 
the method explained in kinematics (Sec. 57). By adopting a right- 
angle system of coordinates as shown in Fig. 2676, we lay out 
equal segments according to a chosen scale along axis 0t, each 
segment representing the time during which the crank achieves
—  of a turn. Then constructing perpendiculars at points 1, 2, 3,
etc., and laying out segments 1 S2, 2—S2, 3—Sa, etc.  ̂ represent­
ing the distances C0Clt C0Ct. C0CS, etc., from the initial position, 
we obtain a line of points 5 lt S t, Sa, etc., which we connect with a 
curved line. In this way we obtain a displacement-time graph 
for the centre of wrist-pin C and can find its position for any given 
moment of time.

From this curve we see that displacement of the slider differs 
for equal intervals of time although the crank rotates uniformly. 
For instance, when the crank turns through the angle B0ABlt 
the slider moves a distance of 2—5^; when it tums*>through angle
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B rA B a the slider is displaced for a distance of £,; while 
through angle B$ABa it is displaced a distance of aa Sa, etc. 
Thus the displacements first increase and then decrease.

FAm this we come to the conclusion that when the crank is 
the driver and rotates uniformly, the slider moves non-unijormly, 
and vice versa, when the slider is the driver, its motion is uniform 
and the crank's rotation is not uniform. This is an important feature 
of the slider-crank mechanism.

Having solved the displacement-time graph, wc can now plot 
the velocity curve which makes it possible to determine the 
velocity of the slider for any moment of lime. As already explained, 
while the crank is moving through the angle B0ABt (Fig. 
267a), the slider is displaced for a distance of / 5, (Fig. 267b). 
By dividing this displacement by its execuled lime, we obtain 
the average velocity of the slider during that interval; similarly, 
by dividing the displacement «j S2 by the same interval of 
time (for we have already divided one revolution of the crank 
into even parts), we obtain its average speed lor that interval, 
etc. Thus we may calculate the average velocity of the slider 
during a 180° turn of the crank.

Now let us draw a righl-angle system of coordinates at a 
suitable scale, and lay out the time along axis 01 and the average 
velocity of point C of the wrist-pin on axis Ov (Fig. 267r). We 
mark off these speeds on perpendiculars constructed on the time 
axis Ot at points l v 2,, 3,, etc., and lying between the segments 
0—1, 1—2, 2—3, etc. (Fig. 2676). As a result wc obtain points 
vit v'2, «3, etc., (Fig. 2G7r) through which we draw a line Ov̂ v'gVg 
VfVfVg which constitutes the velocity-time curve of Lhe slider 
during the first half-turn of the crank (the time consumed in 
turning from position AB0 to ABh).

From this moment the slider starts moving in the opposite 
direction, from right to left, and its velocity is directed in the 
opposite direction; therefore we construct a second leg of the 
curve, symmetrical with the first but below the time axis.

When analysing the velocity-time graph thus obtained, we 
see that when the crank is at the left dead centre AB0, the velocity 
of the slider is zero (point 0 on Fig. 267c). As it rotates further, 
the velocity of the slider grows and reaches its maximum when 
the crank is between ABt and ABt (Fig. 267a). Then its velocity 
begins to cTecrease till it again becomes zero when the crank is 
at its right dead centre ABe. Then, as the crank executes the 
second half of its turn, the curve is repeated in reverse order.

Oral Exercises
1. What Is the sum of the segments (Fig. 2676), 1 -  S„ a, -  S„ 

a, ^ii e, — a, 5,, fl, *5,7
2. Indicate these sums on Fig. 267a, on both the left and right sides 

of the diagram.
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3. Indicate on Fig. 267a the position of the crank corresponding to 
point vt on the time axis >in Fig. 267c.

Illustrative Problem 98. The length of the crank AD (Fig. 266) is 
120 mm and the length of the connecting rod DC is 420 mm. The Brank 
attains n = 180 rpm. Plot the displacement- and velocity-time curves 
for point C and find its veioeily at the moment the crank forms an angle 
a = 50° with the left dead centra. •

Solution: we draw a diagram of the mechanism similar lo Fig. 267a 
at a scale of 1 :8 , then divide the circle described by point D into

42012 equal parts. Setting our compass aL a radius ol = 52.5 mm, weO
mark off points’C„, O,, C2, etc., and then delineaLe a displacement- 
time curve (Fig. 207/<). At 180 lpm the segments 0 - 1 ,  1 — 2, 2 — 3, etc.,
on the Lime axis (5 mm each) repicscnt inlcivals of time equal Lo =loU X 4. A

— -gg sec, or a .'10° turn ol the crank.
By measuring the displacements 1 — S,, a, — .S\, a, — S Jt etc.,

and multiplying them by the scale of 8 and dividing by st.C( we
obtain the average velocity for each interval o[ lime. Then establish­
ing a scale of velocities of 50 mm'sec — 1 nun, vve lay out points l lt 
21, etc., as the oidinaLes lepiesenling the velocity this scale and
then connect the points with a cuive.

The position of crank AD, forming an angle a = 50° with AD0 will
5 x 20correspond with a poinL on Fig. 267b, ljing at a distance of —^ — =

— 3— nun to the light of point /. lly plotting a line from this point to
its intersection with avis Ol on the velocity-lime curve, vve obtain an 
ordinate ol 28.5 mm in length repiesenting the sought velocity which, 
at the chosen scale, is v, -- 28.5 x 50 - 1,425 mm/see = 1.425 m/scc.

187. Tlio Eccentric Mechanism
Assume that we increase the dimensions of crankpin B  shown 

in Fig. 266 to the size illustrated in Fig. 268, and that now
crankpin B x is part of the 
crank while ils hushing B 2 is 
part ol the connecting rod. 
It is evident that the mecha­
nism is still a slider-crank 
in which the length of the 
crank 2 is equal *ro A O , the 
lenglh of the connecting rod 
3 is equal to OC, and in which 
0 remains the centre of the 
main hearing. By still further 

increasing the diameter of the crankpin, we obtain a mechanism 
whose skeleton outline is shown in Fig. 269: a round disc B x turns 
freely within the bushing B 2, which latter is part of the connecting 
rod 5 rotating around axis A .  This mechanism works similar to

Fig. 2G8
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a slider-crank which has a crank 2  whose length A O  equals the 
distance between Hie axis of rotation A  6f disc B t and the geo­
metrical axis of the disc, and a connecting rod 3  whose length 
O C  e<flials the distance between this axis and the wrist-pin centre 
on slider 4 . This is called an eccen tr ic  m e c h a n is m , its disc B 2 is 
known as the eccen tr ic , the 
connecting rod 3  is the 
ec cen tr ic  rod , and the seg- 9, 
ment 0  A  is the ecccn ti u  iti/.

It is apparent from Ihe 
above that a n  e c c e n h u  
m e c h a n is m  o p era tes  l ik e  a 
s l id e r -c r a n k  w h o se  c r a n k  
le n g t f t  is  e q u a l to  the  ec cen ­
tr ic i ty ,  a n d  th e  le n g th  o f the  
c o n n e c tin g  ro d  is  e q u a l to 
the  d is ta n c e  be tw een  a le s  0  
a n d  C  o f the e c c e n lru  rod.

The special feature of this mechanism is that its slider possesses 
a short stroke ^nd the diameter ol the crankpin is large enough to 
withstand great pressure. The eccentnc mechanism is widely 
used in stamping and forging pi esses, etc

Fig. 2(>9

188. The ltocker-Arm Mechanism

Fig. 270 is a scheme ol a mechanism with a crank / which 
rotates about the fixed axis 0 .  On the crank’s end is a pm, centred

Fig. 270

on A ,  upon which is freely 
mounted the slide-block 2 which 
slides in a sliaight longitudinal 
guide cut into the arm 3. Ths 
arm, known as a ro c h rr -a rm , can 
swing from the fixed axis Ot 
when the crank rotates: swing­
ing is caused when the slide- 
block 2  slides in the guide of 
the rocker-arm.

Assume that the crank turns 
in the direction shown by Ihe 
arrow. After an interval ol 
lime, the axis O ^ o f the rocker- 
arm will be in position O xL ,  
tangent to the circle A 1A 0A 2A '0 
described by the centre of the 
crankpin A .  At this moment 
the crank O A 2 occupying a 
radial line of this circle will 
be perpendicular to the axis
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of the rocker-arm. Obviously this will be the extreme right 
position of the arm, Since as the crank cdKtinues turning as 
before, the arm will begin moving in the opposite direction — 
from right to left — and when the crank has turned through the 
angle A zO A 1 =  ft, the arm will be in its extreme left position 
O xK  and perpendicular to the crank O A v  Then the arm will again 
move from left to right and when the crank has turned through 
the angle A ^ O A 2 =  x ,  it will return to position OxL.

Thus, while the crank in its continuous rotation executes one 
turn, the rocker-arm oscillates, with axis Ox as its centre, passing 
from its extreme left position to the extreme right and back again.

Now let there be a pin B  at the upper end of the arm, around 
which slider 5 turns freely as it moves in straight guides which 
are part of the slider M  which, in its turn, moves in immovable 
guides 4. When the arm oscillates with this arrangement, slider 
5  will transmit motion to slider M  as it moves in the guides which 
are part of it. M  will move irom one end position to the other and 
back.

Thus w ith  the  a u l  o f the  ro rk e r -n r m . the  ro ta tio n a l m o tio n  o f  a  
c r a n k  is  c o n v er ted  in to  r e u p r o c a l  m o tio n  o f t r a n s la t ip n  o f th e  s lid e r . 
The crank is usually made so that its length can be changed, 
thereby changing the length of the slider stroke.

This rocker-arm mechanism is used in a number of machines, 
including planers. •

189. Kinematics of the Rocker-Arm Mechanism

We have shown that the rocker-arm mechanism converts 
rotation into reciprocal translation. In this it is similar to the 
slider-crank, but there is a good deal of difference between them 
in other respects.

First let us take up the method for determining the length 
of the stroke of the slider 2  in relation to the geometrical elements 
of the mechanism. We will denote the length of the crank O A  as 
r, the length of the rocker-arm OxB — OxK =■ 0 XL as Z, and the 
distance 0 0 1 between the axis of rotation of the crank and the 
axis of oscillation of the rocking arm as a.

Since the right triangles O xC K  and 0 l A 10  have a common 
acute angle, they are similar, from which it follows that

or , in which -y -  =  K C  and represents half
a stroke of the slider. From this the length of the stroke is

tf  =  —  • (175)

It becomes evident that the stroke of the slider is directly 
proportional to the length of the crank and t{ie length of the
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rocker-arm, and inversely proportional to the distance between 
their axes of rotation*.

Hence, in order to determine the distance r == O A  for a given 
stroll, we evolve the relationship

The slider makes its stroke from left to right in the time interval 
that the crank turns through angle a , and executes its return 
stroke during the time the crank turns through angle /?. We will 
denote the time it takes the crank to turn through angles a and 
fi as ta and tp, respectively. Then the average velocity of the slider
from.left to right v'at) =  —  , while from right to left v"av — tp
and the relationship between these velocities will be

Van __ H n b
ir

Vav ta b
(177)

Inasmuch as the crank rotates uniformly, the time spent by 
it to turn thnJligh angles a. and /3 is direr I ly proportional to the 
angles:

*L_- P ,
l a  a.

which when placed into Eq. (177) gives

f ’u  i! ___

v"av a
(178)

If we name the lett-lo-right stroke, dunng which the crank 
turns through angle a, the a d v a n c e  s tro ke , and the right-to-lel’t 
stroke when the crank is turning through angle /?, the r e tu r n  
s tro k e , then’on the basis of Eq. (178) we may stale that the  average  
sp e e d s  o f th e  a d v a n c e  a n d  r e tu r n  s tro k e s  o f the  s lid e r  are m v e r se lg  
p r o p o r t io n a l  to  th e ir  c o rre sp o n d in g  a ng les .

Hence the time taken by the return stroke is less than that of 
the advance stroke in the same ratio as the angle a is greater 
than angle fi. This is the chief dilterence between the rocker-arm 
mechanism and the slide-crank mechanism, and it is this very 
feature of quick return that explains its use in shapers where the 
advance stroke is slower because it is limited by the cutting speed, 
and where it is desirable to make the return stroke as fast as 
possible.

* In the mechanism used in shapers, the length of the crank is adjust­
able; this is done by shifting the crankpin A in a radial slot provided 
in the disc of the gear fixed to shaft O and which operates as the arm 
of the crank.
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Heretofore the inferred speeds of the slider have been a vera g e . 
But the actual speeds are not constant: at the end position the 
slider speed is zero, from where it gradually increases its speed till it 
reaches the centre position and then its speed again falls dif till 
it reaches zero at the opposite end. Thus i n  th e  r o c k e r -a rm  m e ch a ­
n i s m ,  j u s t  a s  in  the  s l id e r -c r a n k  m e c h a n is m , th e  s lid e r , p o sse sse s  
n o n - u n i fo r m  m o tio n  a n d  th e  c r a n k  h a s  u n i fo r m  m o tio n .

There is a variant of the rocker-arm mechanism in which the 
arm rotates instead of oscillating.

Illustrative Problem 99. If it is necessary to set the stroke of a shaper 
at H = 400 mm (Fig. 270), at what distance OA = r must the slide- 
block 2 on the arm be set from the axis of rotation and what will be the 
average speed of the working (advance) and of the return strokes vw 
and vret if I =  900 mm, a =  540 mm, and the rpm of the crank 4s 40?

Solution: we find the length r of the arm through Eq. (176):

r Ha
21

400 X 540 
2 X 900 =  120 mm.

We find angles a and /?.
O

From tiiangle A ft,0  we evolve O Ay = OO, cos -—■« whence

4 = = 4  =  £ £ = °-222* a,,d 4  -  77°10'-cos- 540
P =  154°20', and a =  360° -  154°20' =  205°40'.

1 60At 40 rpm the crank executes one turn in -^-min. =  -̂ q = 1 .5  sec.
The time spent to turn Lhrough the angle a =  205840' will be 

1.5 x 205°40'U -  —- rco° — 0.857 sec. Hence tp =  1.5 — 0.857 =  0.643 sec.
400The average speed of the workingstrokc vav.w =  q =  467 mm/sec =

467 X 60 , . no nn . ■= —J”oqo— m/min 28.02 m/min.
400The average speed of the return stroke pav.Tet —

622 x 60 
1,000

0.643 =  622 mm/sec =

m'min - 37.32 m/min.

190. The Cara Mechanism

Let slider A  (Fig. 271) execute reciprocal motion of translation 
and move in fixed guides. To the slider is fastened a fascia piece 
K  called a c a m . A rod B ,  called th e  s te m  o f  th e  fo llo w e r  and which 
moves in fixed guides, has its end pressed against the cam by 
means of a spring C . Assume that the cam is in the position 
indicated by the dotted line and the end of the follower-stem is 
in contact with the surface of slider A .  As the slider moves 
from left to right, the tip of the follower-stem will rise along the 
incline n m  of the cam, then from surface m  to / the follower will
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remain motionless if this surface is parallel to the axis of the 
slider, and from I to k the tip of the follower will move down to 
the qpd of the incline. When Ihc cam moves in the reverse'di­
rection, the follower tip will slide a lo n g  the cam’s surfaces in 
the opposite order. If the cam had no horizontal segment, there 
would be no prolonged pause of the follower-stem at the apex 
of its position. If the slider moves uniformly, the character of 
motion (speed and acceleration) of the follower will depend on 
the profile of the cam and the speed of the slider.

Direct contact between the follower and the cam would create 
friction and subsequent wear of the two contiguous surfaces. 
To avoid this, a roller, which rolls on the surface of the cam, is 
usually attached to the end of the to!lower.

it 

3 i

Fig. 272

If the follower were given the form of a lever with one end 
pressed to the cam by means of a spring, it would achieve oscillat­
ing motion around its rotational axis.

