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PART ONIC

THEORETICAT. MECHANICS






INTRODUCTION

1. Mechanieal Motion

There are a greal many lorms ol molion. An incalculable
number of bodies are in motion on the carth, which in ils Lurn
is rotating aboul ils axis and also travelling around the sun,
while the sun ilsclf and all ils plancls are in movement relalive
o the slars, which in their turn are also moving through space.
But in all these inslances we have to do with only one form of
motion -Phe motion ol hodies themselves. Science has estab-
lished that heat, light, electricily, and chemical and many
other phenomena are also torms of motion. Furthermore,
life itsell in all ils manifestations is a form of molion.

The perpetual movement of matter causes all the nalural
phenomena aboul us.

Motion occurs in space and in (e, theretore space and lime
are inseparable from matter in motion. When a bodv changes
its position in respect to other bodies, we say il is in motion. This
relative change in posikion of a body is called mechanical motion.

The science dcaling with the laws ot mechanical motion is
called mechanics.

2. The State of Rest as a Relative Phenomenon

The state of rest is a concept we continually meel with in
mechanics. For example, when a railway bridge is built firmly
and rigidly to make il immovable, we infer that il is in a slate
of rest only relative to the earth. For aclually the bridge is in
motion together with the earth as the latter rotates about its axis,
travels around the sun, and moves with the whole solar system.

There is no such thing as an absolute state of rest. In me-
chanics when we speak of an immovable body we have in mind
its relalive slatle of rest, that is, its immovability in respect to
some other body, usuallv the earth. And when we say that the
headstock of a lathe is fixed we infer that it is rigidly fastened
to the frame which we assume to he immovable. A body assumed
to be immovable is called a basic syslem.
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3. Fundamental Elements of Mechanies

The molion of a body occurs in space, therefore space is
one of the fundamecnlal elements in mechanics. Time is like-
wise such an element in mechanics. .

Every poinl of a moving bhody describes a path of definite
form relalive to a basic system; this path is called,a trajectory.
A trajectory may be eilher of straight or curved lines, in accord-
ance wilh which the molion of a point is then described either
as reclilinear or curvilinear. A moving poinl traverses a definite
dislance, 1he length of which as covered in a definite interval
of time will depend upon the speed of the moving point. If Lhe
point travels equal distances in equal inlervals of time. its speed
will be constant and ils molion is then said to be uniform. In
other cases Lhe molion is said to be non-uniform, or variable.

If speed changes al an equal rate in equal intervals of time,
the motion is said to be either uniformly accelerated or uniformly
retarded. A change in speed is called acceleration.

In investigaling mechanical motion of bodies and their state
of rest (as a particular case ol motion), another quantily is mel
with which dctermines the action of once body upon® another;
that quanlity is called force.

All these clemenls will he dealt with in detail along wilh
others pertaining to mechanics, as we proceed.

4. Basie Units of Measure Used in Mechanies

In order Lo express quanlilies in figures, definile basic units of
measurc are required. Such unils are:

the metre, wrilten m, for mecasuring length and distance;

the kilogramme, written kg, for measuring force;

the second, wrilten sec, for measuring time.

Units representing other quantities in mechanics are derived
from the above unils. Speed is represented as a fraclion formed
by dividing distance by time, thus:

i lengt
“—"—'Fif— & h—, r "L orm X sec™!; acceleration is represented
unit of time sce

. unit of velocity . m m

1 — - o . By e — -~

by the magnitude unit of time * » ©* See x sece. °Ts sec
or m X sec~?; and so forth with other magnitudes.

It is sometimes found more convenient to derive certain
units directly from m, kg, and sec. Low speeds, for mstance,

are expressed as se— ; the speed of a train or a plane as W ; the

speed at which a lathe cuts metal as n—?iln—; great forces are
expressed in loms (ton), etc.

14



In solving problems the units of measure must be brought
into proper correlation and thenceforth stirictly followed Lo

obtain correct results.

Blustrntlve Problemn 1. How much greater or smaller is the unit of
m

velocily h than the unit of velocity in

Solution: to solve this problem, the units must first be reduced to
a common denominalion: since 1 km = 1,000 m and 1 hr = 60 min,

it follows that
km _ 1,000 m

)

*hr — G0 mm
therefore
1 km . m_ 1,000 m m o 1L,000 lli—g-
. hr min ~ 60 min ° min 60 3
Ienee 1 km is 1()-.—2- times grealer than 1 ".l-
hr 3 min

5. A Matcrial Point and a Solid Body

Bodies whose molion is dealt with in Lheorctical mechanics
are assumed as consisting of a very great number of infinilely
small particles. The size of each particle is imagined so small
as to approach a geomeclric point. I<ach such parliclc is known
as a malertal point.

Ilence, any body is regarded as being the sum, or a system,
of muleriol poinis.

In sludying molion in mechanics, the body concerned is
frequently 1epresented by a single material point. The molion
of a ship. [or inslance. may be designated as the molion of just
such a malerial poinl. A moving ball attached to a long slring
may also he considered a material poinl.

Accordingly, Llhe concepl malerial point may signify either
a very small particle of a body, or a whole hody considered as
a point.

A malerial point is a body whose dimensions are so small as
to be negligible with respect to olher geometric values involved
in Lhe given problem.

Bodies dealt with in theoretical mechanics are assumed to be
absolulely rigid and unchangeable in size and shape under the
influence of another body.

6. The Scienee of Mechanices

Mechanics deals with a variety of problems, but notwith-
standing this variely they fall under one ol the following classi-

fications:
1. Determining the trajeclory described by the points of a

moving body, the position of any one of the points in its trajec-
15



tory, its speed and acceleration, etc., in short, the solulion of
Pproblems concerned with the movement ot a body as a whole
or of any of its individual points independent of the force
applied.

This branch of mechanics is.called kinemalics. Xinemaiics
deals with the relationship between the geometric eclements

M. Lomounosov

of motion and time, ir1espective of the forces acting on the body
in motion.

2. Delermining the nature of molion of a body as related to
the forces acling on the body, or, conversely, determining the
forces causing Lhe motion. This Lype ol problem is deall with
in the hranch of mechanics called kinefics.

Mechanics also treats of lerrestrial bodiesin a slate ol rest, that
is, a slate ol equilibrium. llere we seek the conditions under
which forces acting on a body are brought into equilibrium,
for knowing these conditions, enginecrs can ensure rigidity and
strength Lo the slructures they are huilding.

That parl ot kinelics dealing wilh equilibrium of forces and
the consequent stale of rest of a body is known as slatics, while
the investigation of molion of bedies under the action of forces

16



applied to them conslitutes anolher branch of kinetics called
dynamics.

Such are the sciences embraced by mechanics. and their fun-
dawmentals are laken up in thefirst part of this book in the follow-
ing order: slatics, kinematics, and dynamics.

7. Chief Stages in the Historical Development of Mechanies

It Llook thousands of years for man to find scientific explana-
tions for mechanical phenomena. The [irst known attempts
of the kind were conducted during the 41h cenlury 3. C. Imple-
ments and mechanical devices of the lime were extremely simple,

P. Chebyshev.

knowledge of mechanics was correspondingly limited and the
devices known—the lever, pulley, windlass, etc. —were studied
for the most part from the standpoint of statics to altain an
understanding of equilibrium of forces.

Some ol the mosL important work in 1he held of statics was
done by Archimedes (287-212 B. C.), who carricd on research
on the laws of the lever, centre of gravity, and other phenomena.
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Aflter Archimedes, there was little advance in mechanics
until the 15th cenlury A. D., when it bhegan to develop in-
tensively, spurred on by the Iransilion trom primilive handicraft
to improved methods of production. During this period Leonardo
da Vinci (1452-1519) made several discoveries m Lhe field of
mechanies, while Stevinus (1518-1620) lurther developed many of
Archimedes’ principles of statics and investigated the mechanical
properties ol Lhe inchned plane.

In the 17th cenlury mechanies was further enriched by Galileo
Galilei (1564-1612). (zalileo’s work in this sphere was carried
forward by Isaac Newton (1642-1727), who improved the

N. Zhuhovsky

formulation of some of Galileo’s laws and developed mechanics
to the level of a science. The mechames of Galileo and Newton,
now known as classical mechanics, formed the foundation for
the subsequent inlensive growlh of that science.

The 18Lh century saw the advancement of a new science
called analylical mechanics, whose founder was the Russian
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mathematician and mechanic, Academician I.. Euler (1707-
1783).

An outslanding name ol the ecighteenth century was that
of the Russian scholar M. Lomonosov (1711-1763), eminent
fot his discoveries 1n various spheres of science, including me-
chanics; another major contrnibulion was his discovery ot the
law of the conservation ol matter and energy.

S. Chaplygin

Another amongst the first Russian scientists notable for
their, work in mechanics, was Academician 8. Kotelnikov who
in 1774 published a book on equilibrium and molion of bodies.

Beginning with the 19th century mechanics made rapid
strides and 1its principles were apphed with ever greater frequency
to practical problems. The Russian scientist P. Chebyshev
(1821-1891) carricd out extensive research on, and created
the foundation of, a branch of mechanics called the “Theory of
Mechanism$ and Machines’. Russian scientists also contributed
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enormously 1o the knowledge of the mechanics of liquids and
gases. Amongst them N. Zhukovsky (1847-1921) holds a leading
position. Known as Lhe “Falher of Russian Aviation”, he is
the founder ot the IRussian theoretical school in that field, his
works forming the basis of Lthe general science of aerodynamics
and aviation as a whole. Academician S. Chaplygin (1869-1942),
one of Zhukovsky’s outstanding pupils, solved a number of
important problems in contemporary super-speed aviation and
olher pressing queslions of mechanics of great theoretical and
practical significance.



STATICS

CHAPTLER 1

FUNDAMENTALS OF FORCE, AND AN INTRODUCTION
TO STATICS

8. Forees

Some cxamples of mechanical phenomena are: a stone falling
to the ground, a tramecar passing from a rectilinear lo a curvi-
lincar streleh of {rack due to pressure on the sides of the whecls
by Lhe raifs, the deformation ot the spring and consequent lowering
of the pan of wcighing scales when an objecl is placed thereon.

[n all of the above instances a change of molion, or, as il is
called. of mechanical posilion of a body, is brought about by the
action of another body upon the one in question. In the first
and third ol the above instances thal other body is the earth,
while in the second inslance it is the rails.

In mechanies, aclion exerted by oue body upon another is
called a force.

It must be noled thal these are iustances of Lhe interactlion
of two bodies (the earth and a stone. rails and wheels, the body
being weighed and a spring). When body A exerts a foree
upon body 13, bodv B cxerts a loree of equal maguilude upon
A bul in the opposile direction.

9. Staties

As has already been said. slalics deals with Lhe equilibrium
of forces. In order to find if a system of forces is in equilibrium,
or what conditions are required {o maintain a given cequilibrium,
it is pecessary first to cffect either a composition of the given
forces, that is, to replace all the forces hy a simple system of
forces or by a single force that will exert the same action, or to
resolve the forces into their components. Ilence the laws of
composition and resolution of forces are of primary import-
ance in statics.

Among all forces acting on a body there is always one which
is manifest by an attraction towards the centre of the ecarth;
that force is weight, or gravity.
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Another constant force is friclion; let us say we want to shift
an ohject along the ground. But we know from experience thal
il is not always possible to do this and that the action will depend
upon a number of condilions, one of the most important beihg
the resistance of the surface of the ground, i.c., the force of fric-
tion. All other conditions being cqual, friction will-vary directly
with the weighl ofsthe object; the heéavier the body, the greater
will be the friction.

The foree of gravily and the force of friction arc very impor-
tant faclors in solving a great varicly of problems; thercfore
they will also he investigated in this section of the hook.

10. Elements Which Determine a Foree .

The action of one hody upon anolher, known in mechanics
as the applicalion of a torce, may he exerted in various directions.
Hence, direction is the first elemenl of a force. For example, the
force of gravity which alfecls everything around us acls towards
the ('cnllc of the earth, ie.. verlically.

However, the direction of a foree is not suflicient’ to deter-
mine the action it will exerl upon a bhody. IFor obviously the
greater the foree, the greater the aclion in the given direction.
Therefore the second element required
lo delermine a foree is its magnifude.

To express the magnilude of a force
il must he measured by some definite

= force taken as a unil. The most con-
venient way lo measure the magnitude
ol a loree 1n mechanies is to compare
it with the foree of gravity to which
all bodies on ecarth are subjeel. IFor
thal reason the kilogramme (kg),

which is the weight of one cubic
decimetre of waler, has been accepted
as the unil of weight for measuring
the magnitude of any force in mechan-
ics. The instrumenl used for this
purpose is called a dynamomeler.

‘The simplest type of dynamometer
is illustraled in Fig. 1. A spiral spring
A, with a pointer D alttached to a
hook on the lower end, is suspended
from a slationary hook Is. A strip C
is faslened rigidly to the upper end of the spring. A mark O
is made to indicate the position of the pointer D when at rest
(Fig. 1a). When a load, let us say a 5 kg weight, is suspended
from the hook on the lower end of Lhe spring (Fig. 1b), it will
stretch the spring so that the pointer will finally come to rest
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at a new position which is then marked §. Thus the force of
gravity acts on the load and causes the spring Lo strelch to a
definite extent. Now if the load is removed and we subscequently
steetch the spring again by hand Lill the poinler reaches the same
figure J, we may say that we are exerling a force of 5 kg upon
the spring. And if we

hang a 2.5 kg weighl .
on the spring, we

would see thal Lhe

pointer comes (o resl A g7
halfway between O \'N”
and 5. Therelforeil we

divide the distance
between Oand 4 inlo

five equal parts, we

may then measure

forces to within onc-kilogramme divisions; or hv dividing Lhe
same distance inlo {en equal pails, we could measure forces
to within half-kilogramme divisions. Dynamomelers conslructed
on the principle of (he deformation ol a spring are called
spring dynamomelers.

Fig. 2 shows another type of spring dynamometer used to
measure forces of large magnitude, from 2 lo 5 tons. When
pulling forces are applied 1o hooks A and A. plates I3 and B
will he brought closer to
ach other and displace
one of the poinlers on
the dhal. By hilching such
a dynamometer helween
a locomotive and a train
of cars, the pulling power

g, 3 ol the Jocomolive can be
measured.

Finally, the thud clement of a [oice is its point of applicalion.
Let us imagine that the load ¢ in Fig. 3 is Lo Le raised by a lever.
The magnitude of the foree needed to raise the load will depend
upon the distance belween the applied loree and the fulerum C.
If the force is applied al point A,, il will have to be grealer than
if applied at point A. From this it follows thal in order to deter-
mine the action that a given force will have on a given body, its
point of application must be known. In praclice, the force will
not act at a geometric point but will bear over a cerlain area.
But for convenicnce in compulation il is assumed as applied
at one definite point of contact.

Wherefore, (he elemenls required to'delermine a force are direction,
magnifude, and point of applicalion.
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11. Graphic Method ot Representing Forees

The aclion of forces is much casier to understand when they
are represenied graphically. Let us take a simple example.

Assume it necessary o represent the pressure exerted on®a
horizontal plate hy a stationary ball whose weight G == 2.25 kg
and which is lying on the plate’s surface at a distance of
a mm from ils front edge and b mm from its left edge.

The applhicalion of the force (¢ occurs al the point of contact
between Lhe [lat plate and the ball. By drawing a siraighl line
K1, at a distance of a Irom Llhe front edge of Lhe plate (Fig. 1)
and another straight line AIN al a distance of b from Lhe left

edge. we find Lhe point of applicalion

8 W A at their interseclion. Al this point

’ a force equal to the weight of the ball

Py A , is acting on the plate. Since the force

P 07- of gravity acts directly downwards, we

M s draw a verlical line BC through point

[ C A along the path ot the force. Now all

thal remains is 1o mark olf on the latter

7 Iine the lorce to be rvprcsen‘te(l. lo do

¢ which  scale must be selected, such as

10 mm to one kg. We then mark off

g a seelion of 225 mm on the line BC

from poinl A downwards to D, and

draw an arrow al ) indrwaling that the direction of the force 1s
downwards.

The line upon which Lhe foree has been laid out (in this case
line BC) is called the line of action of the force. This is a
term we shall subsequently make frequent nse of.

IForce, as we see, 15 a quantily possessing dwrection. Other
quanlities possessing direction are also applied in mechanics
(velocity, acceleration, ete.) and are alt called veclor quantilies
or veclors, as dislinguished from quantities which have no direc-
tion (as, tor instance, arca, volwine, cte.) and which are called
scalar quanlities.

A vector is delincaled as part of a straight line whose Iength
is based on a scale equal to the value of the given vector, while
its direction is taken as the direction of Lhis value.

To show the directron ol Lhe veclor, an arrow is drawn en the
segmentl of the line where the vector is laid oul. A vector ogccur-
ring in the text is designated by the same letters as indicated
on the length of its dehneation, except that a vinculum is drawn
above these lelters; for instance, lhe vector representied by the
length AD in Fig. 4 is writlen in the lext as AD.

A vector may also be designated by only one lelter instead
of two in the text, but printed in bold type. For example, if

the vector AD has a value of G, it is designated as G.
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In the above example the letter A marks the beginning of
the veclor while the letter D — its end. To denote a vector
the letter which marks ils beginning is alwuays written first and
then follows the letter marking ils end.

*f the vector G were 1o act from poinls D lo A, then it would

be written as DA.

12, A System of Forees and Tts Resultant

Fig. 5 represents a bhodv wilth forces P;, P,, and Py applied
at points A, I3, and C. The agaregale ol forces acling upon a
body is called a system of forces.

If we find one force It exerting the same action upon a body
as the whole system of indicated forces,
then that force can be used lo replace
the system of forces.

A force which exerts the same aclion
as a given system of forces is called
the resultanl of forces.

Iforces whose concurrent action can be
replaced by a resultant ol lorees are called Iig. o
the components of the loree.

The resullant of forces is found through the composition

of forces.

13. Two Equal Forees Aeting in Opposite Direetions
Along a Siraight Line Conneeting Their Points of Application,
Are in Lquilibrium

Assume Lwo men holding the ends of a pole and pulling in
opposile directions. If the pole shifts loward one of the men,
we will sav he i1s pulling il with greater lorce than the other;
' if the pole does not shill, we will
say the two men are pulling with

&4 Y2 X . PN
-~ g8 equal force. In Ifig. 6, if forces P,
) and P, applied at points A and B
Fig. 6 are equal in magnitude and acting

in  opposite directions along a
straight line connecling their points of application, they will be
in equtlibrium and will cause no change in the mechanical state
of the body. In like manner forces P, and P, may be applied to
one point ([Fig. 7).

From this il follows that if we adid two more equal forces acting
in opposile directions along a straight line lo a syslem of forces
already acling upon a body, the mechanical stale of thal body will not
be changed. -
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1%. The Point of Application May Be Altered
Along the Line of Action of a Foree

Lel us assume Lhat a [orce P is applied to a body at pajnt
A (Fig. 7) and that at another point, say 1, we apply two forces
P, and P,, each cqual in magnitude Lo P and acling along its line
of action but in opposite directions. As previously explained, this
will not chunge the mechanical state of the body, but as a result

we will have asystem of three

forces P, P,, and P, acling 5 4 5 B
along onc line. But forces P e =====—==== = LA
and P, are equal to cach other 2)

P 4 P B P A =—38

) o

TFig. 7 I'ig. 8

and in mulual equilibrium and consequently (he mechanical
state of the body Lo which Lhe three forces are appliad depends
on force P, alone, which s cqual in magnilude lo P and acting
in the same direction. In olher words, we have altercd Lhe poinl
of application of force P to poinl B.

This property of forces is frequently used in solving problems
of mechanics.*

15. Equilibrant of a Foree

Let us return to See. 12 (IFig. 5), where it was shown that the
forces Py, P, and PPy may be replaced by their resullant R.

Now let us apply torce R,, equal in magnilude, opposile in
direction, and collincar with I, to poinl 0. On the hasis of what
has been staledin See. 13, R and R, are equivalenl and conse-
quenlly the forces Py, P,, and P, are equivalent to R; which
means Lhal a body acled upon hy this syslem of forces will be
in equilibrium. A force R, wlhich is equal, opposile, and colli-
near with the resullanl R ol a svslem of {forces acting on a hody
is called the equilibrant of (hal system. This line of reasoning

* A clarificalion is required here. T.et us assume that twe forces
P, and P,, cqual in magnitude and acling in opposile direclions_along
the same line of action, are applied to a thin bar at points A and B
(Fig. 8a). Foree P, may be moved to point B, and force P, to point A
(Fig. 8b), bul il is apparent that in the first instance the bar would tend
to streich, and in the second would tend Lo confract and {ake the shape
shown in Fie. 8b. Therefore from the physical standpoint the siluation
of Lthe point of applicalion of a force along its line of action is not a matter
of indifference. Ilence, as already stated in Scc. 5, fundamental deduc-
tions in theoretical mechanics are based on the assumplion that a body
on which forces are acting is absolulely rigid and unchangeable.
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may be carried further. Lel us assume Lhat we have a system
consisting of P,, P;, and R,. Then their resultant would be
equivalent in magnilude to force P,, and would he opposite
anl collinear with il, while P, would be the equilibrant. This
means thal in a sysiem of forces in equulibrium, any one of the
forces is the equilibrant of all the other [orces.

Oral Ezxercise

What is the difference between the resultanti and the equilibiant of
forces?

16. Composition of Collinear Forees

* Given two collinear forces P, and P, acting on a hody in the
same direction at points A and B (Fig. 9a). ‘The problem 1s to

compose the forces, i.c., to

find their resullant. Aomm L 72 D __ 8 7
We know by experiment —_————

that the aclion of lwo such R=P,+P, P

forces o1 the mechanical 5
state of a body will bhe the 2
c A 4 87 N p
— O ——

same as the action ol another LS
force equal in magmtude to £ —
the sum of the {wo lorees and Y R=Pp~Py

acling ir the same direction.
We can find (his sum graphi-
cally bv altering the poinl
of application of force P; Lo the end € of the veelor Py, as shown

in the figure. Then the resultant can be represented by the veelor
AD. The same result may be oblamned it the end ot the vector
P, is transferred to point B. Ifrom all ot which the resultant

R-P, | P,

Or let us take the case ol two opposile forces acling along
one line (I7ig. 9b). lere it is necessary lo compose the lorces
P, designated by AC, and P, designated by BD.inlo their result-
ant, the second force being greater than the firsl (2,2 P)).
Let us assume force P, to bhe the sum ot two forces acting in the
same direction— the force designated by the vector BE, which
is equal, opposite, and collincar with P}, and a second designated
by ED. Forcés AC and BE are in equilibrium since they are
equal, opposile, and collinear. As a resull the two [forces P,
and P, are reduced to one force, i.e., to the resultant £, which
is equal in magnitude to the difference hetween them and acts
in the direction of the greater force:

R=P2_])1'

Fig. 9

27



If instead of the resultant of two forces we must find the result-
ant of more than two forces with a common line of action,
then each direclion of forces is first summed up and the resultant
of the two forces determined as described above. .

If it be assumed that the forces acting in one direction are
positive and those acting in the other are negatiye* then their
algebraie sum will he the resultant.

Wherefore the resullanl of lwo or more collinear forces is the
algebraic sum of their components.

o
INustrative Problem 2. Find {he resultant of the following live collin-
ear forces: P, = 400 kg, P, = — 200 kg, P, = —3500 kg, P, = 100 kg,
and P, = —175 kg.
Solution: the resultant R =P, + P, 4 P, 4+ P, + Py = 400 «
—200 —350 + 100 —175 = —225 kg, acting in the direction oppo-
site to P, and DP,.

INlustrative Problem 3. A man weighing 82 kg is standing on [(loor
scales and pulling vertically on a rope hanging lrom the ceiling. What
force is he exeiling on the rope if the scales are registering 45 kg?

Solution: the figure registered on Lhe scales shows Lhe eforce wilh
which the man is pressing down upon them. This force, which is the
resullant of thie weighl of the man and the force exerted by means of
the rope (in opposilion lo the weight of Lhe man), we shall designate
as P.

If we take the forces acling veitically downward as posilive and force
P as negalive (the man is pulling Inmsell upwards), then we have (he
following cquation:

82 — P = 45, from which > = 37 hg.

17. Constraints and the Reactions of Constraints

Various kinds of motion occur when bodies are acled upon
by forces. Most frequently we meet with the motion of a hody
whose free choice of position in space is restricted by olher
bodies. Instances of th.s type of motion are: the movement
of a body on the earth’s surtace, the revolution of a shaft in a
bearing, the movemenl of the carriage of a lathe along the
guides of ils bedway, etc.

This kind of motion of a body is called restricled molion. The
conditions restricting the motion of a body are called conslraints.

The action on a body by other hodies exercising constiraint is
measured by a force called the reaclion of the constraint.

In Fig. 10 the ball rolling down the inclined plane under the
force of gravity is subject to the reaction of that plane, des-
ignated by force N perpendicular to the plane KM.

Or, take a beam lying freely on two supports (Fig. 11). The
weight of the beam exerts pressure on both supports, while

* The choice of which forces to designate as negative and which
as positive varies with each case and has no influence on the final result.
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the supports in their turn exerl opposing forces Q, and Q, on the
beam and are called (he reactions al the supporls.

It is important to stress the following: the force exerted by a
body on a support is applied {o a poinl on the support, whereas
the reaclive force of the support is applicd al a point on the body,
with the result that the two forces have different poinls of applica-

N
M a /7]
] )
K ? bz
Fig. 10 Fig. 11

tlon. So is it in the case of the ball on lhe inclined plane when
the pressure of the hall is exerted al a point on the plane and
Lhe reaclive force is applicd to a poinl on the hall. The two
poinls are contiguous al point A. In lhe same way the points
of application of pressure of a beam are on the supports, whereas
the poinls. ol application of the reactions are on the beamn.

Oral Izercise
A ball weighing 2 kg is resling on a horvizonlal plate. What is Lhe
direction of the rcaction of the plate, where is ils poinl of appheation,
and whal is ils magmtude?

18. Questions for Review

1. Whatl do we call a force in mechanies and how does it manifest
itself?

2. Is there any difference belween the line of aetion of a
force and the direction of a force?

3. In what scquence should the elements desicnaling a
force be delineated on a drawing?

4. Whal quanlily is a vector?

5. What is the difference between the resultant of a system
of forces and equilibrant?

6. Whal is meant by thie expression fhe ulgebraic sum of
forces?

7. What is the difference between ihe foiee thalt a body
exerts on a support and Lhe reaction al the support?

8. What is the dircction of the reaclions exerted on the
wheels of a locomnotive at rest?

19. Exercises

1. Load B, weighing 3.5 kg (FFig. 12) and attached
by a cord to dynamometer A, is lowered to a table in
such a way that the cord remains taul. The pointer
on the dynamometer registers 1.5 kg. To what is the
reactive force of the table applied, what is its direction,
and what is its magnitide?




2 A man is slanding on floor scales and pulling on a rope
suspended from a dynamometer fastened to the ceiling. The
dynamometer registers 15 kg while the scales on which the man
15 standing show 05 kg I‘ind 1) the weight of the man and
2) the magmtude and directions of the reactions exerted on the
man by the platform of Lhe scales and by the rope.

(HAPTER II
COPLANAR SYSTEMS OF CONCURRENT FORCES

20. Finding the Resultant of Two Forces
Aecting at an Angle

So far we have invesligaled systams of forces having a single

hne ol action and whose resultant 15 collinear with these toices.

Now we shall take up the question ol Nhnding

A the resultanl of two lorces whose hines of aclion
Ac<cg——i mterscct at a pomt and torm an angle

P, Ihe simplest systam of forces acling al an

angle 15 obl uncd when the forres ait of equal

Ty 13 magnilude as shown wn g 13, where forces

P, and P, are cqual and arc acling al an angle «.

Since thare 1s no reason tor the 1esullanl Lo be diected closer
to one force than to the other, 1t should bisect the angle It the

b
o /
/
[/
c
t6
)
9
/——
R 7/
/. pt
- Om—————
g
Fig. 14

forces were ol differeni magnitudes, Lhe resultant would remain
in the same plane and make a different division of the angle
formed by the lines ot action of the forces.
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Let us make the following experiment.

Suspend two spring dynamomelers A and B [rom hooks in
a stationary horizontal bar as shown in Fig. 1a. Tie their hooks
to ging O with cords of any length. Then hang load G from the
ring by a third cord. The cords will hecome taul, the load will
swing and the pointlers of the dynamometers will shill back
and forth. Finally the dvnamometers and the weight will stop
fluctuating and the whole system will reach a state of equilib-
rium.

Now let us see what forces are acting on the ring 0. The spring
of dynamomeler A is arling on il from the left, and {he spring
of dynamometer I3 from the right. The weight G of load ¢ is
acting on it directly downwards. And since the system is in a
skale of rest, the (hree forces are in equilibrium.

Now et us lake a sheel of cardboard. place f hehmd this
system of forces, and with a pencill mark pomnts « and b the
points from which dynamomelers .1 and [3 are hung --and the
cenlre of the ring 0, and also draw a slrawght hine Oc designaling
the posilion of the cord from which the load 1s hung.

Now we can dehmeate on the cardboard all the forees acting
on the ring and meeting at its centre. First we draw lines Ou,
Obh and Oc to represent the lines ol action ol the lorces acting
on the ring (Fig. 11b,, the weight ol {he load is known and the
magnitude ol the two other lorces s taken from the dvnamomelers.
By choosing a suitable scale we can lay off corresponding lenglhs
from point O along the three lines and add arrows showing the
directions along which the forces are acling. s a resull there
will be tbree forces designated on the cardboard: Py, Py and G.
expressed by the wveclors OA,, O3, and 0C,.

These three forces are in equilibriom. Assnming thal force
G is the equilibrant of torces P; and P,, we (hen delineate
vector OC,, which represceuls force R, equal in magnitude to
force G and acling in the opposile direction. In accordance
with Scee. 12, the loree R is the resultant ol P, and P,.

If we draw a slraight line extending from A, (the end of the
veclor of force Py) parallel to the vector of force Py, and anolher
line from I3, parallel to the vector of force P, (Lhe &nd of the
vector of force P,) we will find thal thesc two lines intersect
at poirt C,, that is, at the end of the vector of the resultant
R. licnce, by thus constructing a parallelogram of the vectors
OA,, and OB, of the forces P, and P,, we obfain Lheir resultant
R in magnitude and direction, designated by the diagonal OC,
of the parallelogram.

Such a parallelogram is called a parallelogram of forces.

Wherefore the principle for the composition of iwo forces
acling at an angle may be stated as follows: the resultant of lwo
forces with a common point of application and acting ai an angle
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is equal in magnitude and direclion to the diagonal of a parallelo-
gram construcled with the lwo [orces as adjacent sudes.

In the above inslance the component forces present a common
point of application (the cenire of the ring shown in Fig. 14a).
But if the forces are exerted al dilferenl points, they may be
shown as applied to a point where these lines intersect and a
parallelogram with their vectors forming adjacent sides
may be constructed as shown in Fig. 1te.

The resullant oblained in this way is called the geomelric
(or veclorial) sum of component forces.

This principle of the parallelogram is also employed in the
composition of other vector quantities acting at an angle.

It will be recalled froin geometry that any side of a triangle
is less than the sum of the olher two sides and larger than thetr
difference. By applying this to the resultanl in Fig. 140 we
obtain

PP, R>P, - D,

When the angle under which forces arc acting is changed,
their resultantl will also change: if the angle decreases. Lhe result-
ant will increase and vice versa; with an angle of 0°, Lhe two
components will have bholh the same line of action and of direc-
tion and their resullant will be P, | /. whereas al an angle
of 180° their resultan! will be P>, — /°,. With these extreme angles
between comnponcenl lorces, their geometric sum hecomes their
algebraic sum. This mecans that the prineiple used 1n the compo-
sition of Lwo collincar forces is par* ol Lhe principle of Lthe paralle-
logram of forces.

Hlustrative Problem 4. Two forces P, and P of equal magnilude are
acting at an angle of 120° Find lheir resultant (g, 15).

Solution: 1he parallclogiam constiueled on Lhe veclows of these forees
is a rhombus, for whteh 1:ason the diagonal O€ bisects angles AOR
and ACH. Therelore s AOC 7 COB = 60" =/ ACO 7 0CHB.

g, 16

It follows that the resullant forms an angl: of 60° with each of the com-
ponent forces. Furthermore il 1s easy Lo see that the wiangles O AC
and ORC are equilateral, which mecans that OC = OA = OB. Hence
the resultant in this case is equal lo each of Lhe components.
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Tinstrative Problem 5. A groove is being cut in a workpicce machined
on a lathe (Fig. 16). It has been delermined with a dynamometer that
radially acting force P, = AD -- 55 kg, and vertically acting foree
P, = AC = 43 kg. Find the magnitude and the direction of the resull-

anke It = AD.

Solution: sinee the components are perpendicular {o one another,
the parallclogram constiucted on thewr veetors will he a rectangle and
its diagonal can be determined by the Pythagorean Theorem:

R = 10524 93 = 108 kg
Fiom the luangle ADC we oblain NG = AC tan ¢, theretore
DC Hhd

lan v = AC T 95 0.592 and the angle v — 30°3¢/

21. Revolving a Foree into Two Components
Applied at One Point and Aeting at an Angle

The reverse ol he composttion ol forces is called the resolu-
lion, of a iorce inlo ils compounents To 1esolve a force inlo two
components siqniftes [inding (wo [orces whose combined action
will be the same as the quwen force. i.e., funding two forces whose
resullant Bl be equal lo lhe qen force.

It can be casily lonnd that such a problem may have au in-
finile number of solutions. Let us assume 1t necessary lo resolve
the force Q = OA inlo two components (IFig. 17). By drawing
two lines. OK and OL. hrough {he point ol
applicalion O, and lines A€ and AI3 parallel
to them, Irom poinl A, we olitam a parallelo- /4

gram O3 AC [rom which we sce thal 1oi1ces O3

and OC are componenis ol Jorce Q. Bat other
lines of action could hkewise he Lluken for the
componenis --say OM and ON. Then we
would oblain Lhe parallelogram ODAJ, [rom
which il [ollows that the force Q may be ihe
resulian! of i{wo other [orces O and QI

Therefore the problem as it is staled 1s g, 17
indclerminate and addilional conditions must
be included to obiain a single solution tor each specific case, as
shown in the following examples.

1. Rasolve force Q (FFig. 18a) inlo two components P, and P,,
whose lines ot action MN and ST intersect with the action line
of Q al point O.

By altering the point of applicalion of force Q to point O
we obtain vector OC =. Q. Then we construclt a parallclogram
OACB on that vector by delineating two lines from point C,
that is, C B parallel Lo MN and C A parallel to ST. The resulling

vectors O A and OB will designate the sought component forces
P, and P,. ' "
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2. Resolve force Q (FFig. 18b) into two componcnts of which
one, Py, is defined in magnitude and direction.
We extend the lines of action of the {wo given forces to their

point of inlersection O and construct vectors OA - P, gnd

N
» ///
N s
///
~
-
o L~
= ~~_¢C
e S Ui 5
M ) 7o~ M >
~ e
a)

Itig. 18

OB Q. We then conneel B and A and delineale OC || AB
and BC || MN. thus obtaining the desired second fomponent

| 0O,

Oral  Exercise
Can a given force be resolved into components, cach of which acls
at a right angle Lo il?

Hlustrative Problem 6. A verlical lond P of 1,200 kg is supported by
a triangular bracket ABC. Find lhe lorees acling on AR and B if
AB = 600 mm and AC = 800 mm (I'ig. 19).
Solulion: the forces acling on the indicated clementls are compo-
nenis ol force P and directed along these elements. By construcling the
arallelogram BEDI’ on vector £31), which represenls force P, we obtain
Boih components Pyoand P . ‘The firsl is directed from poinl 13 {owards
point E, that is, from A along the supporl AB and tends to streich the
lalter. The second componentl BF is directed towards peoint C, that is,
towards the point which fixes the clement BC and therefore tends to
compress that element.
By mcasuring the {wo components by the same scale as used in des-
ignating lorce P, we ean find their magnitudes.
These magnitudes can also be found by calculation, as follows.
Since triangles ADBC and BED are similar, then
BE P, AB 600 3

B P T AC 800 4

hence

P, = 'f— P = -% % 1,200 = 900 kg

Fuithermore,
ED _ P. _ BC _ J600° + 800* _ 1,000

BD TP T AC T 800 800

N
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and o
I D
1)1.1 = I I) = T ~ 1,200 = 1,50“ kg.

1lustrative Problem 7. Slide-block K (Fig. 20) which is subjecl to the
aclion of force P, is moving along a slraight horizontal bar A B at an
even speed. What reaction does the bar exerl on the slide-block?

Solution: Lthe reaclion we scek is perpendicular to the bar, i.ce., it is
dirccted from it verlically upwards. We resolve foree P into two compo-
nents CE and CF, of which one is perpendicular, and the other parallel
Lo AB. The parallelogram of lowces CEDI so formed is a rectangle, of

which side CF represents the downward pressure of the slide-bleck
on the bar, and side C I/ represents Lhe foree acting in the same direction
as the movement of the slide block#.

¢ 7
| 7, 8
1 4
H N s
T =T T
Fig. 19 Fig. 21

Assuming that force P == 80 kg and thd angle & which it forins with
the bar is equal to 60° then . LOE — v0° e = 30°
From the right triangle DO we derive
CIE =CDcos 30° = 80 » 0866 -- 69.3 ke,

hencee the 1eaction soughl is equal to (9.3 kg and acling opposite to
force N.

Ilustrative Problem §. In Fig. 21, line A B represenls the axis of the
cross seclion of the wing of an airplane Lavelling horizonlally along the
line 111, The pressure of the air N perpeadicular Lo the winy, is des-
ignated by the vecltor OC. ¥ind the litling power thal (he air exerts
on the plane.

Solution: By resolving N into [wo componenls, we obtain vertical
P, = OD and horizonlal P, = OF. The lirst gives the magnitude of the
verlical pressure of the air and is equal Lo Lhe lifting power of the plane.

22. The Composition of Several Forces Lying in One Plane
and Interseeting at One Point

The’ principle of the parallelogram can also bLe employed
to solve problems involving more lhan two component forces.
By moving any two of the forces along their lines ol aclion
so as to have a common point of application and construcling
a parallelogram of forces, their resultant R; can be found. Then
the next force is moved to the common poinl of action and

* This force is in equilibrjgym due to the lorce of friction induced on
the surface of contact between the slide-block and the rod.
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combined with resultant R to obtain R,. Thus we continue
with the rest of Lhe forees until finally by combining the last
component with the resullant of all the other {orces we obtain
the resultant of the whole system.
The order in which we combrue the
forces will have no influence on
the final result, but bf course the
partial resultants will differ.
g, 22 shows a system of four
B meeting lorees Py, Py, Py, and P,
whose himes of inlersecling action
are at point 0. By translerring
the points of apphcation P, and
P, to this same point and con-
strucling a parallelogram OB, K I,,
we obtawr our first partial result-
1. 22 ant R, Oh,. This we combine
with {orce P,, which we have also
transferred to O. and oblam the second parhal resultant R, --
= O/l.. Tmally, by conslructing parallelogram OLMII; on
veclors 0L and OIf, of foices R, and I’,, we obtlain the result-

ant R - OM for the whole system ol forces.

The forces need not necessarily be combined in this order.
We could first have combined P, and P, and then combined
P, wilh their resultant, etc., and the final remlt would have been
the same.

There are other methods ol corré};mmg concurrent forces.

Let us take four forces P,, P,, P;, dnd P, (I'ig. 23).
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First delineate two perpendicular coordinatles zr and yy
through a common point ol application O (see IYig. 23a). Then
we resolve each of the given forces into two components whose
lifes of aclion coincide with axes ar and yy. By connccling the
perpendiculars Aa, and Ag, from point A (1he end of the vector
of force P;) with axes xx and yy, we resolve P, into two compo-
nentls Oa, and Oa,. The process is then repealed with the other
given forces. As a result we obtain four components Oa,, 0Od,,
Ob,, and Oc, acting along axis xv, and the same number of
components 0b,, Oa,, Oc, aud Od, acling along axis yy. In
short, we replace the given furces by these eighl torces.

Now we work oul the algebraic sum of the [orces acting along
gach of the axes or and gy. IFor the lorees acting along axis
zr we obtain the resultanl R, - Ob, 4 Oc, —- 0O, --Od,, desig-
nated by veclor O in IFig. 23h. In exaclly the same way we
find the resultant of forces acting along axis gy, e, R, - Ocy -+
+ 0d, -9b, -0a, as designaled in If1g. 230 by vector OF.
In this way we reduce all the given forees 1o [wo, acling al right
angles ltoeach olher. By constructing the parallelogram OLGF,
we obtain Lhe desired resultant R desicnated by veclor 0G.

The magnitude and direction of ihis resultant can be found
by caleulation without resorting to delineation.

Firstly, designale (he angles formed with axis rr by forces
P,. P,, P . etc,, as a;. ay, a5, cle. Ifrom triangle AOa, we obtain
Oa, - 0A cosay  Preosay; in the same way we [ind that
Ody = Pycosa,, Ob, -DP,cosa, and Oc. P,cosay.

From the same triangles we tind each vertical component of
the given forces: O, - OC sinay, D', sinaxy, Od, P, sin «,,
0b, P,sina, and Ona, D) sine,. llence,

R, -Pycosay | Pyeosay, DPycosa; -15c08 ap;
and R, =-D3sinay | P sinag DPysine, P, sina,.

The magnitude of resultant R is delermined {rom {riangle
OLG as Lhe hypolenuse ol a right triangle:

n- m2= 1.
Angle « formed by lhis resultant wilh axis zr is determined
from the same triangle: R, =-- R, 1an «, from which tan e - ﬁi’:

In general, ihe resultant of a svstem of n forces meeting at
one poinl is declermined by the following ecqualions:

R, =~ P, cosa, | Pycosay, + Pycosay ... | I’ cose, l (1)
R, ~= Pysin a; --P,sin 2, | Pysineay 1 ... } Pysine,)
R_ iR I, (2)
tan o« = S, (3)
' Ry



Wherefore, the resullant of a system of coplanar concurrent
forees (s equal to the yeomelric sum of two forces, euch of which
is the algebraic sum of the components of the syslem along two
ares inlersecling «f right angles. .

The tangent of the ungle fjormed by a resullant and a horizontal com-
ponent is cqual lo the ralio of the algebraic sum of the vertical com-
ponenls {o (he algebraic sum of the horizontal components.

Oral Ezxercises

1. IT Ry -- 0, and R, 7 0, whal is the magnilude and direction of the

resultant?
2. I Ry = Ry, whut will be the direction of the resultant?

Tllustrative Prohlem ‘). Given a system of concurrent forces in which

P, =20 kg, - 25 P, = 30 ku, and £, = 40 kg (Fig. 23). The
anL{lvs these fmcos I(nm wnlh the horizontal a'(ls arc x, = 70° a, = 30°,
a, = 20° and ¢, -- 60°, from which the resullant of these forees must

be found.
Solution: Ry and R, arc calculaled through Tquations (1):

Ry = 200 cos 70° + 25 cos 30° 4 30 cos 20° 40 cos 60° =
- - 20, 0312 + 25 < 0.866 4+ 30 0.949 40 < 0.5 5 23 kg.
R, = 205in 70 25 sin 30° -+ 30 sin 20° 4 40 sin 60° =

-- 20 ¥ 0.94 - 25 . 0.5 4 30 < 0.342 4 40 x 0.860 = 13.6 kg.
The magnitude of Lhe vesultanl, according to quation (2),
Ro1288 4367 = 26.7 L.
and the angle « which it forms with Lhe horizontal axis

13.6

93 0.591, whenee we oblain o — 30°367.

tin « -

23. Equilibrimmn of a System of Coplanar Forees
Interseeting at One Point

As we have already learnt above, a svslem of forces is in equi-
librium if each of its forces is Lhe eqmlibrant of all the others,
that is, if each of its forces is equivalent Lo, and opposing, the
resultant of the other forces. In combining forces according to
the method shown in IYig. 22 we oblain a resullant Ol equal
in magnitude and opposite in direction to force P, and Lhe gene-
ral resultant is zero, i.e., the system of forces would.bhe in
cquilibrium.

For a system of concurrent forces to be in equilibrium, their
resultant must be zero.

Let us see what conditions must be salisfied for this to hold
true.

Let us return to Ifig. 23. As we have already seen, resultant
R can be defined as the geometric sum of the forces R, and R,
each of which is the algebraic sum of the components of the
system obtained by resolvmg ils forces along axes zz and yy.
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Therefore if the system is to he in equilibrium the condition
VR2-|- 12 -= 0 must be salisfied. Since R2 and R2 arc always
posilive quantities, this will be the case only if R, and R, are
ealh cequal to zcro.

llence by emploving Equations (1) we oblain the following
conditions for Lhe coplanar system of convergent forees lo be
in equilibrium:
R,=DP,cosa, |FPycosx, }-Pycosay ' ...  P,cosa, -0(1)
R, =P sine; ! Pysina, | Pysinay; | ... , P, sine, =0.(D)

Wherefore in order thal a coplanar system of vonvergent forces be
in equilibrium, il is necessary and sufficien! thal cach algebraic
sum of the componenls of lhose forces ulony two perpendicular
ares be equal lo zero.

INustrative Probhlem 10. Given a coplanar syslem of convergent forees
(I'ig. 24a) in which I == 23 kg, I*, -= 27.5 kg, I*, = 21.3 hyo I*, = 30 kg,
and P; = 30 kg. The angles formed by their lines of aclion with the
horizontial axis xx passing through the poinl ol inteiseelion of the forees
are respeeldvely o) = 26°, o = 68° o, = 10° a, = o¥° and oy - 31°
Determine whether the system is in equilibrivm.

Solulion: by applying IEquations (4) and (9) we obtain

Ry = P, cos 26° — P, cos 68° -- P cos 15° — P, cos 09° |

4 Py cos 31° =23 < 0.899 27.5 x 0.375 - 21.3 x 0.966 —

— 30 x 0.515 4+ 30 x 0.857 = 20.68 — 10.31 - 20.58 - 15.15 +
+ 25.71 = 46.39 — 46.34 = 0.00 kg~ 0.

Ry = P,sin 26° + P?_ sin 68° 4+ P, sin 15° -- P, sin 59° — Py sin 31°
= 23 x 0.438 + 27.5 x 0.927 4 21.3 x 0.259 — 30 x 0.857 —

— 30 x 0.515 = 10.07 4+ 25.49 4 552 — 25 71 — 15.45 = 41.16 -
— 41.00 = 0.08 kg = 0.
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Therefore the system Is in equilibrium. .
In Fig. 24b this problem is solved graphically (the scale used is
1 kg = 1 mm). As may be scem from the drawing, Ry = 0 and R, = 0.

24. Lines of Action of Three Non-Parallel Balaneed
Coplanar Forces that Interseet at One Point

Fig. 25 represents a body under Lhe action of three balanced forces
P, P,, and P,. Since any one of these forces is the equilibrant
of the other two, it must be equal and opposite Lo the resuliant
ol the other Lwo forees. 1If we Lransfer forces P; and P, to Lheir
point of interseclion O and find their resullant OC. we may
sce 1hat lorce PPy must have the sume hne of action as resultant
R; in other words, il must pass through the same point 0 at
which P, and P, inlersecl. Wheretore, 1f three non-parallel forces
Iying tn one plane are in equulibrium, their lines of aclion will
tnlersect al one poind.

Fig. 26 Fig. 26

Hustrative Problem 11. A man s filing a workpicee K held in a vise
(Fig. 26). In order that the hile move evenly, his hands cxert torees P,
and I at cach ol its ends (points A and £3) and thus overcome resist-
ance R of the workpiece. In shost, foices Py and P, compensate force R,
and all thiee foreces meet al point O.

25. Questions for Review

1. What system of foices is a concurrent system? .

2. Ts there only one solulion 1o a problemn in which a forte is to be
resolved into two componeuls if either lhe magnitude or the direction
of one ot the components is given?

3. What is the answer 1o Question 2 if both the magnitude and diree-
tion of one ol the components are given?

4. Whal is the answer to the same question if the magnitude of one
of the components and the direction of the other are given?

* Since our calculations have been approximate, we may neglect
Lthe quantities 0.05 and 0.08 kg, inasmuch as they are of no importance
as compared with the forces given.
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5. After the successive composition of forces P,, P,, and P,, respec-
tively (Sec. 22, Fig. 22) by means of the principle of the parallelogram, it
was found that the system was in equilibrium. What is the position of
the line of action of resultanl R, and what is ils magnitude?

@. The system of forces in Fig. 25 is in equilibrium. By constructing
a parallelogram of forces I', and P,, prove thal force I, is their equilib-

rant.
7. Will a system of forces bhe in equilibrium if only one of the Equa-

tions (4) and (5) is salislicd?
26. Exercises

3. Show [live torces I, P,, Py, P,, and P; wilh a common point
of application and whose lines ol action form angles of 30°,
120°, 270°, 300°, and 330°, respecetive-
ly, with the horizonlal axis (lay oul
the angles counterctochwise).  he mag-
nitudes of the forees are P2, 150 kg,
P, =200 kg, Py=120kg. I’. 180 kg,
and I, -- 80 kg.

4. IFind the resultanl of two forcesP,
and P,, wilen cach is 100 hg and their
lines of aclion inlerseet af right angles.

5. Ifig. 27 represeats a cable Jastened al points A and B3
with load K of weieht G susnerded from il in the middle. Cal-
culate the force P exerted on cach hall of the cable if L. 5 m,
a - 600 mm, and the weight G of load L 100 kg,

6. The workpiecce A in Fig. 28 15 being machined lengthwise
on a lathe hy cutter B. A perpendicular foree O of 127 kg desig-
nated by N is acting on the culting cdge. Find lorces P, and P,
aclting on the cutler in the direction of the axis ol the workpiece

Fig. 28 Fig. 20

and also perpendicularly Lo it if angle ¢ between the cutting
edge and the workpiece (called Lhe main angle in plan) equals 35°.

7. Find the forces acting on supporls A3 and BC of the
iriangular brackel in Fig. 29 if AB = 800 mm, AC == 1,200 mm,

and P = 900 kg.
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8. Load Q weighing 200 kg (Fig. 30) is suspend-
ed from joint I3 belween two bars fastened on
hinges A and (.. Find the magnitude and direc-
tion of the forces acling on Lhe {wo bars.

0. In Fig. 31 five lorces are applied al point O:
Py =20 kg, P, A0 kg, Py-:=30 kg, P,==

33.3 kg, and P; - 53.3 kg. Angles o, = 45°

lig. 31. and a, - 60°. The lines of action of forces P,

and P, coincide and are horizontal and force P; is
directed vertically downward. Iind the resullant.

CITADTI K 1L

COPLANAR PARALLEL FORCES, AND THE MOMENY
o' A FORCE

27. Composition of Parallel Forees Acting in One
Direetion

The principle of [he parallelogram obviously eannot he
applied to Lhe composition ot parallel forces. To arrive at a
principle for the composition of (wo parallel foreces we musl
replace them bv (wo inlersect-
ing forces having lhe same
aclion as lhe given forees.

el us assume we are to lind
the resultant of the (wo parallel
forces P, and P, m Mg, 32.

We conneel the poinls of
application A and 3 of the
two forces wilh line AD and
resolve P, inlo Lwo arbifrary
components AJ and AL, ol
which the first is directed along
line AB. We then resolve [orce
P, in such a way as to make
its component BG also acl
along line AB and have Lhe
same magnitude as force AL.
Then its second component o )
BIT will b fully determinate. Since the compouents A2 and 3G
have been constructed equal in magnilude and acting in oppo-
sile directions, they will therefore balance each olher, il then
follows that forces P, and P, can be replaced by forces AI" and

BII which are acling at an angle. o _
We transfer the points of these two forces Lo Lheir intersection

at 0,, that is, we lay out 0,K = AT and O,L = Bil. Then

Fig. 32

42



we resolve each of these forces in two directions: UD parallel
to AB, and 0,Z parallel to the lines of action of the given forces
P, and P,. As a result we obtain four forces 0,M, O,N, 0,S, O,T.

It is apparent that triangles O,MK and L AC are cqual {o
each other because O, = AF and the adjacent angles are
equal. IFFrom this it follows that MK = AC, and since MK -~
= 0,S, then 0,8 — AC, i.e.,, 0,8 -P,. And since the triangles
are equal, it also follows that O, M  AF.

In the same way we can prove that 0,7 P, and O,N - BG.
Therefore, since 0;A and ON are equal aud opposite, they
are in equilibrium. Accordingly, the resullant of torces O, K — AF
apd O,L = BIf can he expressed by the algebraic sum of the
forces 0,8 and 0,T, and since these two torces are equal in mag-
nitude, respectively, to the given forces P, and P,, the resullant
of forces AF and BD is expressed by P, | I’,. [lowever, the
action of forces A" and 1D is the same as the aclion of forces
P, and P,. lence we conclude thal the resultant ol lorces P,
and P, is equal to their sum and we have therelore determined
its magnitude. Now 1l remuns for us to find the position of point
O at which the line of action of resuliant 0, and line AL inter-
sect. Since (riangle 0,40 and O,KS ave sumilar, 1t follows that
?{% - z‘(:, or if we consider that O.S represents the magni-
tude of force P;, we then oblairL -%‘;-:—?,‘12-

In the samc way we oblain the proportion
0B _ 00
1L~ P,
By dividing the first proportion by the second and bearing
in mind that KS = TI., we obtain

1f we designate a, as the length of OA adjacent to the point
of application of P;, and b, as the length of OB, the proportion
will become

' a, P,

b, TP,

We then delineale line A,B, lhrough point O perpendicular
to the lines of action of the given forces and designate a as segment
OA, and segment OB, as b. Since triangles OAA, and OBB,

are similar, we obtain < =-2L; hence, — = 3%, whence it fol-
| b=, b = P,
ows that

Pla = sz.
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Wherefore, the resullant of two parallel forces having the same
durection is equal lo their sum, is parallel (o them, and acls in the
same direclion, i.e.,

R =P, | D, (6)

The poinl of applicalion of lhe resullanl divides-the line that
connccts the pownts of applicalion of Lhe given forces into a ratio
inversely proportional to lheir magnitudes.

In other words, the line of action of the resullanl passes
between Lhe lines ot action of the component forces at distances
inversely proportional to their magnitude, i.c.,

LTI 7
b, TP, (.)
a p,

P (®)

By mulliplying the means and the extremes of Iiqs (7) and
(8) we obhlain
P, = Pby,
Py - Db, (8a)
For some problems Equalion (8) may be presented in a more

convenment torm by expressing 1l as a derivative proportion:
alb Py, P,
b T P,
Bv cxchanging the means, we oblain 0! 2 -,
* R ’ P, + P, r,
An exchange ol the means in Equation (8) resulls in

P P,
C tl aldb _ b a and since P P. ig ]
Jonsequen yl’ﬁ—-l’l—p;— =P, and since P; 1 P, is equa
, alb b _ a
to (he resullant R, then R ~ P~ P

Orul Exercises
1. Does the derivalion of Tiqs (6) and (8) depend on the magnitudes
of forces ALY and BG (g, 32)? .
2. Whal will be the posilion of poinl O, through which the line of
action of the resultant passes (TVig. 32), if I’, and P, are cqual i mag-
nitude?

28. Composition of Parallel Forees
Aecting in Opposite Directions

Assume it necessary to find the resultant of two parallel

forces P, and P, (Fig. 32a) acting in opposite directions when
P; - I’;. Solution: we replace force P, by two forces —force
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P; applied al point B and equal in magnitude to force P, but

acting in the opposite direction, and force R which is equal

in magnitude to lhe diflercnce I, — P, and apphed at the
gl

point determined by the ratio ﬁ%:ll—{ Under these condi-
tions we may regard force P, as the resultant of the two parallel
forces P, -— P, and P;. llowever, {force Py being Lhe equilibrant
of force P,, it follows that the given system of forces has been
reduced to the one force R =1, — P,. Ilence this 1s the desired

resultant. 1n shorl, the macmtude of

the resultant has been found as B,/\

= b .; 4 \\\\b

R 1 1 1 2+ (() l) Alkl\d ~< pz
Jlaving chosen the poinl of appl- 04— A fa

calion of force R so tha! the dis- R 75_, 0!
tances OA and AR salisly the con- a / 2
dilion (] <

o4 I

ABT TR’ [0 32a

we conver? tlus conditron into a derivative proporlion and

oblain
0A 1

TAB+ O0A TR+

Bv taking a, to represent A, and b, lo represent OB and
bearing in mund lhatl force P; is equal i magmtude lo force
P, and tha! R 1s equal Lo the dilference 7, — P, we obtain

@ _ P e P
b, pr, P rr. U TP,

By exiending the perpendicnlars AA,  a and BPp — b
from poinls A and I3 to Lhe line of aclion of resultant R,
we obtain similar triangles AA,0 and B0, from which 1t

follows that
w _ @
N '

b

and Kquation (7) may then be expressed as

a P
. TP,
from which
Pia = D,b.

Wherefore, the resullanl of two parallel forces acling in opposile
directions is equal to their difference, 1s parallel to themn, and acts
in the direclion of the gr:ater force.

The line of action of the resullant lies beyond the larger force
at dislances from the component forces equal to Lhe inverse propor-
tion of these latter forces.
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If it is necessary to find the resultant of a system of parallel
forces of whichh some are acting in one direction and the rest
in the opposite direction, the simplest method is to first combine
those acting in one direction and then those in the other digec-
tion, and hnally combine Lheir two resultants.

Oral FEzxcercise

As the magnitude of P, approaches that of P,, what will be the posi-
tion ot point O (I1g. 32a) through which the resultant R passes, provid-
ed Lhe points of application of P, and P, remain the same?

29. Resolution of a Force into Parallel Components

The resolution of a force into two parallel components is jusl
as indeterminate a problem as the resolulion of a force into
components directed al an angle; additional conditions must
be given in each individual casc, sich as the points ot appli-
cation (or lines of action) of both components, or the point of
application (or line of aclion) and magnitude ot one of the coni-
ponents, or the poinl of apphealion of one of Ihe components
and the ratio of Lheir magnitudes, c¢lc. The problefi will then
become determinate and can be solved by applying the equations
used in the two loregoing sections.

I.et us assume it necessary to resolve force P (Fig. 33) into
two components P, and P, acting in one direction, with the magni-
tude of force P, given. The distance helween the action lines of
forces P and P, is cqual to a. The magnitude of force P, is found
from WKquation (6):

r, pP--P,.

The distance x between its line of aclion and force P is found
through LEqualion (8), according to which P« P,x, whence

P,
r = Fn da.
N S

BT
P ‘i’ A 8
P’ d"‘”—X""IPZ 4 6' 7
‘ I3 Py

Fig. 33 Fig. 34

Illustrative Problem 12. A load G weighing 1,200 kg is travelling along
a beam resling on two supports A and B (Fig. 34). Find the bearing
loads P, and 1’, exerted by Lhe load on each support if il comes to rest
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at a distance a == 1,500 mm from the lett support. The length of beam
L = 4,500 mm,

Solufion: as ihe load moves, the bearing loads on the supports change
and when il is at the extreme leit, ils entite weight will rest on support
A, As il moves from Iett Lo right the beanmg load on the left support
decreases while thal on the right increascs and at Lhe extreme right the
enlire weight of the load will be borne by support B.

Therefore force G is the resullant ol the componenls I, and I*, acting
in onc direclion, and so by applyving 13q. (8a), we lind that, in the given
position of the load,

Ga 1,200 » 1.500
-= — 400 g
p . 1,500 100 Ly,

and
P~ 1,200 10U = 800 Ko,

The reactions al the supporls ave equal lo Ppoand Poan magnitude
and act 1n the oppostie durection.

30. The Centre of Coplanar Parallel Forees

Given agsvstem ol coplanar parallel torees Py, P, Py, and P,
(Fre. 33). By vombioing lorees P oand P, apphed al pomnls A
and 3, we hnd the tust partind pesul ant Ry apphed al 0Oy
Afler connecling poin' 0, and the poinl
ol applicalion ' of force Py, w. combine
this lorce with R; and thereby obtain
the secoud parlial resultant It,. By
gomyg through the same process wilh
this force and the last compounent Py,
we oblain the resullant R ol the enfire
system, with the poinl ol applicalion
at 0.

Now Jel us assume that all the given
totces arc rotaled about thewr pownts
of apphcalion through a freely-chosen
angle « 1 their plane, as indicaled
by the dolled lines. Since P, and P,
have nol changed in magmtude and
Lheir points ol application remain lhe l1g. 35
same, the poinl ot application () of
resultarrtt R, also remains the same. The point of application
C of force P, likewise remains unchanged, from which 1t follows
thal the point O, of application of their resullant R, is also
unchanged. By carrying this line of reasoning to its conclusion
we sce thal the point of applicalion O ol resultant R of all
the forces also remains the same.

If all the forces in the system are rotaled through the same
angle, their resultant will also rotate (hrough the same angle and
its magnitude and point of application will remain unaltered.
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The point of applicalion of the resultant O is called the cenfre
of parallel forces.

Wherefore, the centre of parallel forces remains unchanged no
maller whal their direclion if they retain their magnitude and
polinis of applicalion.

31. Moment of a Foree in Respeet to a Point

We know [rom experience that il 1s casiest to get a work-
picce gripped in a vise if we apply pressure on the handle as
far as possible from the axis of rotation O of the screw ([ig. 36).
A grealer force will have lo be applied at point A, than at A
to produce an equallv bight grip. Tlence the rolating aclion of
a force with respect to the axis of rotation ) depends not only
on the magnitude and direclion of [he force, but also on the
dislance of the line ol action of force P from Lhat axis.

) P
\
S A
//

/

g, 36 e 37

The quantitv used in mechanics to measure the rotaling
action ol a force is called the moment of a joree.

Assume a force I'" to be applied to a body (Fig. 37). From
any freelv-chosen point O we exlend a line OA perpendicular
to the aclion lme of Lhe force. 'The produet of the magnilude
of the force and the lenglh of the perpendicular is ralled Lhe
moment ol the foree P wilh respect Lo point 0. By denoling M
as Lhe magnitude of the momen!, we lhen obtain

M - Pp, (9)

in which P represents the magnilude of the foree, and p is the
length ot the perpendicular connecting point () with the line
of action of the foree.

The point O with respeel Lo which the moment of force has
been taken is called the mament centre, and the dislance p [rom
the moment centre lo the action line of the force is called the
arm of lhe force wilh respect to the said poinf. The product of a
force and its arm is called the moment of the force with respect
lo a given point.

Since force is measured in kilogramines and the arm in unils
of length (m, cm), the moment of a force is expressed in kilo-
gramme-metres (kg-m) or kilogramme-centimelres (kg-cm).
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From what has been said il is apparent that the larger the
magnitude of a force and the larger ils arm, the grealer is its
tendency to produce rotation with respect to a given moment
centge. If the moment centre coincides with Lhe line of aclion
of the force, the moment of the [orce will be zero since ils arm
will amount to zero.

Lel us assume that force P, and arm p, produce the moment
M,, and the sccond force P, and arm p, produce the moment
M, with respect to the same point. Then M,  P’,p, and 31, - -
— Pyp,. Furthermore, let us assume thal (he {wo momentls
are equal, i.e.,, that PP,p,  P,p,. I'rom this it follows that

Dy _ P

P, s
[ ]

Wherefore, when momenls o} forces with respect lo one and the
same point are equal, the magnitudes of the forces will be inwersely
proportional o their arms.

In order fully to delermine the action of a force on a body,
it is necessary to lake inlo consideration not only its magnitude,
but also thg direction in which il tends (o produce rolation.
Thus in Fig. 37 the mutual positions of the force and the moment
centre indicate (hal they Llend Lo produce clockwise rotation.
If force P were acting in the opposite direction, or if poiat O
were on Lhe other side of the action of the foree. the moment
would tend 1o produce counterclockwise rotation.

ITereafter we shall call & moment posime i it tends to pro-
duce clockwise rotalion, and negatioe if il tends to produce counter-
clockwise rolation.

Ural I-xercises

1. Will a momenl of force with respeel lo @ given moment cenlre
change if the point of the foree is altered along ity line of aclion?

2. On whal line are points situated wilh re
spect to which the momenls of the foree arve
zero?

3. Can lorces of differenl magnitude pro-
duce equal moments with respect Lo one and
the same cenlre? Under what condition?

INlustrative Problem 13. A workpiece s
being machined on a lathe by means of a
cutter A .(Fig. 38). The distance ! from lhe
cutting edge to the basce of Lhe tool is GO mm,
the vertical component P ol the pressure exerted
on the cutting edge by the workpicce is Y00 hg.
Find the moment of force I’ with respect to Fig. 38
point B where the cutter is fastened in its B
support.

Solution: the moment tending to rotlate the cutter (the “bending
moment”) is found from the equation &M = Pl = 900 x 60 =
= 54,000 kg-mm = 5,400 kg-cm. It can be seen that as the length of
the moment arm p increases (the jdistance from the cutting edge to
the base of the tool), the bending moment will also increase.
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Hlustrative Problem 14. In the preceding example, P is the force the
workpicce exerts vertically upon the cutier and causes the reaction P’
of the culter on the workpiece. This reaction is equal and opposite to
the foree P, Find the moment of the force P’ with respeet Lo point O
on the axis of the workpicce it its diameter 1) = 80 min. -

Solufion: in this case the arm of the sought moment is equal to -%

> ’

122=900 x 40=36,000 kg-mm = 3,600 kg-cm.
Under the action of this moment the workpicee (together with the

spindle with which it is lighily joined) will tend to twist. This is called

torque.

and the moment A =

32. Moment of a Resultant

Assume we have two parallel forces P, and P, acting in the
same direclion and that their resultant R has been found
(Fig. 39). Let us freely choose a poinl € as the moment cenire.
The moment of the resultanl R with respect Lo Lhis point will he

My - Re == (P, | Py)e. (a)

Let us express the monienls of the component forces in respecl
to Lhe same point O:

]‘[pl - 1)1((1 -C) = —1)1” }-I)IC:
My, Dyb , ¢) P | Dy

By adding Lhe members ol the right and left parts of the
two ecqualions we obtain

My, 4 My, Db -DPa | (P | Pye.
BBy applying Lquation (8) we derive
Py -Pia = 0.

Therefore the sum ol the momenls of the componenl forces
is equal to (1>, |- I°;)c. Bul as may be seen from (a) above, Lhe
moment of Lhe resultanl is also equal to (P, 4+ IP,)c, the moments
having been luken logelher with Lheir algebraic signs.

It is easy lo see Lhat we would have arrived at the same solu-
tion no malter where we had taken the moment centges in the
same plane (say al (i), C,, C,, elc.).

If there had been more than two parallel forces, then by com-
bining them in succession and applving the same principle as
above for each parlial resultant, we would finally find Lhat the
moment of the resultanl is also equal to the algebraic sum
of the moments of all ils components.

We have therefore proved an important relationship for
moments of forces in general, and in the particular case for paral-
lel forces acling in one direction. In more detailed courses on
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theorctical mechanics this relationship is proved to hold true
for any distribution of forces in a plane.

Wherefore, the moment of the resullanl of a coplanar system
of forces is equal to the algebraic sum of the moments of the compo-
nent forces with respect lo one and the same moment cenire.

This may be expressed for an n number of forces by the follow-
ing equation:

Mp= Mp, + Mp, {-Mp, | ... | Mp,. (10)

In using this equalion 1t must be horne in mind that the al-
gebraic sign of the moment ol each foree must be relained.

o
| |

CIO |l~ -a—4 & l
R 5 P {p

A o¢
! A 2 pz %
C -

06'2 ‘—J d/ at—— -~ I

L J { 'L {

|

- X ———=q

Fig. 39 lag. 40

IMlusteative Problem 15. Find the vesullant of the patalldl  forces
P, = 30 Lg, P, == 563 kg, and P, — 70 kg, by using 1>quation ol momenls
(10), the distances bhetween their hnes ol Joree being a, = 80 nun and
a, — 250 mm (Fig. 40).

Solution: the magnmlude of resultanl R =P, 4+ P, - 1’, =30
+ 70 03 =47 kg and, consequently, 15 direeted upwards.

Let us take (he moment eentie on the hne of aclion of foree P, and
let z denole the unknown arm of the resullant. Then the equalion of
moments is -Rx = P,a, — P, (1, 4 «,). hom whuh, alter substituting
figures for the letters they represcul, we {ind r = 401 min.

33. The Couple

Let us now return Lo the composilion of two parallel forces
acting in opposite directions. As has already been shown
Sec 28, the resullant of two such forces is equalto their difference.
Now I€t us assume that the ilwo components are equal in magni-
tude as illustraled in [Fig. 41. In this case, according Lo Liquation
(6a) the resultant is zero. However, a hody under the aclion of
two such forces would not be in equilibrium. We know that such
forces would tend to produce rotation of the body. A good illus-
tration of such a system of forces is shown in F1g. 42 — two hands
turning a reamer.

A system of two equal parallel forces acting in opposite di-
rections is called a couple.
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A couple possesses no resultani.

A couple is characterised by the magnitude of the forces con-
stituting it and by the distance hcl\wm their lines of action.
The distance between (he action lines of the forces forming a

couple is cualled the arm of the couple.

S ol

qg

The action of a couple on a hody to which it is applied is di-
rectly proportional o the magnitude ol lhe forces composing it
and to the length ol its arm. This action is measured by the
moment of the couple and is the producl oi the magnitude of
one of the forces and the arm ot the couple. T hvroT()rc if we
denote Lhe arm of the couple in IFie. 41 as ¢ and its moment as
M, we obtain the moment of the ('ouplc as Lhe expression M =
= P,a  P,a or, in general, the equation

M Pa (115
The momen! ol a couple, just as lhe momenl of a force, is

measured in kg-m, ke-em. ete. In order o defermine the aclion
ol a couple, it is necessary to know not

5 only (he magnitude of its momenl, but

0 e also the dunection in which it tends to
A rotale the body. Just as with the moment
\/ 2 of a force, we shall consider the moment of
a couple fo be positive if it lends to pro-

/
/ Fig. 43 duce ('lo('kwis_c rotalion, and negative if
o counterclockwise.

Fig. 43 represents a couple P, and P, wilh an arm a and where
the momenl of the couple M Pia Py,a. The moments of
forces comprising the couple wilh respecl to an arbitrary point
O lying in the planc of the couple are cxpressed as

Mp, — — P
and
Mp, P,(a, + a).
Combining these two moments, we obtain

Mp, + Mp, --—DPyay - Py(a, + a) = — Pya, + Pya; + Paa.
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Since forces P, and P, are equal in magnitude. then
Py,  Pua, 0

and
ﬂlpl - 1‘[1»_ P_.Il.

Thus, the algebraic suin of the moments ol forces P, and P,
with respect to point O is equal to the moment of lhc couple.

Wherefore, the momeni of a couple is cqual tn mngnitude and
possesses Lhe same sign as the algebraic sum of the moments of the
forces comprising u with respeel to any poinl Lying in the plane
of the couple.

A couple can be balanced only by anolther couple which is equal
in moment and opposite in sign. It cunnot be balanced by one

force.

Oral FEzxercises
1. Given two couples, the arm of one of which is une-titth the length
of the arn? ol the othier. \What would Iie [he 1atio beiween the forees

comprising Lthe couples il the momenls of the couples were cequal?

2. The arm of one couple is m irwes loss than That ol a second couple.
The magnitude ol The Lorees comprising the first couple 1s n limes greate
than (hat of the second. Whal 1 the ratio ol thc moments of the {wo

couples?

J4. Equilibrinm of a Coplanar System
of Parallel Forees

Let us see what conditions a system ol parallel forces in a
plane must salisfy for a body to which they are applied to he
in equilibrium.

Assume a svslem ol parallel lorees P, Py, Py, Py, and I as in
Iig. 4ta. As has already been shown, the magoitude ol Lhe
resultant of forces Py, Py, and P, is equal lo the sum of these
forces. By combining them in succession we oblain the line of
action of resultant R,. ‘Then we combine Jorees Ppoand Py acting
in the opposile direclion and oblain the olther parlial resullanl R,.
Lel us assume that It, is equal and opposile in direetion to the
first regultant R;. The syslem is therelore reduced to lwo equal
and opposite forces aud its resullant is zero, which means that
it is in equilibrium. 1f the sum of Lthe forces acting in one direc-
tion would not bhe equal lo the sum of the [orces acling in
the other, or, in other words, il the algebraic sum of all
the f()r('cs would mnot be zero, the system would not be in
equilibrium.

In Fig. 44b another syslem of forces is represented. Proceed-
ing as before, we ohtain resultant R, of forces Py, P3, and Py, and
then the second partial resultant R, of forces P,, P;, and P,.
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These two resultants are also equal in this case, but their lines
of action differ and they form a couple.

We therefore see that if a syslem of parallel forces is to be
in equi'-brium, il i1s not enough for the algebraic sum of forces
to be cqual to zero; another condition that must be fulfilled is
that the system is not reduced to a couple, i. ,e., that the
moment of the couple equals zero.

ITow can il be determined whether this second condition is
satislied?

=

the. 44

It will be aeecalled Nom the preceding section that Lhe
moment of a couple is equal {o the algebraic sum of the mo-
menis of the jorces comprising the couple with respect to any
pownt lying n 1its plane. This mecans that the oblained moment
of the given couple will be equal to the algebraic sum ol the
moments of torces R; and R, But R, is the resultant, of the
group of forces P, Py and P,, while R, is the resultant of the
second group of P,, P, and Pg, and it has been proved in See. 32
that the moment of {he resultant is equal 1o Lhe algebraic sum
of the momenls of the component forces. Hence the moment
of the resultant R, is equal to the algebraic sum of the momenis
of the forces P, P;, and P,, and the moment of the resultant
R, is equal to Lhe sum of the moments of Lhe forces P,, P;, and P,

We then come to Lthe conclusion that the moment of the couple
to which the given system may be reduced will be zero if the
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algebraic sum of the moments of all the forces Py, Py, I3, Py, Py,

and P; 1s zero.
IHence a system of an n-amounl of coplanar parallel forces

will he in equilibrium under the following conditions:
1y the algebraic sum of all the forces musl be zero, i. c.,

Py 4Py Py 4 D=0 (12)

2) the algebraic sum of the momenls of all the forces with
respect (o any point in ibe plane of the syslem must be zero,
i. e,

A’Ipl —l- ]‘[p‘ —| AI!', I. 1‘11,” 0. (13)

$Both of these condilions musl bhe salisfied simullaneously
for a syslem of parallel forces to be in equilibrium.

Assume Lhe lever A3, wilh ils fulerum al 0 (Ifig. 15a), to
he acled upon by forces Qp and Q, al ils Iefl side and by lorce
P al its right. For the lever to be in equilibrium the conditions
expressed in Eqs (12) and (13) musl be

satisfied. "The forces P, @, and Q, and
the reaclion of the [ulcrum R are acling
on I[he lever; then if the forees adling R
downwards are regarued as posilive, Iua.
(12) becomes l-‘ﬂz—""—b—"'
I\ > d’ ~0-
Q1@ RO, A 8
. | @ ?9/ a
from whichR = 1 | Q, | Q,. :
We have thus delermined the reaclion a)

of the fulerum. Now let us delermine

the magnitude of force P by applying ,
Lhe second condilion required to obfain - 2,
equilibrium. By taking poinl O as lhe @ -4
momeut cenire, Iig. (13) hecomes Vil A
b ()lal - 02(12 0. ? ‘;; 7
from which p @& @ = ———b———J'
1f all (he forces were applied on one Y
side of the fulcrum (Fig. 45b), we would Fig. 45

have
Qi+ Q:—P —R =0, from which -t R -0 { Qs

To determine force P in this case, we will wrile the equation
ofmoments with respect to point O as follows:

Q.a;, + Q,a, ~ Pb==0 [rom which I’ —Q‘?'—;—M
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and the reaction at the fulerum R = Q, + Q, — P = (; |- Qs —
__Q_x"r_; Q.a;

Now lel us take another example.

Fig. 46 represents a beam lying horizontally on supports A
and B with one end extending beyond its support as an over-
hang. IForces Py, Py, Py, and P, arc acling downwards on the beam.
It is required to find the reactions at the supports R, and Rp.

IFrom [Eq. (12) we oblain one equation with {wo unknowns:

Ry | Ry -P( | Py | Py D,

First we will determine reaction Rp by taking the algebraic
sum of the moments wilh respect lo poinl A:

P Ly(a b) | Py(a -0 | ) -Ra@a i bte|d)F
P Py(a { b e | d-}Fey— O

Atter finding Rp we insert it in Lhe first equationj and
lind IR ,.

)
Rs

P.
P I R4 "'1 2 51 Rs
-z ch-l—d—-a—-‘& r )
A ] A ] ] 8

- B g—a,-—l—a,—-’:-—a,—-—l '

‘ } L d

I4g. 46 IFig. 47

Hlustrative Problem 16. ‘The beam lying on supports A and I in
Fig. 47 is acted on by forces P, 200 kg, P = 300 kg and P, = 250 kg.
Find the reactions at the supports Ry and Ry if ¢, - 1 m, ay = 1.6m
and ¢ -=2 m, and the distance L bdlween the supports - 5 m. The
weight of one linear m ot e beam is 20 kg and «ls lenglh 3.5 m.

Solution: the beam is in equilibrium under the action of forces P,
P, P, of its own weighlt acling ducetlv downwards, and of the
reactions al the supports. Firsl we must determine reactions Rg and
Ry caused by foices P P and P

Since the reactions adl upwads, lig. (12) becoines

P+ P, 4 P 4 Rg = 0, i.c., R4 + Ny 200 +
[ 300 4+ 250 = 750 kg,

We obtain {he second equation by jeducing to 7zero the algebraic sum
of the moments with respect to  any point in the plane of the forces.
For the sake of simplicity we will take pomt A as the moment centre,
wilh respect to which the moment of reaction Ity is zero:

Pia,+ Pyla, + a,) + Py(a, + a, + a,) - Rpl. = 0;
substituling numerical values, we obtain
200 x 1 4 300 x 2.5 + 250 <« 4.5 — Rp x 5 =0,
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from which
Rp = 415kg and R4 = 750 - 415 = 335 kg.
If we had taken the moment centre on the line of aclion of force
Py the cquation of moments would have become .
Ra > 1+300 x 1.5 + 230 < 3.5 — 4R = 0,
from which
Ry - Ry = 1,325,
In solving tlns equation ir combinalion with the equalion Ry + Rp =
= 750, we would have obleined the same result.
The weight of the beam itself is 5.0 < 20 — 110 kg and is distributed

cequally between the two supports. 1Ience Lhe [ull reaction Ry al support

. 10, .
A is 335 -F 5, = 390 kg and the veaction Iy al support B is 415 4

o+ 5O = 470 kg.

35. The Moment of a Foree in Respeet
1o an Axis

Fig. 48a vepresents a vertical shait Q0, capable of revolving
in ils beggings aud having al its upper end an elbow O A forming
a right angle 400, with the shalt. \t point A force P is applied
which, jusl as the axis of the elbow, lies in the plane MN and is
perpendicular Lo the axis of shaft 00,. Under the action of this
force the shalt hegins lo revolve.

Ifig. 48

Now, let us assume that force P does not lie in the plane MN
but acts at an angle with it (Iig. 180). L.et us resolve this force
into two components: AC in the plane of rotation of clbow OA,
and AD lying parallel to the axis of the shall 00,.

It is obvious thal force AC will tend to make the shaft rotate,

whereas force AD will tend to push the shaft downward in line
wilh ils axis (to avoid this the lower end of the shaft is con-
strained by a thrust bearing). It is evidenti that in the first case
(Fig. 48a) il is the entire force P that rotates Lhe shafl, while in the
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second case it is only one of its components. In the first case
the tendency of Lhe force to produce rotation is measured by
ils moment with respect to point 0, which is equal to Pa and
where a represents the arin (the length of the perpendicular
0B extending from rotation centre () Lo Lhe aclion line of the
force). In the second case Lhe tendency of iforce P to produce
rotation is measured by the moment of force P, with respect
to the same point O, and is equal to P,q, in which a, represents
the arm of the force with respect to point (. Component P, of
force P is a projection ol force P on plane MN, perpendicular
to the axis 00,. The moment of force P,, equal to I’;a,, will be
the momen! of force P with respeet 1o the axis.

It will be found that if a force lies in a plane perpendicular
to an axis, ils momenl wilh respect to the axis will be cqual
to ils moment in relation lo lhe point where Lthe axis intersecls
the plane. From Fig. 48D il is apparent thal the moment of force
P deercases as the angle A B inercases. IFor thal reason il is
of greater advantage Lo apply a foree so that it will act in a plane
perpendicular o the axis of rolation of a body.

36. Questions for Review

1. What is a moment of force wilh respecel lo a poinl?
2. Is il possible Lo select a point in 1elatior lo which the moment

of Torce will be ze10? Is there only one such point?
J. What is Lhe relation between Lhe moments ol the resultant of a

system of parallel forces and the moments ot ils components?
4. What conditions musl a syslem of parallel forees salisfy il it is

lo be in equilibrium?
J7. Exercives
10. Given two parallel Torces P, and P, acling m one direclion
(Fig. 49). The distance { between their lines of action is 120 mm.
Find the lin¢ of aclion and the magnitude of the resullant if

P, =48 kg and P, =144 ka.
11. Solve Problem 10 with P, and P, acting in opposite direc-

tions.

I T 00 400 400
P
P, [ 2001504~ 250 = 2504150
400 500
700
Fig. 49 Fig. 50



12. Find the line of action and the magnitude of the result-
ant of the system of parallel forces shown in Fig. 50 (forces are
denoted in kg, and lengths in mm).

13. Find the resultant of the system ol parallel forces repre-
sented in IFig. 51 if P, — 100 kg, P, 900 kg, P, — 800 kg,
P, =300 kg, and a= 300 mm, b -=

= 600 mm, and ¢ = 200 mm.
14. A beam lying freely on two sup-
ports A and B ([Fig. 52) is under the ho (P 2 15
vertical action of forces I’; —= 300 kg, 4 34
P, =300kg, Py — 150 kg, and P, —210ky. -~ « b
Find the reactions of the supports
causcd by these forces il a; -1.8 m, Fig. 51
a,*=0.9 m, a; =09 m, { =45 m and the @
I/ = (j m.

15. The fulerum of lever AB in Fig. 53 is al point ( and is
under the action of forces 2 120 kg and L, - 60 kg, The
distances hetween the lines of action of Lhese forees and they ful-

[ ]
e
a'p a; - Rﬂ P,
R 1 2 1P f Y
.
|

Fig. 52 Fig. 53

crum are ¢, — 360 mm and a, = 375 mm. Whal must be the
magnilude of a toree P, applied at emd I3 of the lever to keep
the lever in equilibrium if its Iength I 960 mm? What will
be the reaclion 12 of the fulerum (assuming the lever ilself to

be weighlless)?

CIIAPTLR 1V

CENTRE OF GRAVITY, AND STABILITY OF BODIES l
38. Centre of Gravity, and Centre
of Parallel Forees

The force of the carth’s altraction (gravity)acls on all the par-
ticles of a hody. Gravilational forces always act on the particles
of a body in a line directed towards thc centre of the earth
and thereforc converge. But the angle of dcvialion from the
parallel is extremely small, amounting to only one second along
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a meridian on the carth’s surface for two points situated 3! m
apart. And since bodies with which engineering mechanics
is concerned are infinilesimal as compared with the radius
of the carth, the forees of gravily acting on Lheir parlicleg are
considered parallel.

When we combine all the elementary gravitational forces
acting upon all the particles of a body, we obtain their result-
ant. This resultant of the forces of gravily acting on all the
particles of a body is called the weight of the body. The poinl of
applicalion of this resultant 1s called the cenire of gravity of
the body.

[t will be scen that the centre of gravity is also Lhe centre
of parullel forces, and as already cxplained. holds true no mat-
ler whal the direclion in which Lhe foreces act il only they remain
parallel. I'rom this it follows thal the centre of gravity of a body
remains unchanged irrespective of the position of the body with
regard to the carth’s surlace.

39. Centre of Gravity of Certain DBodies
of Simple Form

In many engineering calculations where the weighl of bodies
musl be taken into account, it is necessary Lo know the exact
position of Lhe cenlre of gravity. In some cases il is very easy
to find the ecenlre of gravily.

I.et us invesligale several instances where hodies are of simple
geometric form.

1. The centre of gravily of a sphere coincides with its geomwetric
centre. The truth of this stalemenl is apparenl from the fact
that the resultant of all the clementary gravilalional forces
acling on the particles along one diameter passes through its
cenlre, which is also the cenlre of the sphere.

2. The centre of gravily of «a righi circular cylinder (I'ig. 54).
Let us make a cut through any arbitrary point () perpendicular
to axis 0),0,. 'I'aking a particle M, in this section we then choose
another particle M, on the same diameter and at an equal dis-
tance from the centre O of the section. It follows that the result-
ant of the clementary gravitational forces acting on Lhese two
parlicles passes through the centre of the section. Following
the same procedure with respect to any point of the cylinder,
we come to the conclusion Lhat the centre of gravily of the whole
cylinder lies on its aris 0,0, and at half ils altitude al point C.

3. The centre of gravity of a right regular prism (Fig. 55). By
rcasoning as in lhe case of the above right circular cylinder,
we reach a similar conclusion, i. e., that the cenire of gravily
of a right regular prism lies on ils aris and at half ils altilude.

But there is one important factor to be borne in mind. It is
evident, [rom what has Dbeen said, that we assume the elementary
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gravity forces acting on 1ihe particles as being equal in
magnitude. This presupposes that the body is uniform
throughout. Such a body is known as homogencous*. If 1his condi-

o Pig. 54 Fig. b

tion is not satistied, th2 process of finding the centre of gravily
becomes complex, as may be <ccn from the following example.

INustrative Problem 17. IFig. 36 represenls a evimdeeal shaft with
a lenglh 1. = 1,000 mm and made of two materials of dilferent specitic
gravily. Along ils length { — Iz 500 mm il is made of aluminium wilh
a specific gravily y, = 2.6 g;cu em, while the remainder of its length
DEB is made of sleel with aspecilic

gravity y, = 7.85 g/cu em. IMind :

the cenlre of gravily of Lhe shafl. ! L —
Solution: if the shall were hom- A c *_{.D C—C !

ogencous, ils ceulre of giavily ol - T'Q_Z _._q_ﬂ

would be on its axis and hallway

along its lenglh, i.c., wilhin scelion 6 -a— b -

D al a distance { = 500 mm from c- ——

its end. But in the case in hand it

will be necessary Lo delermine the Gz

weight of each component of Lhe
shaft before flinding its true centre
of gravity. [Yie. o6

By first’denoting the : 1 of the
cross-scetion of the shaft as F, the
weight of ils aluminiun part AD will then be expressed as (o - L1y =
= 2.6 Fi g, and thie weight of ilssteel part DBas G, = I'l y_— 7.85 by g.
The poini of application of the first force G, is C, in the middle of AD,
and that of the second force G, al point €, in the middle ol DB. The
distance between points C, and &, is 500 mm. In order lo find the overall
centre of gravity C of the shaft we must find the poinl of application

* Henceforth it shall be assumed that a body is homogencous unless
ithe contrary is stipulated.
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of the resullant of the Lwo already obtained parallel components, as
follows:
a  7.85 FI
b 2.6 I1
then ¢ = 375 mm and b = 125 mim.

Ilence the soughl cenire of gravity C of the shaft lies a.t a distance of

c = 7’ + a = 250 4+ 375 = 625 mm f{from its lefL end.

3, from which a = 3b; and since ¢ 4+ b = 500 min,

40. Centre of Gravity of Plane Figures

I'ig. 57 represents a homogencous disc of uniform thickness,
i. e, a cylinder of small height as compared to ils diameter.
Il 1s apparent from what has already been said that the cenfre
of gravity of Lhe disc lies in the centre of its middle section MN
dividing its thickness in half. Thereforc inslead of thc whole
disc we may deal with its middle section, where we may assume
all the malerial of the disc to be concentraled. Ilence we may
regard the cenlre of gravily of this disc as the centre of gravity
of the malerial area ol a circle. In exactly the same yay we may
regard the centre ol gravity of a triangular plate AID (Fig. 58)
as the centre of gravity of its middle section, i. e., as the centre
of gravity of the area of a triangle; and so forth with other plane
figures.

Now lel us consider methods of finding the centre of gravity
of a number of plane figures.

I'ig. 58

1. The centie of gravily of the arca of a circle lies in its geomelric
centlre.

2. The cenlre of gravity of the arca of a triangle lies at the inter-
seclion of its medians.

Given triangle ABD (Fig. 58). We declineate median BE
connecling vertex B with the midpoint E of its base AD. Then
we delineate segment KL at any arbitrary place parallel with
base AD. Sincc the triangle BKL is similar to BAD, then
KC, = C,L. Hence the resultant of all clementary gravily forces
acling on all the particles lying along segment KL is at point
C,, the intersection of median BE with that segment.
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Following the same procedure with respect to any other linear
segment parallel to base AD, we sec that the-centre of gravity
of Lhe triangle lies on median 3.

Now let us delineale another median AF to the side BD.
Using the same method as with median BE, we find that the
centre of gravily also must lic on this median. From this we
conclude that (he centre of gravity of the area of a triangle lies at
the inlerseclion of its medians.

In geometry it is proved that the point of intersection of the
medians of a triangle divides them in a ratio of 1:2, i.e.,
CE = 1/2BC and CF — [/2AC. rom this it follows that the
centre of gravity Clics at a distance CFs - 1/38BE or CF —=1/3AF,
i.e., at a dislance of onc-third the
18ngth of a median {rom the side Lo
which il has been dehneated.

3. The cenlre of gravily of the arca of
a parallelogram (Fig. 59).

Delincale diagonals A and B,
The diagonals ol a parallelogram are 4
divided @& their midpoints by their
point of inlersccelton. llence segment
AC of diagonal A1) 1 a median of tri-
angle ABIL, and segmenl € of the same diagonal is a median
of triangle BDI. FFor this reason the centres of gravily €, and
C, of the.e (wo triangles e on the diagonal AD, and the centre
of gravily of the whole parallelogram lies on this saine diagonal.
In the same wayv we can prove Lhal the cenlre of gravily lies
on the sccond diagoual BI.

Wherelore, the cenlre of gravily of the aree of a parallelogram
lies at the point of inlersection of its diagonals.

Obviously this deduction ulso relers to the rhombus. the
rectangle, and the square, since all these are forms of the
parallclogram.

4. Knowing how to {ind the centre of gravity of the area of
a triangle and of parallelograms of all {vpes, we can find the
centre of gravily of any fligure Lhal can be divided into such
clements.

Let us assume we want to find the centre of gravily of the area
of a freely chosen quadrangle (Fig. 60).

We firsl divide the quadrangle inlo Ltwo triangles ABD and
ADE by the delincalion of diagonal AD. We then dclineale
medians to the midpoint of side” AD, mark the cenires of grav-
ity C, and C, of the arcas of the two lriangles and connect
them by means of segment C,(,. Next we divide the quadrangle
with a second diagonal BE, forming triangles ABIZY and BDE.
By repeating thc above process®we also obtain segment CyC,.
The desired centre of gravity is found al the interscction of this
segment and segment C,C,.
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Iustrative Problem 18. FInd the centre of gravily of the try square
shown in Fig. 61.

Solution: the centre of gravity of the plank I of the square lies at the
intersection of diagonals Al and BD, and the centre of gravity of leg IT
lies al the intersection of diagonals D1 and KJI. 'The cenlre of gravity C

A X .

304

Fig 60 Fig. 61

of a,whole square lics somewhere on ine € ¢ . In order {o find point C,
we musl divide line € C, so as Lo oblain a1atio mversely proportional
to Lhe weights of the {wo sides of the square, or, since the square is
homogencous. mversely proportional to lheir volumes. The volume of
plank 7 = (300 - 40) < 30 x 5 39.000 cu mm, while the volume
of leg IT = 120 x 40 < 1H =~ 72,000 cu nmn. By dividing the segment
C.C, in such a way as lo salisfy the condilion

C 2 . .