In the above cases we have dealt with linear translation of one 
direction being transformed into linear translation of another 
direction or into oscillating motion.

Fig. 272 is a diagram of a cam mechanism transforming rotation­
al motion into linear translation. The cam K, which rotates 
round axis 0, imparts to the follower B reciprocal motion of 
translation, the nature of which is determined by the profile of 
the cam. If the curve klm were a circle with its centre at 0, the 
follower would remain motionless as it skirts along this part. 
Fig. 273 shows the skeleton outline of a mechanism in which 
the rotation of the cam K  causes oscillating motion of the 
follower B.

In the cam examples presented thus far, their profiles and the 
trajectory of the various points of their followers lie in a single 
plane or in parallel planes. This type is called a disc cam, aa 
distinguished from a cylindrical cam, which does not answer tot 
the enumerated conditions. Fig. 274 is a schematic view 
cylindrical cam K, ringed with a groove that is not parallel with
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any cross-section of the cylinder. A roller C that moves in the

?roove, turns freely on a spindle which is part of follower B.
'ollower B  moves in fixed guides parallel to the axis of rotation 

of the cam. When the cam rotates, the follower receives reciprocal 
motion of translation

It is cleai Irom what has been presented that in a cam mechanism 
the motion of the lollowei is determined by Uie profile ol the cam 
Cams are eytensively used to impait many kinds of motion, 
particularly in automatic machines and machine tools.

To determine the required profile of a earn, it is necessary to 
fust know the requited motion of the follower, or as they say, 
the “speedication” of the followers motion

Assume that the diagram shown in Fig 2756 is just such a 
specification The angles x of the tuin of the cam are laid out 
on the axis of the abscissae Ox, and the corresponding distances 
between A of the follower B and the rotational axis Ox of the cam 
are plotted on the axis of the ordinates OS It is fuithermore 
specified that the cam rotaLe uniformly and that its rotational 
axis intersect the axis of the tollowci (Fig 275u) It is seen that 
the curve representing one ievoluLion of the cam has been equally 
divided into 16 parts

From the displacement diagram (Fig 2756) we fincj that when 
the cam makes its fust two-sixteenths of a turn, the distance 
between the contact surface of the follower and the axis of rotation 
remains the same, as shown by the equal segments 0  — a0 =  
=  1 — ax =  2 — a2, and then this distance increases. At the end 
of the third-sixteenth of a turn, it is equal to the linear segment 
'3-^a3, at the end of the fourth- and fifth-sixteenth it will be equal 
to segments 4 — o4 and 5 — as. Then the follower remains mo­
tionless during two-sixteenths of a turn, after which the distance 
grows until a moment corresponding to linear segment 10. During

lig  273 Fig 274

191. Determining the Working Surface 
of a Disc Cam
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turns 10—11 the follower again has a period of dwell; then be­
ginning with moment 11 the distance decreases, i.e., the follower 
moves in the reverse direction; at the moment corresponding 
to tlft completion of the full turn of the cam the distance between 
the end of the follower and the axis of rotation is represented by 
the linear segment 16 — al8 which is equal to the initial distance 
0 — a0 and means that the follower has returned to its initial 
position. As the cam continues to rotate, the follower again 
executes its motions in the same order, or, as they say, repeats 
the cycle.

V*
3E s

/

Li J __L I i ■J __I__L
0 1  2  3  0  S  6  7  8  9  10 111213  1015  

----------------------3 6 0 ° --------------------- -
16 «

*)
F ir . 27.')

Now let us proceed with the consl ruction ot I he working surface 
of the cam (Fig. 27f)(i). We extend axis Ox to the lett and mark 
upon it an arbitrary point Or  This we shall consider as the rota­
tional axis ot the cam. Assume that the follower B is moving 
vertically upwards. Since it has been stipulated that its axis 
intersect the axis of the cam, we delineate a vertical line through 
point 0 lt and by laying out on it the linear segment 01A0 — Oa0, 
equal to th*e initial distance between the contact surface of the 
follower and the axis of rotation Ov we obtain the initial position 
of the contact surface 6f the follower A0. At moment 3 the con­
tact surface of the follower A will be at a distance of 3 — a3 
from the rotational axis; by laying out this segment on the axis 
of the follower we obtain position As of its contact surface*. 
Transferring the other points av a„, a?, etc., on the displacement 
diagram, we obtain a number of positions for the contact surface 
Of the follower, to wit, At and A9, which coincide with positions

211



Aa and A7, and Ae, Ag, A10, which coincide with position A n , 
etc.*.

Now we draw a circle with point Ot as its centre and a radius 
equal to the shortest distance OyAQ and, dividing it als^ into 
sixteen equal parts corresponding to sixteen cam revolutions, 
delineate radial segments through points l v 2V 3V 4ir 5V etc.

When the cam turns through an angle of 22.5° X 2 =  45°, 
the contact surface ol the follower A will remain in its initial

position A0-, by the end of the next 
turn through the angle 210131 of 22.5°, 
the contact surface of the follower 
will be at position A3. Hence, in order 
to find the point on the surface of the 
cam corresponding to point A3 of the 
follower, we plot an arc from centre 
0,, with a radius equal to 0XA3, to the 

point where it intersects the radius 0 ^ .  In the same way position 
At of the contact surface of the follower will coincide with point 
4X of the profile, etc. Repeating this process for all the other 
positions of the follower we obtain the other points on the 
working surface, which we unite with a curved "line and thus 
obtain the profile of the cam. Belween points 5X and 7X, and 
101 and l l x (just as between A0 and 2X) it will consist of arcs of a 
circle.

If the follower had a roller on its end, we should first have found 
the curve corresponding to the motion of the axis of the roller 
and then, having delineated from various points on this curve 
a number of circles wilh radii equal to the radius of the roller, 
we would plot the profile ol the cam, tangent to all these circles 
(or arcs) (Fig. 276).

192. Questions for Review
1. In the rack-and-pinion transmission represented in Fig. 277, the 

pinion z, transmits motion to the lack B  through the idler gear z,. 
What change would there be in the speed and direction of the rack If 
pinion z, was in mesh directly with the rack?

2. Two screws of different diameteis arc threaded to the same pitch. 
What can be said about the lead angle of their threads?

3. In two screws of the same diameter the distance between turns 
of the thread Is the same, but one is single-threaded and the of her multiple- 
threaded. What can be said about their lead angles?

4. In the mechanism dingiammed in Fig. 258 the threads on lengths 
a and b have the same direction and pitch. What is the absolute dis­
placement of nut 3 when screw 1 is rotated?

5. What would be the answei to question 4 if the threads on lengths 
a and b possessed different directions?

* Positions A,„, A,3, A „  and Ajt, are not shown so as not to compli­
cate the drawing,
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6 What change would there be In the mechanical advantage obtained 
with a screw-and-nut if the lead angle were decreased?

Z/

7. What kinematic diffeienccs are there between the rocker-aim 
mechanism and the slider-crank mechanism? Why is the slider-crank 
mechanism impractical for use in a sliapei?

* 193. Exorcises
101. A load of Q =  1.5 tons is raised to a height h — 180 mm 

in 25 sec by the screw jack whose principal properties were 
enumerated in Ex. 97 (Fig. 263). What force P is exerted on its 
handle and what power expended it the eiiiciency of the jack 
rj =  0.4?

102. The rack 13 in Fig. 278 is pul in motion bv the train of 
gears zlt z2, z3, and z4 in which z, is the duvei The power 
on shaft is N =  12 lip. Find the 
force transmitted to Lhe lack and 
also its speed if the rpm of the driving 
shaft n1 -- 900, lhe number of leeth on 
gears zt =  24, za — 60, z3 — 25, z4 — 75, 
the module of the last gear m — 5 mm, 
and the efficiency of the drive rj — 0.85.

103. The driving gear zx in Fig. 279 
transmits motion 1) to rack A accord­
ing to the scheme z, X — z3 X z4 —
— z5 X rack, 2) to the screw mecha­
nism with nut C which cannot turn and according to the scheme 
2 , X z« — z3 X z* X z„ — screw B X nut C, and to 3) shaft VI 
according to scheme z, X Zj X z7 — worm D X worm gear z8.

Given the following, z, — 30, za =  60, z3 =  25, z4 =  80, zt — 
=  40, z3 =  50, z7 — 40 teeth; module of the rack m6 =  4 mm. 
pitch of screw B =  5 mm, the worm D is triple-threaded, the 
niimber of teeth on the worm gear z9 =  60, the rpm of the driving 
Shaft n =  400,
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Find the speed v of the rack A, the speed vc of the nut, and 
the rpm n6 of shaft VI.

104. Fig. 280 shows the skeleton profile of a slider-crank 
mechanism with the following working properties. The %lider

Fig. 280

3 turns freely on crankpin B of crank 2 which rotates about the 
fixed axis A. When the crank rotates, the slider receives relative 
reciprocal motion of translation in the slot of arm 4 which slides
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in fixed guides 1. The length of the crank AB  — 120 mm and it 
achieves 180 rpm. Plot the displacement aftd velocity curves for 
the mechanism.

CHAPTER XIX
AUXILIARY PARTS EMPLOYED IN TRANSMITTING

ROTATION

194. Axles and Shafts and Their Components
In order that sheaves, gears, cams, etc., achieve rotation, they 

are mounted on parts called axles and shafts. Assume that sheave 
K (Fig. 281a and b) receives rotational motion lrom a belt 
and transmits this rotation further through sheave L. Rotation 
is imparted by the elfective pull Pj which creates the torque
M x — 1 \  , whence Dx is the diameter ot the sheave K (Fig.
2816). Acting against this torsion is the moment i\/2 P2
equal in magnitude and opposite in direction, in which P2 is 
the pull transmitted to the sheave connected by belt with sheave 
L, and D2 is the diameter of sheave L. In this way the part ol the 
shaft 2 situated between sheave K, which receives Lhe pull, and 
sheave L which imparts it, tends to twist under the action of two 
equal and opposite moments. Furthermore, the shaft tends tp 
bend because it is subjected to its own weight, the weight of 
the sheaves, and the stretching action ot the belts. Due to all 
these factors we may say that under opeiahon a shaft is subject to 
combined torsion and bendnuj.

Fiff. 281

Now let us assume that a unit consisting of two sheaves B is 
turning freely on a cylindrical shaft A (Fig. 282). It is clear that 
in this case the cylindrical shaft will be subject only to bending, 
inasmuch as torque will be imparted from one sheave to the other 
via the bushing C. This type of detail, whose geometric axis
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i j k
Fig. 283

coincides with the axis of the revolving part that it carries, is 
known as an axle. Accordingly, the principal difference between 
an axle and a shaft is that ah axle is subject only to bending, 
whereas a shaft bears both bending and torsion forces.

In the above example there' is no need for the axle to revolve in 
order that the sheaves turn. But there are other instances where 
the axle must turn, an example of which is the axle of*a railway 
carriage: as the wheels revolve, the axle upon which they are 
mounted also revolves but is not subject to torque.

Shafts and axles are held in supports the construction of which 
corresponds to the given function of the detail. Thus, the trans­
mission shaft A schematically shown in Fig. 281a is installed in 
three supports, or sliding bearings. The part of the shaft within 
the bearing is known as the journal.
Shaft A thereby possesses three journals 
1,2, and 3. Journals 1 and 3 at the end of 
the shaft (or axle) are called pivots, while 
the intermediate journal (numbered 2 in 
Fig. 281a) is a neck journal. If the longi­
tudinal (axial) forces acting ypon the shaft 
axe very great (Fig. 283), abutting journals 
are used to bear the thrust and they 

are therefore known as thrust 
bearings.

The shaft and supports 
must mate in such a way as 
to prevent any motion of 
the shaft in an axial direc- 
lion. There are various ways 
of doing this. One method 
is to cut out a part at the 
end of the shaft or the axle 
so as to have a cylindrical 
portion of less thickness 
than the rest, thus making 

a pivot with two shoulders (m and n in Fig. 284a) which will, it 
is clear, prevent axial displacement. A simpler construction is a 
pivot with a single shoulder (Fig. 2846).

The transition from a surface of greater diameter to one of 
lesser diameter (r in Fig. 284a and b) and called a hellow chamfer, 
is made in the form of an arc, of definite radius for every shaft 
diameter. The chamfer is indispensable for long service of shaft 
or axle.

Often collars are used to prevent axial displacement of the 
shaft (A in Fig. 284c). These are fastened to the shaft with set­
screws. When necessary, collars are also employed together with 
neck journals.

c)
Fig. 284



195. Main Types of Sliding Bearings

The support in which a shaft or axle rotates is called a bearing. 
In sofhe bearings the force from the shaft is perpendicular to the 
axes of the bearing (Fig. 281) and then they are called radial 
bearings; in other cases the force is directed parallel to the axle 
or shaft, in which case they are known as thrust bearings or step 
bearings. Some bearings may be of the combined radial-thrust 
type.

Bearings for the axles of rolling stock of railways are Called 
journal boxes.

The choice of bearings depends on the conditions under which 
they are to work; the most important factors are the applied 
load ^ind the rpm of the axle, or shaft.

In sliding bearings, the journal of the axle is in contact with 
the inner surface of the bearing and slides over it, thus creating 
the first kind of friction.

196. Antifriction Bearings

As already explained in Sec. 50, the loss from rolling friction is 
much less than that from sliding friction and explains the wide 
use of antifriction bearings.

Antifriction bearings are of various types, depending upon the 
direction of the acting forces. Figs 285 and 286 show one type — 
ball bearing — and its components (the numerals for the respective 
parts are repeated in both illustrations).

Fig. 285 Fig. 286

The split sleeve 1 is mounted on the journal of the axle, or 
shaft. The outer surface of the sleeve is slightly conical and carries 
the inner race 2. The outer race 4 is concentric with the inner one 
and between them are 4he steel balls. When the round nut 3 is 
screwed on to the sleeve 1, the latter is drawn into the inner race 
2, thus fastening it on the journal. When one race turns relative 
to the other, the ball? roll in the grooves in the outer surface of
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the, inner race and the inner surface of the outer race. To keep 
the halls'at; a constant distance from one another they are placed 
in the dfege 5. ^

When the outer race 4 is fastened to the shaft housing (Fig. 
287)*, we get a Dearing to support a rotating axle or shaft. Fig. 
o 288 shows a similar arrange-

u ment for a sheave; the ball
bearings are mounted in 
the hub.

.In„the bearing just present­
ed', the balls are arranged 
in one row and from which 
it derives its name — single- 
row ball bearing; whereas 
Fig. 289 shows a cross-section 
of a double-row ball bearing.

Another type of antifric­
tion bearings is where rollers 
are' used instead of balls, 
these are cajjed roller bear- 

... , togs.
Besides radial ball- and roller-bearings, thrust and combined 

rdtiial-thrusi bearings are also used. Fig. 290 shows a cross-section 
of one type of thrust ball bearings: the shoulders of shaft A rest 
on rhceT which is fastened tightly to the pivot; race 2 is immov­
able and the balls, rolling in the grooves between the two races, 
take up the thrust transmitted by the shaft.

Fig. 387

Fig. 288
- M -

Fig. 289

Antifriction bearings arc belter than sliding bearings in several 
ways: there is less friction loss, a smaller amount of lubricant is 
required, a smaller longitudinal clearance is achieved, etc. But 
they also have a number of objectionable features, amongst 
which are their larger diametrical clearance and at times the 
complication of their assembly.

* The housing is shown with the cover removed aiyjl lying alongside,
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197. Couplings
Coaxial shafts arc joined by a machine part called coupling*.
The simplest couplings, used ftfr* rigid connections of the 

ends of two shafts, are called rigid couplings. Fig. 291 is a cross- 
section of a flanged rigid coupling: two llangcs /  and kej|(d 
to the-ends of the shafts and bolted together To ensufe fikjfftiapnt,

one of the fl£$ie&has a 
cction 2 'Which fits uito a 

^K t̂i^ppMssion in the other flang®*

Fig. 29fc Fig. 292

Another type of coupling is the ribbed coupling shown ip Fig. 
292. This consists of twolortgitudinalfialves mounted simultaneous^ 
ly on the ends of both shafts and then tightened with bglts. To 
preclude the possibility of the shaft twisting in the 'cOppUnjK 
the ends of both are keyed together.

It is often necessary to engage or disengage two coaxial shafts 
during their rotation. Couplings used for this purpose a® called 
clutches.

198. Questions for Review
1. What is the main difference* b ’tween an axjc" and a shaft? *
2. What is the difference between neck journals of an axle or shaft, 

and pivots?
3. When is a bearing railed a step bearing?
4. What are collars used for? „
5. How arc bearings classified as to load and type of friction?

c  H A r  t  k  n  x x  

DEMOUNTABLE CONNECTIONS

199. Threaded Connections
Every machine or assemblage of engineering equipment consists 

of parts joined into uni®. In some instances the parts forming 
such units move relative to one another, in other cases they

* The cohnections used in joining pipes, spars, tie rods and other 
similar equipment are, incidentally, also called couplings.
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comprise a fixed whole without any movement relative to each 
another.

Often the parts are so joined that when necessary (as 4uring 
repairs or overhauling) they may be taken apart without damag­
ing the joint. Such connections are said to be demountable, as 
distinguished from permanent connections which cannot be sepa­
rated without destroying some of the members.

!£he m'ost prevalent demountable connection is the threaded 
type.Its construction depends on the parts to be joined and on 
the expected load. The threads are either cut into the parts to 
be joined, or are prepared on special fastening details — screws,

, bolts, nuts, etc.
Examples of permanent connections are those that are rweted 

or welded; the only way such assemblies can be taken apart 
is to destroy the basic elements forming the riveted or welded 
seam.

200. Threads for Connections
The chief element in a threaded connection is 9 helical thread 

classified by its diameter, pitch and profile. In the U.S.S.R., 
government standards (GOST and OST) have been established 
which must be strictly observed.

Fig. 293

The reliability of a threaded connection depends on Ihe magni­
tude of friction acting between its elements; the greater the 
friction, the more reliable the connection. Since the greatest 
friction is obtained with a triangular thread, it is the one chosen 
for holding purposes. Fig. 293 shows a thread dimensioned by 
the metric system and designed for thread diameters of from 1 to 
600 mm. The drawingshows that the apex angle of the thread is 60°, 
and since the sides of the thread form equal angles with the axis
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of the bolt, the thread has the form of an equilateral triangle. 
The height of the triangle

=  0 866 s, (179)

in which s is the pitch of the thread.
Since the amount cut off at the thread’s apex and base is -j- 

the actual height of the thread

U =  t0 -  2 A  -= 0.75 t0 =  0.6495 s. (180)

Further examination will show that between the roots of the 
thread on the bolt (diameter dx) and the points of the thread1 on

Fig. 294

the nut, a radial clearance has been left the magnitude of 
which

— =  (181)

whence t'2 represents the depth of the working profile of the 
thread. OST Specifications for each size of screw include the 
dimensions of the external diameter d„, average (mean) diameter dav, 
internal diafneter dv pitch s, height of thread /2, and the 
clearance e’.

When dimensions are given in the metric system, they are 
marked with an M  followed by the external diameter and pitch. 
For instance, M  30 X 3.5 infers that the screw has an external 
diameter of 30 mm and a pitch of 3.5 mm. Screws with dimensions 
based on the inch are also used in the U. S. S. R. Fig. 294 shows 
such a thread with a profile angle of 55°, used for diameters of 
from 3/16' to 4 ' (OST 1260). The cross-section of the thread is
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in the form of an isosceles triangle with an angle of 55° at its 
apex. The altitude of this triangle

/„ =  0.96049 $, b(182)
in which s is the pitch of the thread.

The distance of the cut-off of this triangle from the apex is
y  from which we obtain

t2 -= /„ — 2 A =  * *0 -= 0.6403 s. (183)

Another dilference of this thread as from one of the metric
type is that there arc two clearances y  and y  between the bolt
and the nut at the root and apex of the profile. The rest of 
the notations in Fig. 294 are the same as for the metric-type thread.

The number ot threads per inch ranges from 3 (when the 
diameter is 4") to 24 (when the diameter is 3/16")- The inch-style 
thread is forbidden'1' in the manufacture of new articles. Among 
other threads tor connections is the GOST 6357-52 for piping 
with diameters of 1/8" to 18". »

201. Tnpcrcd-Pin Connections
Some demountable connections are implemented with tapered 

pins and are therefore called pin connections. Assume it is nec­
essary to join two details 1 and 2 as in Fig. 295a. Alter drilling 
holes to fiL the exact shape of the pin in both details (Fig. 2956),

3

Fit?. 295

we drive in the pin with a hammer or a press. Under the action 
of the tapered pin the end ol deLail 2 will be drawn into the 
socket in detail 1. If there is a flange m and the pin is driven in 
firmly, a reliable connection is formed which, if neceskary, can 
easily be taken apart by forcing the pin out in the opposile 
direction.

* In the U.S.S.R. — Editor's note.
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feuch connections may also be made as shown in Fig. 296a: 
the two parts to be joined are enclosed in a common bushing 
find the connection is made with two pins.

Tapeftd pins are held in place by friclion, which increases as 
forces Nx and N2 increase (sec Fig. 162) As already explained in

I
t)

Sec. 110, these forces increase as the angle a burned by the sloping 
sides of the pin decreases, lluice angle a is made as small as pos­
sible, its ratio ° (Fig. 20(i/i) In I he lenglli being , or
and very seldom gi eater.
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STRENGTH OF MATERIALS

C M A P I  i: 11 XXI

BASIC PRINCIPLES

202. Stress and Strain in a Body 
Under the Action of External Forces

Assume that a rectilinear bar is resting with its ends on two 
supports and we exert a lorce on it, at some point between the 
supports, by hanging a dehmte weight to it. Under the action 
ol tins lorce the bar wilt bend and become euryilinear in form. 
By repeating tins experiment with weights ot various magnitude 
applied at the same point, we willtmd that the bar bends more as 
we increase I lie lorce. Such a change in form, or dimensions, of 
a body under the action of applied lorces (called loads) is known 
as sham

By observing the form ot I tie liar alter removing I tie load 
causing the strain we will see one of two things: eittier the bar 
will return entirely to its original shape, or its ionn will he only 
partially restored. In the lirst instance the strain is called elastic 
while in the second case, when the bar remains partially de­
formed, it is said to have attained plastic strain ora  permanent 
(residual) set. We thus see that when a body is subjected to the 
action ol a load under certain conditions claslic strain may be 
accompanied by a permanent set. it the load is still further 
increased, strain will become so great that the bar will fail.

Strain is not only caused by direct action of one body upon 
another, but also by a body's own weight. 11 we place a metal 
baron two supports and it is very long in comparison to its thickness, 
we shall see that its own weight and corresponding reactions at 
the supports will cause it to become curvilinear ih form.

In the above examples, strain is so great that it becomes visible; 
such strain is not permissible in engineering structures or machines 
except where special parts are used (springs of various kinds), 
meant to absorb strain of considerable magnitude. However, all 
parts of any structure or machine may become somewhat strained 
under the action of applied external forces; and though such 
strain may not be visible, it can be measured with precise instru­
ments.
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203. External and Internal Forces, 
and the Cross-Section Method

W f know from experiment 1 hat the grealer Ihe force applied 
lo a body, the greater the slrain. For instance, in the case of 
the bar just mentioned as being subjccl to bending, the extent 
of curvature depends on the magnitude of the applied forces al 
a given cross-section.

In all cases when external forces cause strain in some member, 
internal iorces arise, in proportion to the magnitude and direction 
of the forces, to resist the external forces, flow can we determine 
the magnitude of internal

of it are also in equilibrium.
Let us try to determine, foi example, what Iorces would be 

acling on the part mCI)n. In the tirsl place there ai external 
forces Px and Pj, and then there are, apparently, some forces 
acting from portion limn A. Let us imagine that we cut the beam 
along line mn, and remove the portion limn A. If we denote II as 
the resultant ol the elementary Iorces acling lioni the discardeI 
portion upon the remaining free body, then we may say that the 
free body mCDn is in equilibrium under Ihe action ol forces Px, 
Ps, and it. This force It is the internal lorce I hat balances forces 
P4 andPe. As already explained in Slalics, when there is a system 
of forces in equilibrium, any one of the forces balances all the 
others. Hence the force R is ecpial and opposite in direction to 
the resultant of forces Pj and P6.

Reasoning in the same way with respect to portion BmnA 
(that is, discarding portion mCDn), we come to the conclusion 
that it is und“er the action of the internal force R' which is equal 
to the resultant of forces Px and P5, or what is just the same, lorce 
R' balances the external forces P2, P3, and P4, as applied to 
portion BmnA.

We therefore find that the internal forces in the right and left 
portions of the beam are equal in magnitude (which is as it 
should be according to the law stating that action and reaction 
are equal and opposite), but the direction of these forces depends 
on which of these portions we consider as the given free body.

AssumethaLa beam A BCD 
(Fig. 297) is under Ihe action 
of a system of balanced Iorces 
Pt, P2, 1‘3, P4, and P5. Let us 
lind Lheinlernal forces acting 
in the cross-siy I ion mn. To 
do this, we reason as follows, 
if the beam as a whole i« m 
equilibrium, then all parts

forces caused by the action 
of externa] Iorces?
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As we shall eventually see, the direction of internal forces deter­
mines the nalure of strain that Ihe body undergoes.

In this ease the system of exlernal forces is such that the result- 
anL R of the internal forces is not perpendicular to the gfven 
cross-section mn. We therefore resolve It into two components - N, 
Derpendicular lo Ihe vertical plane and T, lying within it. We 

%iay thus replace It with these two components. The first is called 
Ihe normal force, and the second Ihe tangential force.

Now let us find the answer lo the question as to whether the 
internal force will be the same in all sections of the beam. Assume 
that we cut the beam along line m^n^ parallel lo mn, and discard the 
left portion BmlnlA. With Ihe given distribution of forces we see 
that there are now three forces instead of two - Pj. P6, and I*4 — 
acting on the remaining free body. Hence the force balancing 
them and equal to the resultant of the discarded forces Pa and 
P3 will differ from them and (hereby Ihe internal force in this 
cross-section will also differ.

Furthermore, if instead of a vertical plane we had taken our 
section of the beam in some direelion oilier Ilian perpendicular 
to its axis, the force It would be directed towards this plane 
at a different angle and consequently the components N and T

would have been different. There- 
iore in general the internal forces 
differ at dillerenl sections of the 

P beam.
This mol hod lor determining inter­

nal forces in a strained body is called 
the cross-section method and is made 
wide use of in solving strain prob­
lems ol bodies.

Illustrative rroblom 100. A roof truss 
is resting on two supports A and li 
(Fig. 298«). A vertical force 1* is applied 
a I C. Since the truss is symmetrical with 
respect lo Ihe king-posl>CD, the reactions
ol Ihe supports will each be — , i.o.,
j{A = Hu r-_= ().5I\ Find the internal 
forcer, acting in the railer AC and the 
tie beam AD.

Fig. 298 Solution: Let 11s assume that, by
culling -through plane mn, we have 

procured a free body at joinL A. A is in equilibrium under the action 
of the reaction n.^ and t lie internal forces in both AC and AD. We begin 
with a point A, below the diagram (Fig. 2981>), and after delineating 
the vcclor of force Hyt, we resolve- it inlo two components AjD, and 
A,C, direcLed towards AD  and AC. In order thal these two forces be 
balanced by force R t̂, they musl be directed in opposite directions. 
In this way we oblain a balanced system of forces R.a, A,D', and A,C'. 
From this we find that the tie beam AD is under tension, while the rafter 
AC is under compression
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204. Internal Force* of Elasticity
]^hen a body is strained under the action of external forces 

the points of application of these forces arc more or less dis­
placed, with the result thaL these forces perform a definite amount 
of work in the si rained body. This work is equal to the negative 
work of the internal forces resisting strain. If strain is elastic 
the work of the internal forces is equal to the potential energy 
accumulated by the strained body. This energv is returned when 
the body assumes its original form.

This factor connected with the potential energv oi strain is 
frequently utilised in engineering - among other things in 
machines and instruments employing springs, membranes, and 
similar resilient parts.

20.r,. Stress in Strained llodies
The internal forces llund IT as presented in Sec. 20,'J are result­

ants of the elementary forces of interaction between the particles 
of two partsBoi a stmined body. Thus it the strained hodv repre­
sented in big. weie imagined to be cut as shown, then we 
may assume such an vlemenlaiy torn* acting on each particle.

Let the elementary lorce IP be acting on sonic small area 
AF ol portion / of I lie body. It is oi)\ious that the greater the 
force, the greatci the internal forces set up m the material. 
These forces arc measined l>v a quantity called shrss, which 
is found by dividing the 
elemenlary force /II* hv 
the area lb. By denoting 
the force as n, we obtain

*=-- (i8d)

1 ii general, stresses diflei 
in diflerenl parts ol a 
strained body.

Inasmuch as force is expressed m kilogrammes and area in 
centimetres or millimetres, then stress is expressed in kg/cm2 
(read, kilogrammes per square centimetre), or kg/mm2.

It internal forces arc distributed cwcnlv over I he given cross- 
section, the stress will lie the same al all its points and can he 
determined by dividing this lorce P hy the whole area of the 
cross-section F:
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206. U ltim ate Strength and Safe Stresses
If we take two pieces of steel wire of the same quality and 

length but[of different diameters and hang them so as to support 
equal loads, we shall find that the one of the smaller diameter 
will have the greater elongation. Thus, under the sam&load, the 
strain of the wires will differ. If we further load the wires, we 
shall find that at a eerlain load the thinner wire will acquire a 
permanent set and will not recover Us initial shape when the 
load is removed, whereas sLrain in the thicker wire will remain 
elastic. Finally, at a certain further load Lhe Lhin wire will snap, 
whereas the thick one will remain unbroken under lhe same load.

Thus we see that si rain in the two wires differs under one 
and the same load. The reason is that the stress is less in the 
cross-section of the thicker wire because its area is greater. 
From which it follows lliat il is nol the magnitude of the exerted 
force lhal determines the nature of strain, but the magnitude 
of stress. However, stress alone does not determine the charac­
ter of strain. Indeed, if we repeat Lhe experiment with two 
pieces of copper wire of the same diameters, we vyould find that 
they acquire greater elongation under the same loads and break 
under smaller loads. This means that the nature and magnitude 
of strain depends also on the phvsico-mechanical properties 
of the material.

Strains of -various kinds find practical application in engi­
neering. For instance, in the forging or rolling of melal we force 
it to undergo non-elaslic strain which enables us to give it the 
required shape. In the cutting of metals, forces required for 
separating the chips are put into action. In all these cases we 
create stresses which correspond to the produced strain.

Where machines and other engineering equipment are con­
cerned, however, the problem is entirely different. Obviously 
in their case there must be no permanent set, since such strain 
would cripple normal work of the parts. Accordingly, all parts 
of machines and other equipment must be subject to only elastic 
strain, to disappear when the action of the load is removed. 
Whereupon machine parts are so constructed as to keep strain 
within permissible limits, from which it is clear that the created 
stress under a load musL also be within permissible limits. To 
accomplish this, calculations in design are based on certain 
safe stresses which are established as a definite fraction of the 
stress that would break the member. Obviously the magnitude 
of a safe stress depends firstly on the maLcrial of which the part 
is to be made.