C(',(:— — —;—, we obiain the eenire of gravity C.
41. Practical Method of Determining

the Centre of Gravity of a Plate

Lel us assumc it necessary to lind the cenlre of gravily of
the flat plate of irregular oulline as shown in Fig. 62. We sus-
pend it from its corner /1 by the cord /XA and when it comes
lo rest il will be in a state of equi-
librinm. The weight of the platc will
be equal to the reaclion from the cord
al poiul A. Thesc two forces have a
common line of action which coincides
with the vertical line AD and on which,
therefore, lies the centre of gravity. We
then delineate this vertical line AD on
D the plate and then suspend the plate

Fig. 62 from some other point, let us say
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corner B, and following the same piocedure we dehneate the
vertical hine BE on the plale Since the cenlre of gravity musl
lie on both BE and AD. we conclude that 1t thust be at pomnt
L of theu 1ntersection

42. The Stability of a Body Ilaving a Point or an Axis
as Support

Make this experiment take some ponicd object, lel us say
a centre-punch, which 1s cym  tricad 1norchhon o 1ts longi-
tudinal axis nd stand 11 vaucally
on 1ts shaip end upon a horzmthl A
sutlace MN (Fig 63a) In {his pos:
tien Lhe weight ol the punch, apphad
at 1ts centre of gravily €, will he equal
to the 1eaction at the horrzontal phn
Bul we know Lhat 1l we thus stamd
the punch valically, the momenl we
release our hold it will heain to [l
This 1s expluned by the Ll That when
the axis ol 1he punch o wvesals verbreadl
position, a’*moment of torcc causcd ny
1he waght s inducca which toneds fo
rotate the punch aboul 1is point of

support A (1 (3h) M
This position of a body, m which
the shghtest torre 1y suflicaent to upset b
its equihibrium, 15 known as the slale
of unslable equilibriion lig 03

The charadersstic of this slalc of
unstable (quiibriam s that when the body leaves Hus posilion s
centre of gqravuty s lowered

Let us mvestigate another example lhe hall 1cpresenied
m IF1g 61 1s made ot {wo matcrals of diflarant specilic gravity,
the specific gravity ot the malerial of scpmenrt A bang the

8 A
'k A
A A Aaz 8
¢ e
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A
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greater. The centre of gravily of the hall will therefore not be
at ils centre O but at some other poinl € lying on the radius
0D which is perpendicular 1o the separation plane A I3 (IFig. 64a).
In the position shown in IFig. 64a the weight G of Lhe whole
hall is equalised by the reaclion from the point of support applied
to the ball at point ). .

If we turn the ball so that il lakes Lhe posilion shown in
Fig. 64b, we will see that its weight G induces a moment equal to
Ga in respecl to the point ol support ,. which will act in such
a direction that the centre of gravily will be lowered when we
remove our hand, therelore the ball will be induced to turn hack

\\
IE

Iiig. 66

until it reaches ils original position (Ihg. 61a)* in which it will
be again in a slate ol equilibrium.

A position to which a body returns aller the force which
has disturbed its equilibrium has ceased to act, is called «a state
of stuble equultbruun.

It 1s characleristic of this slate of slable equilibrium that ils
cenire of gravily 1s raised under the influence of the force disturb-
ing its equiihrium.

If this ball be placed in the position shown in Fig. 6dc, il
will be in Lhe position of unstable equilibrium similar to that
of the centre-punch shown in IFig. 63a.

Finally, if a body is given support al ils cenlre of gravity,
its weight will he equalised by the reaction from the support
no matter whal position il is in. IFor example, the ring (IFig. 65)
suspended al the poinl of intersection of two cords in its middle
plane will remain in a stale of equilibrium in any placed posi-

* Actually the ball will assume this position only afler rolling back
and forth several times.
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tion hecause its centre of gravily will remain always unchanged.
In (he same wayv a homogencous ball in anyv position will remain
in a stale of equilibrium when placed on a horizontal plane.

A position in which a hody remains in equilibrinin, no matter
what its posilion wilh respeet lo a support, is called a sfate
of indifferent equilibritun.

It is characleristic of indifferent equilibrium that the cenltre
of gravily remains al the same height no matler what the posilion
of lhe body.

Al the above elasses of equilibrium refer to a hody supporled
at one poinl. Now lef us examine a case when a hady is supported
on a fixed axis around which il can dreely rotate. \ssume (hat
the plank A in IFig. 66a is fastened Lo a shaft freely supported
s bearings®. If we move the plank so that its posilion hoeomes
as shown in Iig. 66b, ils cenlre of gravity will have heen dis-
placed higher. If Jelt to itself, under the aclion ol [he moment
ol ils weighl Ga, the plank will rolate back, and aller swinging
back and forth a few limes will Lake up its original posilion (Ifig.
66a) which is herelore a slable position. T we arrange Lhe plank
in the posgilion shown in IFig. 6Ge, a slighl foree 19 all thal will
be needed to start i rotating and 1ts cenlree of gravily will drop
until finally the plank lakes a stable posilion. Therefore ils
original posilion was once ol wnslabilily (IFig. GGe).

Finally, if the plank were held on the shalt e such o way that
its centre of gravity coincided with (he axis of the shaft (Ifg.
66d), it would always he in a stale of indilfer-
enl cquilibrium no malter what ils position.

As we shall see later, il is otlen necessary
for machine parls revolving aboul a fixed axis
to be arranged in a slale ol indillerent equilib-
ritim. This process is known as balancing.

Hlustrative Problem 19, FFig. 67 shows a Li2ht
rod suspended on axis O and holding a dise /¥ whose
weight is ¢ 5 kg. This pendulum is pulled to
the posilion shown in the figure and then released.
Find the magnilude of the foree acling on il at
the instant it beding lo swing lo a position ol
stable cquilibrium. The cenlre ol the diseisal a dis-
tance «a = 200 mm from Lhe verlical, and OC —
-1 = 340 mm.

Solufion: we will neglect the weight ol the vrod and consider (hal (he
centre of gravity ol the pendulum coineides with the cenlre of dise C.
We then resolve the foree of the weighl G info componenls CF3, acling
along the rod, and D perpendicular to il. As is apparenl from the
drawing, componenl €13 c:innot induce the pendulum Lo swing, but
the second component CD, which is tangen! to the are deseribed by the

* The bearings are not shown in the drawing.
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tadius OC, will induce {he displacemenl of the centre of gravity of the
disc in the dircetion of €, the posilion of stable equilibrium.

Sinee / CAD =/ ACH =/ EOC, therefore ACAD ~ ACEO,
hence CN : CI: —- CA : 0OC. Accordingly, the component we are seeking

oA (Y Gu 5 x 200
> - — = — == - - —- = 2.
I oC { 340 2.94 ke.
If the angle of inclination a had been given instead of distance a,
we would have lound magnilude ¢ = EC trom the right triangle OEC,

whose leg I°C - OC s a.
This problim can be solved more siiply by applving the deduction

made in See 31: Lthe moment of torce G with respeet Lo axis 0 is equal to

Gza, and the moment ol component GHR is 7010 (1ls line ol action inter-
scels axis O, and ils atm is zero). Whenee G - P, [tom which P = %.

the resull we have alrcady oblaincd.

43. The Stability of a Body on a Ilorizoatal
Surface

I'ig. 68 represents a body K wilh ils hose supported on a
horizoutal surtace MN. I we rolale it about edge E, its centlre
of gravilv (¢ will rise and deseribe the are €€, I we take our
hand away, the hody will rofate in reverse aboul the same edge
I£ and relurn lo ils ortgimal position .ABDI which is accordingly
a posilion of stabddy. Iu Uhis position the weight of the body is
equalised by the reaction from the surface. This will be the case
Lill we place the body 1 position A I3,D [ indicaled by the

|

I

|

| o

A/k__lli
, £
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K f

Fig. 6Y

dotted lince and in which its centre of gravily is on the vertical
plane passing through edge E. If we {ake our hand off Lhe body
while it is in lhis position it will begin 1o rotate cither to the
right or 1o the left and the centre of gravity will drop until
it reaches Lhe lowest point possible. Wherefore position A,B;D\E
is one of unstable equilibrium.

Let us investigate under what conditions a body will main-
tain a position of stable equilibrium: assume that a parallel-
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epiped of weight G is standing on its base KLMN on a horizontal
surface (Fig. 69). Assume we apply a force P to the body with
the line of action lying in the middle plane ABDI. In respect
to®edge NAM this force will induce the moment I’a, in which
a = EF and is the arm of the force P. The temdency of this
moment to till over the parallelepiped about the edge NAI is
counteracted by the moment of force of its weight G which
has the same edge NAI for its moment cenlre. The arm of Lhis
moment b I<I] and is lound by conslrucling a perpendicular
to the line of aclion of the foree of gravily trom point K. The
condilion that must be salisfied for the parallelepiped to main-
tain its cquilibrium is that the algebraic sum of these Lwo
moments with respectl lo point £ he equal to zero:

DPa b 0.

The moment of focee P is the Lilfing moment, wiile (he moment
of force G is 1he stahility moment. 11 Pa (b, the block will
rolale round edge NAM, bul U Pa < Gh it will maintain ils
stable poglion on the surlace.

If Pa < b, then P < (:'b Aroncwhich we see thal the greater

the moment! ol stability and the shorter the arm of loree P with
respecl to axis NV the niore stable the hody will be.

In caleulating the stability ol cranes, dams, retaining walls,
smokestacks, ete., there must alwavs bhe a delinile reserve of
stability which is expressed by the raho
M,

k = My

in which Af; is the moment of stabilitv, and M, the (lilling
moment. ‘This ratio is called the cocfficient of slabildy. 1t is
apparen! from what has heen suid that ihis coelficient must
alwavs be greater than 1.

IHowever, from the above il must nol be thought that the
weight of a bodv always contributes to its stabilitv. Fig. 700
represents a body AI3DJ which will overfurn about the edge
E under the aclion of ils own weight G which induces a tilting
moment Ga. In order to keep the hody in the position shown,
a force*musl_he applied which will induce a moment equal in
magnitude and acting in the opposile direetion. 11 is seen that
the body will fall over hecause the line of action of the force
of gravity inlersects the supporting surface beyond the base of
the hody.

In Fig. 70b the body js similar in height to that of Fig. 70a
but is stable because the action line of the force of gravity passes
through the supporting area within the base of the body. Whereas
the body in Fig. 70c has the same area of support as that in Fig.
70abutis also stable because its centre of gravity has been lowered.
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Wherefore, a body on a horizonlal surface is in a posilion of
stable equilibrium if the resultant of all the forces acling on Iil,
including ils own weight, inlersecls the area of support within

the configuration of lhe base. .
The grealer the area of ils base and the lower s (enlre of gravity,

the more stable the body.

— s '—-
191, 70 Fig. 71

Hiustrative 'roblem 20, 'The weight G of a wall A BDFE which is rectan-
gular in cross seetion (Fig. 71) is expressed by veelor I and the grealest
wind pressure by veelor AL, both veclors being drawn {o Lhe samc seale.
GCheek the stability of The wall.

Solatron: we displace the loree of wind pressure along ils line of aclion
to the centre of gravily ¢ and thon construel a paraliclogram of lovees
(in this case a rectangle) on the vectors of lorees P and G, Since Lhe aclion
line of the resultant R oinlersecels the sapporting amea 4K within the
configuration of the base, the wall will maintam ils condifion ol slable
equilibrium.

. Questions for Review

1. Will the cenlres ol gravity of (wo homodgencous bodies, bolh of
similar shape and dimensions bul made of materials possessing differ-
enl specilic gravities, be m the same position?

2. Will the centres ol @ravily of Lwo eylinders of similar dimensions,
one homogencous and the other made of horizonlal layers of materials
possessing different specilic gravities, be in the same position?

3. A rectangular trame ABCDH has (wo sulos AD and BC«made of
one malcrial, and the olther [wo sides A B and CD of a material of differ-
ent specilie gravity. Will this frame have the same cenlie o] gravity as
a frame made entirely of one material?

4. Will the ring in i€, 63 retain its condilion ol indillerent equilib-
rium it the poinl ol intersection of the cords by which il is fiung doces
not lie in its mid lle plane?

5. Will the metal strip in Fig. 66d be in a condition of indifferent
equilibrium if 1} geomelric axis of thie shaft Lo which il is i1xed does
not pass through the midpoint of its width?
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45. Exercises

16. Find the centre of gravity of the area of a (riangle ABC
with sides ADB 120 mm, BC 90 mm, and AC = 150 mm.

17. The triangle in 12x. 16, made in the form of a frame, is of
homogeneous wire of uniform cross-section. Find its cenlre of
gravity.

Ilint to solution. Draw veclors al the centres of gravily of
the sides, proportionale lo Lheir lenglhs, then find the cenlre
of Lhese parallel forees.

18. IYind the centre of gravily ol a lrapezoidal plate ADBCD
(Fig. 72) whose dimensions « 60 mm, » 20 mm, and ¢ =
=10 mm*,

g 1o (~C~{g -~{d}—
{ C 7
3 1
7 A Y/
| ——
Ide. 72 lag. 73

19. Solve similarly for 2. 73, bul with dimensions  a
= 60 mm, »h 20 mm, ¢ 20 mm, d 10 mm.

20. Sorve similarly lor [ee 700 but wilh dunensions «a
== 60 mm, b 20 mm.e
- 20 mm, d 10 mm.

21, Itig. 75 shows a dise
wilh [wo bosses ol equal
size on cither side. Find its
cenlre of gravily.

—4a ——-—1£ T
Fig. 74

22. The casl-iron disc A in Fig. 76 has a boss whose centre
of gravily is at a distance @ 290 mm from the axis ol the disc.
Find the weight of (he load K faslened Lo the dise al a dislance
b = 420 mm from Lhe same axis and on the same diameter in

* Exercises 18 to 20 are to be solved by the method given in Sec. 40,
item. 4.
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order to keep the disc in a state of indifferent equilibrium in
respect to its axis; the dimensions of the bhoss d == 8) mm and
¢ =—— 100 mm, and its weight y -7.25 g/cu cm.

i
o

Z P
17
e a e —
A«
W\ 777, BN
g, 76 Fig. 77

23, Ifig. 77 represents a pillar with a bar faslened to its top,
forming an angle « -307 wilh the horizontal and subjected
to the action of foree 2 200 kg. ‘The pillar is square in cross-
sechon with one side @ 0.5 m, s height A 4 m, and ¢ =
- 200 mm. Find the tilling moment of the pillar with respect
to edge I and also ils coctlicient of stabtlity if 1 cu m of the
pillar weighs 2,200 kg.

IIind (o solution. Resolve foree P into vertical and horizontal
components.

CMNAYPTILER YV

IRICTION

46. Harmful Frictional Resistanee

We know from experience thal the amount of energy required
to pall a load aecross a surface depends on the character of the
surface: it 18 mueh casier to pull a loaded sledge over packed
snow than over bare carth, or a cart over an asphalt road than
over a cobbled road, ele. IFor whenever an ohject moves in re-
spect to another against which it is pressed with a certain force,
it gives rise to a force opposing the motion. This force is called
/rlrlwn

Henee the resistunce to the molion of {wo bodies in ronlmt with
one another is delermined by friclion.

Let us assume Lhat a workpicce is being machined longi-
tudinally on a lathe. 1f there were no friction between the car-
riage and Ihe hedways, the force transmitted to ihe carriage
by the feed mechanism would be expended on the cutting proc-
ess alone. IHowever, part of this force is exerted in overcoming
friction, which means thal more power must be expended by
the motor. Accordingly, friction is called detrimental resistance.
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When a body moves and encounters the resistance of a sur-
rounding medium like air or liquid, this kind of resistance can
also be considered detrimental: and the faster the body moves
thes greater will he the resistance. There are also other forms
of detrimental resistance. Whereupon it is very important to
know what mecasures can bhe laken to counteract resistance,
and in parlicularly friction.

However, it must be noted that although friction is accepted
as detrimental, it is frequently a necessity, as we shall see further.

47, Sliding and Rolling Frietion

Jhere are several types of inction. Let us illustrale.

Imagine a poinl on Lhe carriage ot a lathe located on the sur-
face where it 1s in conlact with the bedway. As the carriage
moves, this poinl will coincide witha
countlless number of points on the
bedway lying on a s(raight hne along
which the carriage moves. 'T'lus kind
of movem®nt is called shiding and
the friction arising from 1t on (he
contiguous surfaces 1+ called shiding trg. 78
friclion.

The movement ol a wheel on o rail (Fig. 78) is an enlirely
different maller. Assume (hat at a cerlain moment poinl K,
on the wheel will come in conlact with point /K, on the rail.
After an inlerval, two other points will come into conlact, let
us say L; and L, then points 3, and M,, and so on. I the seg-
ments of the ares Ay Ly, L,M,. cle. are equal lo corresponding
segments K,L,. [.,M,. etc.. then this kind of movement is ~aled
rolling. Characteristic of rolling is that cach point on one of
the contiguons bodies comes inlo conlact with a delinite point
on the other bodv, and the resistance that thus arises is known
as rolling friction.

If the are segments K, L,. L,M,, ete.. are notl equal to segments
K,L,, L,M,, cle., we would then have a combination of rolling
and sliding and the friction produced will also be of both kinds.

Sliding friction is sometimes called iriction of Lhe first type,
while rolling friction is known as friction of the second type.

We thus see thal sliding and rolling are two entirely diffcrent
kinds of movement, for which reasou in each case Lhe resistance
is likewise different.

Oral FExercises

1. Namec the kind of friction produced in cach of the following

instances:
a) a shaft revolving in the bushings of a bearing;
b) the spindle of a lathe revolving in roller or ball bearings;
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¢) the rotation of a workpiece against the dead centre of a lathe.
2. Whal kind of friction is developed beiween the wheels and Lhe
ground when the wheels turn withoul moving a car?

48. Basic Laws of Sliding Friction.
and the Coellicient of Sliding Friction

Frietion is a complex physical phenomenon and the amount
ol it produced in caclt case depends on a number of factors,
Let usexamine several of the factors which apply to sliding friction.

Make the following simple experiment. Place a known weight
on a small square plate lying on a horizontal surface (Ifig. 79).
Altach a spring dvnamometer lo the plate hy a cord and put
the whole in motion by pulling the dynamometer. 11 will require

a delintle foree to make the plale move al an even speed; the
dynamometer will indicale this foree which will he equal and
opposile To the loree of resistanee lo Lhe molion, thal is, (o Lhe
foree of sliding trietion. 1 will also bhe scen thal al the instant
Just hefore the plate bhegins to move, the dynamometer will
mdicale a greater foree than when the plate subsequently he-
gins 1o move smoolhly. Friction is caused by the pressure of
the plate on the supporting surface, i. ¢., by the weight of the
load and the plate acling perpendicularly to the supporting sur-
face and called normal pressure.

The following laws of sliding friction have heen eslablished
experimentlally:

1. Tolal friction is proporlional {o normal pressure. FExperiments
show thal the foree of friclion F increases or deereases in exactly
the same proportion as lhe sum weight Q of [he plale and the
load. This means that the force of [riclion comprises o certain
part of normal pressure and can be expressed by the gquation

g [, oor ' 0. (11)

The factor | rvepresents the coefficient of sliding [riction, or
the coefficient of [riclion of the firsl lype. Wherenpon il may be
said thal the force of sliding [rielion is equal to normal pressure
mulliplied by the coefficient of sliding [riclion.

Since forces Q and F are expressed in the same units, the coef-
ficient of sliding friclion is an absiract quaniily.
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2. Let us repeal the experiment but with a larger plate. If
we choose the load so thal the weighi of Lhe plate and Lhe load
is the same as before, we shall see no change in the force neces-
sary to move the plate. ‘This means that the force of friction is
the same as in the firsl experiment.

Wherefore, lhe force of friclion does nol depend on the area of
conlact.

This can be expressed dilterently. I we represent the arca
of contact in the first experiment hy S, em?, and in the second
experimenl by 5, c¢m? then the foree ¢ acting on | em? and
called specific pressure, can he expressed in fhe firsl case by
9 5 and i the second case by ¢, :) .

WWhercfore, the foree of sliding [riction does nol depend on spe-
cific pressure.

3. Conlinuing our experimenls wilh the plate, we tid that the
amounl of friction will change il erther the plate or the hori-
zonlal supporting surface are of different matenals. For example,
if we use a planed supporting surlace in one ease and a polished
surtface in ghe sccond, it i obvious that in the latter case there
will De less Irichon. I¢arihermore, there will be less friction
hetween Inbricated surfaces than hetween dry ones.

Wherctore, if normal  pressure s opchanged, lolal - friclion
will depend on the malerwal o) he conlacling bodies, the finish
of their serfaces, and the natore and amount of lubrication,

I Finally, folal [richion does nol depend on stiding velocily,
although the Jorce necessary al the starl of slhiding is grealer than
when momenlum  (relaed  molion) has been achieved, as has
already beent stated al the beginning. IFor which reason o dif-
ferentiation is made hetween stalie and Linelic [riction.

Approximale coellicienl values ol sluling iriction for dillerent
malerials under various conditions are given in Supplement I,

Oral zxercises

1. Knowing only normat pressure, is il possible lo e<tablish the amount

of friction thal can be developed? )
2. Whal musl be known in order lo lind the amount ol friction Lhat

can be developed?

Mustrative Problem 21. \What force will be necessary Lo slide a wooden
box weighing 1,200 kg over lhorvizontal pine boards if the coeflicient of
friction / = 0.30?

Solution: using Tiq. (11) we oblain

F = 0.3 x 1,200 — 360 kg

The force required can be no smaller than this, bul it will lake a
somewhat greater elfort {o start the box moving.

Illustrative Problem 22, To a solid cast-iron block is applicd a force
P = 2 kg along the same line of movement which causes it to slide at
a conslant speed on horizontal guides; weight of block G = 20 kg.
What is the coefficienl of friclion?



Solution: using Eq. (14) we obiain

T QG2
’

Hlustrative Problemn 23. A cast-iron block with a weight G = f2 kg
is maving al constant specd along a horizontal cast-iron surface under
the action of force 2 = 23 kg (Fig. 80). Find the cocffifient of friction
if the force P forms an angle « == 14° with the vertical axis.

Solution: he force of friclion is the result of the action of normal
pressure and which is Lhe sum of the weight of the block G and the verti-
cal componenti of force I'. First we must find this componeni. From
AADBC we obtain Q = P cos a.

[Ience the full normal pressure Q, =Q + G =Pcos~ + (. 1t
follows that the foree of Iriction 4 == Q/f = (P cos « + G)f. When
speed is constant, the motive force T' = P sin « and is equal to the force
of friction, i. e., .

(P’cose - G)f = Psina,

fromn which
/ = Psina ) 23 sin 14° _ 2_3__«_Q 24__2__ - 0.16
TTPceosa | G 23cos 14° R 12 T 23 007 412 T T .

[
¥/
N A A T
L - A 1 N
/
P — | w—
7 \
AV
\
[’ F
Fig. 80 IFig. 81

Hlustrative Problem 24. Fig. 81 represents a block K sliding al con-

slant speed down an inelined plane A 3D under ils own weight G. Find

the cocflicienl of friction when o = 400 mm and h = 100 mum.

Solution: resolve Lhe force G into lwo components: Q perpendicular
to the inclined surface AD, and I" parallel to AD. The force of friction
F = [Q and is cqualised by the component P. We mus! determine this

component.
From the similarily of triangles LEHC and ABI we evolve

—% = —8- » from which P =Q % .
Since this component is equal to the force of friction, we obtain

el - f0.

from which the coceflicient of friction f = a 400"
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49. Dry and Fluid Friction

The force of friction depends on the condition of contacting
surfaces. If the surfaces are dry they will come into direct con-
tact with each other as shown in Fig. 82; no matter how smooth
the surfaces seem to he, they will always retain irregularities
whose magnitude will depend upon polishing precision. Under
the action of force Q these irtegularities will undergo delorma-
tion, the prolrusions of one surface squeczing into Lhe hollows
of the other. This interlocking of contact surlaces will give
risc to cohesion and resis{ the relalive motion ol bolh surfaces.
Such resistance is called dry friction.

L
. x "r_L':;a:au—-M‘i__lﬂv-‘”
A ¢ - b/

[ ]
e, K2 g, R3

Now let us assume there 1s o laver ol lubtieant bhelween the
contiguous suilaces as shown n I1g. 83. 11 the laver a 1s thick
enough, it will completely separate the suttaces A3 and CD
and their irrcgularities will not come into conlact wilth one an-
other; instead ol resistance between surtace niregularities, there
will be interaclion between the particles of the lubricant. This
kind ot friction is called flind friction. I 1s casv {o understand
lhat in Lhis case there will be less resislance Lo relalhive movement
than in the case of dry friction. It 15 also obvious that there will
be less heal produced and less wear ol conlae ing machioe parts.
That is why lubricaling directions for machines must be strictly
observed.

As shown by experiment, the thickness of the lubricaling layer
ranges trom 0.005 mm (o 0.05 mm.

Phenomena connccled with fluid friction between machine
parls were first thoroughly investigated {owards the cnd of
the past éentury by Lhe outstanding Russian scientist N. Petrov,
the author of the Ilydrodynamic Theory ol Iriction now used
in calculations concerning lubrication ol major conlacling parls
of machinery.

Such calculations for determining the jorce of friction must
take into account the mutual speed of contacting surfaces, nor-
mal specific pressure, and the thickness ot the lubricanl as well
as its viscosity (which latter characterises the adhesion between

particles).
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Friction is sometimes inlermediate belween the dry and
fluid kind; Lhis occurs when Lhe luhricating Jayer dves not com-
pletely cover Lhe irregularities of contiguous surfaces, in which
ase it is called cither semu-dry or senu-fluid [riction, depending
on which il more closely approximates.

50. Coelticient of Rolling Friction

There is one fealure that distinguishes rolling from sliding:
since theoretically a cylinder comes into conlacl with a ilat
surfuce along a slraight line, and a hall aud a llat surface touch
al one point, greal pressure developes al these places on both
bodies and  deforms  them
there. The schematice diagram
in [ig. 81 shows how a cylin-
dor is flattened along ave ab
as it rolls over a  straight
surtace,  pressing  into  the
supporling  plane and  de-
veloping o ridge in lront
which resisls the rolling of
the eylinder. There are also
olher laclors thal  cause
resistance to rolling, one of
whicl involves irregularities
on both contacling surfaces
(the larger the irregularities,
Lhe greater the resistance).

Now lel us see how lo determine the amounl of resistance
developed Lo rolling. ‘Yhe roller represented in g, 81 is under
the aclion ol load Q (which includes ils own weighl), and also
of force I* acting horizontally at a height it above the supporling
surface. By translerring hoth these lorees to point A the point
where their lines ol aclion inlersect  we construet our paral-
lelogram of forces and obtain the resultant R represented by
veelor A D. If the roller is to he in equiibrium, some other force
musl he applied to equalise (he resultanl R. Such a force is Lhe
reaction N of Lhe supporting surface acting normally to the con-
tiguous surfaces (thal is, perpendicular Lo Lheir tangent) at poinl E.
For forces R and N to bhe in equilibrium they must be equal in
magnitude and opposite in direction. tlence forces R and N
are equal in magnitude.

We resolve force N inlo two components /¢ awl [Lir, acting
horizonlally and vertically, respectively. It is evident thal Lri-
angles EHG and ACD are congruent. Therclore I is equal in
magnilude 1o force P, and EG (o force Q. We thus obtain two
couples, P and EJ, and Q and EG. These couples musl be in

Iig. 81
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equilibrium, and their moments must he equal and have opposite
signs. The moment of the [irst couple is I’h and is positive. The
moment of the second couple is QF (where k represents the distance
bet®een the point of application of reaction N and the vertical
plane passing through the axis of the roller) and is negatlive.
Since Lhe equation of these momentsis Il —= Qk, we [ind the mag-
nitude of force P needed (o overcome (he resistanee to the motion
of the roller as lollows:

Y
AN LS (15)

The magnitude of arm L of the couple will depend. above all,
on the hardness ol [he malerials of which the [wo conliguous
bollies are made and also on the condilion of their surfaces.
Accordingly. the magnitude of L is (aken as the coefficient of
rolling [riclion. As distinguished Trom The cocefticient ol sliding
friction. it 15 «a denonunate quanlity cxpressed in linear units
(em, mun). I goes withoul saying thal bk and i mast holh be
given in Llhe same unils.

I Toree Wis applicd at the level ol centre G0 then in . (15)
o will be equal o the radius R of The roller amnd

Py 4 (16)

Bul if Toree P is applied al poinl M al (he heighl b, which lat-
ter is equal to diameter /1), (hen

Py kS (17)

From what has heen said il is evident that 1he harder the con-
tiguous bhodics and the more polished Uheir surfaces, the smaller
will be the coelficient of rolling [riction,

Cocefficients of rolling Irielion Tor @ few malerials are given in
Supplement. JL.

In order to find (he Torce neeessary 1o move a wheeled vehicle,
il is necessary to take into account the sliding [rietion devel-
oped between Lhe wheels and (heir axles in addition Lo the roll-
ing [riction developed between the wheels and the road (or
rails). In solving problems of this kind a formula is used expressing
the relationship belween the tractive effort PP and normal pressure
N acting on the axle. which also makes allowance for both roll-
ing and sliding {riclions:

P =: [N, (18)

The coefficient [ is called Lhe general coefficient of [riclion.

Oral Lzercises

1. What is Lhe chicf difference between Lhe coefficient of sliding fric-
tion and the cocfficient of rolling friction?
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2. Is it more advantagcous in rolling to apply the motive force P
hearer to the supporting surface or farther from it?

Illustrative Problem 25. A wooden drum together with its contents
weighs 1.2 tons. Whal Jorce PP must be applied to il at the height of its
axis to keep il rolling at a constant speed over a horizontal wooden Yloor
if the diamecter of the drum D = 1.5 m.

Solution: by cxpressing the weighl of the drum in klogrammes and
ils radius in cenlimctres and applying a cocfficient of [riction of
0.08 cm, we find (hat P — 0.08 x »’ j‘)’“ 1.3 ke

IT the same load in a wooden box is pulled over a wooden floor and
the cocfficient of sliding friction lor wood upon wood f =2 0.5, then the
force needed would be

P = 1,200 ¥ 0.5 = 600 kg,

INlustrative Problem 26. IL is well known that the dimensions of bodics
alter with changes in temperature. This factor must be taken into account,
among other things, in planmng sleel bridges.
Since a bridge mus! have Llwo supporls (01
“chairs”), one ol them must be made movabhle.
Fig. 8) represents schematically such a movable
chair: between e lower immovable shoe A and
the upper shoc /3, allached to the, bridge gird-
er, cylindrieal rollers are inserled.

Assuming  the [force  travsmitied by the
bridge Lo lhc support to be 200 tons and the
diameter of the rollers d {o be 150 mm, and that
Fig. 85 all elements of the support are made of steel,

18. 89 find the force of resistance P developed by the
support when the bridge lengthens in the summer
and contracls in winter.

Solufion: in Lhe given case the rollers are moving along two surfaces
ab and cd. Since botlh shoes are of the same malerial, the cocfficient of
friclion is the same for bolh, and the sought foree of resistance P js
equal lo F, + F,, with F, represenling rolling [riction on surface ab,
and F, that on surface c¢d. Using IEg. (17) we oblain

QL Q+36G 20 + 3G
kST =k

P+ F_ =k

where G orepresents the weighl of one roller.

The weight of the rollers are neglecled since they are insignificant as
comparcd with force Q; by taking & = 0.006 ¢m, we obtain
20 . 2 X 200,000

d = 0.006 X ]‘)— — = 160 k¢

acting along the length of the bridge.

P =k

51. Funetion of Friction in Nature
and in Engineering

As we have already said, resistance caused by friction is con-
sidered undesirable only in a comparative sense. For without fric-
tion it would be impossible to walk even on a level surface or
for locomotives to move on rails. Nor would any object stay
put on an inclined surface nor nails hold boards together, etc.
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In engineering, friction plays a double funclion. On the one
hand it is deirimental bhecause it creates added resistance to
the motion of machine parts; lo overcome Lthis resistance it
is ngcessary to expend additional energy which could otherwise
be used for the work of the machine. On the other band friclion
plays a positive role, for without {riction, nuts and holts would
be uscless, belts would noif transmit rotational molion, ete.

Thercfore, we musi reduce {1iection belween moving machine
parts to a minimum and merease nichion to a masimum 1o other
parts where 1l 1s desiable.

52, Questions for Review

fa Blochs B and ¢ arc hving on the honzonlal switace .4 (194, 86).
The foree of friction belween B and A 1y ropresenled by F o and belween
B and C by F. Atorce 1" 15 acting on block

C. Stale how the two blochs will move m Lhe c
tollowing thice cdases- P
a) when Torce I s less than ¥ bul more 2
than F; )
b) when force P s loss than F, bul more di
lhan F ; ° i
¢) when lorce PPas Jess than ather Fyoor F o A
2. In Pige 84, will torce P oslude The 1ol Fae. St

mstead of rollmg 1t? What would D nocessay
to slide the roller?

a3, Ex reises

24. To mamlan (he conslant speed ol a 120 kg load over a
horizonlal surface, 1l requires a 15 ky toree apphied 1 the di-
rection of the moving load. What 15 the cocthierent of triction?

25. 1f there were no rollers belween shoes 1 and I3 m [Hus‘ra-
tive Problem 26 (Fig. 85), how much greater would loree I be,
considering that the cocllicient ol dry lreetion of steel upon steel
[ = 0.157

Y2
a m[ N
4 22///2/’ I
° Fig. 87 112. 88

26. A force P is applied to a block of weight ¢ - 20 kg In one
case force P acts upwards al an angle « - 35” to the horizontal
(Fig. 87), and in the other downwards (I'ig. 88). What must
be the value ol P in both cases to keep the block moving at a
constant speed il the coefficient of friction / = 0.25%

27. A steel sliding block of weight G — 10 kg is rising at a
constant speed between cast-iron guides (FFig. 89) under the
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action of force P which forms an angle « — 30° with the
vertical axis. IFind the magnitude of force P if the

2 guides are lubricated (f = 0.08).

é 28. What would be the solution to Exercise 27

Z if the steel block were sliding downward 4l a
% constant speed?

29. A load on a steel plate is "being moved
over 4 wooden surface with the awd of steel rollers
whose diameter 100 mm (Fig. 90). Find the foree
I’ required W the combined wewght G oof the load

i and the steel plale equals 300 kg, Lhe coeflicient
IF1g. 89 ol [ielion belween Lhe plate and Lhe rollers

I 0.005 em and the coelficient ol friction be-

Lween the rollers and the wooden surface by 0.25 cm (the weight
of the rollers is to be neglected).

30. Whal must be the angle « of (he inelined plane in

4 R
¥
r ()1 ) ‘9‘
7 /4 7
I 90 e 9t

IFig. 91 so that the cyhnder, whose radus 15 R, will roll down
al a conslant speed under the action of 1ls own weight it the
cocfficienl of rolhmg [riction cquals 4?2

82



KINEMATICS

LA RN

THE TRAJECTORY OF A PARTICLE
DISPLACEMENT A\D TIME

o4, Fundamentals of Kinematies

Assmine il necessary fo sel a lanthe Tor the longibudinal machining
of a shafl. This must Le done so [hat correel culling speed and
feed are asswred wilth a given thickness of the ehip. e, so Lhal
the right mmber of revoivbions are transmlled lo The shall
and the culter advenees the regqmired distance during  cach
revolution. I'his operation is :u-(-umpllshﬂ(l by sclling [he devices
that actuate Lhe spmile and the carmage (both driven by
the motor).

In doing all Lhis no calenlations are made concerning the forees
arting on the varous parls of (he Inthe. To other words, the
problem is solved through Kinematies, 1hat hraneh of mechanies
which treats ol motion independent of The lorees cansing it.
For kinemalies deals with space and time as inseparable from
molion.

In order to delermine the posilion ol a body in space it musl
first be known how (o delermine the posilion of anv one ot
ils poinls at a given momenl ot lime. Thereforc in order to
study the m()llon ol a body as a whole, il is lirsl necessary to
establish (he hinematie relationship befween the elements of
movemenl of one of its particles. For Lhis purpose kinematics is
subdivided inlo kinemalics of a particle and Linemalics of « body.
We shall sce, however, that il is sullicient in many cases lo
know only the motion of one particle in order to solve problems
concerning the motion of a hody as a whole.

535. Trajectories and Their Influence
on Prineipal Types of Motion

A moving point occupics different positions in space atl differ-
ent moments of time. A continuous path described by a point
in motion is called the trajeclory of the point. The form of trajec-
tory is one of the faclors serving to classify its motion.
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If the trajectory is a path confined to a plane, it is classified
as coplanar. The path deseribed by a poinl on the rim of a wheel
rolling along o straight track, or by a poiut on the cuiter of
a lathe, are cach examples ol a coplanar lrajectory. If the path
does not fall into one plane, il is called spatiel. An example
of such a palh is a point on a nut being screwed -onlo a holt,
or of a point on the enlling edge of a drill. If {he palh is a straight
line il is called rectiiinear as distinguished from curvilinear
(when it deseribes a curve). Curvilinear motion may be of ditferent
kinds according to the shape of the cuwrve deseribed by the
particle: it is cirenlar if the patli is a circle or a segment of a
cirele; or il may be clliptical, helical, ete.

Oral Lxercises .

1. Name the hind ol molion lor a poinl on cach of lhe [ollowing
items:

a) the revolving spindle ol a lalhe;

b) the entfer of a lathe dming longitudinal feed;

¢) the culler ol a lathe when working with a lemplate;

d) a drill elamped Lo the Lailstoch ot a Jatle while 1t js drilling,.

2. Give examples ol other kinds ol molion. ¢

Hiustrative Problem 27. Ascome that! o slrai¢hl line On, tangential
Lo a circeles rolls on Lhe ctrewmference ol the cirele without sliding. Plot
the curve (raced by pomt O on the Jine (Mg, 42).

Solation: assume lastly that point O s in contaet willt the cirele;
afler an interval of (e some olher point a on the fine will come in
conlact with poinl 7 on the cirele, then
points b and 2 will coinerde, cle. IFrom
Lhis il lollows that (he sesmentl of the line
O is equal to me O, the Jine segment ab
is cqual Lo are 12, and so on,

IFig. 90

12, 24, ele., on the cirele. Sinee a tangent is
perpendicular 1o the radius of a cirele al the point of conlacl, we delin-
cate perpendiculars to the radii at points I, 2, 3, cte, al;l)l“ ihen plot
Im,, ?m, 3m, cle,, cqual to ares O, O+ 12, O1 + 12 -- 23, etc,, thus
obtaining poinls m,, m_, m, ete., lying on the path of point 0. It will
be found ware convenicnl 1o divide the circumference inlo several equal
segments and then lay out the required number of segnient lengths on
the respective tangents. .

Since only the chord of an arc can be measured with a compass, the
greater the number of segments into which we divide the circumnference

We then plot ares O/,
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the more precise will be Lthe curve we construel. The curve Lthus obtained
is called the innolule of a circle, or a developed curve.

Accordingly, il a straight line can roll without slipping round the
edge of a dise in the way we have already described, its poinls will describe
trajéctorics in Lhe form of involules of a cirele.

An involute of a cirele can be constructed in another way: take a
flat disc O (Fig. 93) and fasten to 11 one end of a thin string, to the other
end of which a sharp pencil is laslened. Then wind the string round (he
disc and place it on a sheet of paper with the pencil at point 4. Holding
the disc firmly in place on (he paper, begin Lo diaw a line with the peneil
while unwinding the string, keeping it taul all the time. The curve oblained
will be an involute. Tn (he position shown in Fig. 93 the pencil has drawn
the segment AK of the involute, the length WA of Lhe string being cqual
to Lhe length of the are 3.4

Involute curves are widely used in machine enemeering, particu-
larly in designing gear wheelsowhere tie proliles of the teeth are in most
cases obtained through sueh cuives.

56. Determining the Distance Traversed hy a Point
Aceording to Its Positions on (he Trajectory

A lrajectoryv alone is not sufbicient to complelely deline the
position ofg particle. We munst also know 1ts displacement during
a given inlerval of time and also ils direction: thal is, we are
interested in ils correnl loea- )
tion on, Lthe {rajectory. M 90 % M,

Assunie the curve AR (190, A/-.-—""_""'\——o——ﬂ
94) to be Lhe palh deseribed ’ t to
bv parlicle M. We shall ealeu e,
late the displacement of the
particle at different momenls starting from any fixed reference
point 0, called Lhe oriyin.

Lel us assume thal al moment 4, the moving parliwcle was
al poinl M,, a distance of a, from the ongin O, and at moment
t, was displaced from righl to lelt and is at poinl 3, a distance
of a, from the origin hut in the opposite direction. Furthermore,
let us assume thal the particle asain chauges its direction and
moves from left to right and at moment 7, is al point O. It follows
that during the entire hme inlerval the palicle M traversed
a distance equat lo (he sum of the ares

e
g + g | ty + 20,

Since a parlicle mayv occupy positions of equal distance on
either side of the origin, ils displacements must be identified
by algebraic signs; if a displacement to the right of the origin
O is considered posilive, then one 1o the lelt will be negalive.

INlustrative Problem 28. Point M is moving along a reelilincar path
at such a speed that ils displacement s fromn Lhe origin at all moments
of time satisfies the equation s =254 71 1%, in which s is the dis-
tance from the origin expressed in eenlinetres and / js the time in scconds.
Find the positions of the point on its path al moments of time fp = 0 scc,
6, = 1 sec, f, = 2 see, {, == 3 sce, t; = 4 see, and 1, = 5 see (Fig. 95).
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Solution: assume point O to be the origin. To find the initial displace-
ment from the origin when /, = zero, we subslitute zero for f in the

equalion, and find that s, = 25 e from poiut O. This means that at

he first moment, A7 was al position A, or 25 ¢m 1o the right of origin
0. Substituling 1, 2, 3, 4 and 5 see for £ in the cquation, we obtairs the

respective displacements s,- 28 em, s - 23 em, s,=—10 cm, §,= --11 ¢,
1 Mg M, 0 My Mp 8
—— Yo
s M| M
- =S5 - =82
— ——Sp——
— 8-

g, 99
[ ]

and s, 40 em. 'hen It us plot positions W, W, W, M, and
Mg ol the moving poinl al lhose moments, PPosilive displacemenls are
laid out 10 the right of the ojigm and negative ones {o the left, The dis-
tance traversed by the poinlim live seconds becomes in this case AfGM 4
{1 MM - s T N 2% 25 4 284 40 - 71 em. In [ig.
06 displacements are latd out al a scale of 1 : 10,

57. Plotting a Trajeetory Aecording to Given
Coordinates

Lt has just been demonstrated that i order to find the posi-
tion of a moving particle at any moment it is necessary to lay
oll its digplicement on the lrajeclory Irom the origin,

The next question is, what mmformation is needed Lo plot the
trajectory ilsell?

Assume line A B (Mg, 96) 1o represcnt a coplanar trajeclory.
Delineale axes Or and Oy perpendicular Lo each other. At a
cerfain moment of lime {, the moving particle will be al Lhe
initial position A, then at moment ¢, it will e at position M,,
at momentl {, al position A, ele. Now {rom A, M,, MM, cte.,
ploL the perpendiculars A, M a,, M,a,, elc., to axis Or, and
perpendiculars Aby, Albh,, M,b,, ele.. to axis Oy. Tt will be found
that the lenglhs of [hese perpendiculars determine Lhe position
of the moving poinl al a definite moment.

Therefore by using two axes perpendicular to cach other,
we are able to plol the frajectory if we know the length of the
perpendiculars. Each segmenl ol these perpendiculars, giving
the distance of the particle [rom the axes Ox and Oy, is called
a coordinale, and the axes themsclves are coordinale axes. Iiach
segment Oa,, Oa,, Oa,, elc., which indicales the dislance of the
particle from Lhe axis Oy, is called au abscissa, while the axis
Ox is known as the arxis of the abscissae.

Linear segments 0b,. 0Ob,, Ob,, etc., indicaling the distance
of the particle from axis Oz are called ordinales, and axis Oy
is called the aris of the ordinales. In short, by delineating the
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abscissa and the ordinate of the moving particle for a given
moment and constructing perpendiculars, we find the position
of the particle at that moment at (he interseclion of the perpen-
dicflars. Then by drawing a smooth Iine through the points
thus acquired, we obtain the path of the moving parlicle at the
chosen scale.

Hlustrative Problem 29. A pailicle 1s moving alonyg a trajectory deler-
mined by coordinales from fhe equalions

o200 nd oy =5, 3,

in which the coordinates x and gy are given in centimelies, and the time
{ in scconds. Plol the rajeclory for the tist live sceonds,

Solulron: Lirst we delineale the coomdimalte axes Ox and Oy (IYig. 97)
and then calcatate the coordinates lor the mhial moment £ - 0 and tor
the momentls al the end of The tiist, second, Lhitd, ete., seconds. Sub-
siituling 0 Lo { in the equations given, we lind thatx O and y — 5 em.
Using a scale of 1 : 10, we delineate from pomnt O the segmenl OM, -
—= 3 mm on axis Oy. Then subsliluling one sccond for { in the cqualions,
we oblain x, 2 ¢m oand gy, 8 em. Accondimgly, by using lhe scale
chosen, we Iay out abseissa Ou, 2 mm, and on the perpendicular delin-
caled lo a, we lay oul the ordinale «, M~ 8 mum. As a resull we obtain
the sccond poinl W, on the Lapelorv. Repeating this proccss for all
five seconds we obtain six points on the trajeclors. By joining all these
points bv a smooth cuive, we oblwn the sought frajeclory,

It must be noled that when the trajectory s known, the position of
a parlicle al any momentl dmmg the inlerval { = 0 1o 1 == 5 scee cau be
found. Thus, if we wanl to determine the position ol a particle al ¢ =

4.5 sce, we can calculate 1he abseissa £ 2 - 4.52 = 40.5 em, lay it out
to scale (Oag ; = 40.3 mm), and then delineale the perpendicular at point
dg 5. Henco, point A, 5 1s the required position of the moving puarticie.

538. The Displacement-Time Graph

Il is frequently convenient lo represent the displacement of
a moving particle from ils origin in relalionship to [ime by mecans
of a rectangular system of coordinales.

* If the points in any parl of the trajeclory are found to be too far
apart to draw a smooth curve, it will been necessary to take some inler-
mediate value, such as { = 2.5 or 3.5 scconds, cte.
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Assume that the path of particle M is represented hy curve
AB at a defimte seale (Iig. 98a). Points M,, M,, M,, etc., will
denote the positions of ])dlll(‘le M at momenls {,, {,. ta, etc.
The initial position 1s M, and the origin is poinl O. .

By employing a re(ldnguldr system of coordinates Of and
Os at a suilable scale (Fig. 98b), the axis of therabscissae O!

//‘——-
/ My M M,
-0+

t

Taier I8

will represent the Lime ol displacement, while the axis of the
ordinates Os will represent the distance of displacement of par-
Llicle M trom lhc orgin 0. Alfer laving out the intervals ol time
denoled by [, {,, cte.. we chart pcrpomhculdrs to them, repre-
; sqntjng Lhe (Ilsplm cmenl of Lthe moving particle from the origin

hv cortaspondimg moment ol {ime. Displacements to the
right oi point Oilmr 98«) .will be regarded as posilive, and those
to the lelt as negative. Positive values are plolted above axis
Ot (Tig. 98b) and negalive ones below. By joining the points
found m this way (m,, my, m,. ete.) by a smooth line, we obtain
a curve which mslcmtly shows the displacement of the moving
parlicle from origin O (Fig. 98a) at any moment of time from
I~y —0, tot &,
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The curve acquired in this way is called a displacement curve
(Fig. 98b) and shows graphically Ihe displacement ol the moving
particle from a fixed point of reference. It illustrates that al the
initéal moment when 0. displacement is represented by the
ordinate Om, and, according to the chosen scale, is equal lo arc
OM, in IFig. 98a; displacemenl then increases at momenl
{, where it is cqual to the ordinate f,m,. Then it diminishes to
zero at moment /5 (in IYig. 98a point M, coincides with O. that is,
parlicle M passes throuch poinl O as it moves from right o
left), and subsequently the particle, conlinning to move in the
same direction, passes into the area ol unecative displacement
and at moment /; reaches its greatest distance {;m, from the
origin, cqual to the length ol are M. as shown in IFis. 98a.
At this moment the point changes ils direction and approaches
the origin and al moment {; aligns with point 0.

Thus we see that ordinales corresponding to positive displace-
ments lie ubove the axis of the abseissae, while ordinates corre-
sponding lo negative displwements are helow.

The distance of [he partiele from the origin can be determined
for any ingant ol (e on (he displacement curve. For example.
at the moment ol lime /,, it s expressed by ordinate 6m,.

The displacement ~urve also makes il possible to determine
the increment of displacement of the pacticle diving any interval
of lime. Therehv 1t s also knowa s the cnrve of the (rajeclory
or the displacement-time graph.

29, Questions for Review

1. Namc the hind ol trajecetory (coplanar or spalial) doseribed by a
point on the followme items. a) the ebuck of a lathe, b) the ehuek ol a
drilling machine, ¢) the pullcy ol a maochine tool, d) o die stock when

cutling lhreads by hand.
2. Name the kind ol trapectory (reetthmear o auvilinear) deseribed

by a point on the JoJlowine items: @) the lacing lool on o Jathe, b) the
ram of a shaping machine, ¢) Lthe load serew ol a lalhe, and the half-nut

in the apron. .
3. Whal is the displacement from the Iinad reteronee point of a moving

point for a momenl ol Lime when the displacemient cuwive interseels
the abseissae axis?

. 60. Exercises

31. Draw the involute of a cirele. 10 mm in diameler, gencraled
by a straight line rolling once around the cirele’s circumference.

32. A particle is moving iu a reclilinear (rajectory in such
a way that its displacement s from the lixed reference point
satisfies the erqquation s 20 | 7f 32 in which s is expressed
in centimetres and ! in scconds. Using a suilable scale, plot the
path of the particle at momenls /; - I sec, l, = 2 sec, {; - J sec,
t, =4 sec, and t; =5 scc.
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33. The trajeclorv of a moving particle is delermined by the
coordinates r - 10¢ and y -- 10 } 94, in which £ is the time in
seconds. Plol the trajeclory.

34. Describe the molion of the particle represented by “he
displacement curves in Figs 99 and 100, stating a) whether the
particle is moving incessantly or whether at some’interval of

S

Fig. 99 e 100

time il is motionless wilh respect [o the origin, b) at What inter-
val of time il approaches the originin the area ol posilive displace-
ment, ¢) al what inlerval of time il approaches the origin in
the area ol negative displacement. ) whether or not the particle
passes through the origin and al whal moment, ¢) al whal moment
of time the particle is lurthest from the oriein

cryre rtd e vt

RECTILINEAR MOTION OF A PARTICLE

61. Uniform Motion

The simplest kind of motion of a particle is when ils trajeclory
is a siraight line, in which instance the particle is said to have
rectilinear motion. Bul as we have alreadyv noled, a knowledge
of the shape of its [rajectory is not sullicient to tully define Lhe
molion of a point. It is also necessary Lo know ils displacement
from its origin, i.e., from ils lixed point of relereuce.

Assume lhat a parlicle in lraversing a rveclilinear trajcctory
A3 (Fig. 101) is al the intlial momont at 3y —a distance of
OAM, = s, from the origin 0. \s il moves Lo the right il comes
{o point A, al momenl {,, a dislance ol OM,; s, and at momenl
t, at point M, a dislance of OM, s, from the origin. Accord-
ingly, during the inlerval of time {; {, the particle covers
a distance s; s, and during the inlerval of time {, —(; a
distance s, - - s,. Dividing the distances traversed by the corre-

sponding intervals of time we obtain f‘ —fL and -2—%
1~ %

Ih—1,
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Let us assume that the above ratios are equal:

t,ot, 1,

| ]

This would mean that the distances covered by the particle
are equal during equal intervals of timme. When this is true,
the molion is said Lo be wniform. and the length of the path
traversed by the particle increases as many  limes as the corre-
sponding inteivals of time In brief, we may say that when a
parlicle possesses uniform molwon the distance ol traverses s directly
proporlional to the fime expended.

A /4 My My M, 8
— >
“-J'a—‘-:[ —I
pp——— — 5‘, —_
————8 -
FLig 1ot,

It 4, 4 4 L. then s, s s s, that is, when
a parlicle possessed unjorm molion, the distances il lraverses dnring
equal inlervals of time are equal 1o each other.

62. Velocity and Displacement
When Motion Is Uniform

Leet s designate the aeneral displacement of & particle possessing
uniform moltion lor a given mterval of time 1 Accordingly, the
greater Lhe chslance s traversed and the less time expended during
this displacement. the faster will be (he motion or veloeily.
Then if we designate veloeity as », we obtain

v -5 (19)

thal is, velocdy of uniform molion s expressed by a quolienl
obtained when the distance (raversed hy a parlicle s dwided by
the lirne expended.

If al tpe initial moment the particle is al a dislance s, from
the origin, and at the end of the inlerval of lime { is al a distance
s from the origin, then ils velocily will be expressed us

=7 [ﬁn_ . (20)
From this cqualion we oblain
s =8, + 0t (21)

in which s, represents the displacement of the particle from the
origin at the initial moment. If the position of the particle al the
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initial moment is taken as the origin, the displacement s, will
he zero and the distance traversed will be

s — ot .(22)

Wherclore, the distance (raversed by a parlicle engaged in uniform
molion is equal lo its velocily mulliplied by the time*in which the
distance is covered.

Since distance is measured in unils of lenglh, therefore veloc-
ity is expressed as UMl of length

Y15 CAPUESSEE a8 unii ol time

Il the melre is taken as the unil of length and the second as

. . . B m .p . .
the unil of lime, velocily is expressed as socs if length 1s 1n
. . L . . km

kilomelres and time is in hours, velocity will be TR ete.
Velocily may bhe converted from one unit inlo another, as for
example:

km o 1,000 1,000 m* ele

he — 60min ~~ 60 60sce ” :

Velocity is determined not only by ils numericat value hut
also by ils duection. Therefore pelocily s a veclor quantity**.
In the case of rectilinear motion, velocily is directed along the
trajectory in the direction of motion.

Hlustrative Problem 300 A 1,000 mm shall is being machined on a
Iathe. If (he spindle execules 800 revelulions per minule and the leed
is 0.2 mm per revojution, how long will il take [he cutter Lo pass down
the enlire lenglh ol The shafl?

Solution: fitst the velocily of (he culler must be found. A1 800 rpm
the cutler moves al the rale of 02 - 800 160 i per min, that is,
its veloeity s
mm
mimn

n . 160

Tao execule the whole operation, the cunller muast move ulong the length
of the bedwav lor a dislanee s — 1,000 mm. Accordingly, the required

fime { = > = 1,000
T 160

= 6.23min = mm 15 sec.
63. The Graph Illustrating Displacement and Veloeity
for Uniform Motion

Let us consider how Lo plot a graph expressing the relationship
between displacement and lime for uniformy motion.

Delincate a rectangular system of roordinates with the time
axis Of and the displacemen( axis Os (Fig. 102a). Lay out on the

¥ We know from algebra that % = ab" !, therefore velocity may

sometimes be expressed as m x see™!, m x min~!, ctc.
** Vectors of velocily are designated just as vectors of force (Sce. 11).
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ordinate axis the segment 0A representing at a definile scale
the displacemenl of the moving particle at the inifial moment
from the fixed poiul of reference. Then by applying Eq. (21),
calcgilate the displaccment s of the parlicle from the origin at
moments ¢, {,, L. ete., and construel a displacement-lime graph
as was shown before. We will thus find that the line passing
through points A. m,. m,, cle., is straisht. From (his il follows
that to construct the line A, il is sullicient lo fay oul he linear
segment OA vepresenling the displace- '
menl s, ot lhe particle al the

initia! moment, and the ordinale g 4Vt

of onc other moment. By thus con- $* 0/ m B
necting the two points wilth the line m "

A3 we oblain in graphic lorm the glee—$__ N
relationship given in Lq. (21). Q-

|

With such a diagram il 1s possible s ! L ¢
lo determine lor any given momenl b—3
the displacemnent ol the moving
particle lrom the origin and the 4 a)
distance il &as coy ered. Forinslanee. w~censtant
its digplacemient al momenl £, 4 5
represented hy the ordinale L, and
the distance covered in the miei-
val of lUme [, {, 35 shown hy ¢
scgmenl {m;,. Y

Now let us take awnother ree
tangular  system  of - coordinales frig. 102
(Fig. 102b) where the axis Of rep-
resenls time as belore, and (he ordimate axis Op shows veloeily.
all al an appropriale scale (ordmale O, )

Sinee the veloeity is unitorny, 1 can he illustiated by o straight
line ab from poinl « parallel with O1.

These graphs illustrate an instanee when the particle 1s moving
in the same direction as ils inilial displacement s,, as laid oul
from the origin, and when the movement is posilive. In this case
the displacement ol the parlicle has incereased from the origin.
But if molion were in (he opposile direetion, ils velocily would

7

Ky ¢ v
A
.S’.-J‘o —_ 4
% B g t
0 - .
i 7 a y=constant 5
Fig. 103 Fig. 104
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he negative and Eq. (21) would take the form
s - s vl (23)

Accordingly, the displacement of the moving particle from, Lhe
origin would diminish with time (I'ig. 103) and its velocily while
remaining consfanlt would become negatlive; henge the linear
segment representing it would he consteueled below axis Of
(Iiig. 101).

Since the displacement-lime relalionship - expressed bv a
straight line, untform molion obeys the principle of the straight
line.

Oral I xercises

Displacement-lime graphs lor [wo pailicles having unitorm motion
are plotted al similar scales both for lime and displacement. The hne
A DB Tor one particle forms a greater andgle with horizontal line AC (Tig.
102¢) than lor the other. Whal can be said about the vdlocilies of these
lwo pmlicles?

Hustrative Problem 31, .\ workpicee 2,800 mm long is being machined

on a planer wilh a cutling speed of o) =21 m mm and a speed on the
relurn stiohe of py -~ 30 m . Consthruct the displaccment-time and
L}

velocily-time graphs
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Fia. 105

Solulion: at the velocilies indicated, the time required for the cutting
stroke
2.8 2 . 2 . . .
ls = ST " 15 min = 5 X 60 sec = 8 sec,
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while the time required for the refurn stroke

2.8

s = Sy = 75 Win = 75 % 60 scee = 5.6 scee.

We delincale axes Of, Os and Of, and Ov (Fig. 103). On the Of axes
we lay out the lime at o scale of 5 mm = 1 see; on axis Os we lay out
displacement al a scale ol I :108; and on axis Or we take a scale of
1 mm = 20 mum sec for the veloeily.

At the end ol the cwhth second, displacenent ol anv parlicle in the
workpicce is 2,800 mim fione the ovigin (I, 1030, poinl 1), Alter this
the workpicee moves m the opposite diveetion, and 1 13.6 see is at its
initial position at pot ¢

Veloetty v = 21 momin 350 mun sce and is constanl il the end
of the cighth second (poinl b [F1e. 1030), afler wluch o changes in sign
(the planer’s table begins o move i the oppostie direction).

6. Variable (or Non-Unilorm) Mation,
and Wwerages of Veloeity and Aeeeleration

When a parlicle covers dillerenl distances in equal intervals
ol time, it is said to have partable, or non-uniform. molion.

Lel s; represent the displacement ol a particle Irom the origin
at the mogenl [, and ~, show 1ls displacement al moment {,.
Then the distance covererd) durmg the mterval ol bme ,
will be equal o s, - s, By dividing idus distance by the corre-
sponding lime interval. we oblain a velocily o, called average
veloedly for the oiven mterval of tune:

S Sy 9
v, { ’, ("'4)

Actually m the given example the particle does not Lravel at
a constanl velocily darmng the enlire time interval. Average
velocity p,, as merelv the speed at which the particle would
fraverse the sume disltance (s, »)) in the same interval of {ime
(L, - - ) it it moved at a wimlorm speed. Therelore average veloe-
ity does not give the actual velocities ot which the particle
moves al various momenls of fime. Nevertheless, in engineering
it 1s ollen necessary to know average velocily,

Variable motion diliers Irom average velocity in that it refers
to a very small inlerval of (une; hence the actual velocity of a
parlicle having variable motiou is asfanfancous for the given
moment. Butl if from a given moment of time ( the motion
should bécome uniform, the instantaneous velocity at that given
moment would he equal Lo its succeeding unilorm molion.

From this it is apparent that the smaller the interval of lime
in Eq. (24). the closcer will the average velocity be Lo instanlaneous
velocity.

Since the velocity of a particle possessing variable molion is
not constant, it is continually receiving a certain acceleration
which may be either positive or negative. In the first instance
velocity will increase, while in the second it will decrease.
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If al moment [, the veloaty 1s vy, and at moment [, it is v,
the difference tn vclocly v, v, diwided by the 1nlernal of lime
t, — 1 wil be cqual lo the average acceleralion a,, for thal wnterval
of tume

U, —= l; II" (25)
a — Ty .

Just as with veloaly. the smaller the mmterval of time £, £,
the closer will he the average acceleralion Lo imstantaneous
acceleration

Stmilar Lo veloatv, aceeleration 15 a veclor quantity  And af
the s1en of acceleration 15 Lhe same as that of veloaly, 11 will
have he same direction as the molion I, on the contiaty, its
sign differs, then 1ls ducction will be opposile to the mohion

As we see from Tug (25), acceleration 1s expressed by

unil ol lenglh | mit of time urtl ol Icnoth
uml of hinw m n (untl ol timd)-

Thus, 1l veloalv s oxpressed as mosce, the mieasunng uml
of acceleration will he m/sect o sce = (to he read mefies
per second par sccond) ‘

Mustrative Problem 32, 1he tam ol a shapmg machme, moving non-
unifojmly, complcles a cullmg styoke of 100 mm in 125 st By dividing
125 scc mto S cquil mtarvals 1t was found [hil duning the Inst interval

the cultaxr moved a distawce ol s, 22 mm, n the socond mlerval 1l
moved s s, =171 22 19 mm, m thc (hnd wataval 1t moved
Sa S 134 71 03 mm, e e foutth mtaval 1he movimenl

WS S, s, — 200 131 o6 i [aind the avar e veloaly ol Lthe
1am lor tho cnlne 12> s and then for cach ol th lowr cqual mbarvals
of the given i

Solulton 1he average vodoady for the cnline 12> soe will be

00
U 1425 320 mm s 192 m nun
For the tostwotasal of tunc £, ¢,
Day, = 221 ,)(_)& A LI i s 81> m/mm

o1 the sccond mmterval of Lime {
¢
Dav, ! )l _:oh A~ 314 mun/sec = I8 &2 m;nn
For ih¢ thnd mterval of time {
03 ~ S

Vav, = 4 4p 403 mm/scc = 24 19 m/nnn
For the tourth mntcrval ol timnc ¢ |
Var, = 9()1 .:,)b R 422 mm sec = 2534 m/min.

Thus we see that the average velocitics for separate wtervals of time
greally diffa nol only hom ecach othet, but also from the average
velocity for the centire stroke of the ram.
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65. Unitormly-Variahle Motion.
Velocity and Aeceleration

The simplest form of variable motion is that which is uniformly
varfable, i.e., when the change in velocity is equal for like inter-
vals of time. To express this in another way it may be said that
variable motion, in respect lo which acceleralion is conslant, is
uniformly acceleraled.

Let us see bow the velocity of a uniformly-accelerated particle
is determined for a given moment.

Let the velocity of the moving particle at the initial moment
be vy If the acceleration is a. Lhen the inerease in velocily during
the interval of time { will be al. llence, the velocity at Lhe end
of, the interval will he

v =0y b o (26)

If the initial velocity of the particle », 0, the final velocity
will be

v, al. (27)

But it must be borne iy mind that acceleration may be either
positive or negative. [ it is posilive, 1l will have the same direc-
tion as the molion, on1d the molion 1s then known as constant
acceleration. If it is ncgative, its dircclion will be opposite Lo the
motion and the molion is then said Lo have constant deceleralion.
In the latter case, acccleralion is wrillen willhh o negalive sign
in Eq. (26).

Oral Ezercises

1. How doces Lhe velocity of a moving point thal possesses unitformly-
variable motion change il acceleration is posilive?

2. How does it change if acccleralion is negative?

MMustrative I'roblem 33. A train travelling at o veloeity of 45 km/hr
began going downgrade and incrcased ils velecity Lo 54 kmyhr in
1.5 min. Find ils acceleration.

Solulion: applying Eq. (26), inilial velocily v, = 43 km/hr =
= 12.5 m/scc and the interval of time { = 1.5 min = Y0 sec; veloeily at
the end of this interval will be

Uy = by = 54 kmu/hr = 15 m sec.

Substiluting for numerical values, we obtain

° . 15 .- 13.5 . o
15 = 12.5 4 a x 90, from which a = i T 0.028 m /sec?,

66. Displacement When Motion Is Uniformly
Accelerated

Having found how to determine velocity at any given moment
for a moving particle possessing constant acceleration, let us
now find its displacement. We shall begin by expressing Eq. (26)
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graphically to show the relationship between velocity, accelera-
tion, and time.

We shall use the rectangular system of coordinates Of and
Ov (Fig. 106), with time as the axis of abscissae and velocit¥ as
the axis of ordinates. We have already seen (Fig. 1020) that
when motion is uniform (which means that velocity is constant)
the velocity-time graph is a straight line parallel to the time axis
O!. When motion acquires constant acceleration, this line will

be sloping and form an
8 angle with axis OL.

T At the inilial moment
| when t -= 0, the velocity
ol the particle will be ecqual
l to v,. Therelore we delin-
- cate the linear segment
S 0O A on axis Or, thus rep-
4, resenting Lo scale Lhe
magnitude of the velocity
N at that moment. When
motion has acgruired con-
stant acceleration, Lhe
increase in velocity will be
= proportional in time.
4 me f Ilence, after calculating

Fag. 100 Lthe velocity for a certain

momenl of time, we con-

struct the perpendicular at the corresponding point on the

abscissae axis and on il we lay oul the velocity to scale.

Then we plot a straight line through point A and the point

oblained, thus conslrucling a velocily-tim e graph which cxpresses
the principle for changes in velocity.

In order to tind displacement s of a moving particle during
a given time interval {, we divide this timne interval into severa
equal parts (Od de e¢f = ...). Then by adding the initial
velocily and the final velocily for each of these parts and dividing
the sums by 2, we find their average velocity. In this way we
calculate that during lhe time interval Od there is uniform motion
with velocity expressed by the ordinate nym; = —OA;—dD ; during
the time inlerval de velocity is expressed by the ordinate n,m, =
_ dD + eE

(3

F____——i————____

|
|
|
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|
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|
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I
|
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|
I
|
I
|
I
l
[
!

0

S

, and so forth.

Then we delineate a straight line through point m; parallel
to axis Of. In the resulting rectangle the basc Od expresses the
interval of time in which the motion takes place, while its alti-
tude n,m, shows the velocity. Accordingly, the area of the reclan-
gle, measured at a corresponding scale, will give the displacement
of the particle moving uniformly during the interval of time
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Od. This area is equal to the area of the trapezoid 0 ADd because
n,m, is $ts middle line.

Therefore the displacement of the particle during the time
interval Od is represented by the area of the trapezoid OADd.
In the same way we can prove that its displacement during
interval de is represented by the arca of the trapezoid dIDEe,
ete.

Hence the path traversed by a particle possessing constant
acceleration during the time interval as shown by the linear
segment OC, is given at a corresponding scale by Lhe area of the
trapezoid O ADBC bounded by the ordinates equalling the initial
and final velocities, the velocity curve (when the motion has
constant acceleration, by the line A3), and the time axis.

On this bhasis we may say Lhal displacement

— Vo + Uy,
2 X

and if we replace v, by g -| «f, we obtain

al?

s=unl | 5 (28)

From Ifig. 106 we sce thal component it is expressed by the
1
area of the rectangle OAA,C, and the sccond component % by

the area of triangle A I3 A,, inasmuch as .4, Brepresents the increase
in velocily ai, while A A, is the time /.

Therefore, the displacemenl of a particle possessing conslant
acceleration is equal to the product of the inilial velocily and time,
plus half the product of lhe acceleration and the square of time.

Sometimes in determining displacement il 1S more convenient
to use a different equation derived from Keq. (28) as follows.

From Eq. (26) we evolve

Uy n,
L=

If we substitutle this value for { in 1iy. (28). then

_p P T0 @ (m_ vo)? |
S =0 g , 2 a7
from which
—V__ 0, ‘
s 5 (29)

Accordingly, the displacement of a poinl is equal lo half the differ-
ence of the squares of the final and initial velocities divided by
the acceleration.

It should be understood from the above that the value of
acceleration must be inserted into these equations with the
correct sign: if the motion possesses constant acceleration it will
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have a plus sign; but if it is constant deceleration, then the sign

will be minus. _ . . .
If at the initial moment of the interval of time from which

reference is Laken the particle’s speed is zero, then py =0 should
be used in Kgs (28) and (29), in which case

s-- & . (30)
and
D
— 5 (31)

If the particle moves with constant deccleration and stops at
the end of ¢ seconds, then o, 0 1n Eqs @6) and (29).

The same units of measure must be used on hoth sides ifi all
equalions. Lel us lake Iiq. (28) as an example. If the left side is
expresscd in metres, the first member of the right side will be
in ;:c X sece  m, and (he sccond member s;l;’ X sec? = m.
We thus give all the menibers of the equulion the same units of

measure.

Oral Lzercises
1. Whal will be Lhe direclion of line AB in Fig. 106 when molion

possesses constant decceleration?
2. Are all the members ot Eq. (29) in the same units of measure?

Ilustrative Problem 34, While lravelling al a speed of 45 km/hr a
{rain began gomg downgrade al a econslanl acccleration and covered
the entue 2,500 m ol downgiade in two munutes. Whal was Lhe irain’s
acceleration on the downgrade and at what speed was 1L travelling when

it reached level trach.
Solulion: the lrain’s mmlial speed v, = 45 kw/hr = 12.5 m/sec. By

employing Eq. (28) we oblam
. . a ~ 120° . .
2,600 = 12,5 % 120 } — , from which a = 0.139 m/sec?,
Tlence Lhe tramn’s aceeleration « = 0.139 m/sec®* and when it reached
level trachadge il was travelling at a speed of
v, o= 12.5 4+ 0.139 « 120 = 29.18 m,sec = 105.1 km/hr.

fllustrative Problem 35. .\ t1ain was lravelling at a speed of 72 km /hr
when the brahes were applied. IL then travelled wilh constant decel-
eration for three minutes betore 1t came to a dead stop. How far did the
t{uin? travel hiom the time Lhe brakes weie applied till it came to a dead
stop
Solution: employing Eq. (26) in which the final speced vy = 0, we deter-
mine the acceleration a: g, == 72 km/hr = 20 m/sec, and ¢t = 180 sec,

whence we derive 0 = 20 + a x 180, from which a = 5 m /scc?.
Now Eq. (28) can be used to find the distance the train travelled after -

braking:
1802

s =20 < 180 — —= = 1,800 m = 1.8 km.
9 x 2
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Ilustrative Problem 36. A train was travelling at a speed of 54 km /hr
when its brakes were applicd, from which time it travelled 900 m with
constant deceleration before it came to a dead stop. How long did it
iake the train to stop after the brakes were apphc(g)

Sclution: we find acceleration from FEq. (29):

v; -n}
a= L'..’.s *
1f v, == 0, =54 km hr = 15 m’sec, and s 900 m, we obtain
= — 0.125 m/sw’I By using Fq. (26) in which v — 0, v, = 15 mm/sec,
and a = - 0.125 m,see2, w* oblain ¢ = 120 see - 2 min.

67. Vertical Motion Under the Foree
of Gravity

The vertical motion of a bodv* under (he force of gravily is
an example of rectilinear mofion wilh conslant acceleralion.
When a body is Lhrown upwards with a certain initial veloeily its
motlion will be evenly retarded, te., 1ts velocity will gradually
diminish; and when if has reached a cerlain height the hody will
pause for an instant and then hegin lallin«r wilh constant
accelerationt Acccleration duc lo manly is ulw.lys the same
—90.81 m/sec?  and is designated by the letier ¢.

In order to apply nqualions (26-31) deduced for uniformly-
variable molion, the acceleralion of gravily ¢ is used instead of
acceleration a, and with the appropriale sign as a prefix.

A body projected verticallv upwards with an initial velocily
v, will acquire constant deceleralion inasmuch as Lhe force of
gravity acts in the opposite direetion, in which case g must be
used with a minus sign and Eq. (26) will be

v, vy — gt (32)

The height h which a bodv thrown upwards will reach from
the initial moment. is found through . (28) as {ollows:

1 .
h=ul--" > (33)
while Eq. (29) gives
N Uy
h="" “2q ’
or :
h= "6_‘_).;’_"2 : (34)

When the hody reaches its highest point, its velocily v, Lecomes
zero and accordingly Eq. (32) becomes

vo = g[,
* The motion of a body may be regarded as Lhe motion of ils centre
of gravity and the body considered a material point.
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from which
= (35)

Wherelore, the {une consumed for a body lo rise lo its hlghest
poinl 1s equal lo uls tnitial velocity divided by the acceleration of the

force of gravuy. In this case Eq. (34) hecomes ’
v,
h = E ! (36)

from which
n? 2qh,
or
vy |'2gh. 37

Wherefore, inttial velocily s equal to the square rool of lwice
the product of the height mulliplied by the acceleralion of gravity.

When a body is [alling licely, ils movement coincides with
the direction of gravily acceleralion, for which reason it then
possesses constant acceleralion, and gravity acceler&don g must
therefore be used with a plus sign.

1f the initial velocity of a lalhing body is zero, then g = 0, and
s (27), (30) and (31) respectively become

n, ql. 3%
yt®
h " 39)
h— g;} (40)
I'rom 1liq. (10) we obhtain
v - 2qh.
or
v, | 2¢h. 41)

Wherefore, the velocity of a body al the end of ils fall is equal to Lhe
square rool of twice the producl of gravity acceleralion mulliplied
by the hcight of the [all.

A comparison of Eqs (37) and (41) will show that », = v,.

Whercfore, the [inal velocily of a falling body is the same as ils
initial velocily bul opposue in direction.

Fig. 107a shows the displacement-lime curve of a freely falling
body with an initial velocity v, = 0; the lime axis O! is divided
into equal segments each of which represents 0.5 sec, while each
division of the displacement axis Os represenis one metre. Using
Eq. (39) and taking succeeding numerical values of { as 0.5 sec,
1 sec, etc., and g as 9.81 m/sec?, we will find corresponding displace-
ment of a body from its initial position, i.e., 1.226 m 1n 0.5 sec,
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4.905 m in 1.0 sec, 11.036 m in 1.5 sec, and 19.62 m in 2.0 sec,
etc. By constructing the ordinates for these moments of time,
we then obtain a number of points to connect with a smooth line
0 A® which is accordingly the displacement-time curve. If, for
example, il be necessary to find how far the body fell in 1.75 sec
after the initial moment, we find the point on the axis of abscissae
thal represents the moment and

construct a perpendicular to it to  *”

find its displacement. 241
Fig. 107 is a velocity-time 77}
graph. As is apparent lrom Eq. 7]
(38), velocity changes in direct 18
proportion to time, i.c., the rela- %
tionship between velocity and lime "]
12

is expressed by a straighl line. Let
us then employ Lg. (38) to find 101

the velocity at snme given moment, s

for instance, at the end of the [irst 6

second p; — 9.81 X 1 - 9.81 m/sec 4

and plot a ®elocity-lime graph to 2

a scale. Since the velocity al the e
mitial moment is zero, we delineate |t

OB irom the oricin through the o

point obtained. Thisis the velocily- 1

lime curve. wh- --

IMustrative Problem 37. I‘rom what o . JI . N
height would a body fall if 1t takes ¢ 25 0 It 70 feec
ten seconds to reach lhe giound, and l
what 15 its velocily at the final mo- .
ment? Ig. 107

Solulion: from 1iq. (3Y)

X4
h = 9.81 ‘:--10 ~ 490.5 m

And from [Eq. (38)
vy = 9.81 10 = 98.1 m/see.

68. Questions for RNeview

1. What is the difference hetween non-uniform motion and uniform
motion?

2. Stalc the law governing the displacement of a uniformly-moving
particle from the origin.

3. Statc Lhe law governing the change in velocity of a particle possess-
ing unitormly-variable motion when its initial velocily is zero.

4. When is acceleration considered positive and when ncgative?

5. What kind of molion has a body when projected upwards?

6. What kind of motion has a freely falling body?
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69. Exercises

35. A workpiece 1s being machined on a planer Whose cutting
stroke 15 1,500 mm. It takes the machine nine seconds to complete
a cutting and return stroke. Find the velocit?r v, of the cutting
stroke and velocity »,, of the return stroke if the latter is twice
the former.

36. One minute after leaving the station a train had travelled
450 m with constant acceleration. Find its acceleration a and
velocily v. Y

E:Z. 250m j .

U= ty=5mn 5N
2‘2..5@(/7 £ ¥/j
L 2500m :I

37. A tiam 1s Lravelling from A to D along the str¥ich of track
represenied m Fig. 108. Ils imhal speed at A 1s zero. 1t tukes the
train 5 minutes to cover Lhe level stretch ot track A B which is
2,250 m 1n lenglh, and 2.5 min {o cover the downgrade BC which
18 3,000 m 1n length. On reaching 2 on the level stretch, the hrakes
are applied and the train stops 2,500 mm beyond, at D. Find the
deceleration on stretch CD, lhe time il takes the train to get
from A 1o 1), and 1ts avertige speed lor the whole distance.

38. What height wmill a stone reach, and how much time will
ils entire 1huht take (upward and downward) if il is hurled verti-
cally upward with an initial velocaty vy = 39.24 m/sec?

39. Draw (he displacement-lime and velocity-time graphs for
a body hurled vertically upward with an initial velocity v, =
= 19.62 m/sec.

Fig. 108

CITADPTL IV VIIL

THE COMPOSITION OF SIMPLE MOTIONS
OF A PARTICLE ]

70. Compound Motion,
and Absolute and Relative Motion

Let us assume thal an overhead crane (Fig. 109) is transporting
a load along a tactory shop. The crane travels the length of the
shop 1 the direction of the arrow A. At the same time the crane’s
crab, to which the load is hung by means of the hook K, is moving
athwart the overhead crane in the direction shown by arrow B.
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It is seen that the motion of the load is the sum of two motions at
right angles to each other: the motion of the overhead crane
with respect~to the earth, and the motion of the crane’s crab
with respect to the overhead crane. llence the motion of the
load is compound and its nature depends upon the motion of the
crane and its crab, i.e., upon component motions. The motion of
the overhead crane in respect to the earth is called absolute mo-
tion, while that of its crab in respecl to the crane is known as
relalive motion.

If crane moves a distance KA in respect (o the ecarth and
the crab’s hook simultaneously moves a distance K B in relation

|1 I
1 ! s
H | AT TII !
i
i - |
IE e TR ,u|l|
!: = I | |'l iy i
P! <
It I
L A 1
Ceem )N )
\\\ : : X -
4 )
Fig. 109

to the crane, it may be said that the displacement due to absolute
motion is equal to KA, while the displacement due to relative
motion is equal to KI3.

Since all bodies are actually always 1n motion, then all Kinds
of motion deall with ih mechanics are refalive and 1n cach individ-
ual case we arbitrarily assume one or another hody Lo be mo-
tionless. JIn most instances the motion ol a hody is measured in
relation to the earth and we call the motion of that hody absolute.
Thus in the cited example the movement of the load in respect to
the overhead crane is relalive motion, while the movements of
the crane itself and the load relative to the shop is absolute
motion.

In this example the motion of the load is conditioned by both
absolute and relative motion and it is such compound motion
that we most often have to deal with in machines. However,
mechanics is also concerned with the motion of bodies that are
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not connected wilh each other. For instance, let us assume a train
leaves a station. Subsequently, afier a sufficient lapse of time,
anolher train will be senl out after it along the same track so that
the two trains will al no time approach each other closer than
safety permils. In solving such a problem the thing lhat interests
us above all is the relative speed of bhoth trains and the distance
between them.

71. The Composition of Unitorm Collincar Motions

The simplest case of compound motion is that of two collinear
componenls having cilher the same or opposite directions.

[Fig. 110 represents two hodies I and 2, in contact along plane
AB. At the inilial moment, point A, on body 2 is in contact
, with point M, on body 1. Let us

" assume 1hat the two bodies are

I\ 4 NN moving at the same time in such a
7%, 77777 way 1hat al momnent { point M, has

My moved from leit to right for a
s distance s, in respect td®an immov-

52 able surface, and point M, has
Sy moved a distance s, lrom right lo
left in respect Lo point M,. In other

g, 110 words. the displacement of point M,

due to absolule motion from left Lo

righl is designated by s, and displacement due 1o relative

motion from right to lefl igindicaled by s,. What is the resullant
displacement of poinl M,?

To answer this question we reason in lhe following way:
assume that poinl M, was nol displaced in respeel lo point M,,
in which casc ils absolute motion would also he equal to s; and
would be acting from lell 1o right. Bul since point M, was ac-
tually displaced in respecl to 3, from right {o lelt for a dislance
sy, then its displacement in respect Lo the immovable plane, that
is, its resultanl displacement from lefl Lo right, becomes

s S — Sy

Obviously if hoth displacements had been from left to right,
the resultant displacement of poinl M, would also have been
from lefl Lo right:

s=35, | 8,
By considering displacement from left to right as positiveand
displacement from right to left as negalive, and assuming that

both displacements had been from right to left, we would compute
as follows:

-8 = s (-8 — (5 + )

106



By resorting to the same reasoning in dealing with any number
of component motions, we would find that in compound rectilinear
motion the absolule displacement of a point is equal lo the algebraic
sum of the component displacements. This can be expressed by the
following equation:

S=384+8+ 8+ ... + S (42)

in which each component displacement must be prefixed with
its proper sign.

Assume that all component displacements have uniform mo-
tion and occur within a rcrtain interval of time {. We shall denote
their velocities as »y, vy, v; ... v,. Whereupon s; - v,l, s, = Dy,

a =gl ..., S, =0,l. By substituting these values for the displace-
mfenls in I2q. (42) we obtain

A e Y A N A e I ™ A /7 I O T (DO S R I 1 2

from which Ts A A

Howeve;‘ % =—p which is the velocity of the compound motion

and also uniform. Accordingly,
L R " Y (S RN [ 1 43)

Wherelore, ¢f the componenls of compound molion are collinear
and uniform, the velocdy of the compound motion s equal to the
algebraic sum of the velocilies of the components.

Oral Lzxercises

1. If a parlicdde possesses two kinds of motion, can ils absolulce displace-
ment be se1o al any momeunl, and under whal conditions?

2. At a certamn moment, point M, on body 2 in Fig. 110 1s in contact
with point Af, of body 7, after which poinl M, moves from left Lo right
for a dislance s,, and poinl AM_moves from righl to leit for a dislance
s, in 1espect Lo point A, during the same interval of time. Find the abso-
lute displacement ol A and 1ls direction in each of the following four
cases: a) when s, > s., b) when s, < s, ¢) when s, = s,, d) when s, = 0.

IMustrative I'roblem 38. Town I3 is situaled 22.5 km down the river
from town A. A boat makes the trip fiom .4 to B in 1.5 hr, and from
B to A in 2.5 hr. Assuming the motion of the hoal to be uniform, find
the velocity of the current v,, and the velocily of the boal v, with re-
spect to the water.

Solution: velocily ve represents {he velocily of the boat in relation
to the water, irrespective of whether lhe water is flowing or standing
still. Thercfore in moving with the current, the boat moves wilh an
absolute velocity, in respecl to the bank, of v, 4+ v_. In moving against
the current the absolute velocily of the boal s v, r,. Hence we have
two equations:

(v, + v,) x 1.5 = 22,5 and (v, - v,) x 2.0 = 22.5.
By solving these equations we oblain v, = 3 km/hr and v, = 12 km/hr.
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72. The Composition of Rectilinear Uniform Motions .
Which Are at an Angle to One Another

Now let us learn how to combine rectilinear uniform mottons
when they arc directed at an angle to one anolher.

Assume thal we have set the longitudinal feed of a lathe so as
to give Lhe carriage an axial displacement of AB (Fig. 111), and
as it moves we acluate the cutter with a constant crosswise move-
ment by turning the handle of the cross feed. Thus all points
on (he culler receive two motions—the absolute longitudinal mo-
tion of the carriage and the relative crosswise motion of the cross
feed. Let us investigate the motion of apex
A ol the culter. Assume that during a certain
interval of time Lhe apex and the carriage are
displaced to position M, while in the rela-
live molion of the cross feed the apex is
displaced to posilion N,. Let us assume that
these two displacements are successive: apex
A is first longiludinally dlqp]acod for a
distance AM, along the axis %nd then it
moves a distance M 14, -- AN, crosswise.

g 111 As a result of thesc two disp]accments,
apex A reaches point A,.

Thus position A,, which has been Laken up by apex A of the
cutter, becomes (he vertex ot the parallelogram AM; AN, (in
this case a 1ectangle).

Similarly we lind that during the next interval of time the
point of the culter is displaced to point A, which is Lhe vertex of
the parallelogram A, M,A,N;, and so forth with subsequent
displacements.

We shall prove that the displacement of the cutter’s apex
from posilion A to position A, is rectilinear, i.e., that the diago-
nals AA, and A, A, lic on the same straight line. Assume that
displacements AM,;, AN, and Mler N,;N, occur in equal
intervals of lime. Then MM, — AM, and NN, =- A;N,.
Since A;M; MM, and 1M, Aa - N,N,, therefore the trlangles
ADM, Az (md AMlA are conuruent and /" A, A M;—LA AM,,
that 1s, the lincar qegments A,A, and AA1 he on the same
straight line. It also [ollows from the similarity of the same
two iriangles that these two linear segments are equal to each
other, which mcans that point A in ils compound molion receives
cqual displacements in cqual intervals of time; in short, it is clear
that the compound motion is as uniform as its components.

By dividing the displacemenls by the time which they con-
sumed, we obtain the velocily of each one. Hence, if AM, represents
the velocily of the ahsolute motion and AN, the veloc1ty of the
relalive motion, then the diagonal A 4, will 1ndxcate the direction
and magnitude of the velocity of the resultant motion.
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Wherefore, the resultant molion of a point having two rectilinear
uniform molions s reclilinear and uniform.

The resultant displacement of a point is equal in magnilude and
dirgetion to the diagonal of a parallelogram construcled on the basis
of component displacements.

The resultant velocity is equal lo the diagonal of a parallelogram
constructed on the basts of component velocilies.

It can be proved that if the components of a motion have an
initial velocity of zero and arc¢ uniformly accelerated and rectilin-
ear, the compound motion will also Le uniformly accelerated
and rectilinear.

Ilustrative Problem $39. What should be the ralio between the velog-
ities of the longiludinal feed v, of a lathe and Uie cross feed v, in ord
te cut the truncated cone A BCE shown in g, 112¢ {f D = 80 mm,
d = 60 mm, and ! = 100 mm?

Solution: the velocity ot longiludinal displacement ol the cutller added
to the velocily ol ils crosswise displacement will give Lhe velocity of the
compound motion towards Lhe cone, i, ¢, will be actuated along the
diagonal ot the pajallelogram A F 15 E consbhiucled on the bases of
component velocities A, fr, and A K, (Fig. 1126).

y

Fig. 112 IFip. 113

From the similarity of triangles A ,F, i, and AFFE it follows ﬂ.lht
AL, =a£'-£-‘— from which, after subsliluting the numerical values

AF Bl d 80 — 60
AF = 100“hm and EFI = —D—,g—- = = 2——' = 10 mm, we find that«
_v_l_ - ﬁ_ i __"_l. = M_ = 10.
100 = 10° from which 2, 10

Hence the ratio of longitudinal feed to cross feed should He

Ilustrative Problem 40. The plunger K under the action’ oi.f’bc{ob‘ )
in Fig. 113a is in reciprocating motion betiween fixed guides at a velog~ <
PR
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ity o, = 80 mm/sec. There is a roller in the groove AB of the plunger
to which ig fastencd a sliding follower M that slips up and downw be-
tween immovable guides. Find velocity v, of the follower if the groove
AD forms an angle ABC with the line of motion of the pluBiger and if
BC = a = 120 mm and AC = b = 30 mm. .

Solution: the resullant motion of the follower Af may be regarded as
a compound motion: the absolute motion of the block moving from left
to right during the given moment, and the relative motion bf the roller
in the groove of the plunger. We thercfore construct a parallelogram of
velocities on the bases of Lhe veloeities of the motion components (Fig.
113b). By taking any arbitrary point A, and choosing a scale, we lay
out vector A, A, representing the velocily v, of the plunger and from
the same point A, we delincate a slraight line parallel to the velocity
of the follower M to poinl C, where il intersects with line A,C, which
is parallel to the axis of the groove AL, and then complete the parallel-
ogram A,A,C,I,. It is evident that the component A,13,, which trans-
mils the velocity to the centie of the roller in respect to the plunger, is
directed from right to lefl, as il should be: for if the plunger were
moving from left to right, the motion of the roller in respeet to Lhe
plunger would be in the opposite direction. By measuring the diagonat
A ,C, of the parallclogram and mulliplying its length by the chosen veloe-
ity scale, we obtain the velocity of the follower v,.

This velocily may also be found by calculalion, as follows. From
the similarity of {riangles ABC and A, B,C, we may calcul;.ltc

AC _ BG o _v,
AC = BC BT’
from which
v, = b, % = 060 x 13700 = 15 mm/sec.

73. Resolving a Velocity into Its Components

In mechanics it is [requently found necessary to carry out the
reverse of the composition of velocities when it is required to
resolve a velocily into two componcnts. In its general form this
problem is as indcterminate as the resolution of forces, bul in
each specific casc it is solved in conjunction with additional data
(direction of component wvelocities, magnitude and direction
of one of these, ctc.), as may be seen from the following exam-

ple.

Illustrative Problem 41. Drops of rain slrike the windows of a rail-
way carriage {ravelling al a veloeily vy and leave streaks that form an

<z
\ A b
&R\\ vl
| ] |
1 c — B
Fig. 114 Fig. 115
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an% af?30° with the vertical (Fig. 114). Find velocity v, of the rain-
drop¥ } respect to the carth.

Solution: in respect to the window, cach diop 1s moving vertically
downwards with a velocily v and honvzontally with a velocity vi but
1n the direction opposite to that of the movement of the t1amn. Ilence
we can construct the parallelogiam AC BD (Fig. 115), we lay out vector

AD representing vilocily vy, dehneate a sliaight Line at an angle « = 30°
to the vertical, and then plot a vcaitical hne down fiom pomnt D. These
twe lincs intascet at pomt /3 Then we fimish the parallelogiam by deline-
ating side AC which 1epresants the voloaty of the 1mndiop v, at the
same scale as vector 1D By calculation wc then find thal v, = v, cot a.

74. Questions for Review

L J
1 The cainage of a lathe s moving hom 1ght to Icft with a certain
veloeity The cross feed ts st parallc]l to the axis ot the lathe and 1s
moving fiom left to night with the sanmic vdlouty \What 15 the rasultant
velocily of thc culta?
2 What would be the answar Lo Question 11l the cross tced were set
at an angle to thc axas of the latho?

3. The bdigof an ¢scdator moves upward with a veloaly v, and a
man is walking down the cscalator with a vcloaly v, What sy the 1esult-
ant veloaly with which (he man moves m the lollowing thice cases:
a) when v >wv, b) when » < v, and ) when o v,?

75. Exercises

40. A sleamer, whose speed 15 10 km/lin 15 plying up a river
that has a cunientl of 4 km/ht What 15 the resullant veloaly of
the steamer, and what
would 1l be it il werc
plying through stull water?

41. A steamer plymg
downstream covers 30 hm
1 two hours In still waler
the steamer’s speed 15
12 kin/hr. How far could 1t
have Llravelled upstream
in the same (wo hours? ’

42. The’plunger A 1n Lig 110
Fig. 116 moves betwcen
fixed guides 1n reciprocating motion under the action of rod B
The end of the follower C is shding 1n fixed guides and 1s pressed
to the inclined surface of the plunger by a spring lind the speed
v at which the follower moves when the speed of the plunger is
600 mm/min and if a =300 mm and b =50 mm. Also find
speed v, with which tne end of the follower moves on the
inclined surface of the plunger.
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CHAPTER IX
CURVILINEAR MOTION OF A PARTICLE

76. Uniform and Non-Uniform Curvilinear Motion
of a Particle

Thus far we have been ireating rectilinear motion. Now let
us examine a more complex kind of motion when the traj-
eclory l(raversed by a particle is a curved line in one plane.

Fig. 117 represents such a lrajectory. At the moment of time
t, the moving parlicle is at point Al,. and al the moment of time

l, it is al point M,. Therefore, during

the interval between {; and {,.the
particle has traversed a path as repre-

8 sented by Lhe curved line M, M,. If the
motlion is such that the particle trav-

crses equal dislances in equal intervals

M of time (however small suck intervals

A may be) the motion wil] be uniform.
Otherwise the motion will be non-

Fig. 117 uniform, or variable. The major differ-

ence betwecn curvilinear and rectilinear

motion is that in the former the pall traversed by a moving
particle is composed of curved segments instead of slraight ones.