All these factors concerning determination of strain and stress 
under the action of external forces, as well as calculations of the 
strength of elements of machines and all other types of struc­
tures, are treated in lhe science called Strength of Materials,
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207. Static and Dynamic L o a d s

There are various kinds of action of a load on a structure. 
Let 'js consider a bridge for example; here the load fluctuates 
within narrow limits. Its own weight is constant, but the load 
created by the traffic passing over it changes gradually in the 
course of comparatively prolonged intervals of lime. The floor 
load in an apartment house changes in a similar way, as does 
also the hydraulic pressure exerted upon a dam, etc. This kind 
of load, which grows gradually and then either remains constant 
or undergoes comparatively little change, is called a s/atic load.

There are other cases where external lorces applied to a body 
do not increase slowly buL act with a force that grows quickly 
to its; maximum; and finally there ate cases where the whole 
load is applied simultaneously and produces impact. These are 
called dynamic loads. Wagon couplings undergo such loads when 
a Irain starts suddenly, and such loads occur when a forge is 
working, and when badly centred workpieces are being ma­
chined on a lathe.

A dynamic load produces greater strain and stress than a static 
load. Hence, irPthe designing and opeiation of machines and other 
engineering structures, everything is done to avoid dynamic 
loads except when impact is needed to obtain greater effect 
(the blow ot a forge hammer, pile-driver, etc.).

2011. C.hicf Tjpes of Strain
All parts ol a structure act upon each other in various ways 

and, accordingly, the tones exerted by one part upon another 
cause different kinds of strain: the caiilc of a hoisting machine 
is stretched, the foundation ol a 
structure is compressed, a hori­
zontal beam is bent, etc.

Strain is divided into the follow­
ing categories:

1. Tension and compression (Fig.
300a arid b): such strains occur in 
the elements of bridge trusses, torge 
hammers (compression), the shank 
of a bolt when tightened by a nut, 
etc.

2. Transverse displacement (shear)
(Fig. 300c): under the action ol 
equal and opposite forces a rivet 
may shear along the line mu; a too 
great tightening of a nut and bolt 
strip off the shank of the bolt along the internal diameter, 
etc.

will cause the thread to
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3. Twist (Fig. 300d): twist is a strain that occurs in all parts
that undergo torsion. Shafts of machines are most subject to 
twist. %

4. Bending (Fig. 300e): beams and girders of all kinds are 
subject to bending, any axle may bend under its own weight, 
the weight of other parts mounted on it, and the actioii of applied 
forces.

All the above strains are classified as simple; but very often 
machine parts are subjected to several stresses at once. Shafts, 
for instance, are acLcd upon by torsion and tension at the same 
time, resulting in combined strain.

209. Questions for Review

1. What is meant by strain and upon what lactors docs its magnitude 
depend?

2. Is it possible to judge the magnitude of strain by only the magni­
tude of Ihc load acting on the member under consideration?

3. In what cases is it necessary lo induce a permanent set in a material?
4. In what kind of calculations is tin cioss-section method used? 

Explain it in biiet.
5. State the kinds ot stiain pioduccd in the following components:
a) an ordinary culler when a surJace is being machined;
b) a drill in operation;
c) the lead screw ol a thread-cutting lathe when in operation;
d) the jaws ol the chuck on a lathe when the outer surface of a work- 

piece is being laslcned;
c) the screw of a parallel \ ise holding a workpiece;
f) the shank of a rivet in its cross-sections dircclly beneath the heads 

where they hold the livetlcd purls.

c. it a  i> t  i: n  xxtr 
TENSION AND COMPRESSION

210. Tension. Absolute and Unit Elongation
Assume that a force P, conslant in magnitude and axial in 

direction, is applied Lo the lower end of the immovable pris­
matic bar shown in Fig. 301. The bar is in equilibrium under 
the action of two equal and opposite forces — P and the reaction 
P'*. Let us take a cross-section mn perpendicular to the axis 
of the bar at an arbitrary plane; by imagining that we have 
discarded the lower pari of the bar, we come to the conclusion 
lhat the upper part as a free body is in equilibrium under the 
action of force P and its opposite force P'. Accordingly, the bar 
will stretch along its whole length under the action of force P. 
If the cross-sectional area of the bar is equal to F, the stress

* In the given example the weight of the bar is ignored,
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in the cross-section

a =
from which

F

P -- oF. (186)
If we increase the magnitude of force I*, then the length of th? 

bar also increases. Assume that witli a certain magnitude of 
force P, the length of the bar tx - - I -f- Al, in 
which I is the original length, and Al is its 
elongation when in a state of strain. This 
final length is called absolute elonqalion. IBut 
absolute elongation does not tell us all about 
the character of strain. To illustrate this let 
us take a rubber band, cut it into two unequal 
lengths and Jiang equal weights on them; iL 
will be found that their absolute elongations 
differ in magnitude. Hence, absolute elon­
gation is no indication of proportionate strain 
under the action of a given tensile force. Howe­
ver, it we compare the elongation per unit 
length of the two bands of rubber, we shalf find 
that it is the same for both. This is called unit 
elonqalion and is a ratio of absolute elongation 
to original length. By denoting unit elongation 
as e, we oblain

e — (187)

F i r . 301Since the numerator and denominator of 
.this fraction are both expressed in units of 
length, it is an abstract number. Oidinaiily, unit elongation 
is expressed in percentage, then

'll
*% - - f 100. (188)

Wherefore, lonqdudinal sham of a body under Ike aclion of a 
tensile force is measured by Us unit elongation.

211. Transverse Strain of a Body 
Under the Action of a Tensile Force

Experience has shown that the elongation of a bar under a 
tensile force is accompanied by transverse contraction, that is, 
by a decrease in cross-sectional area perpendicular to the line 
of action of the force, \ssume that the bar in Fig. 301 is being 
stretched by two equal and opposite forces P and P', that it is 
square in cross-section, and that one of its sides is equal to a.
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When the bar is elongated by a length equal to Al, the dimension 
a is decreased to au and the difference between a and ax is the 
absolute transverse contraction Aa, i. e.,

A a - - a - - a 1. ^189)
Transverse strain of a bar is measured by unit transverse

, compression:

The relationship between unil transverse compression s' 
and unil elongation e is

--=pe, (191)
that is, transverse strain is proportional to unil elongation. 
The coefficient fi is known as the coefficient of transverse compres­
sion and is a constant determined empirically for each material. 
The coellieient for carbon steels, for instance, is from 0.21 to 
0.28; lor copper it is from 0.31 to 0.34; for aluminium it is from 
0.32 to 0.30, etc. It is less Ilian 0.5 for most materials, while 
for rubber it is almost 0.5. Unil elongation for fliosl materials 
is three to four times more than transverse compression.

212. The Tensile-Stress Diagram
In m\estigatmg the properties ot metals in the study of ma­

terials, changes are examined in the length of a bar when 
it is stretched in a tensile testing machine. In the tensile 
diagram the loads arc plotted along the vertical axis and 
corresponding elongations marked off along Ihe horizontal 
axis.

Up lo a certain load elongation is proportional to Lhe load- 
Under greater loads, elongation increases taster in proportion, 
and at a still greater load P , elongation continues without any 
further increase of lhe load: the material begins to “yield . 
Then resistance to strain increases until a moment is reached 
corresponding to a cerLain maximum load. At this stage a cross- 
sectional reduction (a “bottleneck”) becomes apparent at 
some place along the specimen's length. This is the beginning 
of complete failure: for henceforth the bottlenack narrows 
rapidly even with a decreased load and finally the specimen 
snaps.

With such a tensile diagram we can make a tensile-stress 
diagram to show the relationship between stress and unit elon­
gation.

On a rectangular system of coordinates (Fig. 302) we plot 
unit elongation in per cent (e%) along the axis of abscissae, 
and corresponding stresses a along the axis of ordinates. The
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form of the curve obtained will be similar to that in ihe tensile 
diagram. Point A on the curve will correspond to a stress beyond 
which unit elongation ceases to be proportional to the stress. 
The Jtress at this point is the limit of proportional elongation 
and is denoted as ap. Point B on the curve will correspond 
to the stress oB and is called the yield point. Point C will cor­
respond to the stress ab when a neck begins to form on the 
test bar and will show the moment when failure begins; this 
stress is called ultimate strength*. And finally, 1) will mark the 
point at which the metal snaps.

It must be additionally noted that slightly higher than point 
A is a point corresponding to the stress at which strain passes 
from elastic to plastic: this is called the elastic limit. However, 
since *this stress is very 
close to the limit of pro­
portional elongation, the 
two may be considered 
the same for practical 
purposes.

The magnitude of stress­
es ab, <t„ and*<Tp charac­
terise the mechanical prop­
erties of a material, i. e., 
the capacity for resisting 
the action ot external 
forces causing strain and 
lailure. For steel contain­
ing 0.15% carbon, ah _ 35 15 kg/mm2 and o„ 20 kg/mm2,
for steel containing 0.6% carbon, ab 61 -87 kg/mm2 
and trs ■= 50 kg/mm2; for chromium-nickel steel ub 1>0 kg/mm2 
and as — 75 kg/mm2. From this we see that the strength of 
steel increases as its carbon content increases, and also as spe­
cial alloying clemenls are added.

The unit elongation of a material undergoing a tensile lorcc 
is denoted as b, is expressed as a percentage, and characterises 
the elasticity of the material. The smaller it is, the more brittle 
the material.

An illustration is grey cast iron which fractures before hardly 
receiving any elongation or transverse contraction. The ultimate 
strength of tiast iron is considerably lower than that of steel: 
for grey cast iron, ab -  18—27 kg/mm2. Thus the tensile- 
stress diagram for brittle materials is quite different from the 
one characterising the previously-examined materials.

299

♦ Sometimes this stress is called temporary resistance.



213. Relationship Between Stress 
and Unit Elongation. The Modulus of Elasticity

The reader is reminded that up to the limit of proportional 
elongation ap, elongation of a test bar is proportional to its stress 
and the linear segment OA is a straighL line, as is seen from the 
diagram in Fig. 302. Within these limits, if under the stress 
<Tj the bar receives a unit elongation of ev and under the stress 
<t2 receives an elongation of e2, etc., we obtain the following 
identities:

This means that the relationship between stress and cor­
responding unit elongation is a constant, which, if denoted as 
E, assumes the general form of

or
a eE. (192)

This cocliicient E is called the modulus of elasticity; giv­
en an equal strain, then the greater the stress the greater the 
coefficient E. Since stress is expressed in kg/cm2 or kg/mm2, 
and unit elongation is an abstrai t number, the modulus of 
elasticity is expressed in the same units as stress - ordinarily as 
kg/cm2.

As already noted, the limit of proportional elongation may be 
considered the same as the elastic limit and, hcncc, Eq. (192) 
may be used either to find the magnitude of elastic strain under 
a given stress or to obtain the slress corresponding to a given 
strain. The numerical value of the modulus of elasticity has 
been determined empirically tor different materials with the
aid of the equation E — ^ , by measuring their elongation under
a given stress.

For example, the moduli of elasticity, in kg/cm2, of carbon 
steel is from 2,000,000 to 2,200,000, for steel casljngs 1,750,000, 
for cold-drawn brass from 910,000 to 990,000, for wood along 
the grain from 90,000 to 120,000, for wood across the grain 
from 4,000 to 10,000, and for leather belting from 2,000 to 0,000.

Illustrative Problem 101. A steel specimen, pulled with a force P = 
= 500 kg, received an elastic elongation At =  0.0272 nnn. Its cross-sectio­
nal area F =  181.2 mm2 and length I — 200 turn. Find its modulus of 
elasticity E.

Solution: we find that the stress a = F
_500_
181.2 kg/nun2 and unit
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i Al 0.0272elongation e = —  ^  , and by applying Eq. (192) we obtain

„ a _  PI 500 x 200 , ,
& t- FAl 181.2 0.0272 “ 20’2')0 kR/mm* =

-  2,025,000 kg 'em2.
Illustrative Problem 102. Determine the absolute eloiiRalion of a 

steel bar of length / =  2 m and cross-sectional area F = 2 cm* under 
a load P  =  3 tons.

Solution: Eq. (192) indicates that unil elongation e /•; and stress
p  p  ,\l ni

o =  ~p- Therefore r =~ppr =  ~ >  from which Al = 'taking E
2,000,000 kg/cm* and substituting numerical values, we obtain

3,000 x 200

as

Al = 2,000,000 x 2 0.15 cm = 1.5 mm.

Illustrative Problem 103, Fig. 303 shows a shat 
and diameter d — 50 mm. 11 ievolves in three 
A and 13 at the ends of the shatt to 
prevent longitudinal displacement. ^
The collars were installed on the
shatt in close contact with the healings *:—'----
during the mu lime# months when the ' 1
temperature was 30°C. What axial __
force will the collars excel on the 
bearings in winter when the leinpnu- 
ture in the building is 10°(.?

I ol length I - 
healings with

I - ----
Fig. 303

20 in 
collars

B

Solution: the coellicient ol linear expansion of steel is 0.0000125. 
Since Lhe tempciaturc falls 30° - 10° =  20°, I he shaft contracts 0.0000125 x 
x20 = 0.00025 of its length. This will give lise to a tensile stress in 
the shaft which we lind Lhrough Eq. (192) and by taking the modulus 
of elasticity E = 2,000,000 kg,cm* and c — 0.00025. Then by substi­
tuting numerical values we obtain

<j =  2,000,000 > 0,00025 -= 500 kg/cm*.
In order to find lhe lorce P acting on lhe shatL axially, we multiply 

this sLress by the cioss-secImnal area ol the shall: 
jrd^  t 5 “E = —— — -7— =  19.h cm2, whence the tequiied force P -= 500 \  4 4

X 19.fi = 9,800 kg.
If nothing prevents the shall liom shortening, it will nitain its abso­

lute longitudinal eonliaction which, according to Eq. (187), will be
Al = el = 0.00025 x 20 = 0.005 in =  5 mm.

We thus see Lhat the collars are exerting too great a pressure on the 
bearings to achieve normal operation, and the work of the drive will 
be disrupted. *

Illustrative Problem 104. Assume that lhe bar vertically suspended 
in Fig. 301 is not undei the action of any external force P, but only of 
its own weight. At a freely-chosen cross-scclion mn the internal forces 
will be equal to the weight of the part of the bar below it. Obviously 
the higher the cross-section, the greater the internal forces, and the 
greatest force will be in the uppermost cross-section where the bar is 
suspended. The greatest stress will also be in this cross-section, i.e.,
o = — , in which G is the weight of the bar and F is the cross-sectiona r
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Fl varea. By denoting specific gravity as y , then G =  F l y  and a  =  —f - l y .

We thus see that in this example the stress does not depend on cross- 
sectional area.

214. Compression

Compressive strain is the opposite of tensile strain. All the 
relationships that have been given for tension are also applic­
able to compression: if the bar in Fig. 304 were under the action 
of compressive Jorees P and P \ at any cross-section perpendic­
ular to the line of action of the load there would be compressive

stresses a - , in which P is the load and
F  .

F is the cross-sectional area. The bar will
si rain longitudinally along the direction of
the load and its length will diminish as
expressed by e -  or in percentage as

expressed by f% -  —X 100.
Compressive stresses arc proportional to 

TTTT̂ 7T unit longitudinal strain, i. e., a — Ee. The
' modulus ot elasticity E for compression is the

Fig. 304 same as tor tension for most materials.
Under compression, contrary to tension, 

the lateral dimensions of a specimen bar will increase. 
Eq. (191) expresses the relationship between the magnitude of 
these dimensions and longitudinal strain.