Uz

vy Mz

77. The Veloeity of a Partiele Po~cessing
Curvilinear Motion

The rate of velocity of a parlicle possessing curvilinear motion
is determined in the same way as for one of reclilinear motion,
except that it will be a quolicnl derived by dividing the (rajec-
tory's curved-line segmenls by corresponding intervals of time.
Thus, when the motion of the parlicle displaced from point M,
to point M, (Fig. 117) is unitorm, ils velocily is expressed as a
quotient obtained by dividing Lhe length of the arc M,M, by
the time taken by the particle to traverse that distance. If the
motion were non-uniform, this quotient would represent average
velocity. And the shorter the arc M, M,, the closer that average
velocity will be to Lhe actual (instantaneous) velocity of the
particle.

Now let us learn how to determine the direction of velocity of
a particle having curvilinear motion.

When a particle has rectilinear motion its direction remains .
constant, whereas with curvilinear motion its direction continu-
ally changes according to the curvature of its trajectory. From
this we conclude that the direction of its velocity also changes.

How then is the direction of velocity determined?
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Let us assume that at the moment the moving particle is at
position M, (Fig. 117), the constraint causing it to diverge from
a rectilinear path were removed. Ohviously from that point the
particle would move in a straight line; to be exact, il would be
a sPraight line tangent to its trajectory atl poinl M,. From this
it follows that its velocity too will be directed along that tangent
in the direclion ol the motion of the particle and can be repre-
sented by vector v; al a definile scale. In the same way the vel-
ocity of the particle at point M, can he represented by vector
Vv, in the direction of the tangent to ifs lrajeclory at that point.
Wherefore, the direction of velocity of a parlicle possessing ('urvi]linear
molion is tangenl lo us trajeclory al the poinl corresponding wilh
the given momenl of time and 1s the same as the direclion of ils
mglion.

By way of illustration, let us unagine we are swinging a slone,
tied to a cord, in 4 horizontal circle. AL a certain critical speed
Lhe cord breaks and the mofion of the stone changes Irom curvili-
near to rcclilinear, directed al a fangeni lo ils curved trajec-
tory and wilh the velocity it had the mnstant just helore the
string brokg.

78. Aeceeleration of a Particle Possessing
Curvilinear Motion

Assume a particle Lo be traversing the curved Irajectory AB
in Fig. 118u. At one moment itis al poinl M, and al the succeeding
short interval of time Al* 1L 13 al poinl M, Lel velocity vy of

Fre. 118

the particle al point M, be cxpressed by the vector M,C and
at point M, by veclor M,D. Now let us determine the
change im velocily during the interval of {ime Al procceding
as follows (Fig. 118b). Declineate veclor MDD, [rom poinl M,,
equal to vector M,D of velocity v,, that is, equal in lengll, pa-
rallel to, and having Lhe samejdircclion. Then resolve velocity v,
into two components (accordin% to the principle of the parallel-
ogram) one of which, v,, will have a known magnitude and

* The sign 4, the Greek leiter “delta”. is usually uscd to designate
small quantities.
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direction. In the parallelogram M,CD,E, the side M,E will
represent velocity v’ which expresses the change in velocity of
the moving particle in Lhe interval of time 4¢ durigg which the
parlicle moved Irom point M, to point M, Then by dividing
velocily v’ by the Lime 41, we obtlain the average acceleration dg,:

Qg = = (44)

The shorter the interval of time Af, the closer will be the
average acceleration to the acceleration of the particle at the
instant it is at poinl M, in its trajeclory.

Thus we} see that acceleralion of a particle having curvilinear
molwn, unlike ifs velocity, 1s nol direcled along the tangent to lhe
Uajectory bul forms an angle with it lying inside the curvaturé of

the trajectory.

79. Tangentinl and Normal Aceceleration

We have learnt that acccleration along a curved trajectory
defnes the change in velocity both in magnitude and direction,
for which reason 1t 15 known as lolal acceleralion. We shall see later
that in solving problems concerning curvilincar motion, it will
be found necessary to consider, separately, acceleration due to
changes in the magnuude of velocily and thal due to changes
in the duechion of velocily caused by the
curvature ot the trajectory.

Ing. 118b 1llusirates both such kinds of

acceleralion. On the velocity vector M,D,
we lay out segment M,F equal in magni-
tude to vector v, = M,C. It will be found
thal segmenl FD, expresses the change in
the magnitude of velocity of the particle,
whereas segment CI' expresses the change
in direction of the velocity.
Fig. 119 Assume thal acceleration a of a particle at
position M (IF1g. 119) is expressed by vector
MC. Just as in velocity, we resolve this acceleration into
two components by the principle of the parallelogram, one
along the langent to trajeclory AT at point M, and the
sccond in the dircction of MN perpendicular to the tan-
gent. As a result we obtain the rectangle MDCE in which
MD expresses acceleration a, while the vector ME shows acce-
leration a,.
Wherefore, acceleration having the same direction as the tangent
along which velocity 1s direcled expresses a change in magnilude of
velocily and is called tangential acceleration a,, whereas acceleration
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direcled perpendicular to the tangent represents a change in direction
of velocily and 1s called normal acceleration a,*

From this 1t follows that 1f the tangential acceleration of a
particle is in the same direction asits velocity, the particle possess-
es positive acceleration, if 11 15 1n the opposite direction, 1t
possesses negative acceletation and the motion of the particle
1s retarded, and 1if 1t 13 se10, then the motion i1s unitorm

Accordingly, possible cases of motion ol a pailicle m a plane
may be tabulated as follows:

Acceleralion (hmge in Vdloalty Molion
1 eBoth kinds of both m mgniludc carvilingr,
acceleration, and dircction non untfoim

1.e., q, and &,

2 Acceleration i dipcction cuirvihingar,
a, only uniform
. 1 — —
3 Acceleration ay m magmtuds rcctthme a,

only I non-uniiorm
!

If there 1s no acceleralion ot cithci torm, motion is rectilinear
and uniform.

There 15 a simple relationship belween tolal acceleration and
i1ts components. IFrom the nght tuangle MCD (17 119) 11 follows
that CD  MD tan «, 1n which « 15 the angle formed by total
acceleralion and the tandgent Tlence

a, — a, tan « (45)

Since the leg of the triangle 1s cqual to the hypolenuse multi-
phed by thesine of the opposite angle o1 the cosine of the adjacent
angle, we obtain

a, S « (40)

. a = a coS «a 47
Finally, according to the Pythagorean Theorem,
a -Va | a (48)

* “Normal acceleration” 1s so called because a line perpendicular
to a tangent at the point of contact 15 called a ‘normal”.
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80. Normal Acceleration of a Particle
Possessing Uniform Cireular Motion

L.et us investigate a specilic case of curvilinear motion when
the trajectory of a particle moving wilh constant velocity is in
the form of a circle with radius It (Fig. 120). In this case there is
only normal acceleration a,, since tangential acctleration a, is
zero (case 2 in the tabular representation given above).

Proceeding as 1 Sec. 78, we ohlain the component v’ of velocity
v, expressing a change in velocily in the lime interval Af during
which the particle traverses the arc M M, Since the particle is

travelling with uniform velocity, vectors M,C and Al,D; are equal

in magnmitude and, as distimguished from the general case previously

presenled, the vertor M I represents a change in the direétion
of velocily.

M_ v C Thus we see Lhal, under these condi-
tions, M, DIS lorms an 1sosceles triangle,
sinee MDD M,C. In the same way
M,OM, is also an isosceles Llriangle

4

[y because OM; and O, au. radii of the
oL ——— z, same  cucle. Furlhermore, these two
/ triangles are sinnlar since /" M,0M, —

g, 120 —= 7 M, DE (therr sides heing mutually

perpendicular) and therefore the remain-
ing angles ot one (nangle are equal to the angles of the other

trnangle.
From this 1t follows thal
ML ALD
MAT oM
from which
M — 2P pr v (a)
= oy, TR

The velocities v, and v, of the parlicle at points M, and M,,
expressed by the vectors M, (0 and M,D),, are equal in magnitude.
By designating this magmtude as 2, we oblain MyD; = p, = ».
By also taking wnto account thal OM, R and by substituting
these values 1in Eqg. (a), we obtain

v 1
M == 7 M\M,
Bﬂ dividing both sides ot the equalion by the time At during
which the particle moved from M, to M,, we oblain
ME o _ MM,
i 'X Ta (b)

The left side of the above equation expresses the average accele-

ration for the given interval of time. As this interval decreases,
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average acceleration will approach normal acceleration a,, in
which case the chord M, M, may e assumed to be equal to the

corrgsponding arc and the quotient M{‘,ﬁ"’ will represent velocity v.

A substitution of these values in Eq. (b) offers the equation in

its final form:

02
=% (49)
_In this way we have oblained the following important rela-
tionship: normal acceleration of a particle moving in a circle is
equal to ils velocily squared, dwided by the radius of lhe circle.
Now let us see what unils are used Lo express this aceeleration.
[ ]
N o) . . v 2
The numerator in Kq. (19) is expressed in ("™ of l—“.'q-“‘) =
umt of time

_ (—unit _ol;_tng_lh)'-'
T (unit of ubmvc)?
(unit of leng(h)
(unit_of time)*

,» hence (he measumrme unit of «a, will be

unit of Ienglh

: (unit ol leneth) (unit of limey®

i.e., the same measnring units as used for aceeleration of rectili-
near molion (Sce. 61).

This acceleration is diuected lowards the centre of the ecircle in
which the parlicle 1s lravelling (1or winch reason il is somelimes
called centripelal).

81. Total Meceleration of a Parficle
Moving in a Cirele

The above case is of a particle moving in a crele with conslant
velocity. Bul it molion is non-uniform, then aside trom normal
acceleration as determined by Eq. (19), the parficle will also
have tangential acceleration coincuding with flie tangent in either
direction. Il the magmtude of this aceeleralion 1s constant, mo-
tion will be uniformly sccelerated and dicplacement ol the part-
icle for any interval of lime will be found through the formulac
for rectilinear motion as deduced in Sec. 66 and will be equal to
the length of the arc¢ traversed.

In uniferm circular motion, total acceleralion is the same as
for normal acceleration. In non-uniform curvilinear molion, total
acceleration is determined by [iq. (48) as the square rool of the
sum of the squares of iangential and normal aceeleration, while
the angle they form with the tangenl 1s cvolved cither by
Eq. (46) or (47).

Hlustrative Problem 42. A particle is travelling in a circle whose
radius R =1 m. 1t possesses a conslanl langential acceleration

of 0.2 m/sect. At the initial moment its velocily is p, = 0. Find
the velocity and acccleration of the particle at { = 3 sec after the begin-
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ning of its motion, and detcrmine the distance the partlcle covers in that
interval of time.

Solution: by employing luq. (27) we tind velocity v, at the end of the

third second: ¢
n,=aqf =02 X 3 =06 mjscc.
Normal acccleration, according Lo Eq. (49), is 4
_n — 0.36 .
U= =—7-= 0.36 m/sect.

Total acceleration at the e¢nd of the third second is found by
Eq. (48):
a=Vdai + a2 = [0.04 + 0.129 = 0.412 m/sec?,

and the tangent of ihe angle it forms with the contacting tangcnt is
obtained by Iiq. (45):

lanag = — =

from which ¢ — 61°.
The distance covered bv the patlicle in three scconds is found through
Fq. (30):
o wl? 0.2 <9

gy = o - 0.9 m.

82. Questions for Review

1. Whal s the duoeethion of velocily, in respeet lo its trajectory,
of a particlc having curvilimear motlion?

2. What is individually expicssed by tangential and normal accele-
ration and whatl 15 Lheir diection?

3. Is 1l possible for a particle with curvilinear motion not to have
tangentlial acceleration? Is 1t possible for il not to have normal accele-
ration? .

4. What is uniform motion that possesses acceleration?

83. Exercises

43. A particle with an initial velocity of zero moves for 5 sec
with conslanl acceleralion in a circle whose radius is 2 m and
covers a distance of 3 m. Find its velocity
4 ‘? and its tofal accelerations at the end of the
| fifth second.

jro 44. ‘The particle in Fig. 121 ‘abandons

|

!

position A with an initial velocily of zero

and, moving with a constant accelera-

tion is at position B in three seconds,

¢ 0.45 m from position A, after which it

Fig. 121 travels with a constant velocity in a circle

whose radins is 0.5 m. Find its .velocity

v and ils acceleration at Lhe opposite point C (AB is
tangent to the circle).
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CHAPTER X

SIMPLE MOTIONS OF A HARD BODY

[
84%. The Difference Between the Motion of a Hard Body
. and That of a Particle

Thus far we have sludied the motion of a particle. Now we
shall examine the simplest molions of a hard body which we
have already classified as an unchangeable system of malerial
particles.

When a hody is in molion its various particles traverse different
trajeclories with diverse velocities and accelerations. By way of
illustration let us take lhe slider-
crank mechanism shown in IFig. 122. A .-

Crank 1 is lastened rigidly Lo shaft
O and turns with it. It is hinged. by
means of crankpin A, o one end of
ronnecling rod 2, 1he olher end of
which is higged by means of pin I3 g, 122
to slider 3, moving in tixed guides
I(I.. As the crank turns, ils particles all describe cireles of diffe-
renl radii and consc juently move with diverse velocilies,
whereas the particles of {he slider descrihe idenlical reetilinear
trajeclorics and with an identical velocity. The connecting
rod moves in ils own way and quile differently from either the
crank or Lhe slide; its right end in the cenlre of the crankpin
A describes a circle whereas its lett end in the centre of pin B3
moves in a slraight line. The trajectories execuled by the rest
of its particles arc curves of various shapes

In this chdpter we shall learn how Yo solve problems concerning
the simpler kinds of motion of a hard hody, assuming in all cases
that the body possesses plane mofion, which means Lhat all ifs
particles descrihe trajectories parallel (o one and (he same fived
plane. All the elements of the mechanism jusl examined possess
such motion, since [he parlicles of these elements conlinuously
trace paths lying in planes parallel to one and the same verlical

plane.

85. Linear Translation

We shall begin by examining the simplesl case ol {he motion
of a hard body.

Imagine a train moving on straight rails; all poinis on the train,
with the exception of the axles, wheels, and other elements whose
motion is relative in respecl to the hodies of Lhe cars and the
locomotive, are tracing identical trajectories; these trajectories
are parallel to the rails and consequently parallel to each other.
This is also true of all the particles in the slider 3 of the slider-crank
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mechanism in I’ig. 122 inasmuch as the guides KL are straight.
The same may be said of all the particles in the mobile jaw of a
parallel vise and otlier mechanisms of the same nature.

Now let us take up a more complicated example. The plafe B
in Fig. 123 can travel either to the right or to the left on the flat
horizontally fixed guide A, as shown by arrows 1. The plate C to
which rod /) (ending with roller ) is rigidly fixed can slide back
and forth on guides on the surface of plate B in a direction
perpendicular to the lower gnide A, as shown by arrows 2. The
roller £ attached to C travels in a curved
groove (:/[ in plaie F which is part of A.

Assume plate B Lo be moving along

yi] y guide A; obviously the motion of plate C,

7 o due to (he curved guide GII, will ‘be

A X __c__ ‘;‘f\ relalive to plate 13 and be compounded
Mo X4 “waz  with the motion of plate I3 itsclf in the

[ i e Y N direction of arrows 1. As a resull of these
i two motions the trajectlories traversed hy

! all poiros on plale ¢ or rod D will be

FFig 123 idenlical and parallel to guife GII. For

inslance, a freely-selecled point K will
trace the lrajeclory Kol and point [, will move along the
path L,J 4. ele. Thuos, plate € and all particles connecled with it
trace identical and parallel palhs:.

Il we selecl any line on the plate €0, for example KL joining
poinls K and L. or any olher line joining two points on the plate,
they will remain parallel Lo themselves when (he plate moves.
The same may be said of any line joining lwo points on the train
mentioned above, or on he cartiage ol a lathe, or the jaws of a
vise, elc.

Wherefore, when a hard body moves 1n such a way thal any line
joining any lwo of us pownls moves parallel lo itself, the body is
said to have motion of lranslalivn.

I'n any motion of translalion of «a rigid body each point of the
body will possess lhe same molwon, thal s, the same displacement,
velocily, and acceleralion at any nstant.

On the basis of all this we come {o Lhe {ollowing important
conclusion: (he relationships we have alrecady deduced for
moving poinls can he used to solve problems concerning motion
of translation.

If the trajectory of any poinl of a body describing motion
of translation is a straight line, the movement of the whole
body is said to have rectilinear translation. If, on the other hand.
the trajeclories are curves, then the motion is called curvilinear

* This kind of motlion is made wide usc of, such as on lathes which
work with a template, or for the machining of bodies of rotation having
a curvilinear profile or conical surfaces.
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{ranslation. Such is the motion of plate C in the example
above.

A specific case of curvilincar translation is circular translation;
here ®all points describe circles of an
equal radius. This is illustrated in
IFig. 124. Crank A is fastened
rigidly to shaft O; plate B is hinged
to the other end of. the crank, its
centre of gravity being lower than
the axis of the hinge 0,, and occupics
a verlical posilion under its own
weight. When the crank moves ahonut
axig 0. plate 3 will move in such
a way thal any line KL joining lwo
of its points will move parallel to
itsell, and points K. L. cle.. will
describe circles of an cqual radius.
Ilence the motion of plate I3 1s
circular lralgelaiiou.

Oral Ixercises

1. Whal is the motion of the ram of
a shaping machme, o1 e table ol 2
planing machine?

2. What 1s the motion of the cultor descnboed o See. 72 (Fig, 111)?

86. Dotation of a Body Around a Fixed Axis,
and Angular Displacement

Now let us study (he rolary motion of a bodv when the axis
of rotation occupies a fixed position.

Assume body A in IFig. 125 {0 be rolaling ahout axis O which
is perpendicular to the plane of the drawing. \lso assume that
point K of the hody occupics posttion Ky at 9 cerlain moment.
As the bodyv rotates, tins point will deseribe a cirele with a radius
- - - ol OK, cqual lo lhe length of a perpen-
dicular drawn Irom the point to the axis
of rotation and called Lthe rolational
radius. .

Now let us delineate a plane through
point K and the rotational axis. This plane
will move with the hodv A. Assume that
this plane occupies position 0Ok, at the
initial moment, and, after a certain
interval of time, moves to position 0K,
an¢ forms a ccrtain two-facet angle ¢ =

- 1 / = K 0OK,. This angle is formed by the
Bk Sl initial and final positions of the rota-
Fig. 125 tional radius. In the same way a plane

“a
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passing through any point L and the axis of rotation will, in
the same interval of time, form the same angle ¢ as it moves
from the initial position 0L, to the final position OL,.
Therefore the angle formed by the swing of a body about its
rotational radius is the same for any point of the body for the
same interval of time. This angle serves to measur¢ the rotation
of the body as a whole and is called its (mqulnr displacement
during a given inlerval of time.

87. Angular Velocity and Angular Aceeleration

If a rotating body forms cqual angles wilh the rotational
axis in equal inlervals ol time, ils rotation will be uniform;
otherwise it will be non-uniform, or variable.

Assume that the angular displacement of a body is equal
to ¢, at the end of a time interval /,, and ¢, at the end of a time
inlerval {,, hoth being measured from the same initial posilion.
Then its angular (llspl wement for the mterval ot time 4, -1{;
will be equal to ¢, .. We {ind 1its average angilar velocilt;
for this interval of time by dwviding the angular displacementl
by time as follows:

©,, — ’[1 ;’" . (50)
1

Here itis not amiss Lo repeat what was said in Sec. 64 concerning
the average velocily of a pornt having non-uniform melion: the
smaller theinterval of lime {, ¢, the closer the average angular
velocily to the instanlancons velocily at the time moment {,.
Accordingly, lthe angular velocily of a point having non-
uniform rotafion is not constant. Let the angnlar velocity of a
given poinl be m; at the inslant of time {,, and o, lfor the inslant
of time {,. It then lollows (hat the change in angular velocity
during the interval of time {, - {, isw, w,. The ratio helween
the change in angular velocily and the 1nterval of time in
which it took place 1s called average anqular acceleralion and is
expressed as

Wa -,
L f: — ’1 . (51)
If acceleration possesses the same sign as angular velocity,
the body will have positive acceleralion; otherwise its rotation
will be retarded.
Since angular displacement is measured in angular units,
the measuring unit for angular velocity will he
_unit of angular measure .4 por angular acceleralion will be
unit of time
umt ol angular mecasure . . unit of angular measure
wnil of time ¢ upit of time = i ey
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88. Linear Velocity of the Points of a Rotating
Body

We have learnt that all points of a rotating body describe
trajectories in the form of a circle. Geometry shows that the
greater the radius and central angle, the greater will be the length
of an arc. Since all rotational radii of a rotating body turn
through the same angle, the length of the trajectories traversed
by points situaled at different distances from the axis of rotation
will vary and be proportional to the rotational radii. For instance,
the length of the arc K K, described by point K in Fig. 125
is as proportional to the length of the are L,L, descrihed by
point L as the rolational radius OK is {o lhe rotational radius
OL’ Thus the various points of a rotaling body receive different
displacements in equal intervals of time. Irom this il follows
that the velocities with which the pomnts ure displaced will also
depend on the length ot their rotalional axes. Wherefore, the
velocities of the poinis of « rotating body are also proportional
to their rotalional radn.

The velo®ty with which a poinf on a rotlating body moves is
. . unit of length
called ils linear velocily and is expressed as X .
unit of {ime
Accordingly, the angular veloeity ol 1 body 15 a measure of
the rotation of the whole body as well as all its points and is the
same for all rotalional axes. Whereas the hinewr veloceity of
points situated at differeni distances from the 1otational axis
will differ. From this 1l is [urther concluded that their acceler-
ation will also diiter.

89. Uniforin Rotation of a Body Around a Fixed
Axis

If the angular displacement of a body is the same lor equal
intervals ol time, il is said to have unilorm rotation. Lt 1s evident
in this case that angular velocily will he eonstant.

Assume that a body rotates unitormly for an interval of time 2.
Then its angular velocity will be

o= _‘:’. . (52)

The unit of measure used to express velocity will depend on
the numerator and denominator ot the right half of this lormula:
if angular displacement is expressed in degrees and fime in
seconds, then angular velocity will be expressed in degrees per
second (—‘:%f—). If time is in minutes, then it will he % , ete.
In this book the angle ¢ will henceforth be expressed in degrees.

Eq. 52 is sometimes expressed in a different form. The radian
(a unit frequently used for angular measurement) is the central
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angle whose arc is equal to the radius of a circle. By designating
r as the value of the radian in degrecs. and R as the radius of the

arc corresponding to it, we obtain %%I}z:R, from which

z = 8" .o 57017447,
Whereupon the angular displacement expresseéd in radians
would be :—'E;: 1;0.— ¢°, and the angular velocity

1
LV T

x t sce

T

®  180%
In cngineering, uniform rotalion is almost always expressed
in number of revolutions per minute and designated as n (rpm
of the rotor of an electric molor, of the spindle of a lathe, ett.),
in which case angular velocity is expressed as follows: when
a body makes one revolution per minute, it turns through 360°
in one¢ minute; if il makes n revolulions per minute, it turns
through 360n degrees and in one second il turns through _3%0Tn =
- 6n degrees. Hencee il a shaft revolves al the ratepf n revolu-

tions per minule, il means that 1ls angular velocity
w = 6n Y% = 360n ¢ (53)

se¢ min
Let us examine Lhe motion of separale points of a uniformly
rolaling body. Fig. 126 represents a sheave which executes n
rpm aboul its geomelric axis 0. Let
us take poinl K on the outer nm of
the sheave, the diameler of which
we will denole as . When the
sheave executes one revolution, the
poinl K will describe a circle of
diameler ); this mcans that its
trajectory will be equal to =D, in
which = 18 the ratio of the circum-
ference lo lhe diameter of a circle.
By execuling n rpm, the trajectory
traversed hy the point will equal
aln and in one second would
be ZP" Since the diameter of the
sheave is given in millimetres, the
linear velocily of point K will he

. aDn

V= 60—;-1-’@ nl/SCC- (54)

All points on the outer rim of the sheave (those farthest from

the axis of rotation) will have the same linear velocity, known
as thre peripheral velocily of the sheave.

Fig. 126
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Now let us take a point L lying at a distance r from the axis

(but not on the rim). . .
We obtain the linear velocity of the point L by following the

samg line of reasoning as with point K:

v, = — T __ nisee
L™ 60 % 1,000 [sec.
By dividing v by v, we obtain

LoD

0 2r

Wherefore, the ralio of linear velocilies of pownts on a rotating
body 1s equal to the ralio of thewr diamelers, or, which 1s the same
thing, of the radu of the circles they describe.

Eq. (54) expresses Lhe peripheral velocily of a body (or the
linear velocily of ils points) depending on the diameler and
number of revolulions per minule. Ii 1 1s necessary to find the
number of 1evolutions when the diameter and peripheral veloc-
ity are known, the equalion becomes

[} [§
0 X _l, H00n (55)

n S - Tpm.

When peripheral velocity and the number of revolutions
per minute are known, Lhe diameler in millimelres is {ound by
Lhe following equation:

D— 60 ~ 1,0000 . (56)
an
Velocity in Egs (55) and (56) is given in m/sec.

Oral Kxercises

1. Two points, one Lwice the dislance from the axis as the other,
lie on the sainc radius of a rolatimg body. What 1 Lhe 1atio of velocities
of Lthe two poinls?

2, Whal 15 lhe ratio of their normal acceleration?

IHustrative Problem 43, A sheave with a diameter D = 2,000 nn [lixed
rigidly to a shaft whose diameter d = 125 nun, 1s rolating uniformly at
arate n = 240 rpm. Find ihe peripheral velocities v, and v ot the sheave
and the shafl, respectively, and the normal acceleration of a point on
the rim of the sheave.

Solution: applying Liq. (54), we find the peripheral veloeity of the
sheave as follows:

b = aDn _ 3.14 x 2,000 x 2_49
1760 x 1,000 — 60 x 1,000

Peripheral velocity of the shafi is either found 1 the same way, or
solved on the basis Lhat lhe lincar velocities are l})roportional to the

tametors: Ze. L. from whi in 0, = 01y = 25,12 a0y =
diameters : =D from which we obtain v, = v, ) 20-12X2’000—
= 1.57 m/sec.

= 25.12 m/secc.
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The normal acceleration of a point lying on the rim of the sheave
is calculated by using Eq. (49),in which case the diameter must be ex-
pressed in metres because velocity is given in m/sec:

_ o _ 2 - 2 x 25.12?
~ D27 D 2

Illustrative Problem 44. Flow many revolutions per minuie must be

transmitted to a high-spced steel drill of 14 mm in diameter in order

to bore inlo soft cast iron at the rate of 50 m/min (the cutting specd for
drilling is cqual to the peripheral velocity of the drill).

Solution: by applying Eq. (55) we obtain

1,0000 __ 1,000 x 50
aD — 3.14 x 14
Illustrative I'roblem 45. What diameter must a sheave be given if it

is Lo attain 1,500 rpm and have a peripheral velocity of 22 m/sec?
Solution: Eq. (56) gives us

60 % 1,0000 _ 60 x 1,000 x 22

an —  3.14 x 1,500

dn = 631 m/scct. .

n =

= 1,137 rpm.

D = = 280 mm.

90. Diagrams Showing the Relationship
Between Peripheral Velocity, Diameter, o
and Number of Revolutions

In spite of the comprehensiveness of the foregoing equations,
their use involves tedious calculalions which must be often ex-
eculed in the workshop (as, for instance,in determining Lhe number
of revolutions to be imparted to the
spindle of a lathe for a given cutting
speed). Therefore in solving prac-
tical problems it is more convenient
134 125 to use diagrams which make it
pf——— possible to find desired magnitudes
quickly and with sufficient accuracy.

Diagrams which plot the rela-
tionship between peripheral veloc-
7 2mm 1y, diameter, and number of rev-
olutions are known as nomographs.
With their help peripheral velocity
may be found if the other two
magnitudes are known. IFor example, if the diameter D = 800 mm
and the number of revolulions n = 300 rpm, peripheral velocity
is found by inspection to be v = 12.5 m/sec (Fig. 127).

In practice, two types of nomographs are widely used —radial
and logarithmic. The plotting of nomographs and their use
in practical calculations is explained in special courses on produc-
tion technology.

v mfsec 5, rpm

S¢—

Fig. 127
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91. Uniformly-Accelerated Rotation of a Body
Around a Fixed Axis

When a change in angular velocily of a rotating body is equal
for equal intervals of time, the hody is said 1o possess uniform
acceleration. 1f angular velocity is on the increase, the body is
said to have uniform positive acceleration; if it is on the decrease,
the body is said to posscss unilorm negalive acceleration, or
uniform deceleration.

By comparing the rotation of a body wilth the rectilinear
motion of a material point, we find thal angular displacement
in the former is analogous to rectilincar displacement in the
latter. In a similar manner angular velocily and angular accel-
eration, which are characteristic of rotation, correspond to the
veldcity and acceleration of a bodv possessing rectilincar motion.
Therefore the cquations giving the relationship between angular
displaccment, angular velocily, and angular acccleration can
be deduced in the same way as accomplished for displacement,
velocity, and acceleration ol a particle of nmlorm rectilinear
motion (Secs 65 and 66). Such an operation will vield the lollowing
formulae:

Angular velocaity al moment ¢

w,  w, | &, b7
in which w, is initial angular velodly, and ¢ is angular accel-

eration, which is constant when rolation is unilormly accel-
crated. If inilial ungular velocity e 0, then

w — tl. (58)

Analogous to Eq. (28), we oblamn angnlar displacement for
time {:

p = ogl | t;i ) (59)
and in accordance with Eq. (29)
p= 1, (80)
Finally, if initial angular velocily is scro,
=5 (61)
and
?~ 3 (62)

INlustrative Problem %6. A sheave hegins to rotate with uniform accel-
eration al 12.5 revolutions for the first 5 seconds. What are its angular
and peripheral velocities at the end of that Lime it its diameter D =
= 2,000 mm?
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Solution: we first find angular displacement, bearing in mind that
one revolution corresponds to a turn of 360°:

¢ = 360x 12.5 = 4,500°.

Since the initial angular velocity is zero, we use Eq. (61) to find engular
acceleration :
£ = % = 9’;))-0— = 360 deg/sec? *
Angular velocity at the ¢nd of the fifth second is found through*
Eq. (68):
ws = el = 360 x b = 1,800 deg/scc.

This angular velocily corresponds to 1;’:)%0 = J rev/sec. Hence the

peripheial velocity al Lhal moment

by o 72000 X 5
s 1,000

illustrative P'roblem 47. A sheave wilh a diameter of 1,200 mm rolates
al the rate ol n = 400 rpm. When power 1s cut off, it conlinuces to rolate
wilth unitorm deceleration, coming {o a stop in 2 mun 30 see. Deterinine
the number ol revolulions 1l execuled attelr power was a L ofl, and the
tangential acceleralion ol a point on its rim dunng the same interval
betore stopping.

Solufion: the angular velocily ot the sheave al the moment ot tran-
sition from unilorm motion to uniform deceleralion is found by using
Eq. (53):

= 31.4 m/scc.

wyg = bn =6 A 400 = 2,400 deg/sec.

To lind the angular deceleralion we use Iiq. (58), but inslead ot the
final angular veloeity, we apply the nntial velocity:

_ my 2,400 . .
¢ = —- =5 = 16 deg/sces.
Now we can lind the angular displacement through I3q. (61):
. "~ ()2
L x21‘)0_ = 180,000 degrees.
Inasmuch as one revolution equals 360° the sheave has made
180,000

=360 = 200 revolulions.

To find tangential acceleration on the rim of the sheave, we calculate
the Iength of the are corresponding Lo angular acceleration € = 16 deg/sec?.
The diameter of the sheave D being 1,200 mm = 1.2 m, theh the length
of Lthe arc corresponding to a cential angle of 16° will be

xDIG _ #1:2x 16

360 360
Therefore the tangential acceleration on the rim is
4 x 3.14

—p—

4z
m = ',-75 nl.

~ 0.17 m/scc?.
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92. Questions for Review

1. What is motion of translation? Name the different kinds of trans-

lation.

2 If a railway carriage passcs from a rectilinear to a curvilinear
track, can ils motion siill be called translation?

3. If the same railway carriage passes from a rectilinear horizontal
track to a rectilinear inclined Llrack, can its meotion still be called
translation ?

4. What kind of motion does the fool-rest of a bicycle pedal have?

5. Does the magnitude of angular veloeily d. pend upon the magnitude
of Lhe rotational radius?

6. Does the magnitude of lincar velocity depend upon the magnitude
of the rotational radius?

7. Two cylinders of different diameters are rotating about their
geometric axes. What ratio should there be belween the number of revo-
luions they attain per umit ol time so thal their peripheral velocities
remain the same?

8. Two sheaves of different diameters execule the same number of
revolutions prr minule. What can be said aboul their angular and peri-
pheral velocities?

93. LExercises

45. 1f a sheave has a diameter of 160 mm and its motion is
uniform, what must be ils rpm to achieve a peripheral velocity
of 24 m/scc?

46. A sheave is turning at thc rate ol 1,600 rpm and with
a peripheral velocity ot 22 m/sec. What is its diameter?

47. A steel workpicce with a diameler of 60 mm is being
machined or: a lathe with a high-specd sleel cutler. What is the
cutting speed (peripheral velocity) if the workpiece attains
1,140 rpm?

48. A brass workpiece 50 mm in dismneter is heing machined
by a high-speed steel cutter at the rale of 430 m/min. Calcnlate
the rpm of the workpiece.

49. A sheave with a diameter ol 1,100 mm had al onec moment
t =0 a peripheral velocity of 9 m/sec and 12 m/sec following
an elapse of 2.5 minutes. Assuming the rolation of the sheave
to be uniformly accelerated, find the angular and tangential
accelerations on t{he rim, and also the angular and peripheral
velocilies following an elapse of 1.5 min aller the initial mo-
ment { = 0.

50. A Ylywheel 1,500 mm in diameler atlained 60 revolutions
in the first 45 seconds after starting. Assuming its motion to be
uniformly acceleraled, find its angular and tangential accele-
rations and its angular and peripheral velocities al ¢t —= 60 sec.

51. A flywheel turns at a speed ol 210 rpm. When power is
cut off it continnes to rotate but with uniform deceleration and
stops after an elapse of 4 min 24 scc. Find the angular accelera-
tion of the flywheel and the number of revolutions it executes
after power was cut off.
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DYNAMICS

CIENL L E RN

FUNDAMLNTALS OF DYNAMICS

94, Definition ot Dy namies

In the preccdimes section on kincntatics we studied the motion
of a hard body and 1ts v wnons pounts But thare . be no change
In mobhion o1 w1l s cdled the moch uncal state of a hody,
unless anothar hody (1 toscd) s acting upon 1l ¢ herclore m
order 1o obtain a complcle prcture ol the motion ol a hody, we
musl know the relhibon hotwoen 1ls motion and the forces
aclmg upon it Ilhs problam s dealt with w that section of
mechanics hnown as dyonamies Tt moy woordingly ho sud that
dynamucs deals widh the molwon of «a body m conncclion with the
forces acling upon

Thae are [wo prnchimg problems to be taken upan dyn s
1) dclarmmnmg the Torces that cruse the mobion of v bodv on
the basis ol the kinematiwes ol (hat mobhon, 2) dclermining the
motion Lthal a body achtieves undar the action ol forces exerted

on 1l

95. The Tirst Law ol Meehanies (Nenton®s Fiist Law)

We know by cyperiment that a hody at rest cannol change
this slale unless another body acls upon 1t and that il will con-
tinue 1n such a state for anindchinmfe time We also know that
if a hody possesscs unilotm tcclihinear molion, 1t requires the
action ot anotha bodv 1o change this molion

Let us assume we have pushed a ball lying on the [loor As
we watch we sce that 1t has acquired reclilinear motion The
haider the materal of which the ball 1s made and the smoother
1ts suiface as well as the surface of the floor, the longer it wall
continue Lo move 1n a stiaight line and the less change will there
be in 1its velocily If the ball were 1n a vacuum 1t would continue
1ts motion still longer Thus we see that the [loor and surround-
ing air influence the ball, cause 1its motion to be non-umform,
and 1mpart a negative acceleration to it.

130



From this we dednce that if il were left to itself and were
free of the influence of other bodics. the ball would have acquired
uniform rectilinear motion with a velocity constant in magnitude
and direction.

Tht property of a body Lo mainlain its momentum (or also
its state of rest) is called rnertia.

We have thus reached a conclusion expressing the subslance
of the L.aw of Inertia, or Newton’s Ifirst Law: a body will remain
in a stale of rest. or of unifornt rectilinear molion, unlil some other
body forces il lo change (ha! slale.

It is imporlant to bear in mind that the aclion of one hody
upon another necd nol necessarilv oceur through direct (visible)
contact. For instance, a hodv projected horizontally will not
exhibit rectilinear motion; it will achieve curvilinear motion
due to the earlh’s invisible altraclion,

96. The Basic Lguation of Dvanamics (Newton’s Seeond Law)

Let us make the [ollowing experiment. The plunger /3 in the
guides A (Fig. 128) ean be foreed Lo Lhe right by the spring D.
We pull theplunger Lo the lelt and lasten il in place by gripping
its handle € wilh the serew K. We then place two balls, 17 and
F, against Lhe plunger. B3oth halls have the same diameter bul
their materials are of different specific gravity and are, there-
fore, of dilferent weights. \We (hen release the handle ¢ and the
plunger jeris suddenly lo (he right, simullanceously pushing
the two balls in the same direclion. We observe Lthat they hoth
acquire reclilinear motion, bul displacement for cach in the
same inlerval of time is different: (he lighler ball travels faster
and outstrips the heavier one. Tf the halls had had the same spe-
cific gravity, they would have inoved
with equal velocity and bheen stopped A B
by the resistance to their motion, al an | r
equal distance from fhe initial posilion. " O’

If we repcal this experimenl bub with
the spring squeezed tighter (the spring ¢ F
pushed furlher Lo the lelt than in lhe 77 A7
first experiment), we shall see both balls
move with greater velocily than before; Fig. 128
nevertheless the velocity of the heav-
ier ball will steadilv become less than that of ihe lighter one.

From these cxperimenls we deduce the following: at the
initial moment both balls are in a state of rest. Under the action
of the spring which imparts equal forces to both balls via the
plunger, they are put in motion but each with its own velocity.
In other words, under the action of equal forces, the two bodies
received unequal accelcrations, the heavier receiving lesser
acceleration. Furthermore, by comparing the second experi-
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ment with the first, we see that a greater force nevertheless
imparts more acceleration to one and the same body.

From this it is appatent that there is some kind of relation-
ship between a force and the acceleration it imparts to a hody.
Let us make another experiment to determine this relationship.

To the car A ([Fig. 129) standing on straight and horizontal
rails we fasten one e¢nd of a dynamometer B, thé other end of
which we fasten to a cord (¢ which we pass over pulley D and tie
to a weight G,. Then we allow the car lo move under the pull
of the cord caused by load (z; and make a note of the magnitude

g 129

of the force P, wndicated on the dynamomeler. By studying
the molion ol the cat (¢ g, measming the distances 1t travels
in equal intervals of time) we find that 1t acquires uniform
acceleration. We then find (he magnitude of 1its acceleralion
a, by mcans of the distance it lravels in a defimite inlerval of
time.

Then replacing load G, by load G,, we repeat the experiment
and {ind that under the aclion ot the second force P, as indicated
by the dynamomeler, the car receives an acreleration of a,.
If the car is constructed so as to offer very little friction in its
movement along the rails, we shall find as a result ol a number
of similar experiments that the ratio between forces P, and P,
differs very httle from the ratio of accelerations the jorces impart
to the car. We thereby eslablish thal the magmtudes ot the forces
are directly proporlional to the magniludes of accelerations
which they imparl:

P,
P,

R8la
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or, after replacing the middle members, .
P r .
Z =7 = a constaut qiiantity.

No matter how many times we repeat this experiment but
with different loads, we shall see that the ratio of a force Lo the
acceleration it imparts to on¢ and the sume body is always
the same.

Wherefore, the ralio of a force to the acceleralion it imparts
is a constanl quanlity for cocty body. 1t we denote this quantity
by the letter m, we obtain

>
—=m
d
or,
P ma. (63)

From this cquation il follows thal the greater the magnitude
of m, the grealer the loice required to imparl one and the same
acceleraliongg Lo a4 body. The quantily m 1s called the measure
of mass of a body, or, to pul 1l simply, the mass of a body.

Since according lo the Taw of Inerbin a body lends to either
remain al rest or retaun s unitorm reclilinear molion, it is
understood that when acceleration 1s imparted to the body, it
will resist thal acceleration; and the giealer ils mass, the greater
ils resistance. Whenee the mass of a hody 1s consudered to bhe
a measure of its incrlia.

Eq. (63) which expresses Newton’s Second Law, is the basic
equalion of dynamics and can be lormulated as follows: force
is equal to mass mulliplied by acceleralion. Morcover, acceleralion
attains the same direction as the force mparting 1l.

Oral Taercises

1. Tf the magnitude ol a foree acting on a hody is mereased n Limes,
how will it cllecl the acceleration ol lhe body?

2. The mass ol particle A 15 n times ¢realer than the mass of particle
B, and the acceleration mpamled to A 1s also n {nnes greater than that
imparted Lo 5. How much greater 1s the lorce imparted to A than to 3?

97. Law of the Independent Aection
of Forees

Assume a parlicle to be moving with an acceleration a, under
the action ot force P, (Fig. 130) and that at a certain moment
another force P, hegins to act on the particle. If the particle
were under the action of force P, alone, it would receive an accele-

ration a, — %, in which m is the mass of the particle.
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However, we know that under the aclion of the two forces
P, and P,, the parlicletwill move with an acceleration a tepre-
sented by the vector (JC/, which is also (he diagonal of the garal-
lelogram OACD, constructed on bolh accelerations a, — OA

and a, = OB as 1wo of ils sides. In other words we mayv say
that the acceleration of a parlicle is equal to the geometric sum
of the two accelerations.

By mulliplying the two accelcrations a, and a, by the mass
of the particle, we evolve Lhe forces P, and Py, Therefore we may
regard the parallelogram OACHB as bhewng constructed (to scale)
on the veclors of forces Py and P,, and vecelor OC as represenling
(fo the same scale) the resulfant
ol the two component forces Py
and P,.

IFfrom this we arrive at the
lollowing deduclion: if a moving
pralicle 1s under the aclion of several
Jorces al once, lhe ayeleralion the
parlule 1ecewes s eqital {o the geo-
meltie sum of the accelerations pro-
duced separalely by ecach of the
foices arling on it

T 130 L.el us assume that a parlicle
moving under ils own momen-
{um (its molion is umlotmly rectilinen) hegins Lo be acled upon
al a cerlain momenl by a loree P havinge a conslanl direelion.
As a resull, the parlicle will reccive a given acceleration in the
direcetion ol this lalter fovee. 11 the particle had been al rest
when acled upon by the loree, il would have received a definite
velocity in the direction ol the foree. Bul sinee il was also under
the action of its own momentum, 1ls yvcelocity wiill be Lhe sum
ol the velocity produced by its momenlum and that produced
by force P (assuming the latter had been apphed to the particle
as if il were at resl).

This may he formulaled as follows: the action that a force will
have upon a particle does not depend upon whether the parlicle
is al rest or in motion, or wheth 1 one or several forces are acling
upon il. .

From Lhis it also follows thal il a parlicle is moving under
its own momenlum and a system ol forces in equilibrium is
applied to il, ils motion will continue lo be uniform and ree-
tilinear.

This principle of mechanics is called the law of the independent
action of forces, or lhe law of the joinl aclion offorces.




98. Propositions Deduced From ghe Laws
of M(-(-hamc% ¥

The following set of propositions, confirmed by experiment,
emerges from the laws of mechanies that we have investigated.

1. Assume a particle having rectilincar motion and being
under the action ol a force. According lo Newton’s Second
Law, its motion will have acceleration. 1f the force should be
removed, the particle will conlinue to move undcr 1ls own inertia
(momentum) wilth a untform rechilinear molion and ils velocily
will be that allained al the {une the force was removed. Such would
be the molion of a train, travelling on straisht horizontal
rails, after steam is cut ofl and 1l there were no resistance to
its» motion. The smaller the resistance, the longer will the train
move under its own inertia and the more nearly uniform will
its motion be.

2. Assume thal a parlicle has curvilinear motion. As is apparent
from Newton’s first two laws, such motion can only occur under
the aclion of a force. If the force 15 removed, the particle will
conlinue lognove. hul wn a straght hine tangent lo s path al the
moment the force has been removed. An example of this is a stone
tied to the end ol a cord and bemg whuled around by a hand
holding the olher end ol the cord, If the cord bicaks. the stone
will fly oft i a dircelion tangent lo the cirele deseribed by
ils centre of gravity under the econstraimimg aclion of the cord.
A particle torn ofl a rolating grmdstone will acquire the same
molion.

3. Now let us consider the molion ol a hain on straight and
horizonlal rails In order for the trimm to maintain unilorm molion,
the locomolive must develop a defimite tractive foree to overcome
the harmlul resistance which s opposile in direction Lo the molion
of Lhe train. Tt the Lraclive foree s ercaler Lhan this resistance,
the surplus with imparl postlive aeeeleration Lo the lraimm and make
it move taster. But il the resistance 1s greater than the lractive
force, the surplus resistance widl impart a neg.ive aceeleration
to the trawn, it.e., an aceeleration opposile i direction to the
motion of the train. This would eause the movement of the train
lo be retarded.

From whal has just heen said, the tollowing important deduc-
tion can be made: since ou the one hand the train possesses
uniform rectilinear mofion uonder the action of the Llractive
force of the locomolive, and on the other hand of the force of
resisltance, and since hoth these forees are exactly equal in mag-
mitude, the forees are in cowlibrium.

Wherelore, if a partirle under the aclion of jorees possesses
uniform rectilinear motinn, the forces wdl be n equilibrium, have
no influence on s molion, and the parlicle will move under ils
own tnerlia; and conversely, if the forces applied lo a parlicle

135



are in equilibrium, it will either have uniform rectilinear motion
or will remain in W slatg, of rest.

This is one of the moSt important principles of engineering
mechanics. It simplifies all problems concerning rectilinear snd
uniform motion since it makes it possible (o solve them through
the principles of staties. .

The following table schematically presents all the ahove
deductlions.

Kind of Force Required to Move a Ma- | The Resulting Motion of ihe
terial Point from Its Slate of Rest Paiticle

L4
1. A force constant in magnitude and | Uniformly acceleraled, recti-
direclion lincar

2. A force variable in magnilude and | Reclilincar
conslantl in direction

—_ N —_— | —_ = - —_ L —--— —
3. A force which imparls non-unifoom | Umformly rectilinear molion
curvilincar motion bul which ceases along the langent to ils

at a given moment trajectory

4. A force which impails non-uniform | Uniformly reclilincar molion
rectilinear molion bhul which censes Irom the moment the force
at a given moment censes

Oral Erxercises

1. A parlicle moving under its own inertia (inomenium) comes under
the aclion of a constanl torce having a direction opposite to the molion
of th?c particle. What effecl will the force have on the motion ot the par-
ticle

2. A parlicle moving under ils own inerlia (momentum) coines under
the action of two forces equal in magnitude and opposile in direction.
What effect will they have on the molion of the particle?

99. Units of Measure in Engineering
and Physics

Eq. (63) expresses the relalionship helwecn three quanlities —
force, mass, and acceleration. Acceleration is expressed in
unit of 1en6lh ~gince the basi it of length d in engineerin
(unit of time)z - Since the basic unit of length used in engl g
is the metre (m) and of time it is the second (sec), hence accele-

) =-m X sec™? (read metres per second

ration is expressed in sect

per second).
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As for other quantities in the said equatiogj,we may choose
either force or mass as the basic unit, agg express one in terms
of the other. If we take force as the basi€ unit and in the form
of the kilogramme just as we did in statics, Lhen let us see how
mass will be expressed.

pd
We have already established the following relationship: m == —.-

By substituting [ kg lor the force /> and 1 m/sec? for accele-
ration a, we may express the unil ol mass through these unils as

kg: b:‘:_ = l\}.’,_‘;("S(‘( = hg X m~1 X scc2
This system of units (hg, m, sec) in which the unil of mass is
expressed Lhrough Lhese verv umnils, has bheen adopted in engi-
neering and is called the engineering system of umls. ‘This is the
syslem we shall hencelorlh use.
Now let us try taking the umit ol mass as our basic unit. Tf
we use the gramme as tlus unil, L. (63) will grve the lollowing

relationship for Lhe uml ol loree:
untl of foree (amt of mass) 7 (umil ol acceleralion) —-

untl of length
(unit ot tune)-

::"y>/

In the system of units as used in physies, the unl of length
is the centimetre and the uml ol Lime s The second, according
to which the unit ot lorce. called the dyne, is expressed as

cm a
g X g X em X osee ®,
SUC*
This system is called the physical or absolule system of unuts,
or is simphfied by the techuical sobriquet CGS (centimetre,

gramme, second).

100. Relationship Between Miss
and Weight of a Body

Let us assume {hat a hody is falling ticely in a vacuum where
it meets with no resistance. As we know, a body lalls because
of the force of gravily, or in other words, of ils weight. And
since this [orce, acting upon il, is constant both in magnitude
and direction, the ho(ly falls wilh a conslanl aceceleration.

Hence it is obvious Lhat the Basic Equalion ot Dynamics
(R3) is also applicable lo Lhis case, when the aclive force 1s gravily.
But instead of the torce I in Eq. (63) we substilule the weight
of the body (. and inslead ot acecleration a. we apply the accele-
ration due to Lhe force of gravity g. Whereupon lhe equation

becomes
G=mg. . (64)
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Since the magg.of @ body is constant but ils acceleration
may be a diversté quantity, the weight G of one and the same
body may possess different numerical values along different
latitudes of the earth, a fact proved by weighing a hody by means
of a spring balance. IFrom this we sec that Lhere is an appre-
ciable ditference between the mass of a hody and.its weight.
All bodies have mass, and mechanics deals with the mass of
all hodies as unchangeable. But the weight of a body is determ-
ined by the gravity of the ecarth and varies along different
parls of Lhe earlh’s surface, depending on the magnitude of
gravilational acccleralion.

Ilustrative Problem 48. A body having an initial velocily of 10 m/sec
moves 200 m in 5 see when a foree of 20 kg is applied to il. What is its
weight (the aceeleration due Lo gravily is taken 9.81 m/scc?)?

Solufion: since lhe hody possesses unilormly accelerated motion,
we apply Eq. (28):
. af?

S = gl | 5
whenee, by substituling corresponding numerical values, we oblain
a = 12 my,sec?, and the mass ol the body

m LA hg x m™! see?
) 127 3k A
Therefore Lhe weighl of [he body
g8
G m oA = ; » 0.81 = 16.35 he.

Hlustrative Problem 9. A\ body o weichl - 2943 kg is moving
under its own inerlia al a veloaly [0 m sce. AL a cerlain moment
a force I’ — 2 K¢ is apphed lo il acline m Lhe opposile direction to ils
motion. Find (he velocity ol The body Lhree seconds aller Lhe foree
P is applicd.

Solution: since Lhe foree is acling in the opposite direelion to Lhe
molion of the body, the acceloration impauted fo it is negative and the
mofion ol the body is unitormnly retardcd. From 1iq. (26) we oblain

v, =0, al =10  3a.
. P (£ 29.13 .
Acceleralion « = --——, mass m =- — = = 3 kg x m !sec?,
1 g 9.81
2
hence acceleration a = 5 m see and {he soughl veloeity

e

v, = 10 - 3 -5 -8 misce.

(¥

101. Law of Action and Reaetion
(Newton’s Third Law)

If body A receives a certain aceeleralion under the action
of a force, it means thal another body I3 is exerling this force
on hody A. Body B may act on A cither in direct contact or at
a dista‘pce, the latter as ig, the case of the force of gravity.
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Let us make the following experiment.

We place trucks A and B on rails (Fig. 131), and connect
them by a spring C, the cars heing al such a distance from each
othé* that {he spring is somewhal taul. \WWhen we release both
trucks simultaneously they move towards cach other. We measure
the distance each has covered and calenlate ihe acceleration
of each truck. We denote the acceleration of (ruck A as a; and
of truck B as a, Afler calculating the masses of the irucks and
comparing 1hem wilh their corresponding acceleration, we find
(provided the experiment has been carried out wilh sufficient
precision) that the equation mya, — m,a, holds true to a suffi-
cient exlent.

A 8

£ ]
AN Y
- v Sar7aascd

v y
/

g, 131

However, according lo Newlon’ Second Law, the product
of mass and acceleration is equal to the foree imparting accele-
ration. Thercefore, we lnd {that a lorce has acted on truck A
from lefL Lo right and a force of the same magnitude has acted
on Lruck B from right to lell (in (he opposule direetion).

This resull conlirms the Third FLaw ol Mechanies (Newlon’s
Third Law), whieh when stated buelly, is that adlwn and reaction
ae equal.

The interaction of (wo hodies is the resalt ol {wo forees which
are equal and opposite. Henee, lorees acl i pairs when they are
applicd 1o two interacting hodies.

We have already seen this lTaw apphed wilh respecl to the
equilibrium of hodses in staties, when we learnt that the pressure
of a hody on its supporl gives rise to an equal and opposite
reaclion.

102. Questions for Review

1. Ixplajn {he Law of lnertia.

2. A foree acling on body A 1s n times greater than a force acling on
body B; lhic mass of bodv /3 is n lumes ereater than the mass of body
A. What is the ratio between the accelerations imparted to the two
bodies?

3. How is the unil of mass «xpressed in engineering and in absolute
systems ol units?

4. Under what conditions does a parlicle, under the action of a system
of forces, acquire unilorm rectilinear molion?



103. Exercises

52. Find the mass of a body having a weight of 1,963 kg.

53. The tractive force of a locomotive, after allowing for all
resistances to its motion, is 12,000 kg and it imparts an accele-
ralion to the train of ¢ = 0.1 m/sec3. What is the weight of the
train and what will be its velocity following an elapse of 45 sec
after il bhegins 1o move?

51. What Lractive {orce (including that needed to overcome
resislance) is necessary to give a train, weighing 2,000 tons,
an acceleration of 0.05 m/sec if the resistance to ils movement
amounts to 0.005 of the weight of the train?

53. Three minutes after slarting, a train weighing 1,200 tons
is travelling at a speed of 40 kmy/hr ou a slraight and horizomtal
track. What is the tractive lotee of its locomotive (considering
it constanl) il the resislance toils molion is 0.005 ot the weight
of the lrain?

56. 1tow long will il lake lo slop a {ramear (ravelling on a
horizontal track at a speced of 35 km/hr and how far will it travel
after the brakes have heen apphed 1if all the resistgnces to the
tram’s motion, including that created by lhe hrakes, amount
to 200 kg per lon ol weight ol [he lram?

C1IrypeTIi R OXII

INTRODUCTION TO DYNAMICS OF A MATERIAL POINT

104, Dynamies of a Material Point

When we were investigaling kinemalics we found (hat if a
hard body is rotatimg aboul a hixed axis, ils various points are
displaced in circular trajectories ol dillerent radii, velocilies,
and accelerations. Bul when a bodyv possesses motion of trans-
lation, the elements comprising this molion are exactly the same
for all points on the body. Ilence, in considering motion of trans-
lation of a body under the action ot applied forces, we may ignore
its dimensions and take a poinl (nsually ils centre of gravity)
which represenls the place ol conceniration of the entire mass
of the body. As already explained al the beginning of his book,
such a point, which is made 1o represent the body :‘s a whole,
is known as a malerial point.

However, the use of a material point is not restricted to
molion of translation alone. It 15 also uscful in moré complicated
types of motion; let us assume a ball is rolling on a surface.
As the hall ro]ls, ils centre describes a simple curved or straight
trajectory, whereas ils other points deseribe various compli-
cated curved trajectories. 1f, in solving the problem, we are
interested only in the molion of the centre of the ball, we may
consider ghe bhall as a material point situated at its centre and

140



containing its whole mass. Accordingly, hencgforth when speak-
ing of the motion of a body, we shall assuméthe hody Lo be a
material point whose mass is equal to the mass of the whole body.

L]
105. The Action of the Forece of Gravity
on the Motion of a Vertically-Projected Body

Assume a body to be thrown vertically upwards. If it were
not attracted by the earlh. it would retawn the velocity imparted
to it al the initial moment and move under its own momentum
at a constant reclilinear velocity. I3ul the body is acted upon
by the force of gravity whose magmtude 1s delermined by the
acceleration g, which il imparts to the body, and by the mass
of «thc body.

Therefore the velocity of the body al any moment ¢ during
its flight upwards 1s equal to Lhe ditference helween the constant
velocity v, wilh which 1t would have bheen displaced under its
own momentam, and velocity gf which 1t acquires at the same
momenl from the force of gravity. [From this we derive
Eq. (32), afeady slaled in Lhe section on kinematics:

v, gl.

When velocity g¢, as imparied to the hodv by the force of
gravity, becomes equal in magmtude to the veloeily ot its motion
due to inertwa (momentum), the veloaly of the body will become
zero. At that momenl the hody will reach ils Iighest point and
then begin to fall under the action ol gravity alone (il Lthe resist-
ance of the air 1s not laken into consideraiion). The bodv will
acquire uniformly-accelerated motion and 1ls veloeily at any
moment { will be cqual lo gi.

This is the explanation of Lhe kinematic relationships already
mentioned in Sec. 64.

106. The Motion of a Body Thrown Upwards
at an Angle to the llorizon

Now letl us consider a more complicated case of bodily molion
influecnce of the force of gravily: a body is thrown
upwards gt vertically but at an angle lo the horizon (Fig. 132).

Assume ®at a body M is thrown from an inilial position M,
in the direcBon of N and with a velocity v,, with its trajectory
forming an angle « to the horizon. If Lhe force of gravily did not
act on the body, it would be displaced with uniforn rectilincar
motion in the Wirection of M,N with a constant velocity v,.
But the force of gravity causes the body to diverge sieadily
from a straight line so that at a given moment it will fall back
to earth at a spot M and at a distance of L = M,M from its
initial position. .
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We resolve 1the velocily v,, as represented to scale by vector
M,A, into two components: vy, in a horizonlal direclion
and vg,.; in a vertical direction. Whatever may be the shape
of the trajectory described by the body*, its horizontal compo-
nent of motion will be uniform because no force is acting upon
it in {hat direction. In Lhe vertical component, however, the
velocity of the body will not be uniform and at any moment
of time can be expressed by the dilference hetween initial veloe-
ity vouer and velocily gf as determined by acceleration due to

v vert

gravily. The velocily v,,,, wilth which the bodv is displaced verti-
cally is found by means of 1iq. (:32), which in this case hecomes

Dyert Doy py gl'

Thus we sce thal the verlical motion of the body hecomes
unilormmly decelerated and at the moment when ¢t equals vopps
the verlical component of the hody’s velocily will become zero,
at which moment the body will reach its highest poirt. After
this the body will begin 1o move with positive ac_eleralion
because of the increase in the verlical component,fand at a
given moment the body will strike the ground. R

Now whalt is the trajectory traced by the centy: of gravity
of the body? ’

We know [rom experience lhat it will be curviinear, and we
may plot ils path by the following method; let I represent the
time elapsed while the bhody is in the air. We divide that time
into several equal intervals £, 1,, I, ctc., and indicate points

* IL must be remembered that we are assuming this body to be a
material J)oin t.
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M, M, M, etc, on line MyN to represent .the hypothetical
ositions of the body at moments {,, (,, {;, etc., had ils motion
.been due only to inertia. And since such a supposed motion would
havesbeen uniform, M M; — nit,, MM, — vlt,, MM, — vy,
etc., and the height that the body atlammed would have heen
represented by the hnear segmenis M, A*, M;A, DMjA,,
etc. However, under lhe action ol gravity the bodv becomes
displaced downwards with uniformly acceleraled motion, cover-

ing Lhe distance MM, - "i during the interval (,, distance
Ab] =
MM, 4
3
MM, = 71 during the inlerval T = 3{,, c¢te. Thus the seg-
ments MM, MM, MM . ete., are related to cach other just
: 2 q2
as Qf)— gé : (If‘, ele. But Iy, 20, T, 3, ele. Consequenlly,
MM, MM, - MM, eles, -8B 193, eten, == 1 :4:9,
etc. Ilence, by ploting segments MM, MM, — 1M,M,,
MMy == 9M M, vertically downward from pomnls My, M, M,
etc., we obl®n a number of pownts lying on {he trajectory of
the moving body. In mme detiled treatmenls on tlus subjecl
it 1s shown thal Lhe path traced by this hody marks a curve
called a parabola.

during the nlerval T, =2/, and dislance

Now 11 us fiimd the lapse of Luie 7 that is consumed by the body Lo
move fiom postlion W, Lo positton A, and d*l inune the maxununt
height 1t attams at If and the lendth ol s [hehl L.

As alicady explamed, Wir motion upwaids 1 uniformly retarded and
at the highest pomnt the vertical component ol vdlodly 1s sero. Accord-

; . . Dy, . .
ingly, vy = Vgt — g1 =0, from whh 7' = """ in which 77

is the lapse of time it takes the bodyv Lo teach 1ls Inghest point. Since
Dyiert = Up SIN , the time th* body tikes Lo move Lrom Lhe miihal to the
hi hest pownt s

R
g
It can easily shown (hal the lune the body consuines in moving

from ils hifghest pomt to point M wiull be the same. Henee the time the
body takes traverse the whole path from M, Lo 3 will be

204 5iN @
T =" — . 65
7 (65)

is 1o delermine lthe height I attained by the body.
(29), v, must be taken as ze1o because at the highest
ical veloeity is scro. The mutial velocily in this case
nd acceleration a is the same as acceleration g
gravity. All this offers us 1he following expression

IS Vgiert = Ug SiNn a,
caused by ihe force

* Segment M; A, has not becen delineated in IFig. 132 to avoid compli-
cating the drawing.
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in order to delerminc the highest point the body reaches:
_ v4 sin® o (6t

And finally, we find the distance L at which the body is displaced.
Since its horizontal component of molion is uniform, we may write

L = vgpo,T. . (a)

Velocity popor is found as Lhe leg adjacenl to the acute angle « of a

righl Llriangle having a given hypotenuse pg:
Vonop = Dg COS «.

By subslituting 1his value for vy, and the value found above for the
time of the Ilight 7', we obtain
204 sin a

q
From trigonomelry we  know thal the expression 2 sin a cos & is

equal Lo the sine of a doubl: angle a, iwe., 2sina coso = sin 2a; from
which we finally obtain

a
b .
L= pycosa = —qi 2 sin « cos a.

I = i’l sin 2a. (67)

Sinee 1 is the greatest possibl: value for a sine wheng *n angle is 90°,
hence a bhody will cover ils dreatest distance when ils angle of projee-
tion 2a = 00° or o« — 45°.

The vertical motion of a body is a speeitie ease of the kind of motio
we have been examining. Indeed, whn molion is along a vertical ling
the angle « -- 90° and 2a == 180°, «in 180° 0. whereupon L = (,
i.c., the body returns to ils inihal pm'ilmn alter ils fall. Morcover, when

@ = 00° then sin 90° = Land I - "=, which is the relationship already
oblained in See. G6.

29
IMustrative Problem 50. A gun fites its projeclile at an angle a = 30°
to the horizon and wilh a mussle velocily vy = 500 wm/see. Calculate
ihe distance and time of flight of the projectle if the flight had been
ihrough a vacuum.
Solution: the time ol flight is determined by Iiq. (65) as [ollows:

2 < a00 sin 3()"_

e [ "
T = 0.8 s D1 sce.
While the dislance of Lhe Hight, according to Eq. (67) w™ be
v; a00?

- sin 60° A2 22.07 km.

LT —
L = 7 sin 2« 0.81

107. Tangential and Normal Forcesy,
When a Particle Moves in a Circular Ty jectory

Let us assume that the rod K, to the end o wvhich (he ball C
is attached, is rotating in a horizontal plan f4bout the axis O
(Fig. 133). Il the centre of the ball mo about the circle
with non-uniform motion, the change in gnitude of velocity
will be expressed by tangentlial acceleration” a;, while the change
in direction will be expressed by the normal acceleration a,
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A defined by Eq. (49):

Ay = I{_
We multiply each of these accelerations by the mass m of
the ball. The producl ma, of thec mass of the ball, multiplied
by the tangential acccleration a,, gives the magnitude of the

force T = CD and which is directed along the tangent 1o the
circle followed by the centre of the ball. This is called the fangen-

)

tial force. The factum ma, - - N - —

¢~

= CB expresses 1he centripelal or notmal ’ \

force and represenls the magnitude ol the 1§ B k

force directed towards the centre, ~ PN O \
A

Accordingly, the tangential force J
T maq (H8) \ /

and the normal torce AN S

mr . g
N =", (69) I 133

These two forces are componenls ol Lhe foree P (/A and
are represented by Lhe diagonal of the rectangle A BCD equal to

mpé ¢
P= ("9 | (ma)t-=m V L (70)
If molion is uniform, a; -0, whereupon the langential force
T =0.

108. Inertial Forees

Let us assume thal hody B bedins lo acl with a cerlain force
upon body A when Lhe lalleris in a slale of rest. We have already
learnt Lhat this action will unpart acceleration to body A.
Howevyg, according {o the Law of Inertia, body A will tend to
remain W a state of rest and thas display a cerlain resistance
to a chafige in its stule of rest. This resistance lakes the form

of a force &erted on body B by bodv A. In other words, we may
say that thi§action of body I3 on body A gives rise to a reaction

on the part Qf the latter which. according to the Third Law of
Mechanics, i opposite in direction and ecqual in agnitude
to thal actiot

The reaction¥xperienced bv one hodv from a sccond body
to which it, an®\it alone, is imparting velocity, is called the
force of inerlia.

From this the “{ollowing important deduction is made., If
body A receives ackeleration under the aclion of body B, the
force causing that acceleration is applied to bodv A; this force
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of inertlia is cqual and opposite and applied to body B. Thi
these lwo forces are applied lo different interacting bodies, fi.
which reason thev dilter from two equal and opposite forces
applied to one and the same body as herctofore discusssd in'
the chapter Stalics.

It must be linally emphasised thal there can he no force of
inerlia if (here is no force imparting acceleration to a body.
ence, the two forees act simullancously.

109. Imertial Forees in Rectilinear Motion
of a Partiele

Let us assume thal the slider K in IFig. 134 is moving within
straight guides under the aclion ol the connecting rod L. We
will apply the equation PP = a, where P orepresents the [orce
excerled by the rod on the slider, and a is the acceleralion of
the molion of {he shder. JForce P gives rise to reaction OA,
ol the shder and which is applied
to Lhe rod. According to 1he Third

A P,

4 p%; 'L Law ol Mecchanics, his reaction
4 T7 A1 15 cqual and opposite to forece P,
@ from which 1l follows that its direc-

Fig. 131 tion is opposilc to that of the
acceleration of the slider. By desig-

naling this reaction as P,, we oblain P, — P — ma. This

then will be the loree of inertia developed by the slider and
applicd lo the rod.

Assume thal a locomotive aud its tender are moving along
a straichlt and horizontal (rack when, at a certain moment,
the Lraclive forece of the locomotive increases and
imparts corresponding acceleration a to Lhe tender.
The additional force exerted upon the tender by the &
locomotive is expressed by P2 — ma, in which m is the \
mass of the Llender (which latter is considered as a []
material point, iunoring the rolalion of the wheels and 4
axles). It follows that from the momenl the said lrac- ¢ G
tive force increasces, the tender will begin to exerl on -~
the locomotive a Jorce of inertia I?, - — ma, 1
direction of which is opposile to force P. Fig. 135

-

shalt with an
re it 1s taslened

INMusteative Problem 51. The mine cage of weight
= 300 kg represented in Fig. 135 descends into
acceleralion ol 2 m/sec®. Whalis the pull ol Lhe cable w,
to the cage?

Solution: a downward-pulling force cqual to th
G = 300 kg is acting on the cable. As il descends

= 2m/sec?, the cage develops a force of inerlia 7 =
= 61.2 kg which is transferred to the cablegfand dirccted upwards.
LD
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\ccordingly, the cable will be drawn taut by a force
R=G— (, -- 300 — 61.2 = 238.8 kg.
If the cage had ascended with (he same acceleration as when descend-
ing, #he force exerted on the cable would be
R=G+ Q, = 361.2 kg.

110. Inertial Forees Acting Upon a Particle
Moving in a Cireular Trajectory

We have alrcady learnl that in general the force applied
to a particle possessing circular molion can he resolved into
two components —one, the {orce T tangenl to the curve and
the olher, the force N normal to the curve. The tangential force T
imparts {o lhe moving parlicle an acceleralion which deter-
mines its change in magmtude ol velocily. while the normal
force N changes the direction of velocily.

IIence, the following Lwo inerual forces will he acting si-
multaneously on one body thatl imparts to another body tangen-
tial and normal acceleralions: tangential tnerlial force T, - -1 =
= -— ma, agl inetlial force N, which latler s cqual and oppo-
site to the normal force.

Lel us invesligale Lhe second ol the two  inertial foree N, —in
greater delail.

N

lag. 136 g, 137

thal the centre of bhall € in Fig. 136 is moving in a
clled by a light rod which is rotating umformly about
axis 0. SMe in this instance tangential acceleration is zero,
the balk is IRing acted upon by the normal force N alone which
compels it t&move in a circle. This force is applied Lo the ball
at poini C, a%y is directed towards the centre O of the circle.

Simultaneoudy with force N, an inertial force N,, equal and
opposite to it, Maactling upon Lhe ball and represents the resist-
to a change in direction of velocity that it
would have had dN\e to inertia. This force which is applied to
the rod at point C|
0C, is called centrif
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Since we regard the ball in this case as a material point sk
uated at ils centre of gravity C where the entire mass of th.
ball is hypothetically concenlrated, both forces N and N; may’
be considered as being transmitted along their lines of aution
to point C, as indicated in Fig. 137. It must be remembered,
however, that these forces are applied to diiferent bodies and
for that reason cannot attain cquilibrium.

The force which, due to inertia, a particle possessing uniform
;‘ircular motion excrts upon a constraining body, is centrifugal
orce.

In accordance with Eq. (69), the iagnilude of centrifugal
force is determned by the equation

N ="} (71)

whercas Lhe magnitude of Langenlial force of inertia
T, — ma, (72)

By applying IEq. (51). we can give the following form to
Eq. (71):

; _ m(thny¢  ~*n’mR
N,= 4 ( 30 | = gp0 K8 (73)
in which m — the mass of {he particle;
1 —— the numbet of revolulions per minute;

IR — the dislanee, 10 metires, ol the parlicle from the

axis ol rotation.
Finally, 1f the mass of the particle is expressed in terms of

weighl G, the equation lakes another furm:

G R
N, = % x 55 % = 0.00112 GRn%. (74)

Oral FEzxercises

1. Under what conditions will the tangential force of inerl:l'y‘.'of Aa

moving patticle have constant magnitude? !
2. Answer Queslion 1 in respecl to centrifugal force.
A

Ilustrative Problem 52. A round woikpicce 60 min in dia lZr, ready
for machining, is finxed belween the centies of a lathe. The ey Ing speed
has been scl at 425 m 'mun. What will be the magnitude of' ne centrif-
ugal force as sel up by the rotation of the workpiece if its cenf e of gravity
is shifted 1.5 mm irom the axis of rotalion* and its weighf G = 1.6 kg?

Solution: in order to employ IEq. (74) it will be necesgsy to find the
rgm that must be impailed to the workpiece. By apply.1g Eq. (65) we
obtain

_ 1,0000 1,000 x 425
T aD "3.14 x 60

Let us take this figurc in round numbers, i.c., 2,2/

= 2,257

rpm of the spindle.

* Such a deviation from the centre is calleckécenlricity.
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(1 @We now calculate the magnitude of centrifugal force by means of
q. g4). in which eccentricity 2 must be taken in metres, i.c.,, R =
1.5 mm = 0.0015 m:

® N, = 0.00112 x 1.6 % 0.0015 x 2,250 = 13.6 kg.

We sec that here centrifugal force will be —113—(?— - 8.0 1limes the
weight of the workpicce. This will harm the centres of the lalhe and in-

crecase wear on {(he bearings of the spindle.

THustrative Problem 53. A triin thal had been running along a straight
track reached a curve. While the lraun had been travellmg along Lhe
straight track, the weighl of each car was balanced by the 1eactions of
ihe rails and both rails were carryving cqual loads. Bul when the train
reached the curve a centripelal foree N arose, whieh {orced Lhe centre
of gravity of the cars Lo hegin
moving in a curved line;
simullancously a cenlrifugal
force began to acl trom Lhe
car wheels towards Lhe 1auls
and applied to Lthe outer
rail where it comes nlo
contlacl with the ilanges ot
the wheels. @

Lel us assume {hal lhe
cenlre ol cwivature lies lo »
the right, then the centisf- ‘
gal foree Ny will acl on {he
left —the outer 1ail (Ia.
138a). This force lends to
wrench the aails loose and
also retaids the motion of
the train by causing mmciecased
friction belween the wheels
and rails. It may cven result in the {rain jumping the track. JTTow
can all this be avoided?

Solution: lo overcome the bad elicel of this centritugal foice, .he

roadbed is banhked in order 1o yaise the ouler tail above the inner one
(Fig. 138D) and attain a ditterence 1 then heiehts o 'lins height must be

so chgeen that the reachion Q of Lhe rails aganst the cay is perpendicular
to theqross-section of the roadbed, thus eliminalimg any possible laleral

may be excerled on the rails. o achieve this, the normal {orce

N must@gual the resultants ol the toree ot granvily G and the reaction

Q. By red@ding Lhe car as a material poml situated atils cenlie of gravity

C, we derge the parallelodram CEDI® in wlhich Lhe diagonal €D, which

is horizon (it corresponds with the rotational radius), represents
2

the normal Y@rce N = L’I'?_ , where m is the mass of the car and R — the

ure. Sides CF and C I represendt, respeclively, Lthe weight
and the reaction ol Lhe 1ails Q.

Iculale the magnilude of h the diflference between
ils. 1'rom the similarity of lriangles CDI° and ABK

D—, whence h == —%%g (s is the width of the track
8a).
representation of centripetal force N =ER— ’
Q which may be determined as the hypotenuse
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radius of cur

we obtain gsi =

as Indicaled in Fig.
Since CD is a sca
and CF that of the reac



of the right (riangle CDI’, we obtain
mo?3s mp3s 1 mvs 1
h=To = K XTarra- K X
V\—R—) + (mg)r

RQ
which, afier its proper algebraic transformation, bccomc§
vis

rellt4 Y

{gl 1 gRE

The values v and ! as occurring in practice are such as lo make R
a negligible quantily. I<‘or‘ example, when v = 60 km/hr = 16.6 m/sec
and R = 300 m, then = 0.008Y. Mence il can be ignored, thus

gt
greatly simplifying the equation, which becomes
pEs
h = Ry

It is to be scen from this equation thal the greater the speed of the
train and the smaller the radius ol curvature, the grealer musl be the
height of the outer rail above the inner one. 1

In planning raitwavs, h is delermined by both the average speed
that a lrain is expecled Lo atlain on Lhe given curve, and the radius of
curvature.

111. Forces of Inertia as Applied
in Engineering

The forces of inertia play a very important part in modern
enginecring with ils high spceds and accelerations. [t is diffi-
cult to imagine a machine wilhoul some rotating part, and
since rpm atlain magnitudes of lens of thousands, centrifugalg
force is a faclor of particular significance. IFFrom IHustrative
Problem 52 we have already seen thal centrifugal force inay reach
several times the weight ol a given body. ,_

Assume that the centre ol gravity of a rolaling body g%
G considered as a material point, is situaled at a di Ay
¢ from the rotalional axis. According {o 1iq. (74), if s 20,000
rpm, then the centrifugal force N, will he equal t 3,000 Ge.
If the weight of the bodyv ( is 1 kg and eccentricily s as small
as 0.5 mm == 0.0005 m, then cenlrifugal force N, 411 be equal
to 224 kg. We thus sec lhat this force is 224 timegfgreater than
the weight of the body itself. This will cause
bearings and shaft journals and also canse

focking, all of
precision must

or surplus material
parl. For instance,

is removed. This is known as balanczng
ig. 139 is found not

if the centre of gravily of the sheave ing}



_ be on its geometric axis O but at a distance of OC from it at

»me point C, the centre of gravity can be shifted so as to make
"it align with the axis. To do this, il is necessary either, to atiach
an afded load al poinl A diametrically opposite C, or to reduce
the weight of the sheave at point /3 on the same diameter by
horing a hole of regnired dimensions in the rim. There are spe-
cial machines called “cenlering machines” used 1o halance parts.

Fig. 110 represents a bearing A rcady for machining and
fixed to a laceplate with an angle bar B. Although the centre
of gravily of the laceplale comendes with he axis ol Lhe spindle,

nevertheless when the angle bar and the workpreee are mounted
on the faceplate the cenlre of gravity wil shift to posihion ¢
and throw the whole svslem oul of halance. T'o prevent the spindle
ySupports from being subjected to centulugal loree, Lhe syslem
K}St be balanced. This is done by altaching a counferweight

K-glong the diameler passing Lhrough O anl (.. By denoling
the Qgeight of the angle bar plas the workpieee as G, and of

terweight K as G,, the lollowineg condition must be ob-
OC - G,0D; that is. [he moments ot these {wo forces
with reMRect to axis O must be cqual.

112, Questions for Review

caves 1he station, (ravels on a straighit and hoiizontal
ally galhers speed until a certain noment when it will
constant specd. Answer the following queslions:

are acling on the locomotive’s couplmg and on the
carriages, and how are these lorces directed?

es equal in magnilude?

for acceferalion and constant speed.

ain, whase carriages have no brakes, was travelling
g a straighl and horizontal track when ihe loco-
icd. What forces would arise bei ween the carriages
they have? Would these lorces have Lthe same
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irack and gra
have attained

Answer separale
2. Assume thatl a
at a cerlain specd al
motive brakes were ap
and whal direction wo



while the second member represents its kinetic energy at the
initial moment {;,. lHence Eq. (88) may be formulated as follows:

The work done by a molive force in causing a given displacement,
is equal to the increase in kinetic enerqy during that displacegent.

Let us investigale some specific cases. .

1. The above body is under the action of force P which coin-
cides with the direction of its motion and the resisting force
F; then the work done by the resultant of these two forces is
equal to (P -F)s, and Eq. (88) bceomes

y g mof mo§
(P — F)s L — "
or
, my mo?
Ps = Fs § "0 (89)

thal is, the work of a molive [orce is equal o the sum of work accom-
plished by the force of resistance during displarement, plus the
increase n linetic enerqy of the body.

2. If the body possesses unilorm molion, according to which
v, = v, then in the right side of Liq. (89) t‘h(- difference

mo} mo? \ ,
— ), whenee Eq. (8Y) hecomes

2 2
Ps  Fs, (90)

that is, when there s uniform moltion of translation, the work of
the molive f[orce 1s equal lo thal done by the porce of resislance,
in which case the kinelie energy remains constand.

3. If the body slarls Irom a stale of rest, 1.e., when p, =— 0
and the foree ol resistance must bhe coped with, then Lq. (89)
becomes

~

5 me}

s I's } 2'~ (91)
that is, when inmitial speed 1s zero. the work of Lhe molive jorcglzs
equal lo the sum of the work accomplished by the force of resigh#ice
plus the lLwnelic enerqy developed during displacement.

This case corresponds to Lhe furst phase in the motion @*a train
(when lractive {orce is in action) as alrcady discussed in the
preceding section 126,

4, The hody has acquited a definite speed and then proceeds
further under the foree of resistance, according lo which Ps =
=0, and LEq. (89) becomes

e moy  mo;
0= Is | 9 5
from which
myy e mof
—5-- Fs 4+ 7,00 (92)
that is, Lhe initial kinctic enerqy of lhe body (at the moment the
motive force ceases) is equal to the sum of the work done by the
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force of resistance during the given interval of time plus the kinetic
enerqy the body possesses al the end of that inlerval.
2

Frem Eq. (92) it is apparent that 32"—'< '"2"" . Whence
v, < vy, which means that the body possesses retarded motion.
When all its kinetic motion has heen expended, then

2
I — 0 and correspondingly v, — 0, thal is, the final speed

of the body becomes zero and il slops. IFrom LEq. (92) we ob-
2
tain m;“ - Fs, which means Lhal all the initial kinetic energy
v has been expended in overcoming the force of resistance.
7 As is apparent from the lefl side of L. (87), kinctic energy
i‘ musi he expressed in unils of work (kilogramme-metres) and

indeed

m® > see” 2 ko-m.

’
bl

mo?
“y kg > m ', see?

Kinetic encrgy is of tremendous importance in engineering.
+ Some illnslr:*iuns ol its use will be invesligaled later.

Oral T rercises

1. Can Lwo bodics of dilierenl mass have tne same lanctie energy?
On whal condition?
2. If the spead ol a body posscssing uniform molion of translation

Uis arercastd p Limes, whal change will Hwre be in its Linclic energy?

Mustrative Problem 64, 1T the specd ol a train is p,, whal distance
s will it Gravel witer the biakes have boeen applicd?

Solution: whan the brakes are applicd The train’s kinetic energy
! mr} i . . 5 :
4 T =-,%, or, if we denote (he weight ol the whole hain as G, then its
< G . Go
*-nas.s m=—aud T — '

g = . -

ty denoting Lhe force of hiielion as 17 and (he eocllicient of friclion
gwe oblamn from Eq. (42)

as
. Grg

b} I's — f‘ L

=4

. < . . v} .

Inasmuch as [ = [/G which gives [Gs = e then afler cancelling

G it becomes .
[t
= g

We thus see that the dislance s required to stop the Lrain, by appli-
cation of ils brakes, does not depend on Lhe mass or the weight of the
{rain but mierely on ils specd and cogfficient of friction.

Mlustrative Problem 65. A body sliding down an inclined plane AD
(Fig 155) halls at point C. a distance of s froin I along the horizontal
surface. Find the coefficient of friction f if (he wmotion began without
an initial velocity at poinl A which lics a distance ¢ from B.

Solution: the velocity of the body at both positions A and C is zero,
therefore its kinclic energy at these posilions is also zero. Along scgment
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AD the body is controlicd by the force of gravity G and the force of
friction F. Along scgment 3C, only the force of Iricltion is acling upon
the body.

We lirst find the Kinclie energy {hat the body acquired at the time
it reached B. The work W, done by force G during displacemeift [ is
expressed by Il = Glsin «, and the work done by the foree of friction

F is expressed by W, = Jl = fQl =
— /G cos « l. Flence the sum of work

L- A of the molive foree and the force of
e resistance W, 4+ W, = Gl sin a —
r NN g Gf Leos a. By equaling the sum of
¢ o\ worh and kinetie encrgy at point B,
|» i\ we oblain
o < -—
2
Fic. 155 Glsine  Gflcos e — m;_ .

. . . . . e,
Since the body expends this kinelie energy complelely in moving
m®

)
“

along dislance s, we oblain /Gy - and finally evolve

Glsin v Gflcos v - [fUs,
which, after canedling G, heconmes
/ I i o
Leos o | &

e~

128. The BEuergy of a Body \loving,
Under the Foree ol Gravity. Potential Energy

The law ol the trimsformalion of Kinelic energy is obviously
also applieable Lo lhe loree of oravily.

When we throw a slone apwards, we imparl a definile ve-
locity o it or an amonnl ol kmelie energy corresponding  to
the inilial velocity, I'his enervy, if Lhere were no resistance
from the air, would he expended entirely in raising the ston
to a delinile heighl, that is, would bhe dishbursed in work
overcome the foree of eravily. When Lhe stone has risen
height it will have Tost all ils kinelic energy and ils velocig#fwill
become zero. Aller this the stone will hegin lo fall, ils Kinetic
energy increasing in proportion Lo ils veloeily and it will strike
the ground wilh the same veloeily that it had al the beginning
of its upward molion, as already explained in kinemalics (Sec. 67).

By employing . (88) and denoting the upward motion
as »;, -0 (lhe veloeily al the highesl point) and the” downward
molion as », O (the initial velocilv when (he stone begins
to fall), we obtaiu the following two equations:

rn - — ?_')"“ during {he upward molion

and (93)
Ph-= —"_')"7— during downward motion,

wherein h is the height the sionc reaches,
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This upward motion is analogous to the motion of a train
withoul (ractive force erpending all its kinetic energy in over-
coming resistance. The downward motion is similar to the mo-
tion mf a train travelling with an excess ol traclive force over-
coming resistance, and as a resull acquiring kinetic encrgy.

Assumc that a body ol weighl G and mass m is falling to Lhe
ground from a given height. We denole Lwo positions ()1 and
0, of the cenlre of gravily of the body (Fig. 156). We also de-
nole hy as the heightl ol the centre of granily when al posilion
0,, and h, as the height al position 0,. It Lhe
velocity of Lhe l.lllmg body al O is equal to v, &g ~1
and at 0, is equal o p,, then the kinetic energy {
equalion (88) for posihion O, will be

[

G, -hy) M (01
S —
or 0, r i
Ghy | " Gny ™ (93) N
Whercfore, #en a body is {alling under the force o

of gravily, the suwm of the produet of the wewghl of
the body mulliplied by 1's hewyhl from the qround
plus the kinelie enerqy the body pessesses al that

hetght, s a constan! quanltily.

The first ilem ol the above snm, which repre- ZWLW%
senls the amountl of work expended Lo raise the  * T
hody to the given height, is called the  polential 114, 156
enerqy ol the body. The magmtude of Lhis po-
tential cn('rgy depends upon the heieht, for which reason it
may also be called the enerqy of posdion. 'The magnilade of ki-
‘“clu, energy is delermined by the veloeily, henee it represents
, energy of molion.
more delailed stwdies on mechanies 10 is demonstrated
vhen a body is moving under the foree ol gravity,
Eq. (95) holds true nol only Jor the body’s vertical direclion
bul also for any other l!.lJ((l()r\'

Wherefore, when a body is huiled upwards, the sum of ils po-
tenlial und kinelic energy is constanl al any hewghl, independent
of the shape of the trajectory through which il is moving.

From LEq. (95) we see that at the moment a body starls
to risc, all ils encrey is in Lhe form of kinelie energy (h, -- 0),
and when il has reached ils grealest allitude (v, —- 0) all ils
energy has been converted into polential energy which is again
changed into kinelic energy when the body falls to the ﬂmund

Thus, when a body moves upward and then falls hack again,
its energy remains constanl in magnilude bul changes from
kinetic to potential and then back again Lo kinclic. This transi-
tion of mechanical energy from one form lo another is a part
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of the general principle of the conservation of energy, first.dis
covered by the great Russian scientist M. Lomonosov. ~

The kinetic energy of a moving body is made wide use of in
driving piles, forging metals, and many other kinds of swork
in engineering. Sometimes the work is done entirely by kinetic
energy of a freely falling body (the head of a pile driver, drop
hammer, and the like). At other times, besides this energy, addi-
tional kinelic energy is imparted to the body during its fall
(steam hammer, hammer, etc.).

The transformalion of kinetic emergy into potential energy
and back again is not restricled to rising and falling bodies;
by expending work in compressing a spring, we impart a certain
amount of potential energy to it through its internal forces of
resilience, which energy again hecomes kinelic as the spring re-
turns to its original form.

Orul Ezercises

1. What is the difference between potential -and kinctic energy?

2. If two bodies of the same wass are ail different heighis h, and h,,
which will have the greater potential energy and how_much greater?

3. The velocity with which one hody falls to the griVvand is n times
greater than that of another. How much more kinclic energy has the
first than the sccond?

INustrative Problem 66. Water enters a hydraulic engine at a high
level and at a spced v, = 4 m/sec and emerges at a lower level h = 1.8 m
at a speed v, = 1 m/sec. The quantily of water passing through the
engine per sccond Q = 6 m®. Whal is the horsepower of the engine?

Solution: the engine reccives its power firstly from the potential energy
of the watcr and secondly from ils kinctlic energy. The potentiial energy is
equal to 1,000 Qh and th: kinetic cnergy is equal to

most moy 1,000Q

2 _ p)
2 ) —_— 2.(] (Dl vﬂ)'
Hence the cnergy used by Llhe engine in one second
¥ — vt 4 — 1t
N =1,0000 (h + 5 —-) = 1,000 x 6 (1.8 + 2‘;{1{5) kg-m /P or,
: 1,000 x 6 LA Y
in horsepower, N 75 1.8 + ‘Q‘i"g?zii’) = 205 hp.

129. Kinetic Energy of a Body Retating
Around a Fixed Axis

Assume that a hody, to which any number of forces are applied,
does not have motion of translation but rotates about a fixed
axis. Let us see how we can apply Eq. (88) as derived for a mate-
rial point: \ .

mv mv,
Ps=—5t—-3

Since in motion of translation all points of a body move in
one way, this equation is applicable to the motipn of a body of
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mass m as a whole. In rotation, motion is more ¢complex because
different points of the body, instead of movingin one way, describe
varigus trajectories and possess different velocities and accel-
erations at one and the same time.

Expressed on the left side of Eq. (88) is the work performed b
the force along a distance s. When applied to rotation, this wor
is given by Eq. (77), in which work is dctermined by the turning
moment and angular displacement. As for the right side of the
equation, the velocities v, and p, at the final and initial moments
respectively, as well as mass m, musl embrace each separate point
of the body. Since the velocity of a point, as alrcady explained
in kinematics, is proportional to the radius of rotalion, then the
right side of the equation must contain the sum of the product of
the mass of the particles multiplied by the square of the distance
from the axis of rotation. This sum embraces all the points of the
body and is called the momenl of inerlia in respect to the axis
of rotation. It is evident from the above Lhat the unit of the mo-
ment of inertia is the product of the unit of mass multiplied by

the square 0; the unit of length, i.e.,

kg-m~1 sce? X m? = kg-m X sec?.

In order to understand the physical meaning of the moment of
inertia, leL us consider the following example. Assume that two
cylinders of similar weight and malerial but of different diameters
are fixed to similar shafts. We impart to both shafts an identical
angular velocity and when the turning moment ceases to act,
each shaft will continue to rotale at the expense of the kinetic
energy imparted to it by each cylinder. If we observe the time
consumed by each cvlinder to come to a standstill (or count
,the Lotal number of revolutions made by each) we shall see tKat,
% ‘th equal resistance for each specimen, the shaft o which is
t&g&the cylinder of greater diameter will rotate longer. This
med¥s that the kinetic energy of this cylinder is greater although
its mass is the same as that of the other. Thisis hecause the cylin-
der of greater diameter has a greater moment of inertia. A very
narrow disc will revolve even longer.

The moment of inertia of a cylinder rotating about its geometri-

]
cal axis I = 75°, R being its radius*.

From this we see that when the radius of a rotating cylinder
increases n times, its kinetic energy increases n? times. It likewise
follows that in order to impart to a cylinder of greater diameter
the same angular velocity as to one of smaller diameter, there
must be a greater turning moment for the former, or if both have
an equal turning moment, it must be applied for a longer period
of time.

* The Jetter I is the usual symbol for the moment of inertia.
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130. Governing an Engine. The Funetion
of the Flywheel

Kinetic energy is of great importance in the work of machines.

As already explained, the less the work of the [orce of resistance,
the greater will he the kinetic energy a hody acquires "under the
action of a molive torce. This also holds true for the work of a
machine as a whole, inasmuch as a machine is made up of a number
of interrelated moving parls. For example, let us consider a steam
engine imparling molion lo a dynamo generaling electricity.
If the amount of expended eleetrie energy diminishes, the load on
the engine will also diminish. Hence,
it the turning moment on the engine’s
muain shatl remains constant, there will
be a surplus ol energy over the work
ol the lorces ol resistance. This will
cause an increase hoth in  velocity
and kinctic energv, Il therefore follows
that the engine must be equipped with
a device making il possiMe to maintain

4 the destred rpm. Sueh a device is called
a qovernot.
Fig. 157 There are different kinds of gover-

nors. Ivig. 157 shows schemalically one
of the tvpes ol a centrifugal governor. To spindle A, which
is rotated bv the engine’s shall, is connected the erossbar
13 to which the arms ¢! € are conuccled throush pivols. Arms
(—-C, which hear the balls 1) [, are in their Lnin attached
through pivots to arms /¢ Is. These are conneeled at their other
ends 1o the sleeve I which mav slide Ireely on the spindle. The
arms (-- (0 are drawn {ogelher by the spring K. Thus each a
CC is acled upon by the tollowing lorces: its own weight an
weight of ils connections (the arms £ K, ete.), lhe wei
the ball, the pulling loree ol the spring K, and the centrifugal
force developed by Lhe ball. The spring can be regulated in such
a way thal at a prescribed number of revohitions the arms € -C
will be in equilibrium and the sleeve I7 will maintain ils position
in respect Lo the spindle. If the rpm of the spindle increase, there
will occur a corresponding increase in centrifugal [orce developed
by the balls, arms C € will streteh outward and arms If- - E will
raise the sleeve I°. The sleeve is conneeled through a special
mechanism with the slecam throttle or fuel inlake. Thus any
change in Lhe posilion of the sleeve I will cause a corresponding
change in the supply of stecam or fuel. In this way Lhe rpm of
the engine shait are kept at the prescribed rate.
In piston engines (sicam engines and internal combustion en-
gines) a slider-crank mechanism is used (lurn hack to Fig. 122)
in which the piston assumes the role ot a slider. As will be explained
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later in Part II of this book*, the specific character attending
the transmission of motion from the slider to the crank is that
the latter rotates with variable angular velocity, the variations
being periodic. In order to overcome this fault, a flywheel is
fitted on the main shaft of the engine. This flywheel accumulates
mechanical cnergy during one period and gives it up the next,
thereby making rotation of the main shaft almost uniform.