♦ Ml
P

Mf
— Ilfi

i S
L.__ u ,

215. Design Formulae for Allowable Tensile 
and Compressive Stresses

Tensile or compressive stresses, occurring in the same direc­
tion as the load, are determined by Eq. (186):

P -- oF.
As already explained in Sec 206, machine parts are designed 

so that their stresses do not exceed safety limits. By substituting 
the allowable tensile or compressive stress for the stress a in 
Eq. (186). we can determine cross-sectional area for'a given load 
to ensure the strength of a machine part.

The allowable tensile stress is denoted as Rz and Eq. (186) 
becomes

P =  RZF. (193)
We replace stress a by the allowable compressive stress R d 

in the same equation, which becomes
P -  RdF.
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Eqs (193) and (194) arefor solving allowable tension and compres­
sion.

In determining the cross-scctional area of a part, the magni­
tude of the tensile or compressive load and the allowable stress­
es must be known. As already noted, the allowable stress is 
a fraction of ultimate strength and may be expressed as

R  (195)

in which R  is the allowable tensile or compiessive stress (Rz or 
Rd), crb is the ultimate strength, and n is a number indicating 
how much larger the second is than the tnsl and (“ailed the 
factor of safety.

This safety factor is not a constant, it must ensure the strength 
of the given part against permanent set and depends on a num­
ber of circumstances. Foi instance, the salety factor tor biitlle 
materials is larger than for elastic matenals. and larger lor a 
dynamic load than for a static load, etc.

Illus tra tive  Problem 105. Aim A B  ol 1 lie hi.ukel in 1 llnsl ■ ilivc I’mb­
it* m f> (Sec. 21) is lo be made ot mild sU il and imnul imss se< lion. ( alru- 
late Us diarneler rf iJ the allowable 
stress Jiz is 1,400 kg/cm2.

Solution, in the quoted pioblem 
it was lound that loice P, acting 
along arm AB was equal lo 900kg.
Whereupon

id2 P 
4 = « 7 “

whence d — |/ ^  — 0 mm.

Illustrative Problem 100. Kseboll 
2 in Pig. 305 is passe d fieelv thmugh 
the wooden beam 1 and has a md 
6 suspended fiom pin 5 passed 
thoough its eyes. A tensile loice 
P is applied Lo the rod. Denote 
the internal diameter of the boll 
as d, and calculate the dimensions 
required for the various mcmbeis 
of this assembly.

Solution: from Kq. (193),

whence d, =  2

which, when the numerical value of the allowable stress enters the 
equation, gives us the Internal diam eter of the bolt, and lrom Standards 
Tables (OST) we then fipd the corresponding external diameter of the 
bolt.
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Then wc calculate the dimensions of the eyes of the bolt. We see that 
failure may take place along cross-section kl, the area of which for the 
two eyes is 2(D — dt)c, in which dt is the diameter of Lhe hole for the 
pin, and c is the thickness of the eyes. Hence the design equation wj,'l be

P =• 2(D -  dt)cli-.
Lastly, we calculate the size of rod 6. With a thickness oi^a and a 

width of b, the area resisting fracture I<\ — ba. The design equation is 
t jRz =  P, from which, having fomid the area ba, we can take some 
suitable value cither lor a or b, and calculalc the other dimension. Sinoe 
at cross-section kl the rod is weakened by the hole required for pin S, 
it must satisfy the equation

(IJ — dt)aRz P.

211). Compression anil Buckling
Try Lhe following experiment: place a thin steel bar in a 

vertical position on spring scales as shown in Fig. 306. Press 
your hand vertically down upon the upper end ol the bar, thus 
gradually increasing the axial compressive force P but maintain­
ing (he bar’s vertical position. By observing I lie pointer on 
the scales we will see I hat force P increases but Lhe bar remains 
straight. As we increase the pressure, it reaches a point at which 

the bar begins to bend, buL when we release 
the pressure, it recovers its original shape. If 
we increase the force beyond the poinL where 
t he bar just begins'Lo bend, bending will increase 
and, with lurther pressure, lhe bar will acquire 
a permanent set and then break.

If we repeal this expcrimenl with bars ol 
different lengths but with their cross-sectional 
dimensions and their material remaining the 
same, we shall see Lhal the magnilude of the com­
pressive force at which.the deflection of the bar 
ceases to be elastic depends upon its length, 
i. e., as the length increases. Lhe magnitude of 
this force decreases. This is called the critical, load 
and is denoted as Prr.

Thus, the failure of an axially-compressed bar 
may occur not because compressive stresses 

exceed their allowable magnitude, but because of longitudinal 
distortion, technically known as loss of stability and resulting 
in buckling.

The eminent Russian scientist Academician L. Euler was 
the first to investigate buckling; the formula determining the 
critical, or buckling, load for slender columns is known as Euler’s 
Equation.

Columns, compression struts of various types of trusses, the 
connecting rods of piston engines, and other machine elements 
and members of engineering structures are all subject to buckling.
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217. Questions for Review
U Two bars of the same material and similar cross-sectional area 

become elongated to different extents under equal loads. What is the 
explanation for this? What can be said about their unit elongations?

2. Can it be said that absolute elongation is proportional to unit
elongation? ^

3. Why must machine parts be made so they can acquire only elastic 
strain ?

4. Does the load alone indicate the magnitude ot the stress in a mate­
rial? Does the absolute strain indicate it?

5. What can be said of the modulus of elasticity of materials that have 
different unit elongations under the same load?

6. Under what condition will a veiticailj suspended bar fail because 
of the action of its own weight? At what cross-section will the fracture 
take j)lace?

218. E\ercNe*>
105. A chain made of IG-mm round steel links is under a 

load of two tons. Calculate the tensile slrcss in its links.
10G. What«will be the absolute elongation ot a steel rod 8 m 

long and GO mm in diameter under the action ol a load P =  
— 80 tons? (The modums ol elasticity 
E =. 2,000,000 kg/cm2.)

107. What stress is created in a steel 
bar G m long and 25 mm in diameter 
if its absolute elongation under a 
load is 3 mm? (The modulus of elas­
ticity E - - 2,000,000 kg/cm2.)

108. A copper bar 100 mm in dia­
meter was tightly fixed between two 
immovable walls when the tempera­
ture was 15°C. What stress will he 
created in the bar and what pressure 
will it exert on the walls at a tempera­
ture of 50°C? (The coefficient of linear 
expansion of copper is 0.00001G7; and 
E — 1,000,000 kg/cm*.)

109. At what length would a bar ot 
mild steel break under the action of its own weight if its ultimate 
strength is* 4,000 kg/cm2? (Specific gravity y — 7.85 g/cm3.)

110. A copper bar that is being tested in a tensile testing 
machine has an initial length, between two marks, I =  200 mm. 
Under a load P =  500 kg the marked length elongates 
0.032 mm. Find its modulus of elasticity if Lhe diameter of 
the bar was 20 mm before the test began.

111. The chain of a hoisting machine is under a load G =  500 kg. 
Find the tensile stress in the links of the chain if it is made 
of 8-mm round steel.
20 - 6018 305



Hint to solution. It must not be forgotten that the load is 
distributed between two cross-sections.

112. What must be the diameter of rods 1, 2, and 3 (Fig. 107) 
whose allowable stress is 1,400 kg/cm2, « — 30°, — 60°, and
from which a fixed pulley is hung and with the aid of which 
£ load G 2 tons is raised? '

c h a p ] r.n xxiii 
SHEAR AND TORSION

219. Shear (Strain in Lateral Displacement)
A sheave, prismalicaliy keyed to a shaft revolving as shown 

by the arrow in Fig. 308a, transmits rolation to another (driven)
sheave mounted on a parallel 
shaft. A force P is acting 
irom the first-men Lioned 
shall (right to left) upon the 
lower part of the key, while 
an equal and opposite force 
P' is exerted on Lhe part of 
the key entering the key-seat 
in the sheave’s hub. If the 
key is not strong enough it 
will shear along line mn as 
shown in Fig. 308ft. From 
this it follows that internal 
stresses, due to the interac­

tion of these forces, are seL up along line mn that resist the shear.
ily dividing the internal force, equal to force P, by lhe area 

F of the cross-section mn, we obtain the stress t:
T =  £  (1%)

or, by denoting Lhe width of the key as ft and its length as I,
P

x -=-bl
The stress t  is the shearing stress and is expressed in kg/cm* 

or kg/mm2. This stress acts along the plane of strain mn and is 
a tangential stress. Depending on the magnitude of the tangential 
stress, strain may be either elastic or plastic, or it may even result 
in complete shearing of the member.
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220. Determining the Amount of Shear Strain. 
The Modulus of Elasticity for Shca^

Lei us investigate, as we did in the ease of tension, what 
quantity may be used to measure the magnitude of shear strain.

Assume that Iwo equal and opposite forces P and P' are act­
ing on a portion of a beam (Fig. 309a) at cross-sections AC and* 
BD, situated at a small distance x from each other. Under 
the action of these torces the parallelepiped A BBC (shown at 
an enlarged scale in Fig. 3096) will become twisted and take 
the form of the parallelogram A B J \C  in Fig. 309c. Hence, 
points B  and D, and any other point lying along segment BD, 
will be shifted with respect to segment AC to the extent of 
BB1 =*= DD1 -- s.

4
E t

Ck D 
\P'

9

Fig. .50!)

This quantity .s may be considered to be the absolute shear 
strain in the section oi beam under consideration. However, 
just as with absolute elongaLion, absolulc shear does not give 
a full picture of the degree ol sLrain, since this latter depends 
on the dimensions of the body.

If we take cross-section B'D' at a distance of X! from AC, 
absolute shear strain will be B'B[ D'D^ - sr  From the 
similarity of triangles ABBX and AB'B[ we obtain
— =  — or — =  — which denotes a certain value of y.S, X i X Xj 1

Thus we see that the ratio between absolute shear strain and 
the distance beLween cross-sections is a constant and for that 
reason is used as a measure ot shear. The quantity y is called 
unit shear strain (Lhe angle of shear).

Wherefore, unit shear strain is equal to absolute shear strain 
divided by the distance between the planes of shear.

When investigating elongation we found that the stress a is 
proportional to unit elongation within the limits of elastic strain. 
Theory confirmed by empirical research show that the same 
relationship exists with respect to shear, that is,

r =  Gy, (197)
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in which r  is the shearing stress, y is the unit shearing stress, 
and G is a coefficient called the modulus of elasticity for shear. 
This equation is analogous to Eq. (192). And since r is expressed 
in kg/cm2 (or kg/mm2) while y is an abstract number, the mod­
ulus of elasticity G for shear is expressed in the same units as 
stress (usually in kg/cm2). '
3 Several values lor I he modulus G, given in kg/cm2, are: car­
bon steel -810,000; aluminium —200,000 Lo 270,000; copper -  
400,000, elc.

221. Allowable Shear

Let us denote if, as the allowable shearing stress considered 
necessary to ensuie the strength of a part, liy assuming th&t the 
stresses are equally distributed over the whole cross-section, 
we obtain the following design equation for shear:

R  R 'F  (198)
with which, knowing the given force 1* and the allowable shear 
stress ii8, we can determine the area ol the rross-sffjction required 
Lo ensure necessary strength ol a part. The value lor allowable 
shear if,, just as ior tensile and compressive stresses, varies in 
each case and depends on the material and specific conditions 
that must be provided lor. Allowable shear is smaller than 
allowable tensile stress Rz It may lie approximately consid­
ered that if, lor plastic materials ranges lioin 0 55 Rz to 0.7 
Rz and foi brittle materials lrom 0.8 Rz lo Rz.

Illustrative Problem 107. Itt Fig. 305 tlie pin 5, icfeiicd Lo in Illustra­
tive Problem 100, has a diamelci d, -  15 nun. What is the maximum 
shear P that it can withstand if the allowable shear 71, =  000 kg/cm*?

Solution: under the action ot load P the pin may shear along two 
planes m ,n1 and rnrij, corresponding lo llie planes ol contact ol the eyes 
and the reel 0. This shear strain is assisted by two cross sections ot area

each. Hence, through Eq. (198) we obtain

P  =  — ~ 1- t- x 900^3,200 kg.

Illustrative Problem 108. A shaft transmits toiquc Mi =  20 kg-m. 
Find the shear exerted on the prismalic key (Fig. 308) along section 
mn if the diameter oi Ihe shall d =  45 mm, the width of Ihe key ft — 14 
mm, and its length I — 70 mm.

Solution: Ihe plane of shear F = bl — 14 x 70 = 980 mm*— 9.8 cm*.
d 2  900*The stress along plane mn is equal to P  =  Mi: ^ - kg, and the

shearing stress exerted on the key
P  2,900

T “  F  ~~ 2.25 x 9.8 132 kg/cm*.

* We express torque in kg-cm, and diameter in cm.
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Illustrative Problem 109. Tensile forces P  = P' =  2,900 kg are actuig 
in opposite directions on the lap joint shown in Fig. 310. It is held together 
by two rivets of diameter d =  13 mm.
Find^tlic shearing stress in the shanks 
of the rivets.

Solution: the rivets may shear along 
the cross-sections of their'slianks where 
both laps of the joint are in contact with 
them. The area of shear of Ihc two 

nd1rivets F  — 2—7—, and the shear in their 
4

shanks Fig. 310

r P_
F 2,900 N 1.3 = 2 . 01)0 2 

JT l .3 J
1,094 kg 'em  ’.

222. I’lincliinc) of Metals and Cat liar) Them 
with Steel Itlndes

Shear strain is taken advantage of in nil ting melals by means 
of dies and steel blades. Unlike marl lines and other engineering 
structures vvhPre strain must noL be allowed to exceed Ihe clasLic 
limit, strain in culling is carried to the lailure stage of the mate­
rial along the plane ol shear.

Fig. dll is a schematic illuslialion showing strain in metal 
when it is being pci I ora Led by a punch. Under the pressure 

I’ ol the punch A, Die metal lirst begins to 
A bend within the die B (Fig. 31 In) at the

same time aequoing compressive strain. As the 
punch subsequently presses harder on the 
metal, Die stress becomes so great that the 
metal begins to shear, which is manifested tiv 
crack formal ion in Die workpiece along the 
edges of the punch and die (lug. 311/1). The 
same thing occurs when mclaJ is cut with 
steel.

Pressure 1* is determined according to the 
equation

P =- oF, (199)
in which F is the area of shear (the product of the length of the 
shear I and fche thickness ot Die metal A), a is the shear in the met­
al and is found empirically. P’or steel, for example, it has been 
thus determined as

a -- 11.0 -f- 0.56 ab kg/min2, (200)
in which ab is ultimate strength.

Illustrative Problem 110. Find the pressure P  required to punch a 
hole of diameter d =  1 0  mm in sheet steel of thickness 0  =  8 mm 
and ultimate strength ab =  CO kg/mm=.
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Solution: the pressure (stress) o = 11.0 + 0.56 x 60 m 45 kg/mm.* 
The perimeter of the hole / =  nd — n x 10 =  31.4 mm; the area of 
shear F  =  Id =  31.4 x 8  Fd 251 nims, and the pressure required is 
P  =  Fa =  251 x 45 11,300 kg.

223. Torque
Assume that we have a cylinder on which we delineate a line 

A0B0 parallel lo the axis on one side, and mark two plane circular
sections mn and mln1 
(Fig. 312a) lying at a 
short distance x from 
one anoLher. Assume 
that the cylinder is 
Jixed at its leltead and 
that torque Mt is applied 
lo the right end. The 
lorque is ol course 
balanced by an equal 
and opposite moment 
acting on the tixed end 
of the cylinder. Under 
the action ol these mo­
ments I he cylinder expe­
rience's strain.

This strain consists 
in the turning of sec­
tions mn and mln1 with 
respect to each other 
around the axis of the 
cylinder OOv The line 
A0B0, which was per­
pendicular lo the cross- 
section before torque 
was applied, becomes 
a helix whose langent 
is inclined towards the 
cross-sect i on. Th e poin ts 
A0 and B0, which were 
mutually exactly op- 

Fig. 312 positc at different ends
of the cylinder, are now 

shifted with respect to each other along a length of the 
arc B0B which corresponds lo the central angle B0OrB =  q>. 
This is called the angle of twist and shows the absolute strain. 
By dividing this angle by the length I of the twisted cylinder, we 
obtain the unit anqle of twist. By denoting this angle by the letter 
$ we obtain 0 =  (201)
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If we express the angle f  in degrees, unit twist will be expressed 
in degrees divided by the length in metres or centimetres. By 
knowing the unit angle of twist 0, it is possible to calculate the 
angular displacement of one plane circular section with respect 
to another when the distance between them is given. Thus, 
the displacement of plane section m1n1 in relation to plane section 
mn will be q>x = dx, and with respect to the left-end plane section 
it will be 0(Z, -f .c).

224. Torque us a Form of Shear
' Assume that two lines a0b„ and r0d0 (Fig. .‘112b) are delineated 
between sections mn and mlnl on the already-mentioned cylinder 
before it was subjected to torsion. It the figure a0bad0c0 were 
unfofded it would be a rectangle. And it is dear that alter twist­
ing, this rectangle will become a parallelogram a0b'Qd'0c0. The 
line a0b0, which was at first perpendicular to the section mn, 
will become inclined through an angle b0<tub'n, point Z>0 will shift 
to b’a, line c0d0 will be inclined through '.d0c0d'„ /  b0a0b'0, and
point rZ0 will shift a distance dnd'0 - b0b'n. By comparing Lhis 
strain with Wic shear strain shown schematically in Fig. 309c, 
we see that it is similar except that in the given ease the displace­
ment of a point on plane section mpq is along a peripheral 
arc, whereas in the former case point li, like any other point on 
section BD, was displaced along a straight line. Therefore, we 
come to the conclusion Lhat torque is a [orm of shear.

225. Distribution of Torsional Stress 
in a Plane Circular Section

If torque strain is distinguished by the turning of one plane 
section with respect to another, then the same relationship is 
valid for it as between stress and unit elastic strain, as already 
expressed in Eq. (197), i.c..

t  =  Gy,
in which G is the modulus of elasticity for shear.

It need only be determined whether the tangential stress r 
is the same at all point s on the plane or whether it changes accord­
ing to some specific principle. To answer this question we must 
first find if»the unit strain y is constant at all points on the plane 
section.

Let us assume as before that for the short distance x between 
circular plane sections mn and m^  (Fig. 312c), absolute strain 
is expressed by the arc b„b'0. The length s of this arc is related to 
the angle 60aô o as given in degrees and to the distance x through 
the identities

2  nx nXa
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By entering the unit shear strain y instead of — we obtain

s — yx. (202)
On the other hand, wc can find the length of this arc from 

plane section m^  in which it corresponds to the central angle 
b0O'xb'0; this angle, as already explained in Sec. 223, is the angle of 

*Twist (px along the distance x and is equal to Qx:
__  2  7tr0x _  nr f.

S ~~ 300 180 UX’
in which r is the radius of the plane circular section.

By equating its right member with Eq. (202), we evolve

yr =  i?d 0x•
whence y =  • (a)

We now mark point / at a distance of p IrOm the axis on radius 
O'0b0 of the plane section and determine its absolute displace­
ment as expressed by the length of the arc //'. According to 
Eq. (202) the length of this arc *

- -  y *x, (b)
in which ye is the unit torque at this point, as distinguished from y 
(for ,ve is not equal to s although the length x is the same). On 
the oilier hand

liy equating its right member with Eq. (b) wc obtain
7  0<Jv — - •'» iso

Then by dividing each member of this equation by equation 
(a), we evolve the sought-for equation:

ye _ _e
Y ~ r (203)

Wherefore, the unit strain at various paints of the rross-sertion 
is proportional to the distance of these points from the axis of the 
cylinder subjected to torsion.

By denoting x as the shearing stress at a point orf the side of 
the cylinder and t e as a similar slrcss aL a point lying on the 
same plane section at a distance ol p from the axis, then according 
to Eq. (197)

r = Gy, (204)
re =Gye, (205)
IS.
r  r (206)
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Wherefore, the stress at different points on the cross-section 
of a cylinder is not constant under a given torque; it is proportional 
to the distance of the point from the axis of the cylinder.

The greatest stress is at points farthest from the axis, i.e., 
on the surface of the cylinder. It follows that shearing strain is 
zero at poinl s on the axis of the cylinder, 
and therefore 1 lie stress is also zero a I 
these points. This can be expressed 
graphically as shown in Fig. 313: if 
we imagine Ihat the cross-seelion is com­
posed of an infinite number of concentric 
rings, we can I hen evolve the principle 
governing the change in stress by deli­
neating the triangle ABC. The stresses hie- 313 
are greatest at the surface of the cylinder 
and decrease as the diameters of the rings decrease.

Oral lixernscs 
t. Whirl) a11l; 1 e in Fig. 312c is larger, y nr ye?
2. Is absolute shear stiain the same al all points on a circular section? 

Is unit stiain ^lie same?

22(». The Fundamental Equation for Torque
Heretofore we have established the relationship between 

stresses in a strained body and the external forces causing these 
stresses. Torque strain is caused by the action of the torsional 
moment. Now lei us sec how loisional stress is determined if the

moments causing torque 
are known.

We shall use the already- 
explained cross-section 
method. Let a cylinder be 
twisted by equal and op­
posite torques Mt and M\ 
applied at its two ends 
(Fig. 314). Assume that 
we cut the cylinder at 
section mn; after discard­

ing the right half, we examine the remaining half as a free 
body to sec what forces or moments are acting upon it to keep 
it in equilibrium.

Moment Mt is applied to this halt of the cylinder, and in cross- 
section mn there are elementary shearing forces acting opposite 
in direction to moment Mt. in order that this half of the cylinder 
be in equilibrium, the sum of the moments of the elementary 
shearing forces must be equal to the moment of the external 
forces Mt.

Fig. 314
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At an arbitrary point K  we select an infinitesimally small area 
/ at a distance of q from the axis of the cylinder. By denoting 
re as the shear at this poini, we obtain the elementary shearing 
force in this area, which is equal to x j, and the moment oMhis 
force with respect to the axis of the cylinder, which is equal to 
tJ q. There will be as many moments as there are such areas in 

*fche cross-section inn and the sum of these areas will be equal to 
the entire area of the cross-section. Whereupon, by indicing all 
these small areas, their distances from the axis, and their corre- 
spondingstresses, we obtain the following equation for equilibrium 
of I he given free body of the cylinder:

-  Tei/i(?i I V2P2 f - ^3/3^3+•■• clc- (a)
By denoting, as belore, r as the stress in Lhe plane circular 

section of radius r, we obtain, on the basis of Eq. (205),
ft | On «Tei = * roi ■= r ; x# =  x- f ,  etc., 

which, alter it enters (a), becomes

M, = T^-rliQi \ x~tiQ< + /jPi \ eUr.,
or

M t -  Tr i t  A  1 f A  T t A  + • • • ctr-). (b)

The expression enclosed in parenthesis comprises the sum of 
the products oi all the elementary areas multiplied by the squares 
of their distances irom the axis ot the cylinder, and is called the 
polar moment of ineilia 0 / the cross-scclinn with respect to the axis. 
Its denotation is Jp.

Accordingly, equation (b) acquires the form
-rp- x. (207)

This relationship, which is the fundamental equation for torque, 
links torque with the maximum stress r on the surface of the 
torsion-subjected cylinder in the given section by means of the 
polar momenL of inertia and the radius of the section.

The quotient obtained by dividing the polar moment of inertia 
by the radius of the plane section is the cylinder’s resisting moment 
under torque and is denoted as Wp, i. e.,

Wp =  I f-  (208)
and

Mt =  Wp r. (209)
Since the full deductions of this formula are extremely compli­

cated in calculating the magnitude J p of the cylinder, we have
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e v o ly e d  i t  in  i t s  f i n a l  f o r m  a s  fo llo w s  :

t   nr*   nd*
J p ~  2 ’ (210)

where r is the radius and d is the diameter of the plane section. 
After placing this value into Eq. (208), wc obtain

and

nr* _ .tr* _ nd*
~2T — T  ~  l6~ (217)

Mi = nrf*
16 T. (212)

Of course both sides of this equation are to be expressed in 
the same units; if d is given in cm, and t  is in kg/cm2, the right 
half bf equation will be in cm3 X kg/cm2 -- kg-em, and according­
ly the left part of the equation will be expressed in kg-em.

Having found the relationship between the stress r and the torque 
we ran now determine the angle of twist <p of the cylinder. From Eq. 
(207)

T Mtr _
* dp

On the oLher hand, according to Eq. (204),
r = Gy.

Consequently Gy = M tr from whidi y — Mjr_
GJ„

By installing here the value of y from Eq. (a), Sec. 225, wc obtain
TrrO
180 ̂on =  -7T f - » from which 0 = 180 Jiff

GJ1 (213)A_ltr_
(ij p ji */,# p

Angle 0 is the angle of twist in degrees per unit of length. Hence the 
full angle of twist along the length I of the cylinder

180 M d
n X GJ~ (214)

It is fully evident that the greater the torque and the greater the length, 
the greater will be this angle; and the greater the modulus of elasticity 
for shear and the greater Lhe diameter, the smaller will be the angle.

Oral Exercises
1. What points on the cross-section correspond to stress r referred 

to in Eqs (207), (209), and (212)?
2. What jehange will there be in stress r if the diameter of the cross- 

section is increased while the torque remains the same?
Illustrative Problem 111. A steel shaft of diameter d =  60 inm and 

length / =  1,500 mm is subject to torsion by two equal and opposite 
moments Aft =  Aft =  8,600 kg-cm. Determine the maximum stress 
on a cross-section of the shaft and the angle of twist <p.

Solution: we find the stress r, acting on the surface of the shaft, through 
Eq. (212):

_ _  16A/t _  16 x 8,600 _  2Q3 kg/cma
7*4* x 6*
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We find the angle of twist q> in degrees through Eq. (214). By entering 
/ =  150 cm and the modulus of elasticity for shear G =  800,000 kg/cm* 
we calculate

180ip = —  x 8,600 x 150 x 2 
800,000 x n x 3‘ 0.73°.

^  227. Computing the Dimensions of Shafts
for a Given Torsion

The stress x, as we have learned, is the maximum shear in a 
cylinder under the action of torque M(. It we replace r in Eq. 
(212) by the allowable shear R%, the equation can be used to 
calculate the dimensions of a shall which is Lo transmit a definite 
torque Mt. Whereupon the equation becomes •

M t =  ^  x K  0 2dm,, (215)

from which the diameter
3

Ml
0.2Hb (216)

Another way to find the diameter would be to express it in 
relation to the power it transmits and the rpm, substituting
71,620 — kg-cm tor Mt in (lie equation:

1/ 71,620 N
|f 0.2/t, X n ' (217)

As lor the allowable stress R„, its magnitude depends on the 
material and conditions of service, tor steel it ranges trom 200 to 
1,200 kg/cm2. For instance, tor sLeel hansmission shafts subject 
to ordinary service conditions the accepted magnitude Rs — 420 
kg/cm2; tor short but noL heavily loaded shafts RB -- 600 kg/cm2; 
and when the shaft is subject to impact, Ra = 280 kg/cm2, etc.

When calculations are made on the basis of these figures, the 
strength of the shaft is ensured. Nevertheless, the diameter ob­
tained by this method is often checked by means of a special cal­
culation of the unit angle of Lwistof the shaft, which is ordinarily 
within the limits of l/4°-l/2° per metre or length. «

Calculating the dimensions ot heavily loaded shafts (in steam 
engines, turbines, inLernal combustion engines, etc.) is considerab­
ly complicated because, aside from twist, such members are 
subject to extensive bending. Furthermore, in computing vital 
construction, it must also be remembered that additional margins 
must be included to make up for such shaft weakening factors as 
keyways, transition from one diameter to another, dynamic loads, 
and so forth.
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Illustrative Problem 112. Sheave 
Fig. 315 attains n =  200 rpm and 
distributed through sheaves 2 and 
3 to# two other shafts (not shown) 
in the following way: sheave 2 
transmits N„ =  12 hp to a second 
shalt and sheave 3 transmits N 3 =
6 hp to a third one.

What must be the diameter ol 
the first shaft if its allowable stress 
Rs =  400 kg/cm*?

Solution: as we see iiom the 
illustration, length I ol the shalt 
imparls N2 =  12 hp. The diameter <

1 mounted on a shaft ns shown in 
receives power N, =  18 hp which is

,1 ✓ ■f 5tm bj

I -

Fig. 315

this length, according lo Iiq. (217),

d
3
1/ 71,020 12_
I 0.2 x 400 200 3.8 cm =  38 nun.

Since the Standards (OST) do not include a shalt ol exactly this 
diameter, we take the next largest, which is d, - 40 mm.

In the same way we calculate the diameter for length II:

4
3
1/__71,020 x 0 _
I 0.2 x 400 x 200 Fa 3 cm -- 30 mm.

2211. Questions for Review
1. How is the magnitude ol shear strain measured?
2. In what plane does shear act in relation to the plane of action of 

external forces/
3. What is denoted by angle y and segment s in Fig. 309c?
4. Analyse F.q. (203). Can it be used in casts of permanent set?

5. Why is toique regaided as a form of
shear?

(>. What is the dilleience between torque 
and regular shear?

7. Name the following symbols in Fig. 312c 
and explain whaL they rcpiesenl: y, angle b0O\B'0 
and the aic btb'0.

8. The mechanical energy obtained by means 
of sheave 1 (Fig. 316) is transmitted to another 
shaft by means of sheave 2. Along which 
length (l or /,) is the shaft subject lo torque?

9. In what direction will elementary forces 
rtf  (Fig. 314) act ll we consider the right half of the torsion-subjected 
cylinder as ^ free body?

10. What change would there be in the solution lo Illustrative Prob­
lem 112 if sheaves 1 and 3 transmitted power received from sheave 22

229. Exercises

113. In a rivetted joint (Fig. 317) the thickness 5 of plates 1 and 
2 is 8 mm, their width b — 100 mm, and the diameter of the 
rivets d  =  13 mm. Find the shear x  in the shanks of the rivets and 
the tensile stress a  in the plates, assuming that all the rivets

t-/

111

I
Fig. 316
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arc carrying the same load and that the external forces P =  P' =  
=  4,000 kg.

Hint to solution. The weakening of the lateral cross-section of 
the plates due to the holes for the rivets must be taken into 
account.

114. A sheave of diameter D =  800 mm rotates unifo’rmly un- 
ffir the action of peripheral force P  =  50 kg. Find the shearing 
stress exerted on the key in Fig. 308 if the diameter of the shaft 
d — 50 mm, and the dimensions of the key are: width b =  16 mm 
and length I — 80 mm.

115. Determine the maximum stress x in the cross-section of 
the shaft in Ex. 114.

Fig. 317

116. Find the maximum slress in a shaft of diameter d =  45 
mm which transmits N  — 18 hp and attains n — 180 rpm.

117. Assume that sheave 1, in Illustrative Problem 112, Fig. 
315, receives the same power — 18 hp but changes its place 
with sheave 2 which transmits N — 12 hp.'Calculate the diameter 
required for lengths 1 and I I  of the shaft with the same allowable 
stress of 400 kg/cm2, and also state which of the two arrangements 
of the sheaves is more advantageous.