Flywheels are also used when il is necessary to do work in
a short time which otherwise world require a considerable increase
in the power of the machine (for example, in heavy presses, giant
shears for culting metal, etc.).

It is therefore apparent from what has been said that the
amount of kinetic energy thatl a tlywheel can accumulate depends
on Pts moment of inertia—on its mass, diameler, and on how its
mass is distributed; the further a certain mass is siluated from
the axis of rotation, the greater will he the moment of inertia.
For this reason the rim of a ilywheel, unlike thal of an ordinary
shcave, is made massive.

¥ 131. Mechanical Efticieney

All machines are intended to overcome useful resislance (the
resistance of metal to cutling, Lhe 1esisfance of a load to heing
displaced, etc.). We shall denote work done in overcoming useful
resistance as W,. There are also various kinds of harmful resist-
ance in a machine (Iriction, resistance of the air). We shall denote
the work done in overcoming this resistance as W,. 1 a machine
is to run uniformly, the work of the motive forcc W,,, must be
equal to Lhat required to overcome all resistances, thal is,

Wos = Wy + W (96)

« he motion of a machineis said to be eslablished if the velocity
of all ils moving elements remain unchanged after each revolution
of the shaft.

If Wpy> W, 4 W,, then the surplus work is expended on
increasing kinetic energy with a corresponding increase in ve-
locity. This occurs when an engine is being starled, in which
case W, = 0 because there is no useful resistance.

When motive force is cut off, the continued motion will be
due to the kinetic energy the machine has accumulated. If useful
resistance also ceases, the encrgy will be absorbed in overcoming
harmful resistance and, after a given tune, the machine will stop**,

% See Part II, Sec. 186 (p. 267)

w& The science dealing with the forces acting upon the various links
of machines is called dynamics of machines. Extensive rescarch in this
field has been done by the Russian scientists, N. Zhukovsky, K. Rerikh,
N. Mertsalov, and others.
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Therefore a machine possessing established motion must satisty

E% (96).

y dividing both sides of this equation by W, we optain
Wy W
wo _W,:, =1 ) (a)

The first member of the left side of the equation denotes the
share of the machine's work in doing useful work (work for which
the machine is designed). This expression represents mechanical
efficiency, which is a measure of the useful expenditure of mechanical
energy. By denoting it in the accepted manner by the letter
7, we obtain

Wau
n= Wt : "(97)

The second member of the equation expresses the part of the
work expended in overcoming harmful resistance. Accordingly,
Eq. (a) may be given as

Wi
7l=1—Tl’,l' (98)

Thus we sec Lhat ctficiency is always less than 1. %

Oral Ezercises

1. When will the work done by a machine salisfy the equation
Wy = Wy, 7 What would its cfficiency be equal to?

2. Can a machine do uscful work if W) = W,,;? What would its
efficiency be equal to in this case? .

Illustrative Problem 67. Under the aclion of forece P, a body of weight
G is displaced at a conslant speed from position A to B on an inclined
plane (Fig. 158). Find its efficiency if the
coefficient of friction / = 0.1, and the angle
L ) of inclination « = 27°.
4 g Solution: if motion is uniform, the
4 condition W,; = W, 4 W, must be satisfied.
Q The useful work done in overcoming the force
a\ of gravity W, = Pl = G sin al. The magni-
A ] \\lf,\ ¢  tude of the work done against the force ot
\ Cad

friction Wj = Qfl = G cos «/l. Hence,
W,y = Glsin « + Gfl cos a,
Fig. 158 and
_ Glsin a _ sin a .
1= Glsine +-fcosa) sinad fcosa
By dividing the numerator and denominator of the right side by
cos @, we obtain
tan « 0.51

"= tane +7 051+ 0.1
132. ¢Perpetual Motion”’ as an Impossibility

For many centuries fruitless attempts have been made to
invent a machine which, if once started, would continue to run
without a further supply of energy—the “‘perpetual motion

/s 0.84.
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machine that would run without the application of any motive
force. If such a thing were possible Eq. (96) would rea

Wm]= u+wh=0-

From this it follows that such a machine would work for an
indefinite length of time at a constant speed if W, =0 and
W, = 0, that is, if no work had to be done in overcoming resist-
ance. Let us concede that a machine does no useful work (W, =
= 0), in which case W), = 0; 1his infers that neither should there
be any work to overcome harmful resistance. This is impossible,
for any movement of contiguous hodies relative to each other
is always accompanied by harmful resistance. Accordingly,
however small such resistance may be, the machine will expend
the kinetic energy of starting in order to overcome this resislance
and will inevitably come to a standstill.

Hence we see 1t is impossible Lo make a machine which would
do useful work, or even only Lhe work of overcoming harmful
resistance, for an indefimle length of time without a further

supply of emargy.
133. Impaet

If a body in motion comes into contact with another body (either
moving or at rest) the interaction between them 1s called impact.
Experiment has shown that impact 1s accompanied by a change
in form (deformation) of the colliding bodies. The
magnitude of deformalion depends upon the

physical properties of the hodies. Afler impact, 4

some bodies recover their original form, while

others remain deformed. The ability ot a body -
/4

to resume its original form is called elasticily. It
must be noted here that there are no perfectly
elastic materials, just as there are no ahsolutely

hard materials. However, some malerials may be ¢
considered elastic (ivory, tempered steel) and 2
others inelastic (clay, for example). Accordingly,
there may be either an elastic or inelastic impact, 77
geggnding upon the materials of the colliding

odies. ,

Let us assume that a ball of mass m (Fig. 159) A
is falling freely. After it comes in contacl with
a horizontal surface it becomes deformed for an Fig. 159

instant. If the ball and the horizontal surface
were both absolutely inelastic, the ball would remain motionless.
If the ball possesses a velocity of v, when it falls on the surface,

its kinetic energy would be t_nzﬁ and would be expended in the
work of deformation.
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Now let us assume that bolh the ball and surface are made of
absolutely elastic materials. In this case the ball's kinetic energy
would be expended very rapidly in overcoming its internal forces
of elasticity, that is, it would be expended in deformations Ki-
netic energy would be converied into potential energy of the
deformed body, after which the reverse would happen¢ the two
hodies would recover their original form under the action of the
force of elasticity, potential energy would‘ again be transformed
into kinetic energy whose magnitude ’522‘= T}f and the ball
would move in the opposite direction with a velocity of v, equal
in magnilude to the velocity v, which 1t had at the moment of
impact. Ilence, when such an impact is absolutlely elastic, the
velocily of rebound is equal lo the velocity of the fall. If two elastic
balls of the same mass are moving towards cach other with equal
velocities, afler rebound they will move in reverse directions

with the same velocilics.
Now let us assume Lhal impacl is not absolutely elastic. This

means thal the kinelic energy of the ball hefore impact mTv}
will not be fully regained after rebound, i.e., %U;<".’TD;, from
which it tollows Lhat v, <p, and the hall will rebound with a
smaller velocity. The relationship %-_— k, called Lhe coefficient

of restitution, describes the elasticilty ot materials. Ifor example,
if the balls are ot wood, k' 0.5; il of steel, k = 0.77, etc.

134. Impaet of a Freely Falling llammer

Impact is a phenomenon that is taken advantage of extensively
in industry since it makes it possible for one of two colliding
bodies, it il has a small mass bul a great velocity, to do a large
‘amounti ot work with a small displacemenl. The work of a sledge
hammer or a pile driver illustrates this.

Let us cxamine Lhe work of the drop hammer shown in Fig.
160, the ram D of which and its die E drop freely under the action
of Lhe force of gravity. We dcnote the weight of these dropping
units as G and the height of their fall as II. The velocity », which

they have upon dropping is, according to Eq. (37), v, = [2¢H,
2
hence they acquire kinelic energy of %D’ = GII.

As has been explained in the preceding section, when im-
pact is inelastic, the velocity after rebound v, is less than the
. 2 1]
velocity of the fall v,, according Lo which T;—’<’%, that
is, part of the kinetic energy is expended in the deformation of the
mutually colliding bodies. Since it is the aim in the proc-
ess of forging to deform the workpiece as mueh as possible,
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therefore the greater the hammer’s expended kinetic energy, the
more efficient it will be.

During forging, the workpiece I (Iig. 160) lies on the anvil
B which is mounted on a massive steel block C, which in turn
rests upon a foundation. When the die hits the workpiece, it not
only deforms it but shakes all the undersupports, which means
that a portion of the kinetic encrgvis expended in displacing these
undersupports. Obviously, the smaller this displacement, the more
effective will be the hammer’s energy.
From this it follows that all the undersup- 7
ports of a drop hammer should be made as
heavy as possible. In more detailed studies
of mechanics it is proved that the efficicney
of a drop hammer is expressed by the cqua-
tion

n- gt (1=, (99)
ot
in which G@s the wecight of the dropping
units of the hammer, G, {the weighl of the
workpiece and ils supports, and Lk Llhe
coefficient of restitution. It is evident (hat
with a greater G, there will be a smaller
denommator and hence the hammer will
be more eiticienl. Usually wilh a lreely e, 160
falling ram, the weight ot the steel block s
made Len to fifteen. and even twenly, Limes heavier than the
weight of the ram.
INlustrative Problem 68. A\ foigimg hammier, whose dropping units
weigh G = 2,250 kg and {all hom a haght /- 1.0 m, foiges a work-
piece in ten strohes. Find the amount ol uselul mechanical eneigy W,

if the weighl of Lhe steel block (o — 13 Lons, the cocthieient of restitution
k = 0.4, and the fiiclion loss of encrev in the guides is 59,.

Solution: the kinetic enetgy of one stioke W, = 0.95 n;v- - 095 GH ==

= 3,206 kg-m. [lence in len stiokes the energy eapended usetully W =
= 3,206 x 10 = 32,060 kg-m. We then lind the cificicncy of Lhe hamimer

through LEq. (99): .
= —aa —_ ) = (.8.
. 1 ="5350 +1(1 0.4%) = 0.8
45,000

Wherequn, the energy spent on forging alone Wy9 = 32,060 x 0.8~
A 25,650 kg-n.

135. Questions for Review
1. Explain why railway carriages and locomotives are equipped
with bumpers.
2. It occurred that the last few carriages in a train had no brakes.
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What will happen when the train’s brakes are a‘i)plled? Will the bumfpﬁr
springs between these carriages be compressed (deformed) all to the

same extent?

3. A body of weight G falls from height h, to height h,. What change
is there in its potential energy?

4. If the shaft of a machine must change its direction of rotation
at brief intergals of time, should it be equipped with a flywheel?

5. Why is not the steam engine of a locomotive in need of a flywheel?

6. What kind of motion will a machine have if at a certain moment

Wm < W-u + Wh?

'/l. Is an efficiency %= 1 possible?

8. A body which comes into collision with an immovable barrier
remains motionless. What is its kinetic energy expended on?

9. Explain why it is more advantageous, when cutting a workpiece,
to use a heavy vise and a heavy workbench.

10. One of two drop hammers has a heavier anvil and foundation
than the other. Which of the two will work more productively? ¢

136. Exercises

72. Alocomotive with a tractive force of 15,000 kg pulls a train
weighing 1,500 tons along a horizontal track. Considering that
the resistance to motion is 0.005 of the weight of e train, find
the kinetic energy it accumulates after an elapse of two minutes
of starting, and the work performed during that time, assuming
the tractive force to be constant.

73. After an elapse of six minutes the same train reached an
upgrade, moving againsl a resistance of 0.075 of its weight. If
steam is cut off at the beginning of the upgrade, how long will
it take the train to stop and whal distance will il have covered
from that point.

74. After starting from the stalion, a train weighing 400 tons
develops a speed of 72 km/hr when it had covered a distance
s = 1,600 m. IFind the tractive force P, assuming it to be constant,
and also the braking force F, if upon cutling off steam and apply-
ing the brakes, the train travels another 2,000 m (assuming
resistance without braking to be 0.005 of the weight of the train).

75. The weight of the dropping units of a drop hammer G = 3
tons, and of the workpiece, anvil, and other undersupports 40
tons. Find the efficiency of the hammer if the coefficient of
restitution k = 0.4.
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THE THEORY OF MACHINE:

INTRODUCTION

137. Machines and Mecechanisms

Assume that a threading latheis culting a thread on a workpiece.
The rotation of the elcclric motor is transmitied Lo the spindle
of the lathe and then Lo the lead screw. The rolation of the screw
is converted inlo motion of translalion of the carriage. By setting
the lathe properly, we may oblain the required rotating speed
of the spind® as well as the motion of [ranslation of the car-
riage.

A system of interconnccted bodies periorming prescribed mo-
tions is called a mechanism.

Zach moving part making up o mechamsm s called a
link.

That link of a mechanism which imparts molion lo other
links is called the drwer, while those to which the motion is
imparted are called the jollowers, or driwen lhnks.

A melal-cutling lathe is pul in molion by an eleclric motor.
The motor receives clectricity from the local supply and converts
it into mechanical energy which (he lathe expends performing
mechanical work to overcome useful resistance (resistance to
cutting). The electric motor inits turn receives electricily generat-
ed by a dynamo which is also put in motion by a unil of
some kind (a hvdroturbine, an internal combustion engine, etc.)
which is runeitherby the mechanical energy of a hydraulic engine,
or thermal energy derived from fuel in an internal combustion
engine, etc.

In all these instances we find thal the unit ecither receives
mechanical energy and transforms it into some other form of
energy (a dynamo), or receives some form of energy and trans-
forms it into mechanical energy (an electric motor, internal
combustion engine, steam turbine), or performs useful mechanical
work by means of mechanical energy supplied Lo it (hydroturbine
and metal-cutting lathe).

A combination of mechanisms designed tq transform energy
into the form required and thus to do useful work is caled a
machine.
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Mechanisms are not only incorporated into machines, they are
also used independently. For example, a clock is not a machine
since it is not intended to transform energy or to overcome useful
resistance.

138. Historical Survey of Machine Engineering
in Russia

Long ago, in an age when machine construction was still in
its infancy, talented Russians skilfully achieved practical solutions
to complex mechanical problems. This was especially true at the
time of Peter the Great, who encouraged many outstanding
inventors 1n their work, such as A Nartov, N Pilenko, M. Sidorov
and others; Nartov invented the fust lathe with a carriage ,and
the first duphcating lathe Of the numerous Russian mechanics

I. Vyshnegradsky

of the 18th century, particular note must be made of I. Polzunov
(1728-1766) for his steam engine.

The briliant Russian scholar M. Lomonosov combined his many
world-famous purely scientific researches with inventions in
machine engineerirg, such as the spherolathe, a grinding machine
and a facing lathe.



. L. Kulibin (1735-1818) became well known for his major
lnventions in various branches of technology, particularly in the
construction of different kinds of instruments.

Nefther was theoretical work neglected in the 18th century;
the first treatise on mechanics to be publshed in Russia.was
compiled by G. Skornyakov-Pisarcv and appeared in 1722,

N. Peliov

containing calculations tor the coustruction ol levers, windlasses
and other simple mechanisms.

Beginning with theend of Lhe 18th century, engineering mechan-
ics began to progress rapidly in Russia- a development which
continued into the 19th and 20th centuries. Among the eminent
scientists responsible for this advance were P. Chebvyshev, I. Vysh-
negradsky, N. Petrov, M. Ostrogradsky, V. Kirpichev, N. Zhu-
kovsky and a host of others.

These achievements of Russian scientists and inventors in
the field of engineering did not reccive proper support in pre-
revolutionary Russia. But the Great October Socialist Revolution,
which swept away capitalism and placed the former privately-
owned means of production into the hands of all the mﬂz.
completely changed this situation,
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In his closing address before the Third All-Russian Congress
of Soviets, delivered after his brilliant analysis of the historic
significance of the Great October Socialist Revolution, V.I..Lenin
said:

“In the past man’s mind and genius provided a chosen few with
all the benefits of technology and culture, while most ofhers were
deprived of lhe essentials of education and development. But
now all the wonders of engineering, all the achievements of
culture, will be within the reach of all the people, and never
again will the mind and genius of man be turned into a means
of coercion and exploitation’*.

M. Ostrogradsky

Lenin’s profound words are turning into reality before our
very eyes. Each year labour-consuming processes are being mecha-
nised on an ever-widening scalein the U.S.S.R., where engineering
is creating highly productive machines. This work is in close
harmony with the policy of extensive automation — the highest
stage of mechanisation.

In machine building, efficient Soviet-made automatic lathes,
as well as entire production lines of unique design, are already
in extensive use in the manufacture of machine parts.

On construction sites, walking draglines with a 25 m?® (and

* V. I. Lenin, Collected Works, Russ. ed.. Vol. 26, p. 436,
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hiore) capacity may now be seen; a small but efficient crew on
one of these machines displaces the work of from seven to nine
thousand hand labourers.

Maey efficient mining machines, particularly for the coal fields,
were first designed in the Soviet Union. At the present time the
coal-combine takes the place of several machines heretofore nsed

V. Kupichev

separately in the operations ol cutting, blast-hole drilling, and
loading of the coal upon the conveyors. The U.S.S.R. now takes
first world place in Lhe mechanisalion of coal mining.

Greatstrides are heing made 1n the Soviel Union in the production
of equipment for electric stalions, melallurgical plants, highly-
efficient machine tlools, automatic produclion lines, forges, all
types of unique instruments and olher machines.

These mechanisation processes, which are doing away with
former labour-consuming hand operations, not only make work
easier but also raise productivity to a very high level.

And now still greater events have occurred in the development
of Soviet science and techaique—the launchings of Soviet
manned rockets into the ouler space. For these space ships—
Vostok-l and Vostok-2 — are the forerunners of man’s flights, in
the not-too-distant future, to the moon and the planets of the
solar system—Venus, Mars and others.
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CHAPTER XV

THE INCLINED PLANE, THE PULLEY,
AND THE WINDLASS

The inclined plane, the pulley, and the windlass (alsq known as
a winch) were among the very first engineering contrivances in
technical history. They are still used as integral parts of various
machines and mechamsms and for that reason we shall begin
with them in making our acquaintance with the theory of mach-
ines and mechanisms. Until recently the inclined plane, the pulley,
and the windlass were called ‘‘simple machines”

139. The Ineclined Plane

Assume that a body of weight G is lying on an inclined plane
KM (Fig. 161a). We resolve the force of gravity G as represented
by vector CA, into component CD perpendicular to KM, and
component CB parallel to XM. The force CD is balanced by the
reaction N direcled tn the opposile direction. Ilerge, the body’s
motion on Lhe inchued plane will take place under the action of

forceCB. If there were no 111cLion hetween the body and theinclined

N
M
2\Z »
e 11
K Li
AN
N7
A -—-7
5
Iig 161

plane, the hody would shde down with a definite acceleration.
In order for the body to be in equilibrium (to eithér remain at
rest or to be displaced along the plane at a constant spged),
a force P represented by vector CE and equal and opposite 1o
vector CB would have to be apphed to it. Thus the body can be
in 3 ;tate of equihbrium under the action of three forces — G, N,
and P.

Let us determine the magnitude of force P.

By denoting the length KM of the plane as I and the height
LM as h, we obtain, from the similarity of the right triangles
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KLM and ABC,
CB CA . . ML h
o« ML = EM’ from which LB=CAW =CA -
And since force P is represented by vector CE which is equal
in magnitude to vector CB, we obtain

h
P=G21. (100)

This equation can be given another form. By denoting the
angle of inclination LKM of the plane as «, we oblain from

AdKLM
h =1 sin «,

from which —); = sin «. and
P =G sin a. (101)

Let us look into a case when force P is nol parallel to the
length of the jnclined plane bhut to its hase KL (Fig. 1615). In
this case we reSolve force G into two componenls —one component
CD perpendicular to the length of the inchned plane, and another
CB parallel to its base KL. Just as hefore, irom the similarity of
the right trangles XLLM and ABC, we arrive at the relationship

CB CA . ML ., h
W = TL—’ from whichCR = CA TXT =(4A—;‘—|

hence
P=G"s (102)

in which a is the base ot Lhe inclined plane.
From AKLM we obtain

h — a tan a, Irom which % = i{an e,
and P =G tane. (103)

A comparison of Eqs (100) and (102) will show that the first
way of applying force P is the more advantageous since its
magnitude- 18 less, the same being evident from Eqs (101) and
(103), because sin @ < tan «. .

Let us assume that the body is moving uniformly up the same
inclined plane. In this case the weight G of the body constitutes
a useful-resistance which is overcome by the motive force P.
Assume this force to be parallel to the length of the plane (Fig.
161a). Since the sine of the angle cannot exceed 1, it follows from
Eq. (101) that when & = 90° inevitably P <G, that is, when
force P is parallel to the length of the inclined plane, the inclined
plane gives an advantage in force. -“This advantage is deter-
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mined by the ratio of the magnitude of the force of resistance G
to the magnitude of the motive force P, which according to
Eq. (100), is represented by

G 1
PR

Thus, in order to raise a body to a height h = ML, force
P musl bhe exerted through the entire displacement ! == KM.
We could raise the body to the same height i without the inclined
plane if we applied a verlical force to it, equal and opposite to
the weight G of the body.

IFrom this relationship il follows that lhe greater the gain in
force, the grealer the loss in displacement, and vice versd.

This is the “ABC” of mechanics.

The conclusions thus reached are also applicable to the second
case examined above, when force P is parallel to the base of the
inclined plane. Il should only he noted (hat since the tan 45° =1,
force P, as is apparenl torm Iq. (103). will he smaller than
torce G when « << 45°, whereas when « ~> 45° the two forces
will be equal, and when « —45° lorce > > . ®©

Now let us compare the work perlormed by the forces applied
Lo the body when 1ts motion along the inclined plane is uniform.
As already noted, the body is under Lhe action of forces G, P,
and N. From l11g. 161« it 1s evidenl thal force G forms an angle
ACB — 90° -« to the inchne. By employing Eq. (76) we obtain
the work Wg pertormed by this force through displacement [:

We = Glcos (90° — «)  Glsin a.

The work performed by force P
Wp = Pl= Gsinal = Glsina.

The work performed by force N directed perpendicular to
the motion, is zero. Thus we see, W; — Wp, that is, the work
of the molwe forcc is equal 1o the work of the force of resistance.

Heretofore we have limiled ourselves to uniform motion
of a body up an inclined plane without taking friction into
account. In actuality friclion diminishes any advantage gained
in force. Therefore besides force C B, the force of friction F = fN
(in which f represents the cocfficient of friclion) is also directed
opposite to the motion.

When force P is directed parallel to the inclined plane,
force N = G cos «, which means thal the force of friction IF ==
= Gf cos a.

If the body is to have uniform motion upwards, force P must
be equal to the sum of the forces of resistance, i.e.,

P = G sina 4+ Gf cos « = G(sin « + { c0s x). (104)
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Mlustrative Problem 69. It 1s necessary to rmse load G = 400 kg
distance of 0.5 m along two parallel inclined beams each 5 m in length.
;'A‘tnd0 tllée force required to do this work if the coefficient of friction

SBlution: with h = 0.5 m, and ! = 5 m (Fig. 161a), we have 0.5 =.
== 5 sin @, from which sin & = 0.1, a= 5°45’, cos « = 0.995, and the force
required

P = 400 (0.1 + 0.15 x 0.995) A 100 kg.

140. The Wedge

The wedge is one form of the inclined plane and possesses
the shape of a triangular prism (Fig. 162a). In a longltudmal
cross—snctlon of this prism the angle

-2 / KML is considerably smaller than
either of the two other angles. Edge KL
is called the head of the wedge, while the
side edges KM and LM are its checks.

Assume that the wedge, under.the action
of force P, is penetrating into another
body at agconstant speed. The body
resists the motion of the wedge. This is
expressed by the reactions N, and N,
perpendicular to the cheeks of the wedge.
When examining the equilibrium of the
wedge without taking friclion into ac-
count, we find that forces P, N, and N,
balance each other. We delineale these
three forces from any arbitrary point O,
and on vectors OC; and OD,, rcpresent-
ing forces N; and N,, wec construct the
parallelogram OC,E\D, (Fig. 162b). If.the Fig. 162
s(xjystem is in equlhbnum, the diagonal

must be equal in magnitude and opposite in direction to
vector OF representing force P. A comparison of triangles OC,E,
and KLM will show that they are similar because their angles
are formed by mutually perpendicular sides; from this it follows

that
P:N;:N,=KL : ML : KM. (105)

If the wédge has equal edges as shown in the figure (KM = ML),
then

N KM

that is, the mechanical advaniage in force is equal lo the ratio of the
length o 1 the cheeks to the thickness of the head. The smaller the
angle of the wedge and the thinner the head, the greater will
"be the gain in force.
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The properties of the wedge are used to advantage in various
splitting and cutting tools. Later (Sec. 201) we shall study the use
of the wedge in the fastening of machine parts.

It must be noted that the force of friction increases as the
angle of the wedge decreases. For example, the splitting of wood
with a thick-headed axe, instead of with an
ordinary carpenter’s hatchet, is easier
because the additional weight lends more
kinetic striking energy and also because
of the greater case with which the axe
can be pulled out if the wood is not entirely
split.

IMNustrative Problem 70. What would be, the
magnitudes of forces N, and N, during the uni-
torm displacement of a wedge KLM (Fig 163

Fig. 163 possessing a thickness KJ, = 25 mm and lengt
LM = 200 mm when under the action of force
P = 50 kg, il there were no friction?

. Coe A N o P KL 25 1

Solulion: from Eq. (105) wec obtain N, = TM _g00= 3 from
which N, = 8P = 400 kg.

From 1he same equalion we oblain

KM . /25% 4+ 200° ,
N, P K= 50 o5 ~ 403 kg.

141. The Lever

I.el us examine the simple case of a straight lever (Fig. 164)
to which are applied Lwo parallel lorces I' and Q acting perpendic-
ular to the longiludinal axis AB. Point O, called the fulcrum,
is al distances a and b {rom (he poinls of application of forces
P and Q. i

Two conditions stated in Sec. 34 must be observed Lo keep the
lever in equilibrium: they are a) Eq. (12) - the algebraic sum of
all forces musl be zecro, and b) Eq. (13) — the algebraic sum of
the moments of Lhe forces musl also he zero.

The first condilion is cxpressed as

P10 R 0, from which I’ { Q =R,

in which R is the reaclion at the fulerum*.
Since the algebraic sum ol the moments of all the forces with

respect 1o fulecrum O is zero, lLhen
Pb -Qa 0,
or

Sl

Q_
5= (107)
* The weight of the leve$-is ignored in this case.

194



;:hat is, the forces are inversely proportional to the-arms of the
ever.

Now let us take a more complex example when the forces
P andv Q are not directed perpendicular to the axis of the lever
(Fig. 165). We resolve force P into two components — BL
acting along the axis of the lever and BK acting perpendicular
to the axis. Repeating the process with force Q, we obtain forces
AE and AF. If the fulcrum is constructed so that the lever
cannot be displaced in a horizontal direction, the resultant of
forces BL and AE will be balanced by the horizontal compo-
nent of reaction R at the {ulecrum. Therefore if the lever is to

'S
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Fig. 164 Fig. 165

remain in equilibrium, it is required that the algebraic sum of the
momenis of the other forces with respect Lo any point should
be zero. By taking point O as Lhe centre of the moments, we

obtain
P = Q. ()

From point O we delincale Ines OM ==a; and ON =b,
perpendicular Lo the lines ot aclion of forces P and Q. Then
comparing the right triangles OMA and AFC and also ONB
and BKD, we see thal they arc similar pairs because their acute
angles have mulually perpendicular sides: AOMA «» AAFC,
and AONB v» ABKD, from which it follows that

0A"_OM = a
AC — AF Q- Q’

In the same way we obtain P;b = Pb,.
Substituting these expressions for P;b and Q,a in the ahove
Eq. (a) we obtain

whence Q,a = Qa,.

Pb, = Qa,, or 2L, (108)

We thus see that we have obtained an expression analogous
to Eq. (107), the only difference beingfthat included in it are
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the arms of ‘the moments of forces P and Q with respect to the
fulcrum, instead of the arms of the lever a and b.

Now let us investigate a general case when the lever is not
straight (Fig. 166). ¢

We resolve the forces P and Q respectively into the components
BL, BK and AF, AE, of which BK is perpendicular to OB and
AF is perpendicular to OA. Then, reasoning as before, we

arrive at the same equation (108)*.

In the above cases the fulcrum O was siluated between the
points of application of the forces. This type of lever is called
a lever of the first kind as distinguished {rom one of the second kind
when the points of applicalion of the forces are on the same

o

S0
Iy
N]J
>
%9

Fig. 1606 Fig. 167

side as the fulcrum (Iig. 167). By applying Eq. (12) to a lever
of the second kind, we delermine the reaclion of the fulerum R

from the equation
Q--P—R- 0,
whence R- ¢ —-P (109)

Then taking the algebraic sum of the moments of the forces
with respect to point O, we obtain Qa — Pb = 0, whence

Pb = Qa. (110)

If the lines of aclion of the forces were not perpendicular to
the axis ‘of the lever, or if the axis of the lever were not straight,
we should have obtained Lhe same result as for a lever of the first
kind.

‘Wherefore, in all cases when a lever is in equilibrium, the forces
P and Q applied lo il are inversely proportional to the distances
between their lines of action and lhe fulcrum.

* The reaction of the fulcrum may be determined as follows. As
already shown in Sec. 24, the lines of action of forces P, Q, and R intersect
at one point U. Hence the line of aclion of the reaction is known. By
constructing a parallelogram on the force P and Q we obtain their result-

ant. The reaction OS will be equal and opposite to it.
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From this it is apparent that the lever, in allowing a lesser
force to balance a greater one, achieves a mechanical advantage.
It is also easily understood that the displacement of the point
of application of the lesser force P will be as much greater than
that of the point of application of force Q, as the magnitude of
Q is greater than that of P; here again the “ABC” of mechan-
ics is valid.

Bearing in mird that there is friction between the fulecrum and
the lever, we conclude that Lhe usctul work the latter performs
is somewhat less than the work performed by Lhe motive force.

Levers are not only used to convert a lesser torce into a greater
one, but also for advantage in displacemenl. For example, by
displacing point A a cerlain
distAnce (Iig. 167), we dis-
place point B a dislance as
many times grcaler as arin b
is greater than arm a. This
property of a lever 1s {requent-
ly utilised in Lhe construc- iy
tion of measgring 1nsiruments.

The lever 1s extensively used m machines and other mecha-
nisms, and also 1n devices of all hinds.

168

HMustrative Problem 71. Aitm «a ol the bent Isvar AOR n Fig. 168 is
80 mm in lenglh, and arm b 1s 300 mm. \What should be Lhe magnitude
of force P acling at an angle ot p = 90° to ann OB 1n oider 1o balance
force Q = 120 kg acting at an anglc ol « 30° to aim OA?

Solution: m emploving 1. (108) we must take b, = b = 300 mm,
da, = a sin ¢ = 80 sin 30° -~ 80 ¥ 0H — 40 mm, and Q = 120 kg. After
substituting these valucs in lhe equalion we obtan

Qa, 120 x 10 .
) b, - 300 16 kg

142. A System of Levers. The Differential
Lever

The mechanical advantage obtained trom a lever can be
increased considerably by using a system of several interconnect-

ed levers.

Let us consider the two levers foiming the system shown
in Fig. 169. To the end I3 of lever A with fulerum 0, a second
lever with fulcrum 0, is fastened by means of strap BC attached
to its end C. By applying force P to end A we obtain force Q,
on end B, equal to the relationship

Pb,
a, )

This force is transmitted to end C of Jever CO, on which the
acting forces will be determined according to the relationship
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Q,b; = Q.a,, from which force Q, obtained at point D is
b,
Q= 017?' )

Replacing @, in this expression with the value just evolved
for it, we obtain

b,b
Q=P (111)
If there had been three levers then
_ph b, b,
Qa—Pa—l-)(T X E’-, etc.

2

Thus the mechanical advantage obtaincd by a whole system
of levers is equal to the product of the numbers expressing the
mechanical advantage produced by each lever in Lhe system.

a Y S——

A 0 8 4 D B ¢

ﬂ F
P| _‘4,,___?/,,’_.’__1,2 __l - 1% 6 P
K
ad, F

c 7 S
a, a
4

Fig. 169 Fig. 170

If we look two levers with a ratio between the arms of
% = % = 10, Lhe mechanical advantage obtained by Lhe system
1 2

would be £ — 102 = 100. Accordingly, a displacement of 0.1

p
mm of point D would displace point A a distance of 0.1 X 100 =
= 10 mm.

However, such a system of levers is extremely cumbersome. For
this reason a variation is used, called a differential, or floating
coupling.

Assume that lever AC (IFig. 170) wilh a fulerum D has a cross-
piece EF suspended from it by {wo slraps AE and BF. A [orce
Q is applied at poinl K in the middle of the crosspiece, and force
P, its equilibrant, is applied to the long arm of the léver at point
C. Let us determine the relationship hetween these two forces.

Since force Q is applied at the middle of the crosspiece EF,

a force —g- is acting on each strap — one at point A and another

at point B. Let us write the conditions required for the lever
to be in equilibrium, using Eq. 12, since all the forces are parallel:

—2a+L@—a+Pr=0,
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or
Cd—a—a)+Pr=0|

B!~

wheflce

By denoting the distance between the line of action of force
Q from the fulcrum as d, i.e.. d «a - -, we finally obtain

0 -prL. (112)

d

2~

It is scen 1that Lhe mechanical advantage will be equal to
the ratio of the bigger arin (1) of the lever to the distance be-
tween the two verlical straight lines delineated through the mid-
dle K of the crosspicce and the fulerum. Since Lhis distance can be
made infinitely small, (heoretically an infinitely great mechan-
ical advanléke can he oblaned.

Systems of {loating couplings are used. lor example, in decimal
and centesimal scales.

INustrative Problem 72. ‘ln the tloaling levar just studied, the arm
= 1,000 mm, arm « - 251 mm, and { -= 500 mm; then ¢ = 251 —

—ég) = 1 mm. Substituting these values in FEq. (112), we obtain Q =

= 1,000 P.

143. Fixed and Movable Palley-

A pulley is a sheave on the rim of whiclh lhere is a groove
for a rope (or sprocket lecth for a chain). The simplest type is
the immovable pulley, the geomelrical axis ol which remains
fixed when il is in operation (Fig. 171).

Assumie that the rope (or chain) has a load to be raised that
exerts a force Q at one end of it. To delermine Lhe force P which
must be applied to the other end of the rope in order to balance
force Q, we may regard the pulley as a bent lever AOB having
arms of equal length because AO = OB =R, R bcing the
radius of the sheave. The conditions for equilibrium of this lever
with respect to its fulcrum O, is PR - QR, from which

P==Q.

Thus in an immovable pulley neither the force nor the veloc-
ity changes in magnitude; only the direction of the force changes.
Tl?l'is is advantageous in many cases. For instance, instead
of raising a load by pulling it upwards, it is much more con-
enient to use such an immovable pulley which makes it possible
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to do the same work by applying to the rope the same force
directed downwards. Due to harmful resistance, the efficiency
of this pulley is ordinarily from 0.8 to 0.9.

A movable pulley, so called because its axis is displaced wwhen
it is in use, is shown schematically in Fig. 172. A rope, one end
of which is fastened to a stationary hook K, passes tound the
sheave L from below; a motive force P acts on its other end*.
The force of resistance () (such as the weight of the load) is applied
to the casing of the movable pulley in which its axis is rotating.

Fig. 171 Fig. 172

Let us work out the relationship between the motive force
P and the force of resistance Q. Let us consider the diameter
AB of the pulley to be a lever of Lthe second kind, turning about
point A under the action of force P. By applying Eq. (110),
in which we substitute diameter AB instead of b, and radius
AO instead of a, we obtain %:—%, whence

_ L
P= (113)
that is, the motwe force is equal lo half the force of resislance.

Obviously in this case also, the gain in force is lost in displace-
ment. Indeed, in order to raise the centre of the pulley to a
height of 0O, = h, the free end of the rope must be pulled a
distance of AA, + BB, -- 2h, which means that the point of
application of force Q receives a displacement only half of that
received by the point of applications of force P. Furthermore,
the work performed by forcc Q is Qh = 2Ph, and the work
performed by force P is P2h; in other words, the work performed
by the motive force is equal to the work performed by the
force of resistance, which is as it should be.

* Since the movable pulley is ordinarily used to raise loads by means
ﬁ{ u:t:gg::nacting downwards, a second fixed pulley M is shown in the

200



144. Systems of Pulleys
and the Differential Pulley Block

Just as in levers, pulleys are combined into systems to increase
their mechanical advantages. Fig. 173 represents one of these
systems: it consists of several (in this case three) fixed pulleys
rotating in the casing K, and the same number of movab%e
pulleys rotating in the second casing L. The rope, one end of
which is fastened to the hook of the first casing, is passed round
all the pulleys in succession, while to its free end M the motive
force P is applied. In the present case force Q is distributed
among six segments of one and the same rope, in which the
tension must obviously be the same throughout the entire

leng?;h. It follows that a load% is acting on each segment of

the rope, and the force which must he applied to the free end
of the rope to keep the system in equilibrium will be

__Q_ 0
P“?—zxa‘

If there h#M been four pairs of pulleys in the system, force
P would be —g— = WQ‘t Thus we see that the mechanicaladvantage

is equal to twice the number of inovable pulleys. And if the
movable block had n pulleys, the motive force would be

P =2_€1 . (114)

But, according to the rule already learnt, the displacement
of the point of application of P will be 2n times the displacement
of the point of application of the force of resistance Q.

Instead of having the pulleys on separate axes and arranged
vertically one above the other, they are usually arranged several
in each casing and on one horizontal axis (Fig. 174).

Systems of pulleys (fixed and movable) grouped in blocks
and with a rope or chain wound about them are called tackle.

Just as there is a differential lever, there is also a differen-
tial pulley block as shown in (Fig. 175). The upper fixed block
is made double with two stages of sheaves of radius R and r.
As is evident from the illustration, this block and the lower
movable block are connected by an endless chain; from the
lower block the chain is passed to the larger sheave in the upper
pulley and then goes down in the form of a freely swinging loop
M, one segment of which is meant to be pulled by hand. Then
the chain is passed upward and around the smaller of the sheaves
in the upper block and down again to the movable block.

Let us see what forces are acting on the upper block so as
to find the relationship between the motive force P and the

force of resistance Q.
201



Under the action of force Q, forces P, = P, = % are created

in each segment I and II of the chain. Assume that the upper

block makes one revolution at which time the work of the riotive

force P is W = P 2aR. During the same interval force P,
performs work ’

W, = P2ar = —g 2nr = Qnar.

Y

Finally, the work of force P, is

W, = P,2aR =—(2?— 2aR = (QnR.

/

Fig. 173 Fig. 174 Fig. 175

The first two forces are motive forces, while the third is the
force of resistance. Since the work of the motive forces must be
equal to the force of resistance, then

2nPR -} aQr = aQR, or 2PR 4 Qr = QR,

from which we obtain the force acting on segment A of the loop:

R—r R—r
P=Q—27‘—Q'—]) 4 (115)

in which R and r are the respective radii of the larger and smaller
sheaves of the fixed block and D is the diameter of the larger
sheave.

Since the difference between R and r can be made infinitel
small, a great mechanical advantage may be obtained wit
this block.
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Illustrative _Problem 73. Whal must be the diameter of the smaller
sheave of the fixed double block in a differential block to obtain a mechan-

ical advantage of % = 8, if the diameter of the larger sheaye D =
= 200 mm and efficiency 5 = 0.8?

Solution: from Eq. (115) we obtain % - Rl—)_-r’ and after taking
harmful resistance into account, the mechanical advantage will be
Q D
P R—-r"
200 x 0.8

which, after substituling numerical values, becomes 8 = oo —r '

in which » = 80 mm, and the diameter of the smaller sheave will be
160.mm.

145. Simple and Ditferential Windlasses

A simple device for obtaining mechanical advantage is the
windlass (Fig. 176); a drum K (Fig. 176a) is fixed 1o a shaft
rotating in two bearings. The shaft is rotated by Lhe crank
L fastened (® one end of it As the shalt rotates, the rope M,
one end of which in fastened to the surface of the drum, is wound
around the latter and overcomes Lhe force ot resistance Q. Let
D denote the diameler of the druni, aud a the length of the crank
at whose end the force P is applied (kig. 176b). The relationship

I'ig. 176

between forces P and Q can be found by cqualing the amount
of work each execules during one revolution of the shaft. The
work of force P is expressed as Wp = P2zra, and the work of
Q as Wg = Q=nD, where D is the diameter of the drum. Accord-
ingly, P2na = (=D, whence

D
P=Q+,; (116)
The differential windlass with its stepped drum (Fig. 177)
gives a much greater mechanical advantage than the simple

type. Let D denote the diameter of the larger step, and d that
of the smaller.
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When the crank is turned clockwise, the rope will be wound
on the larger step and unwound from the smaller. By disregard-
ing as_negligible the converging lines of the segments of rope
dropping to the movable block, we shall assume thatveach
of them is subjected to a force P, = P, = % Let us formulate

an equation for the work of the motive power and that of the
force of resistance.

=

Ig. 177
The work performed by force P’; during one revolution of the
drum W, = P;aD = %nD, the work of force P, as applied to
the smaller step W, == Pynd :%nd, and the work of force
P as applied to the crank W = P2na. Hence
yepu 70 g = 1D,
from which

D-d_,R-—r

P=g 4a =0 2a (117)
whence R and r are the radii of the larger and smaller steps of
the drum, respectively. Thus we see that we have formulated
the same expression as for the differential block.

INlustrative Problem 74. A differential windlass has a two-step drum
of diameters D = 350 mm and d = 300 mm. What length must the
crank be in order to raise al a conslant specd a load Q = 200 kg with
a force P = 16 kg, if the efficiency of the windlass n = 0.6?

Solution: by including the force of friction in Eq. (117), the latter
becomes

R—r
Pyn=g 52 ’

in which P= 16 kg, 5= 0.6, Q=200kg, R =175 mm, and r=150 mm.
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By restating the equation and then substituting corresponding values,
we solve for the length of the crank a:

QR —r) 200 x 25

25, 5 x 16 x 0.6 '~ 260 mm.

146. Questions for Review

1. If a body on the inclined plane shown in Fig. 161a is moving u
the plane at a constant speed and the plane is lengthened but wit
the height h remaining Lthe same, what change will there be in force P?

2. What change will there be 1n the magnitude of force P exerted on
the wedge in Fig. 162 if the thickness of the wedge head is decreased but
with the length of the wedge and the speed ot 1ts application remaining

the same?
3r» Which will be the greater mechanical advaniage: when force P

is applied perpendicularly, or at an angle, 1o the arm of a lever?

4. If the length of the arms of thc bent lever AOB (Fig. 166) are
equally increased, will there be any change in the magnitude of the force
P required to keep it in equilibriuin?

5. What will be the total mechanical advantage obtained by a system
of three levers, one of which gives a three-fold, the second a five-fold,
and the third a seven-fold mechanical advantiage?

8. State thadvantages of the differential lever.

7. What difference is there between the mechanical advantage obtained

by a fixed and a movable pnlley block?

8. What is a tackle?
9. What are the advantages contained in 1he differential block;

in the differential windlass?

147. Exercises

76. A load G = 200 kg is moving uniformly up an inclined
plane with an angle of inclination « = 30°. What must be the
magnitude of the motive force P direcled parallel to the incline
if the coefficient of friction f = 0.10?

77. Using the data in Ex. 76, determine the efficiency of the
inclined plane.

78. Two loads of weight G, — 10 kg and G, — 15 kg are
on inclined planes with angles of inclination of «, and «, and are
connected with each other with a cord passed through a fixed
pulley (Fig. 178). If angle a; = 30° and the two loads are in
equilbrium (neglecting the force of friclion), what is angle a,?

Hint to solution: remember that forces P, and P, are equal
in magnitude.

79. 1f the angles of inclination «, and «, in Fig. 178 are 30°
and 45° respectively, and the force of friction is disregarded,
what must be the ratio between the weights G, and G, when
they balance each other?

80. In order to find the distance z from the end A to the centre
of gravity C of the rod AB in Fig. 179, the end A was suspended
to a fixed point E and then the rod placed so that it rested on
scales at point D. Find the distance z if a = 300 mm, the weight
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of the rod G = 1.5 kg, and if weight G, balancing the rod on
the other pan of the scales is 1.0 kg.
81. Derive Eq. (108) for a straight lever of the second kind.
82. Derive the same Eq. (108) for a bent lever of the second 3:ind.
83. What force P must be exerted on the differential lever in
Fig. 170 to balance a forcc Q = 1 ton, if AD = DB =250 mm,
EK =249 mm, KF = 251 mm, and DC = 1,000 mm?

Y
E a
! Y4 7 18
4
%
g, 178 Fig. 179

84. Assume that the tackle in FFig. 174 has tive movable blocks.
What force P would be required to raise a load (f 200 kg?

85. What mechanical advanlage would the differential hlock
in Fig. 175 give if the diameters ot the sheaves are D = 360 mm
and d —= 320 mm?

86. In IFig. 177, showing a difierential windlass, D = 300 mm,
d = 250 mm, a = 400 mm, and 1its efficiency n == 0.7. What
force P is needed Lo raise a load of 500 kg?