118. Solve Ex. 117 by assuming that sheave 1 (Nx = 1 8  hp) 
is in the place of sheave 2, sheave 3 (N3 =  6hp) is in the place of 
sheave 7, and sheave 2 takes the place of sheave 3.

C H A P T E R  X X IV

BENDING

230. The Nature of Bending Strain

Let us take a prismatic wooden beam in which several cuts 
ab, cd, ef, etc., have been made perpendicular to its axis and 
extending half-way up its height. We place it on supports A and
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Ai n _n n , 6jfa a c e 
a c e In

a)

777 u i n r - j f

b)
Fig. 318

B  with the cuts facing downward (Fig. 318a) and apply force 
P to it. Under the action of this force the beam bends, and the 
cuts g, c, e, etc., widen and take the form of trapezoids as shown 
in the same drawing at the right. As compared with a beam under 
the same load but without cuts, of course this beam will bend to 
a much greater extent and fail sooner.

The change in form of the cuts shows that the fibres in the con-- 
vex side, curved from the bending of the beam, are stretched; 
the cuts on that side 
weaken the beam. \P

Now let us repeat the 
experiment but place the 
beam with the cuts up­
ward *(Fig. 3185). Again 
applying force P we see 
that the cuts a, r, e in 
the concave side are now 
drawn together as is shown 
on the right, and when 
the force reaches a certain 
magnitude the cul edges 
will touch each othec, 
after which greater resist­
ance to bending will be 
set up in the beam. Then, 
removing the load from 
the beam, we fill the cuts 
snugly with little slabs ot 
wood and again apply 
the same force with the 
result that the beam
will resist the action t»f force P just as il it had no cuts and 
the little wooden slabs will be held tightly in place. From all 
this we must come to the conclusion that the fibres* in the con­
cave part of the beam are under compression.

In order to better understand the phenomenon just described, 
let us perform anoLher experiment with another wooden beam. 
This time we make longitudinal dovetail grooves in opposite sides 
of the beam for its entire length (Fig. 31 Da), and insert into them 
planks of wdod of the same shape as the cuts and the same lenglh 
as the beam. When the beam has not yet been subjected to defor­
mation, they fit exactly in place. But when the beam is bent 
under the action of force P (Fig. 3195) we shall see Lhat the ends Of 
plank 1 on the concave side of the beam protrude beyond the 
ends of the beam, whereas the ends of plank 2 on the convex side

* The term fibres is figuratively given to longitudinal elements, of 
infinitely small cross-section. In beams, bars, etc.
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are drawn within the groove. From this we again conclude that the 
fibres on the concave side of the beam are compressed and those 
on the convex side are stretched. k

Wherefore, in a bent beam the fibres in its concave side undergo 
strain of tension while the fibres in the convex side are subjected to 
compressive strain.

231. Distribution of Normal Stresses 
During Bending. The Neutral Plane

Our experiment has thereby shown that bending ol a beam is 
accompanied by the elongation of some fibres and the shortening 
of others; from this it is evident that in a beam subjected to 
bending, tensile and compressive stresses are set up which cause 
this strain. In order to determine the magnitude of such stresses

at various points along a 
cross-section of a beam, it is 
first necessary to determine 
how sLrain of the fibres of 
the beam varjes at different 
heights along the cross- 
section.

Assume that a straight 
beam immovably fixed at 
one end is subjected al the 
other end to a force I* ap­
plied in its plane of sym­
metry zz (Fig. 320«). As a 
result the beam bends and 
ils axis becomes a curved 
line lying in the same plane 
of symmetry. Now let us 
assume {that two straight 
lines mn and m'n' are deline­
ated beforehand on the flank 
of the beam, (perpendicular 
to its axis. Experiment has 
shown that when strain has 
occurred, these lines will 
remain straight buL will no 
longer be parallel to each 
other. This means that, fol­

lowing strain, the cross-sections corresponding to these lines 
remain in the form of planes but turn relative to one another 
through a certain angle.

Now let us take two cross-sections mn and m'n' situated very 
closely together (Fig. 3206). When strain has occurred, these two 
sections will form a small angle mAm' =  x with each other. It
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Consequently follows that the fibres along the convex side of the 
beam —for example, in the same horizontal plane as mm', aa', etc., 

- jre  stretched while those in the same plane as nn', bb', etc., 
are shortened; and the further the fibre is from the convex 
surface the less it is stretched, and the turthcr it is from the 
concave surface the less it is shortened. It is therefore evident that 
there should be fibres in some part of the beam that are nfll 
strained aL all. There actually are such libres in a beam; they lie 
in the plane yy (cross-section given in Fig. 1120a) and coincide 
with axis oo which passes through the centre of gravity C of the 
cross-section*. The plane in which these unstrained lihres lie is 
called the neutral plane.

From all this there is no longer any doubt that all the lihres 
betwtrdfi the neutral plane and the convex side of the beam are 
elongated, and those between the neutral plane and the concave 
side are compressed.

Now let us see just how strain varies heLween lihres lying in 
different planes parallel to the neutral plane. Let us Lake fibre 
aa’ in the strained section of the beam mm'n'n (Fig. .'120b), lying 
at a distance ? from Lhe neutral plane oo'. Since the neutral plane 
is neither elongaled nor shortened, the lenglh of a very small 
segment aa' between sections mn and m'n' is the same before 
strain as that of oo'. Thciclore the absolute elongation of this 
short lenglh is equal to a a '—oo'

By denoting a as the angle mAm' iormed by these secLions,
. . .  , , 2 7T<Q + z)a ‘27TQO. nawe obtain aa oo = ' 360- '-  3G0 - 18g

the radius of the small arc oo'.
Accordingly, the unit elongation of this segment

z, in which g is

a a — oo
~GO'

i  cl noL _ z 
~  180 Z:'f80 & “  y (a)

By repeating this procedure for a very small scgmenL bb' of 
the compressed fibre lying at a disLance of z' from the neutral 
plane, we obtain the unit contraction ol the segment as follows:

oo' - bb'
OO' e (b )

The radius g may be considered to be constant when the angle 
a is very small. Therefore we deduce that lhe unit elongation 
and unit contraction are both proportional to the distance the 
fibre is from the neutral plane.

Eqs (a) and (b) may be combined into one as follows:
ze — — e (c)

* It is seen that this plane is perpendicular to the plane of symmetry zz.
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And since within the bounds of the elastic limit stress is propor­
tional to strain, we obtain

a =  Ee =  E  — » (£18)

in which E  is the modulus of elasticity and is alike for tensile or 
(impressive strain.

This shows that in the given section stress is proportional to 
the distance of the fibre from the neutral plane. Therefore the 
fibres lying farthest from the neutral plane, along the convex or 
the concave surface of the si rained beam, are subjected to the 
maximum stress. Fig. 320c shows graphically the distribution 
of normal stresses aL section mn if we figuratively disregard tbe 
right half of the beam.

Another important point musL finally be noted. Since the 
fibres lying in the neulal plane are not strained during bending, 
it follows that all cross-sections may be considered as turning 
about their corresponding axes oo' (Fig. 320/;), i.e., around the 
straight lines along winch these sections intersect the neutral 
plane. Each such straight line is the ncutrnl axis of each given 
section and is perpendicular to the plane of symmetry (axis 
yy on the cross-section shown in Fig. 320a).

232. The Fundamental Equation for Bcndiny
to determine the normal stress a at any point 
on a cross-section of a bent beam, we must 
not only know Lhe modulus of elasticity E 
for the given material and the distance z of 
the point from the neuLral plane, but also 
the ratlins g of tbe arc oo' which is a segment 
of the bent longitudinal axis passing through 
the centre of gravity of the section. This 
radius we do not know, therefore this 
cquaLion must be given a form in which the 
stresses causing the bending of the beam 
are used instead of radius g. As an illustra­
tion, we shall continue the investigation of 
strain of the same preceding beam, using 
the cross-section method already familiar 
to us.

Let us make a cross-section mn (Fig. 321a) 
through the beam at a distance of x from 
the plane of support. By figuratively 
discarding the left half of the beam, the right 
half as a free body is kept in equilibrium 

under the action of the external force P on the one hand, 
and by the internal normal forces directed perpendicular to

In using Eq. (218)

! s m *>----- 'S-T10 ^ i
II---------
I— x —

«) -l-x-m

Sr r;

- i f —  

t—— i —

p

C)
Fig. 321
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the cross-section mn on the other. Thus we obtain the arrange­
ment of forces mnoO' shown in Fig. 3216, constituting a 
three-member lever.

As already explained, section mn turns during deformation 
about the neutral axis which passes through point o. In order to 

•express the conditions of equilibrium of such a lever, we must 
equate the algebraic sum of the moments of the internal forces 
with respect to the neutral axis and the momenl of force P relative 
to the same axis. Taking a very small area on section mn at a 
distance of zx from the neutral plane, we lind the moment of force 
acting on that area, which is equal to cr1flz1, and the algebraic 
sum of all the moments will be er1/ lz1 + a.,/*:* -f- o3f3z3, etc.

The moment of the external lorce in relation to the neutral 
axis of foe.given section is the bendinq moment of that section. 
By denoting it as the letter M, we obtain

M <z1f1z1 -f- a2f.,z2 -= a3/3z3 } ...etc.
By applying Eq. (218), we mav rewrite the above equation as 

follows:

M f  i f A - i  I f l A  I ■ etc.

=  — (A21 I tzZ\  + i' ■ ■ etc.).

The sum in parenthesis is called the moment of inertia of the 
section about the neutral axis (i.e., axis ijij in Fig. 320o) and is 
denoted by Ihe letter ./. Whereupon

M  =  — • (a)Q
Eq. (218) gives us •
Hence by substituting it in (a) we finally obtain

(219)

whence
(220)

Thus, by knowing the bending moment and moment ot iner­
tia of the beam section, we can determine the normal stress 
at any point on that section which is at a distance of z from 
the neutral axis. I t will be seen that the greater the moment 
M  and the distance z, the greater the stress. At each section this 
stress attains its maximum when z is a maximum, that is, the 
maximum stress is at the points farlhest from the neutral axis. 
When z is zero, the stress a is zero, which is only to be expected, 
since there is no strain in the neutral plane.
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Eqs (219) and (220) can be presented in different forms. The 
quotient, obtained in dividing the moment of inertia by the 
distance between the neutral axis and the fibre farthest from it, 
is the moment of resistance to bending W. Then Eq. (219) becomes

M =  Wcr, (221)
y Sr■ft

—A—I

and Eq. (220) evolves into
M
W ( 222)

The magnitude ol the moment of inertia, just as 
Fig. 322 the resisting momenl, depends on the form and 

dimensions of the cross-sec lion*.
For example, for a rectangular section oi width /;.^ml height

h (Fig. 322) the moment of inertia in relation to axis gg is ./ ^  .
in accordance witli which

z i  and w  — — - l - 12 • 2
Mi*
(> (223)

For a round section

hence
J it*

T
-rd* . 
«4 ’ and since z

n d* 
32" '

r d 
2 ’

(224)

By substituting this value for W in Eq. (222) we obtain the 
maximum stress a in the given section, with the bending moment 
expressed in kg-cm and the dimensions of the cross-section in 
cm; thereby the stress a is evolved in kg-cm/cm3 — kg/cnF, which 
is as it should be.

233. The Bending Moment
To determine the stress at any cross-section of a bent beam it 

is first necessary to know the bending moment, that is, the mo­
ments of external forces witli regard to the neutral axis of the 
given section.

Let us examine a few simple cases.
By denoting x as the distance from the section to the plane 

of support of the beam (Fig. 321a) we obtain the moment of 
force P with respect to axis o lying in section mn anil which is 
equal to M — P (I—i). Then by taking succeeding sections to 
the left of mn we shall see that the arm I—x increases with a

* All engineering handbooks contain formulae for calculating the 
moments of resistance to bending and torque for various cross-sections.
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corresponding increase in the bending moment, which obviously 
reaches its maximum at the plane of support 0 where x =  0. 
It thu^follows that the stress will be the greatest at the extreme 
left section of the beam where il can be determined by Eq. (222):

a ' W W '
If the cioss-section of Lhe beam is rectangular, the bending 

stress
bh*_ _  JSPl 

: ('. "  />7i2 (225)

The section in which normal stresses reach their maximum is 
called th^critical section.

Let us assume that another Jorce Pj is applied to the same beam 
in addition to torce P, at a distance irom the plane of support 
(Fig. i521c). As will be recalled from Statics, in this case the bend­
ing moment in relation to the same section inn will be equal to 
the sum of the moments ol both Jorces, i.e.,

# M P(l 0  I P, (/, »)■
And as belore, the closer the section to the plane ol supporL, 

the greater will be the moment.
Now' let us find the bending moments lor dilfeient sections of 

a beam lying on two supports (Fig. .'<23). Take a section lying 
at a distance of i, liom the sup­
port at the left end, and bv suppo­
sitional^ disregarding the part 
of 1 lie beam, to the right oi Lhe 
section, we obtain Lhe bending 
moment tor Lhe remaining Jree 
body il/xl — i> in which 11, is 
the reaction ol the left support.

■xz —

*2

When r. 0, the moment will Fig. 323
be'* zero and there will be no
bending moment acting on the section lying at the lelt support. 
As the distance x, increases, the moment R ^  also increases, 
and when x, — a it will be

Ma -- R^t.
Inasmuch as*thc reaction Ifx - P — R2, then

Ma (P -  P 2) a - Pa - R2a. (a)
Now let us take a section lying to Lhe right of the point of 

application of force P at a distance x2>u.
The bending moment in this section

Mx2 =  Ii]X2 — P(x2—a) =  P xxa - -  Px2 +  Pa =  Pa —
— (P P x)x2 =  Pa — R2x2.
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By comparing this equation with Eq. (a) we find that Mxa <  
<  Ma. Thus, beginning with the section at which force P is applied, 
the bending moment diminishes, and at the right-hand support 
where x2 — I, it will be M, =  Pa — R2l =  0; for when the beam 
is in equilibrium the algebraic sum of the moments ip relation to 
Lhe left support, just as at any other point, is zero.

Accordingly, the bending moment at the supports of the beam 
is equal to zero, while in the sections between the supports it 
increases up to the place where the external force P is acting; 
here the moment is the greatest. Hence this is the critical section 
where normal stresses are greatest.

If the beam is rectangular, the greatest tensile and compressive 
stresses— on the convex and concave surfaces respectively — are 
determined through Eq. (222):

a -  R^a : bh-
6

6 f t , a  _  0 ( P ___ f t j a

bh* — 5/i* (226)

Note must be made that what has been said refers to bending 
caused by external forces applied to different sections of the beam 
without taking into account the weight of the .beam itself.

Illustrative Problem 113. The dimension of si wooden beam of rectan­
gular cross-section lying on two supports (Fig. 323) are b = 140 mm, and 
h =  200 mm throughout its length. Find the maximum stress at the 
critical section il the beam is loaded with a force P  = 1 ton at a distance 
a =  1.5 m lroin the left support, and the distance between supports 
is 1 = 4 m.

Solution: first we calculate the reaction at support ft,. Since the 
algebraic sum of Lhe moments of the exLenull forces with respect to the 
right support is equal lo zero, then

ft,/ - P(l a) =  0, from which ft, -  ^  ^

1,000 V (400 
400 "

150) = 625 kg.

When Lhis value enters Fq. (220) we obtain
0 x 625 x 150 

14 x 20s 100.5 kg/cm*.

Illustrative Problem 114. In Illustrative Problem 13 (Fig. 38), work 
is done by a cutter fastened lo a Lool holder of rectangvlar cross-section 
whose dimensions b = 30 and h — 40 nun (Fig. 322). Find the maximum 
normal stress at the entieal section of the tool holder, using the numerical 
values given in Illustrative Problem 13.

Solution: the maximum bending moment M =  /V  =  5,400 kg-cm. 
With Eq. (226) we obtain

a =  M : bh1
6

5,400 x 6 
3x4* 675 kg/cm*.
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234. Questions for Review
1. What direction have the normal stresses in a bent beam with 

respect to a section perpendicular to its longitudinal axis?
2. What direction will the normal stresses in section mn have (Fig. 

320a) if we consider the right half of the beam as a free body and figura­
tively discard the left?

3. Are the stresses the same in sections mn and nq/i, of the bent
beam shown in Fig. 320«? "

4. Define the terms “ neutral plane” and “neutral axis” . What is 
their position in relation to each other?

5. Assume that instead of force P,, indicated by a doited line in Fig. 
321r, a force equal and opposite to it is applied to the beam.•'What change 
would there be in the maximum stress aL the ciilical section?

6. Under what cireumstancis will a rectangular beam (Fig. 322) 
best resist bending - when its bioad side h or its narrow side b is 
in cflSVflfcl with the supporls?

7. Why must the cutter on a lathe be set with the smallest possible 
distance between the culling edge and the base of the tool?

(. h  A p 1 !• n  x \ \

GENERAL PRINCIPLES OF COMRINED STRAIN

235. Simple and Combined Strain
We have investigated the chief kinds of simple strain -  tension, 

compression, shear, torsion, and bending. But it must not lie 
I hough! that the elements of machines and other engineering 
structures undergo only one kind of strain in each separate 
instance. Very frequently members are subjected to the action of 
forces applied in such a way that several straius occur simulta­
neously, accompanied by corresponding stresses which must be 
taken into account in calculating the dimensions required for 
strength. In such cases we must deal with combined strain as 
distinguished from simple strain. Let us examine a few examples 
of this kind.

Assume 1 hat a force P is applied lo the centre of gravity of a 
bar (Fig. *32t). We will lake section /n/q at a freely-chosen angle 
to the cross-section mn. By figuratively discarding the upper 
parL of the bar, we obtain an internal force P' which is equal and 
opposite to force P. Resolving force P' into two components — 
P„ perpendicular Lo section mnl and P( lying within the seclion — 
we find that, aside from elongation the bar is subject to shear 
sLrain in the sections not perpendicular to the axis of the bar.

Assume that a rectangular wooden beam is resting on two 
supports (Fig. 325n). Under the action of force P it bends and 
its butt ends A and B turn relative to each other. Now assume 
the beam to be sawn in width into three boards along its entire 
length. When these boards are placed on the same supports and 
the former force P applied (Fig. .’3256) we shall find that bending
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is more pronounced and the ends of the three boards have not 
remained in the same plane but have formed steps. From this 
we conclude that the boards slide against each other when they 
are under a load, causing their resistance to bending to be ffess 
under the same load.

Now if we cut transverse channels into the boards and place 
tightly-fitting keys into them as shown in Fig. 325c, we shall 
see that deflection under the same force P is just as for the whole 
uncut beam and that the ends of all the boards remain in the 
same plane. From this we deduce that shearing stresses have been

l'Ul. .124 Fir. 325

set up in the bent beam, and ll the keys are not strong enough 
they may shear along Lhe lines axbl and <i2b2. Moreover, if the beam 
consisted of several layers ot plate steel rivetted together to form 
its height h, the rivets would be subject to shearing strain where 
the planes of their shanks coincide with Lhe planes of the plate 
steel layers. Hence, bending is a combination of tension, com­
pression, and shear.

236. Combined Tension, Compression, 
and Bending Strains

Fig. 326 shows a spiked-head bolt. If this bolt is used to tightly 
fasten a joint with a force P, its shank will undergo tension. On 
the other hand, the bolt-head will be subjected, by the surface of 
the jointed part, to a reaction P' equal and opposite to force P. 
The bolt will therefore be also subjected to bending under the 
action of the moment of the couple P and P' equal to P'e, in which 
e is the eccentricity (the distance to the point of application of 
the resultant P' of the elementary forces exerted on the head of 
the bolt and coming from the direction of the parts being fas­
tened). At the same time the combined action of tensile and bending
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stresses will cause a considerable increase in tensile stresses in 
the shank of the bolt, which will increase as the arm of the mo­
ment e increases. Hence, when there is eccentric tension and one 
of the tensile forces does not coincide with the longitudinal axis 
passing through the centre of gravity of a straight bolt, the 
resulting tensile stress will be greater than if there were simple 
tension.

Now let us assume that Lhe top of the square post of height 
h, represented in Fig. 327, is under the action of force P applied 
to its plane of symmelry. Under the action of force P the post 
will bend, the bending moment reaching its maximum equal to

F ig . 32(> F ig . 327

Ph in section mn where there are tensile sLresscs between the 
neutral axis yy and edge n,n2. and compressive stresses between 
yy and m1m2. Furthermore, compressive stresses arc being caused 
by the weight of the post equally distrihu I cd over the cross-section. 
Here we have an instance of combined compression and bending 
strain; in that p'art of the section belwcen i/f/ and edge /n1m2 the 
two kinds of stresses will combine, whereas between the neutral 
axis and edge n1n2. the stresses at various points will be equal to 
their difference; whether the tensile or compressive stress prevails 
will depend oil which is the greater. To preclude the possibility 
of tensile stresses ogcurring where they are undesirable (e.g., 
in brick construction, which offers poor resistance to tensile 
stresses) the cross-sectional dimensions of the post must be 
calculated so that the tensile stresses from bending along the 
edge will* not be greater than the compressive stress due to 
the post’s own weight.

237. Combined Torsion and Bending Strains
Combined torsion and bending strains are frequently met with: 

when transmitting a definite torque, a shaft is also subjected to 
bending from its own weight, the weight of its sheaves or gears, 
and the pull of the belt or the peripheral force of the gears.
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By way of illustration, let us investigate the work of shaft 
I I  ih Fig. '328a on which are mounted gears 2 and 3. Gear 2 
receives rotation from gear 1 on shaft I, and gear 3 transmits 
rotation to gear 4 on shaft III.  Let vector Px represent the effec­
tive pull acting on gear 2, and vector P4 be the effective pull acting 
on the driving gear 3 from the driven gear 4. *

We apply opposite forcesP2 andP2, which are each equal in mag­
nitude to force Px and parallel to it, to the centre 02 of gear 2. As 
a result we obtain three forces Px, P2, P2, of which the first two

result in a couple with the arm 
of the couple equal to the radius 
r2 of the pitch circle of gear 2. 
The moment of this couple is equal 
to P x r2, i. e., to the t<h*qtie trans­
mitted to shaft II. As concerns 
the third force P2, iL acts in the 
axial plane of the shaft.

Let us now consider gear 3. A 
force P4 equal in magnitude to 
the torque on #shaft I I  divided 
by the radius r3 of gear 3, i.e.,

is acting on it from gear**3
4. By applying to centre 03 of 
gear 3 two equal and opposite 
forces P3 ande P3, each equal to 
force P4 and parallel to it, the 
resull is again a couple P4 and P3 
with its moment equal and op­
posite to the moment P1r2. Force 

Fir. 328 P3 is applied to the shaft at sec­
tion ()3. "

Thus we have found that sliatt I I  is under the action of torque 
Mt — I \r 2 - Pir3 along the part between sections 02 and 03, 
and ot two forces P2 and P3 applied to these sections. In the 
present case these two forces are parallel. Fig. 328b contains a 
diagram of the system of forces applied to the shaft: forces P2 
and P3 and the reactions and Ru at the bearings. Under Lhe 
action of this system of forces the shaft will bend throughout 
its length between the two bearings and also twist along length 0203.

In detailed courses ol Strength of Materials and machine parts, 
methods are given for calculating the dimensions of heavily 
loaded shafts. These methods of calculation take into account 
the stresses arising from combined torque and bending. But when 
the bending moment is small, as compared to torque (as for 
example in transmission shafts), bending is ignored and, by in­
corporating the smallest allowable stresses, calculations are based 
only on twist strain.

Pi

j f *  Ol

Pi
h T>

b)
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Supplement I

Coefficient of Sliding Friction /  (for dry bodies)

M ateria ls 1 M aterials /

Mild steel on mild Leathei on cast iron . 0.56"*
s tee l..................... 0.14-0.19 Leather on oak 0.37-0.48

Cast iron on cast iron 0.16 Steel on ice (skates) .. 0.02-0.03
Bronze on bronze .. . 0.20 Steel runners on smooth
Mild steel on bionze . 0.18 wooden or stone floor 0.4
Cast non on bron/e . 0.21 Wooden runners on
Cust iron on oak .. . 0.49 snow and ice . . . 0.035
Wood on wood ........ 0.32-0.60 The same but runners
O ak o rtu k  (along the faced with steel .. 0.02

gram of both bo-
dies) ..................... 0.48

Oak on oak (one body
along the giain, the
oilier acioss the
grain) ................. 0 34

Supplement II  

Coefficient of Rolling Friction h (in centimetres)

M aterials

Wood on wood . .
Steel on steel ..........
Steel ball on steel . . .

r M aterials

0 05 0.08 Steel railway-car wheels
0.005 on iails ...............

0.0005 0.001

r

0.05

Supplement III

Modules of Gears

0.3; 0.4; 0.5; 0 6 ; 0.7; 0.8; 1; 1.25; 1.5; 1.75; 2; 2 25; 2.5; (2.75); 3; 
(3.25); 3.5; (3.75); 4; (4.25;; 4.5; 5.5; 6 ; 6.5; 7; 8 ; 9; 10; 11; 12; 13; 
14; 15; 16; 18; 20; 22; 26; 28; 30; 33; 36; 39; 42; 45; 50.

Modules in parenthesis should not be used if possible.
For bevel gears the module refers to the external diameter.
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Supplement IV

The Greek \lphahet

Letter Nnnu of 
I etler I atti Nome of 

Letter 9

M a Alpha N t Nit
f tp He La S  £ \ i
I  V Gamma 0  0 Omuion
1 <5 Della 11 n. l»i

E t r  psilon P Q Rho
Z t /e la L a Sigma
H  »/ LLa 7 T 1 ati
«  0 & Ihela V v I psilon
I L Iola 0  <1 Rhi
K x Kappa X x ( hi
A X Lambda V y> Psi
M n Mu „ n  ( I ) Dim r»a



ANSWERS TO EXERCISES

StUliCH
•

4. 141 kg; 5. P =  429 kg; 0. Px =  245 kg, Pv =  350 kg; 7. Support 
AH  is compressed with a force of COO kg, support BC is stretched with 
a force of 1,082 kg; 8. Bar is stretched by a force of 150 kg, and bnr is 
stretched by a force of 250 kg; 9. The system is in equilibrium; 10. £-1 
a distance of 90 mm from Ihe line of force P , : 11. GO mm to the right of 
the line of force P2; 12. If =  300 kg (downwards), its line of action is 
1,583 mm from Lhc cxlreme lefl-hand force; 13. A couple with n moment 
of 120 kg-m; 14. Ha =  190 kg and If,, =  800kg. both reactions being 
directed upwards; 15. P, -- 34.5 kg, /? =  214.5 kg; 22. 2.515 kg; 
23. Tipping moment =  727.4 kg m, cocliicienL of stability — 1.73; 
25. 187.5 limes; 20.1> =  5.2 and 7.5 kg; 27. P =  12.1 kg; 28. P =  11 kg;
29. P =J7.65 kg; 30. tan « =  .

Kinematics

35. Dn =  15 m/min, i;r =  30 m/min; 30. u=  0.25 m/sec2, v=  54 km,hr; 
37. a =  0.125 m/sec2, T — 10 min 50 sec, a,,,, =  55.8 km/hr; 38. h = 
- 78.48 m, I =  8 sec; 41. 18 km: 42. a—100 mm/min, a1 =  C08 mm'min; 
43. u„ =  1.2 m/sec, //, =  0.21 m/sce-, <i„ = 0.72 m/sec2, a, =  0.76 m/sec2; 
45. 1,000 rpm; 40. D — 280 mm; 47. o =  215 m/min; 48.prf2,740
rpm; 49. / =  1.04 dcg/scc2, «, — 0.02 m/sec , to =  881 deg/sec, v =  10.8 
m/sec; 50. t =  21.33 deg/scc2, <;, =  0.238 m/sec2, v =  1G.7 m/sec; 
SI. s = 4.8 deg/sec2, n 460 rpm.

Dynamics

52. 200 kg-m 'sec2; 53. G -  1,177.2 Ions, y =  6.75 m/sec; 54. I-> =  20,194 
kg; 55. P =  13,551 kg; 50. S =  26.5 m; 57. N =  0.102 kg; 58. 20,680
kg; 59. At its highest position 1.67 kg, at its lowest position 3.17 kg; 
00. Tu =  0.215 kg, N u -  112 kg; 01. a -  7 20'; 02. IV =  2 PS; 03. 
2.67 hp; 04. 30 kg-m'sec; 05. N - 1,778 hp; 00. G — 750 tons, P =  £,625 
kg; 07. N =  3(1.2 hp, = 108 kg-m; 08. lift =  3.56 kg-m, P = 39,5 kg;
09. n =  240 rpm; 70. A =  13.3 it]). P- =  800 kg; 71. v Pd 0.34 m/sec; 
72. 2,648,700 kg-m, 5,297,400 kg-m; 73. m 4 min, S = 2,119 m;
74. P =  7,097 kg, N  =  916 hp, F =  4,078 kg; 75. »/ =  0.78.

/ Elements of the Theory of Machines

17.3 kg; 77. v =  0.85; 78. 19°28'; 79. Gt =  1,414G2;
80. i  =  200 mm; 83. P = 1 kg; 85. 18 times; 80. Prv 21.9 kg; 07. ru =
= n, — ; 88. n, =  200 rpm, M K =  109.5 kg-m; 89. M. =  21.92 kg-m,

JJ 3 •

n2 =  1,000 rpm; 90. If| =  200 mm; 91. — 92.  n, =  36,
;i, =  450, n4 =  100 rpm; 93. — 10.74 kg-m; 94. n2 =  6, n, =  50,
n4 =  450 rpm; 95.327 and 467 rpm; 90. n2 =  3,200 rpm; 97.0.094 m/sec;
98. 20 rpm; 99. 60 rpm; 100. n4=  n, or n, =  —j*- or n,

* 2  * 6  * 1 * 7  * 2 * 8

n, =  _Z'Z*ZPZ2±- io i. p w 6 kg, N  =  0.036 hp; 102. P  =  324 kg, 
v =  141.8 m/mln; 103. va =  31.4 m/min, uc =  0.5 m/min, n, =  15 rprti.
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Stress and Strain

105. a *  497 kg/cm2; 106. dl = 4.24 mm; 107. a = 1,000 kg/cm2; 
108. a =. 584.5 kg/cm2, P = 45,900 kg; 109. 5 km 96 m; 110. erf 1,000,000 
kg/cm2; 111.<r = 495kg/cm2; 112. d, = 19 mm, dt = 13.5 mm, d* =*17.8 
mm; 113. a = 675 kg/cm2, r -= 502 kg/cm2; 114. t  = 62.5 kg/cm2; 115. 
t = 81.5 kg/cm2; 116. t = 393 kg/cm2; 117. dt = 43 ew 45 mm, dt = 
— 30 mm; the first variant is more advantageous; 118. dx = 43 & 45 mm, 

38 40 mm, the least advantageous variant.
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