CHAPTER XVI

TRANSMISSION OF POWER BETWEEN PARALLEL SHAFTS

148. General Principles of Transmission

In order to Lransmil motion to Lhe moving links of a machine,
mechanical energy is needed. This energy may be imparted to
the machine in different ways. 1I3ut usually it is done by an adjac-
ently installed electric motor, in which case il is said that the
machine has an indwidual drive. But somelimes mechanical
energy is imparted Lo several machines at once through a single
shaft known as the fransmission shafl acting as a group drwe.
And frequently one machine is driven by several electric motors,
as in very large machine tools and other kinds of giant machin-
ery. Both in individual and group drives, devices whose func-
tion it is to impart diverse angular velocities (rpm) to the driv-
ing shafts of the machine are sometimes mounted as intermediary
links between the clectric motor and the machine.

In short, various mechanisms which are referred to under
the general term of fransmission are used to impart mechanical
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energy both to machines as a whole and to their individual
links.

The most common kind of transmission is that which trans-
mits motational motion from one shaft to another.

The position of the shafls in relation to each other may differ:
their axes may lie in the same plane, or in differenl planes.
If the shafts are in the same plane, they may either intersect
or be parallel to each other.

Let us begin our study of the various kinds of transmissions
with the simplest form — when the axes ol the shafls lie parallel
to one another.

149. Transmission Through Pliant Connectors

Flat belts, sometimes ropes, arc used to lransmit rotatio-
nal motion between parallel shalis; these belts arc wound ahout
wheels, called sheaves, which are {ixed to the shafts.

Assume that the rolation of shafl O, in Fig. 180 is to be trans-
mitted to shafl 0,. We fasten two sheaves, opposite to each
other, to the sPafts and wrap an endless belt ABDFIECA round
the two in such a manner that it is stretched lightly about their
rims. With ample friclion belween the
belt and the sheaves, the rotation of
one shaft will be transmitted to the
other. The shafl (and sheave) O, which

Fig. 180 Fig. 181

causes the motion is called the driver. while the shaft (and
sheave) O, which receives the motion is called the follower, or
driven unit.

Augles AO,E and BO,I’ subtending arcs ACE and BDF
where the belt is in contact with the rims of the sheaves, are
called the angles of contact.

The greater the angle of contact, the better will be the trans-
mission of rotation, inasmuch as the arc of contact between
the sheaves and the belt will be greater. For this reason belt

207



transmissions are always designed so that the angle of contact
is as large as possible.

Assume that shaft I (Fig. 181a) is the driver and shaft IJ
is the follower. With the direction of motion as shownin the
drawing, the upper segment of the belt will be pulled taut and
lie almost in a straight line since it is transmitting the force
that is rotating the follower, whereas the lower segment will be
slack and sag under its own weight. If the direction of motion
is changed, as shown in Fig. 181b, it will be just the opposite—
the upper side will sag. A comparison of the angles of contact
on the driving and driven shafts in the two drawings will show
that it is greater in the second case. Ilence, here transmission
of rotation will be more efficient. It follows that the lower seg-
ment of the belt should always be the driver.

The belt connecting the sheaves should be as pliant as possible;
this type of transmission is called transmission through pliant

conneclors.

150. The Speed Ratio and Transmission Number
in Transmission Through 7
Pliant Connectors

In making calculations corcerning transmission of rotational
motion, a coefficient showing the ratio between the angular
speeds of the two given shafts or, 1n other words, between their
rpm, is used. This ratio of rpm (or ralio of angular speeds) of
two shafts between which motion is transmitted is called the
speed ratio and is denoted b¥ the letter i.

Of the two connected shafts, one is the driver and the other
the follower. Therefore the speed ratio must be so stated as to
indicate the order in which the shafts are referred. For this pur-
pose indices, consisting of the numbers of the two shafts, are
affixed to the letter representing the speed ratio. If it is a ratio
of rpm of the driven shaft to rpm of the driving shaft, it is stated
as

by =gt=1'" (118)
If on the contrary the ratio is that of the rpm of the driving
shaft to the rpm of the driven shaft, it will be stated as

1, ==, (119)

The latter ratio, that is, the ratio of rpm of the driver to
rpm of the follower, is called the {ransmission number.

It is thus apparent from Eq. (118) that when n, =1, i5; = n,;
we may therefore say that iy, shows the number of revolutions
of the follower to one revolution of the driver.
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Finally, by multiplying Egqs (118) and (119), we obtain
n,

Gy X fo= "X 3-=1, (120)

1
whence g =

that is. the speed ratio of the duvll;rq shafl lo the driven shaft and
of the drwen shafl to the diwing shaft are reciprocal lo each olher.

Otral I'rercises
1. State which shaft of the following Lhree cases has the greater angular
speed: when 1, I; when ¢ ;<7 1; when ,, = 1.
2. \Whatl 1s Lhe transnussion number when 1, == 1?

151. Kinematies of Transmission with One Pair
of Sheaves

Let us relurn to Fig. 181 and assume that the belt, wound
about the two sheaves. neither stretches nor ships. Under such
condiions the motion of the belt will be the same at all its points
and be equal @ lhe speed of any pomt on the rims of either
ol the sheaves. In other words, the peripheral speed of sheave
11 will equal the peripheral speed ot the diwving sheave [, from
which we evolve the followmg equition.

D, Dn
00 T 60 7

that is. the product of the diameler of the divwer and s rpm s
equal to the product of the follower and us rpm. Irom 1lus we may

>

determine thé speed ralio of i, (lhe relationship between rpm
n, of the follower sheave and rpm n; of the driving sheave):
iy == (122)
that is, the speed ratio of the lwo sheaves ts in inverse ralio lo their
diamelers. o )
As is apparent [rom Iig 180, the driving and driven shafts
both revolve in the same direction. This type of transmission
is called an open-bell drive, as distinguished from the crossed-belt

or Dnn,- Dn,, (121)
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drive when the belt is crossed in the form of a figure 8 (Fig.
182). In the latter case the two sheaves will revolve in opposite
directions.

Eq. (122) shows the relations between four quantitifs: the
diameters D, and D), of the two connected sheaves and their
respective rpm. If three of these quantitics are known the fourth

can be evolved.

Illustrative Problem 75. The driving sheave on the shaft of an electric
molor has a diameter of 180 mm and rotates al 1,000 rpin. If it were
required to drive another sheave that must rotate n, = 320 rpm, what
must be the diametler of this follower sheave?

Solution: from 1iq. (122)

D, = D, Z 180x 1 O%QNO(.O mm.

Ilustrative Problem 76. If an clectric motlor altached Lo a sheave of
300 mm in diameter transmils n = 400 rpm to a driven (follower)
sheave of 560 mim in diametler, how many rpm will Lhe sheave on the
motor atlain?

Solulion: from Tq. (122)

I) )(l

n, = 400 <34

1

n, = n ~ 700 rpm.

152, Kinematies of Transmission
with More than One Pair of Sheaves

We can determine the speed ralio [or any number of sheaves by

calculating it conso( utively for each sheave in the train of sheaves.
Assume 1{hat rotalion

is transmitled from shaft
0, to shaft 0, (FFig. 183)
by means of sheaves D,
and D,, Dy and D,, D,
and D, It is seen from
the drawing that sheaves
D,. D, and Dj are drivers
while sheaves D,, D,, and
Dg are followers. The speed
ratio belween shafts O,

and 0, is im’: % and
2
rpm n, of shaf}) 0,is n, =

Fig. 183

=mi,, =N D—'

In the same way we may find the speed ratio between shafts

O and O, which is iz, =- g‘ and the rpm n, of shaft 0, is
4

* D, D,
ng = n,iy, = ni,,i;, = n, Dy x%‘—
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Finally, the speced ratio between the shafts of the last pair
of sheavesis i, 3 —~ D+ and the rpm n, of the last driven shaft 0, is

D,
o . . . D D D
Ny = Nglyy = NMyi;, 05500 = Ny X34 X '1): X 7)':' g

By denoting the speed ratio between this shaft and the driving
shatt O, as i,, we obtain

. D D, D
ng=ni,, =n ' X D, X D:— (123)
in which
, ... D D D
g = nly,lia= [t X R I):" (124)

Wherefore, (he lolal speed rutio ts equal lo the producl of all the
indwidual speed ralios (1.c., the speed ratios between adjacent
shafts). T'he rpm of the diwen shafl ts equal lo Lhe rpm of the driving
shaft mulliplied by lhe ralio of the producl of the dwamelers of all
the drwing shafls to the producl of the diamelers of all the driven
shafls.

Of course, changing the order of (he multipliers and multi-
plicants will make no diiterence in the final product. From this
it follows that we can change the places of any (wo sheaves
whose diumelers are 1n the nunreralor or denominator of the
right part of Kqs (123) and (121). This mcans that the rpm of
the driven shafl will not change if either the driven or driving
sheaves are rearranged among themselves. But 1t is also obvious
that driving sheaves cannol be put wn the place o[ drwen sheaves
or vice versa. lfor instance, lhe sheave ol diameter I); eannot
be put in the place of that with diameler D,, or sheave D in
ithe place of I),. elc., for this would change the lotal specd ralio
and consequently the rpm ot the dniven shall.

Mustrative Problem 77. Shaft O, 1eccives rolational motion from an
eleciric molor with a sheave D, having a diameter ot 180 mm and which
attains n, = 1,,00 rpm {hiough sheaves D — 540 mm, D, = 160 mimn,
and D, = 400 mmn. Find the total speed valio ¢,,, and the rpm of shait 0,.

Solulion: according to Egqs (123) and (124) we cvolve 1, = 540 X

160 2 2

X 450 = 1—5-.and n; = ni,, = 1,500 x i3 = 200 rpm.

153. Statiecs of Sheave Transmission

Now that we have grasped the kinematics of the transmission
of rotational motion by means of sheaves, let us turn to the
statics of such transmission so as to determine the relationship
between motive forces and forces of resistance.

et us return o Fig. 180. In order that there should be suffi-
cient friction between the belt and the rims of the sheaves, a

14+ 211



definite tautness must be maintained in the belt. After the sheaves
have begun rotating, the driving segment K of the belt becomes
still more taut, while the follower segment L of the belt loses
some of its tautness. Let 8, represent the pull on the tight“side
and S, the pull on the slack side. Both these forces act on the
driven sheave and consequently {wo similar forces of “the same
magnitude but of opposite direction arc acting on the driving
sheave.

The Llurning momenl or, as we shall henceforth call it, the
torque, which imparls rotational motion to shatt O, will he

M, =S, D8, D=5, —5) 0

The difference in taulness S, -8, 15 called the effectwe pull
of the bell and 1s denoled by Lhe lelter P.
Thus we find Lthat the torque on the diwven shaft

M,=p " (125)
From Eq. (122) we obtain o
D,=D, =D " and M,-pP .

!'n, 21 2‘1.1_
As already stated. two simiar forces 8, and S, are acting
on O,; hence, the torque on the drniving shaft will he

D,
M,=pP ",

and after equating Lhe expressions for Af; and A, we finally
oblain
M= (126)
vl
Wherefore, the lorque on the diwen shafl is equal o the torque
on the drwing shaft divided by the speed ralio 1,, belween them.

It is simple to prove that Eq. (126) similarly applies lo any
number of paus of sheaves.

Assume that the lust driving sheave ol diameter D, (Fig.
183) makes one revolution. Eq. (121) shows that Lhis would
cause the last driven sheave of diameter Dy on shalt O, to execute
{0 = lp1la2lss revolutions. The work done by forces §; and
S, on the dniving sheave will be W, - (§; — Sy)=nD, = Py=D,.

The work done on the driven sheave Dg at the same time by
forces S; and S, will he W, (87 —- S)7 Dty = PyrDgly 175914 5

And since W, = W,, we obtain D, — ’,D¢i,,, Irom which

My=2__ M, (127)

41 Liila, s,

Wherefore, the lorque on the last driven shafl is equal to the momenl
on the first drwing shaft dwided by the lolal speed ralio belween
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them, or, in olher words, by the producl of all the individual speed
ralios.

Eqgs (126) and (127) do not take into account the loss due
to Marmful resistance in the drive. Such resistance reduces the
mechanical energy imparted to the driven shaft, and conse-
quently decreases the torque and effective pull. If these losses
are taken into account, E¢. (126) becomes

a,= Yoy, (128)
1
in which 7 is Lhe efficiency ot Lransmission.
For belt transmission lhe value of 7 randges liom 0.91 to

0.985.
L J
Oral I'zereises

1. If the speed ratio ¢, 1, whal can be said ol the torque on the
drivu!; shatl — will 11 be grcaler or less than the torque on the drnving
shaft

2. Answer Question 1 1l i, = 1.

IMustrative P’roblem 78. IT the clecliic ntotor i {Hustrative Problem
77 transmits Power N = 74 hw, had the lorque on shaft 0, and the
elfeclive pull on sheave 0),.

Solution: If the molor” power N 74 hw - 74 - 13610 hp
and if n = 1,500 1pm, the torque 1n 'he dirving shaft will be, according
to Iiq. (83),

10 -
- 7 ‘) ri [t
My 710.2 1,000 4.775 kg-m.
By applymg L. (127) we oblain {he losque on shalt O
V —— 2 - gaq
M, = 's.nl 1.775 1, T 35.812 Lg-m
and the cllective pull P, on sheave N, will be
2M, 2 - 35,812

- 7t )Y .
D, 400 179 he

I)4 -

154%. Belt Transmission with Variable Speed
Ratios

It is irequently necessary that a driving shafl, rolaling at a
constant speed, transmil varying speeds Lo the driven (follower)
shaft. Onc*of the widely applied melhods to achieve this is the
use of stepped pulleys.

Let us fix two siepped pulleys, wilh sleps of different diameters,
opposite cach other on the diiving shafl I and the driven shaft
II as shown in Fig. 184. WiLh this arrangement Lhe belt can be
shifted so as to run on any pair of steps ¢, and D,, dy and D,,

etc. In this way different speed ratios are oblained: i,; = p*-»
| §

d,
D—z elc.
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There will be as many specd ratios as there are steps on the
pulley. It is readily understood that for a drive of this kind the
belt must be the same length no matter which of the paired
pulleys it runs on. To achieve this, the following equation faust
hold true:

d, + D, =d, + D, = ... ds + D (129)

Wherefore, the sum of the diamelers of the sleps opposite each
other must be Lhe same tn all cuses.

I-Drwver

T g

I<g. 181 1ig. 180

Let n represent the ipm ot the driving shaft. With the use
of five-slep pulleys we can transmil five dilfcerent speeds to the
driven shatt, as follows

d d d,

— 1 — . — —
M=n g M= = =5 =7
_dy
and n; = Dy

But it must be underslood thal an unlimiled variation of
speeds cannol be ohlained belween n; and n,. In olher words,
the speed variations imparted to the driven shaft will differ
sharply from each other instead of being gradual. Other methods
are used to shift speeds gradually. Fig. 185 illustrates one such
method.

We connect the belt to two frusta-cone drums arranged in
opposite directions and with base diameters of D;-and D,. When
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the belt is at the extreme left, the speed ratio will be i,, = -g—‘.
2
while when at the extreme right it will be {,, = —g’—. Thereby,
1
the sfleed ratio may be made to range anywhere from

. D, .
1 = p, to i, = D,
A variant of this method is to make the drums with curved
sides instead of the straight-lined frusta-cone.
There are also other metheds of achieving infinitely-variable
specds in transmitling rotational motion belween parallel shafts.

155. Transmission with a Bel¢ Tightener

Ver'y often the distance between {he driving and driven sheaves
of a machine is made as small as possible so as lo decrcase Lhe
gencral size of the machinc. But this has a bhad ellect on the
bell drive inasmuch as il leads Lo a deercase in the are of contact
on the smaller sheave (usually the diiver), and which, in its
turn, results in slip.

The arc of gontact of the smaller sheave is decreased also
because of the increase in the transmission number.

For satisfaciory operaticu, the ordinarv belt drive must have
a transniission numbher ol nol more than 3 (in exceplional cases
it may be 5), hut often the rpm must be slowed down to less than
one third. Thi» has resulled in the introduction of drives with
belt tighiencrs.

Assume shafl 0, in Fig. 186 to be the driver and shaft 0, the
follower. With rotation in the direction shown, segment K of Lhe
belt will be the laut side, and L. will be the slack segment. An
idler-pulley Al is car-
ried on arm A of a hent
lever, and to arm I3 of
the same lever a weighl
N is fixed. The lever
Lalances freelv on ils
axis 0. Since the centre
of gravity of the lever
is situated to the right
of axis O, the arm DB of Iig. 186
the lever is pulled tlock- _
wise and the idler-pulley presses against L and tighlens it.

It can be seen thal the idler-pulley increases Lhe arc of contact
on both sheaves and reduces slip. Load N can bhe shifted to any
position on the arm of the lever Lo regulate the tautness of L
as desired. The use of the belt tightenerhasanother advantage:
ordinarily, any belt will stretch with use and must be often short-
ened. But the employment of a belt tightener makes this unnec-
essary because tautness is kept uniform in the belt.
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But the greatest advantage of a transmission with a belt
tightener, as compared to an ordinary belt transmission, is that
it allows an increase in the transmission number (up to ten and
sometimes even more) and at Lhe same time keeps thc®*whole
drive compact. Belt tighteners are designed in various ways.
Axis O of the lever is often made to coincide wilh the feometrical
axis of shaft O,; this is better {o a certain exlent. In small power
transmission a spring is often used in place of the weight N.

156. Flat and V-Shaped Belts

Belting is made of ditferent materials and varied eross-sections—
either flal or V-shaped. Inasmuch as belting is subject to tension
it 1s made in different thicknesses single- pIy and double*ply —
depending on the cffeclive pull
it must undergo.

Single-ply leather bells are
| K made ol strips of leather glued
[ L logether into a continuous

Glued jam:7 length (g, 188 and an.qm,q
. from 3.0 mm to 5.5 mm in
Fig. 187 thickness and as much as 300 mm

in width. If calculations show
that single-ply belling will not be strong enough, double-ply
is used. This consists of two layers of single-ply belting either
glued, or sewn and glued, alonge ils ¢nlire lengtl.
At the present time, [lat textile bells, impregnated with
rubber, are in wide use. They are mude of different kinds of
fibres (cotton or wool).

IFig. 188 Fig. 189

Three methods are used to faslen the ends of flat helts: gluing,
lacing, or metal connections. The ends of a leather belt arc scarfed
for a length of 100-200 mm and when put on the sheaves must
be placed as shown in I%ig. 188, in which the lctters ab mark
the glued joint. For textile belts impregnated w1th rubber, the
Joint is cut with a step.
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V-belts, which occupy a special place in transmission, consist
of one or several bands of trapesoidal section (I7ig. 18Y9) and are
used instead of flal belts. Cross-sectional area varies, depending
on ®he dimensions a and h; the smallest dimensions are 10 and
6 mm, and the largest 50 and 30 mm, respectively. V-bell drives
are used when centre distance hetween shatts is short and trans-
mission numbers are large,

157. Chain Transmission

Chain transmission is a special variation of thepliant conneclor;
the bell is replaced hy a chain whose hnks mesh with the teelh
of a sprocket wheel, prevent shipping, and cnsure
a constanl speed rahio. Chams are uscd for
high lransmission numbers (up lo 15) and can
imparl as_mueh as 5,000 hp. They are mostly

Iig., 191 I, 192

used when the distance+delween centres is shorl. But they are
also emploved when the centre distance is as much as 8 m.

Various types of conslruction are used for the chains, depend-
ing on their inlended function. Fig. 190 shows a {(vpe of roller
chain. The drawing shows thal the chain consists ot {lal pin-
connected links A and rollers B. The rollers are freely mounted
on bushings and when the drive is in opcration thev mesh with
the teeth of the sprocket wheel (Ifig. 191). Double- and multiple-
width chains of this kind are used tor heavy-duty transmission.

The loothed chain shown in IFig. 192 is' an improved type
which works very smoothly and makes great speeds possible.
1t is also called the noiseless chain.

The possibility of regulating tautness is also incorporated into
the conslruction of chain drives by means of tightening-pulleys
and other devices.

158. Friction Transmission Between Parallel Shafts

The belt drives we have sludied thus far utilise frirtiop b_ctween
the belt and the rim of the sheave. Bul the force of friction can
act directly without recourse to a pliant connector if the cont-
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acting parts are pressed to each other with sufficient force,
resulting in a [riction {ransmission.

Fig. 193 represenls two smooth cylindrical rollers fixed to
parallel shatts O, and 0,. If two equal and opposite forces Q %ind
()’ are applied to the shalt centires, they will cause friction between
the surfaces of the rollers, the magnitude of which will depend
on the amount of applied pressure, the malerial of which the
rollers arec made, and the condition of their surfaces. This friction
contact will cause the driven shaft to revolve. If friction is in-
sufficient to overcome the resistance of Llhe driven shaft, the
cylinders will slip against each other. Accordingly, if the drive
is to work satisfaclorily, it must be so built as to create the

Fig. 193 I1g. 194

grealest amount of {riclion. Various materials are used in the
construction ol the rims: both may be of cast iron or one may
be of cast iron or steel while the other of ‘‘Lextolite”, etc.
Fig. 194 shows a pair of friclion wheels of which the smaller is
made ol leather rings compressed longitudinally by means of
two washers.

When there is no slip, the peripheral speed of both drums
will be alike. Ilence in this case Eqs (121) and (122), which were
evolved for drives with pliunt connectors, are fully applicable
without reservalion,

Eq. (129), in which M, is the torque on the driving shaft
and i, is the speced ratio hetween the two shafts, is also appli-
cable.

Friction rims can likewise operate without being in immediate
contact with each olher. For instance, rotation can be transmitted
through a steel or leather ring pressed between the two rims
(Fig. 195).

IMustrative Problem 79. Power N = 1.5 hp is transmitted by shaft
0, to shaft 0, (I'ig. 195). The diameter of the driving wheel, which attains
n, = 200 rpm, is D, = 400 min. Both rollers are of cast iron (coefficient
ot Iriction f = 0.15).
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Find the diamcter D, of the driven wheel if it must attaln n, =
= 1,000 rpm, the required pressure Q, and the torque on the driven shaft.
Salution: through Eq. (122) we find the diameter of the driven wheel:
D, 200
Dy == _4001000

To determine force Q, flrst thc effcctive pull P transmitted by the
wheels must be evolved; to find this, we must calculate the lorque.

From Eq. (84) wc oblain the torque on the driving shaft:

= 80 mm.

N 1.5 -
n = 71,620 200 = 537.15 kg-cm.

Hence the effective pull

p_ Mo 2M, 10743
= R D, =y T db-ov K.

I'ig. 195

Pressure Q is determined through the equation P = /Q, from which

P 26.86 o

It should be roled that 180 kg is the minimum possible pressure.
Depending on working conditions, a reserve musl be added lo Q
so as to make up for irregularities in tho work of Lhe drive. This required
reserve foree may be as much as 1009, in which case force @ must be
twice 180 kg, that is, 360 kg.

Torque M. on the driven “shaft can be d-termined in various ways:

a) since effeclive pull is alike for both wheels when there is no slip,
we find M. by multiplying the cffcetive pull P by the radius of the
driven wheel:

M, =P g"' = 26.86 x -g— = 107.44 kg-cm;

b) we can obtain the same result by using Eq. {126):

g
My=2Mo M S3T15 40743 Kkgem¥;

fpy Do 5
n,
c) finally, we may tind Lhe torque through liq. (84):

1.5
M, =17, 620— = 71,620 x 1,000 = 107.43 kg-cm

# The nagligible dlscre?ancy ot 0.01 kg cm is caused by tfm g'ound
numbegs used in determining P,
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159. Friction Transmis<ion with a Variable Speed Ratio

Friction transmission is especially practical when it is employed
to give the diiven shall variable speeds from a driving’shaft
revolving at a conslant speed.

Assume that the two cones in Fig. 185 arec mounttd one ahove
the other on parallel shafts with a small intervening space.
Instead of a helt we will use a ring on the lower cone. When the
ring is pinched between the two cones (as shown in Fig. 195)
the rotation of the dirver wall be imparted to the follower. By
sliding the ring along Lhe length ol the cone we can obtain any

D, D,
rpm of the driven shafl, ranging from n‘"l): to n, D, "

Fig. 196 represents another tvpe of mliniloly-vari:lhle fric-
tion transmission bhelween parallel shatts. Assume shaft I to
be the driver and shaft 77 the follower. Dises .4, and A, are
fixed to the ends ol the shalts. Between the discs there is an
idler-pullev 13 which c¢an bhe moved along the shail on which
il is mounled and laslened in the posttion required. Assume that
shatt I exccutes ny rpm. If there s no shp betsyeen the dises
and the pullev, the penipheral speed of the pulley (when il is in
the position shown in the drawing) will be equal to the speed of
any point on disc 4, lymg on a cirele with a radius of R'; that is,
its peripheral spced

27R'n,
—_ fapil} /spe
n, co- - mmi/scc.

The same speed will be atlained on dise A, at any point lying
on a cirele with radius R”; ths speed, at n, rpn of the disc,
will be

J— -rl,” H
v, == - - mm/scc.
Since »; - v, then
271 n, 2+R"n,
60 00
or R'n; = R”n, from which
n, n

ST

Thus we see that the speed ratio is equal to the inverse ratio
of the dislance of the middle section of the pulley from the
geometrical axes of the shafts. The greatest possible speed ratio

iy, is -%‘ while the smallest possible is 7:‘: With the aid of
this mechanism it is possible to obtain any speed of the driven
shaft, ranging from n, 1;‘ to n, -

It is easy to understand that the driven shafi will rotate in
the same direction as the driver.
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Assume that Fig. 197 represents two pairs of frusta-cones
A, and A,, and B, and B,, fixed Lo driving shaft I and driven
shaft II, respectively. The cones are mounled in sliding key-
ways 8nd the distance helween cach pair can he adjusled by
a special device. Both pairs of cones arc in contact with a steel
ring C (shown in cross-section). The driving cones, when pressed
to the ring, will make il rotate through friclion and the ring
will transmit the rotation {o the driven cones and through them
{o the driven shaft /[. \When the ring is in the posilion shown

in the drawing, the

A [- speed ralio
PR

21 R,

y/d
/12/
Tiig. 196 Mg, 197

If the cones on the driving shall are moved further apart
and the second pair of cones moved closer together, radius Ry
will decrease and radius R, will increase and the speed ratio
will diminish correspondingly. In this way, within cerlain lim-
its we can obtain any rpm on the driven shaft although the
driving shafl is rotating al a constant speed*.

Sometimes il is required lhal the rpm. transmilled by the
driving shafl {o another shalt on (he same axis, be changed.
Such a transmission is shown schematically in Fig. 198: driving
shafl I transmits rotation at variable spceeds to shail 11, lying
on the same axis. Two [riction cones A and I3 with concave
sides are fastened Lo the shafts. Two roliers C and D are clamped
between the'sides of the cones. The driving cone A transmits
rotation to the driven cone I3 by means of these rollers which
rotatc about their axes. The shafts on which Lhe rollers are mount-
ed can be ad:usted lo any required angle with respect to O,
and 0,, contact hetween the rollers and the cones Laking place
along circles of diiferent radii on the side surfaces A and B

. * Transmissions of this construction arc also made with special
kinds of V-belts, chains, elc. in place of the ring.

221



[ - ) » a [
and with a corresponding change in speed ratio. The speed ratio
for the position of the rollers, as shown in the drawing, is

i =D
21 = D,
The above are various examples of friction trafismission in
mechanisms used for infinitely-variable speeds of rotation and

are called friclion speed varialors. They are widely used, partlc-
ularly in machine tools.

Oral Ezxercises

1. Does the speed ratio of the drives shown in Figs. 195 and 197
depend on the diamecter of the ring?

2. Docs the speed rafio of the drive in Fig. 196 depend on the dia-
meler of the roller 137

3. In whal direction does ihe driven cone rotale in relation io the
driving conce represenled in Ifig. 1982

1G0. Spur Gears

If we take a cylinder and cut regularly-shapsd grooves at
equal distances from each other around its surface, we shall have
a spur gear.

I/Zz

Fig. 199

If we put Lwo such gears together so that the teeth of one mesh
into the spaces of the leeth of the other and mount both on
shafts O, and 0, (Fig. 199) rotating in stationary bearings, one
of them, the dnver, will put into motion the second, the follow-
er. In this instance the teeth are cut on the external surfaces
of the cylinders; such gears are called exfernal gears, as distin=
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guished from inlernal gears, such as shown in Fig. 200, where
the teeth on gear I mesh with gear I/ whose teeth are on the
internal surface of the cylinder.

hen these gears rotate, it is as if two circt@8 with centres
0, and 0, are rolling against each other without slipping and always
coming Into conlact at a cer-
tain point P lying on the line
of centres 0O, and O,. These
circles bear the name of pich
circles and correspond with Lhe
circumferences ol the friction
wheels already shown in Ifg.
193. They differ from the latter,
however, in that there may
occur a slip between the {riclion
wheels, whereas Lthere can be no
slipping along the pitech circeles
of spur gears since the teeth
prevent it. From 'this it is clcar
that toolheW® gearing 1s more
dependable when torque is greal
and the speced ratio n.ust be
maintained with precision. Fig. 200

161. Spced Ratio and the Tran-mission Number
of Toothed Gears

Since there is no shipping helween pileh cireles when loothed
gears rolate. we may Lherefore applv the same principles
determining their speed ratio as for finding Lhe speed ratio of
a bell or friction drive and thereby obtain the same liq. (122):

n D,

La== 77" p

in which, in the given case, I, anl D, correspondingly represent
the diameters of the pitch circles of the dnver and lolower gears.

It is clear that diameters /), and D, must be known to deter-
mine the speed ratio. But pilch circles are nol visible on gears
and it would be very intricate to measure their diameters. Hence
the formula must take a dilfereni form.

Since the teeth of the gear are arranged round ils circumference
at equal distances, these distances correspond to the arc of the
pitch circle slreiching from a point on one toolh to a correspond-
ing point on the next tooth, or (which is the same), from the
cehitre or edge of one tooth to the centre or edge of the next.
This distance is called the tooth pilch and is designaled by the
letter ¢t (Fig. 199). Obviously gears thal mcsh must have the
same pitch. The tooth pitch is equal to the length of the pitch
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circle divided by the numler of teeth. Thus by denoling the

number of teeth as z, we obtain
[ — 7D

o

By eqnating the looth pitch of the driving gear and the tooth
pitch of the driven gear, we evolve
D 2D D,z
—'==", or ==t (130)

z, < D, R

whereupon the said Eq. (122) hecomes

. n z D
R (131)
Wherefore the speed ralio of a pair of qears 1s inversely equal lo
the ratio of the number of thewr teeth, or, which is the same thing,
tnversely equal lo the ralio of the diameters of thewr pileh circles.

This applies hoth to external and internal gears. the only
difference heing that in exlernal gears the drnu and lollower
rotate in opposile directions, whcrms in internal gar Lhey ro-
tate in one direction.

162. Kinematies of Drives Possessing
More than One Pair of Gears

We will henceforth schematicallv represent a gear by a cirele
corresponding to ils pileh cirele (Fig. 201), and the letier denot-
ing the gear will also denote the number ot its teeth. Il the gear
is flixed immovably to the
shatt, we shall mark its rim
wilh a cross (IYig. 201a).

Gears need not necessarily
be immovablv{ixed to the shalt;
——{ X~ they are often mounted on a
key which moves in a keywav
in the shaft, or lhe gear may

- be moved along a spline fas{ened
a) )] to Lthe shalft. In both such
_ cases the gear rotates with
Iig. 201 the shaft but can he fixed

at any point along its length*.

The conventional indication for this method of mounting is
shown in Fig. 201b.

IFig. 202 reprcscnls a train of gears, from z, to 74 in which z

is the driver. For conventional brevity we shall put a sign X be-

* This mcthod of fastening gears Lo shafts is frequenily mel with
in machine tools.
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{ween the letters representing gears that arc meshed together,
and a long dash - hetween those representing gears on one shaft
or on a common bushing Accordingly, the chain of gears shown
in Fig® 202 may be writlen schematically in the following way:

zZ; X2,—23 X7 —2z, X 2,

Assume that the drniver z,, atlached to shaft 0,, makes n,
revolutions per minnte and it 1s necessary to [ind the rpm n,
of the last driven gear z,

I'g 202

We obtain the 1pm of shaft 0, through Eq (131)
n,=nmi,, = na

-

On examining shaft O, we see that 1t 1eccives rolation by
means of gears zg and z,, of which Lhe fust 1s a dniver. Their

speed ratio, therefore, 1s 15, = %, and the rpm of shaft O, 1s
4

. .. z Z,
ng = nyly, = M, iy, =Ny =~ X~
1 4
Gear zg receives rotation from gear z;, ltheir speed ratio 1s

s = i’—, and the rpm of shaft O, 1s

e m i i 3 _ Tz,
Ny = Ngly 3 = Myl l3,l43 = N, Z, X Z, i (132)
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The quotient obtained by dividing the rpm n, of the last driven
shaft O, by the rpm n; of the first driving shait will be the lo-
lal specd ralio 1,,; hence it will be

iu = i2,1i3 zia.s- (133)

According to our line of reasoning it is thercfore apparent
that Kqs (132) and (133) can be applied to any number of pairs
of gears.

Wherefore, the lolal speed ralio is equal to the producl of the
indwidual speed ratios of all the pairs of gears 1n the train.

But it musl be noted that the direction ol rotalion of the
last driven gear 1s Lo he taken into account: for il is clear Lhal
if there is an even number of axes between Lhe first driver and
the last driven gear, the former and the latler will rotate in
opposite directions: and 1l there 1s an odd number of axes be-
tween the smd exliemes, they will rotale in the same direction.
In the lrain of gears we have just considered there are two in-
termediary pairs ot gears (z,z; and z,z). therelore gear zy ro-
lales in the opposite direction to driver gear z,.

A comparison of the above equalions with «qs (123) and
(124) will show that the kinematies of toothed gears and of
drives with pliant connecclors are alike. That which was said
in Sec. 152 concerning the wrangement of the driver and the driv-
en wheels also applies to the Lrains ot gears we have jnust con-
sidered.

-
Oral Exercises

1. Il we reverse the placcs of gears z, and z, will il change the rpm
of shait O, shown m Iag. 202? Wil at change the ypm of shait 0,?

2. Will the 1pm of shall 0, he changed i1 z, and z; are cach increased
m limes; or il z, is mmcieased m times and z, is decieased by the same
amount; or if z, and z, are cach increased m Lies?

INustrative Problem 80. ‘FThe lrain of gears shown in Fig. 202 consists

of a gear possessing z, = 20 teeth mounted on diiving shait 0,, and of
five otlher gears whose number of teclh are z, =

Z, Z = 50, z, = 30,2z, = 60, z, = 23,and z; = 100. What
y/ig are the 1pm n, and n, of shalts O, and O, if n, is
fecsd | ? wa! cqual to 1,500 rpm?
e B 0 i Solution:
— zlz_J _ 20ﬁx_30 _
> n, = n, 2g, = 1,500 x 50 x 60 = 300 rpm
¢ . and
.y - n, = n, 255 _ 1,500 x&x__:i()_x_‘i.’) = 75 rpm
N B S X 50 x 60 x 100 — pra.

— . lustrative Problem 81. The driving gear on shaft I
Fig. 203 in Iag. 203 posscsses z, = 14 tecth. The number of

teeth on theolhir giarsis z, = 70,2z, = 15, and z, =

= 45. If the driver shatlaltains n, = 750rpt, whalare the rpm of shalt 111?

Solufion: n, = n, -:';“ = 750 x ;?)_:% = 50 rpm.
244
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163. Statics of Toothed-Gear Transmission

Now let us determinc the relationship between torque and
effectve pull 1n parallel-shafl gear drives, just as we did for
drives with.pliant conneclors.

Assumec that shaft O, transmits rolation to shaft 0y (Fig. 201)
according to the scheme z; X z, — =3 ¥ z,. Let us find the torque
on shatt O, if the torque on shaft 0,15 M,. By denoling the pileh-
circle diameter ol the gear on this shall as D,, we obtain the
eltective pull P, of tlns pilch
circle as

p, =M _ 2,

R T b

This cflective pull will be
transmitled Lo the teeth of the
driven gear z,. Ilence the torque
on shaft 0,

M,=pP, ') -
. 2M, D D, Fig 201
=Sl X =My

while the effective pull P, on Lhe piteh cirele of the second driver
gear z; will be equal to the torque M, divided by the radius
ot the gear, i. e.,
211 D 1
= - 9 2 .

P, D, 20, D, l),
~The same elfective pull is trausmtted to gear z, of pilch-
circle diameter D,. ‘Lherefore the lotque on shall O,

« P D D,

My = 2M 2D, 1 D, n,

1/)

From the above Eq. (131) 1t follows thal t(he diamelers of
two meshing gears arc propotiional to the number of their

leeth, i.e., D, z and D, =§, from which we finally obtain
]

D, 2, D,

My=M, 2z x 2. (134)

7 z,

2224 . - .
But ** is inversely equal to the speed ralio ty,.
143

Therefore
M, =, (135)

0,1

in which M, is the torque of the first driver, M, is the torque
of the last driven shalt, and 1,, is the speed ratio.
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Wherefore, the lorque on the driven shaft of a gear drive is equal
lo the lorque on the driving shafl divided by the speed ratio.

If we take harmful resistance into account, we must include
the efficiency of the drive in the equation. Accordingly, t be-
comes -

M,=-"2"n. (136)

The efficiency will depend on the workmanship of the teeth,
shafts, and bearings in which the shafts rotate. Loss due to
7 friction hetween well-meshed
y 7 1 teeth is not more than 1 per

- cent. »

Illustrative Problem 82. Fig.
205 represents the kinematic
scheme of a winch with a hand
crank. Shaft I is rotated by
crank A. There are two gears
on this shalt, z, = 12 and z, =
= 22. A block of two gears z, =
= 36 and z, = £% is key-mount-
ed on shait Il; z, can mesh
with z, and z, with z,, Gear
zy = 12 meshes with the big
gear z, = 72 on shaft 711 which
carries Lhe dium 3 upon which
the rope is wound. The drum can
be rolated by cither of 1iwo
schemes: shallJ - z, 2z - zs X zg - bBsorl —z, Xz, — 2, X 24 — I,

Determune he lollowmg when the winch is woiking according to the
first scheme: a) the elleetive pull I* that must be apphed to crank A to
raise, wilh the aid ol a fixed pulley, a load G = 0.6 tons; b) the
speed v at which Lhe load will rise 1t the crank is turned at the rate of
n, = 25 rpm; ¢) the power expended on the crank (1he arm of the crank
a = 300 mm, the diameter of the dium d = 200 mm, and Llhe cfficiency
of the winch 75 — (.9).

Solution: 1. Accoirding to Iiq. (136) the torque on shaft II1
M,

Ly

i

M, =

v

s

whence the torque on shall I M, = Pa =P x 0.3 = 0.3 kg-m;
zZ, Zs 12 12 1
x —

ST Al R PR TR
; - . 0.3P
and % = 0.9. By restaling the equation, we oblain M; = — X 0.9.
18

But on the other hand, A, = G—% = 600 x 0—22 = 60 kg-m. Hence,

60 = 0.3 x 18 x 0.9 P, from whichk the effcctive pull P = 12.3 kg.
2. If the crank altains n, = 25 rpm, shaft III will receive n, = n,i,, =
2

rpm, and the speed at which the load is raised will be equal to

[94]

18
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the peripheral specd of the drum, l.e.,

dn 0.2 x 25
D= ”603 m/sec = ﬂ(ﬁﬁ_ = 0.015 m/scc &2 15 mm/sce.

3. The power cxpended, as found by Fq. (82),is N = % , in which

P is the force applied to the crank and v is the linear velocity of a point
on the crank describing a cucle of 1adius @ and which 15 equal to

_ _2m7an, 703 25
, 60 x LLowo —7 30 7
125 x 03 25
Accord = =T X A 0.1:
ccordingly, N 30 % 75 ~~ 0.13 hp.
»
. 164. Idler Gears

Fig. 206 represenis three inlermeshing gears z,, z,, and z,,
the former being the driver. Lel us defermine the speed ratio
between shafts O, and 0,.

The speed ralio between

shafls O, and 0, Z2 23
®

“1

i,, =
u1 zZ,

In comparing shalts 0, and \
0,, we see thal of the maling
pair of gears z, and z,. the lormn-
er is the driver and Lhe speed 27
ralio

-

18, 200

. z,
.= 5
Consequently, the total speed ralio
. . . z ” r4
lJ'lzl!’ll;. _—'}\ . X L
- < < Z,

Thus we see that lhe speed ralio belween shafts 05 and 0,
does not depend on the number ol tecth in gear z, on Lhe middle
shaft (),. Hence z, is known as an wdler gear. By comparing it
with the other {wo, we lind that il is simultancouslv a {follower
with respect to gear z, and a driver in relation to gear z;. This
is the distinguishing feature of an idler gear. Whether a gear
is an idler or a working gear depends, of course, on the role it
plays in a given chain ol gears.

Idler gears are used in two instances. In the first place, if
motion 1s to be transmitted belween two shaits spaced so far
apart that the gears would have to he made very large, one
or more idlers are used. With their aid rotation can bhe transmit-
ted through any intervening distance irrespective of the diame-
ters of the working gears. In the second place, when gears z,
and z; mesh together directly, their shafts will turn in opposite
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directions. Bul il an idler gear is used between them, the driven
gear will rotate in the sume direction as the driver. According-
ly, in the second instance idler gears arc used when it is neces-
sary to change Lhe direction of rotation of the driven gear.
It therefore follows that an idler gear is a gear which simulla-
neously meshes wilh two other gears, and is a [ollower in relation
to one of the gears and a driver with respecl lo the other. An idler
gear does nol change the speed ralio belween the olher two gears,
but it does change the direclion of rolalion of the driven gear.

Ored Fxercises

1. TUis ncecssamy for shafl O in 1F1g. 206 to Liansmil rotation Lo shaft
0O, in. a dircetion opposite Lo its own, Gears £, and z, do not mesh with
cach olher. How many idlcr gears will e needod? '

2. Wil the speed atio 1, (IF1g 206) change if gears 7, and z, or z,
and z, are inletchangod?

INusteative Problem 83. e, 207 represents a bain of gears in which
shatt O, transmils rolahion to shalt O, in the following way: a plate
and its handle .4 turm frecdy on shaft O, ‘The p'ate caitjes, on pins 0,
and 0., two gears 7 and z, which are in conslanl mesh with cach other.
2, ts also conslantly i mesh with gear £, on shall O, Waen Lhe mecha-
nisin is in Lthe position shown in the drawing, rotation hom shaft O, is
not transmittcd bocause £, 15 nol in mesh with any of Lhe other gears.
If we pull the handle A in the direction ol arrow [, gear z, will mesh
wilh the dnving gear z, and (he mechanism will workh according Lo
scheme z; -z, z,o Roladion of the diiven shalt will be in Lhe direc-
tion of arrow /'.

Fig. 207 Fig. 208

II we pull the handle A in the direction of arrow 2, the driving gear
£, will be in mesh with gear z, and the mechanism will work according
Lo scheme z; x zg X z, \ I,; gear z, will rolale in the direclion of arrow
2’ (opposite to Lhat in (he lirsl example). We thus sce Lhat in the first

case therc is one idler ‘gear and Lhe speed ratio i, =--:—_'— ; while in the
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sccond case, with two 1dler gears the speed ratio 1, = -:—"- but rotation
s 1in the oppostte ducction This arrangement 1s cal‘l(d a reversing
mechargsm and 1s us~d in lhicad culling lathes to rcvearse Lhe direction
of the carriage and also to discngage 1t fiom the transmission.

INustrative Problem 84. In the tram of gears dlustiated in Fig 208,
the dinving gear z; transmits rotation to thiee goars  zy, zy, and 2,4 10
accordance with the followwg schiemes 1) z, - T X2y, 2) 7, X
X Z X Zy Ty N2~ X Z4, Iz, - I - z Ty X Zg I'ind
the rpm of shalls O, O,, and O 1 thc 1pm ol shnll O, cquals n,.

Solution 1 lhe 1pm of shaft O

n =n, f'f'
- ~4
2 Tll(‘ 1pnm of shail O
ng — n, éf’ (2ears 7 and = uc ol )
~ 0
3 Ihc rpm of shall O,
7 2,24

n —n,

2z

(B oz 1S an adler)

®
165, Spur-Gear Ditferential Mechanisms

In Lthe gear trensmisstons we hove thus b investigated all
the componenl dgears rolate about hxad anes md molion 1s
transimiticd by one dinnvat Y more complex diive shall now be
examingd

In [ag 209, rcpresentmg such a mochanism, the pan of gears
A and A are mountcd as Tollows goar 1 orcvolves around the
fingd axas O, while vound the same axis hul indcpendont of gear
A, an arm B (¢ lled a spider) may turn wn atha duection. To
arm B gear & 1s mountcd on apin (axis O ) aronnd which 1l freely
lurns and sumultanconsly moshes with goa o

T 209

Thus the 1olation ot gear 1. 15 a combination of {wo rotations.
it rotales together with arne B and 1t also 1olates in relation to
arm B. This arrangement allows us to select the number of
revolutions of geat A and arm B, the ditection of rotation of
each ol them and the number of teeth on A and K, thus obtaining
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any desired rpm and anv direction of rotation of the driven
gear K. Such a mechanism, which can combine several independ-
ent motions, is called a dilferential. ’

The above described differential is the simplest tvpe A more
complex mechanism of this kind is shown schematically in Fig.
210. Gear A, which is part of hushing E, receives rotation from
one source, while shaft / which receives rotation from a second
source turns Ifreely within bushing [. Faslcned to the left end
of shaft I is crank B on the end of which is a bushing and in
which shaft /[ rolales. Gears Cand D are fixed to either end of
shaft II. C meshes with gear A, and D meshes with gear K which
is on a separale shail I/ whose axis coincides with shaft I.
When shaft I rolales, gear C rolls around gear A and rotation
of the desired speced and direction is transmilted through ‘gears
D and K to shaltl I/[. The intermediate gears C and /) are called
planclary gears. Gears A and &, around which Lhe planetary gears
roll, are known as solar or central gears.

There is a varialion ot Lhis mechanism: gear A does nol revolve,
whereupon rolalion is L1ansmilted to shalt J/1trom shatl [ alone.
This Lype of transmssion 15 called a planelary g@r train.

The ability ol {hese mechamsms {o transmul rolalion from a
number of sources, the possibilily ot lheir adjustment {o obtain
very low speed ralios as well as rotalion in any direction, and
also their compac(ness, has brought them in{o wide usec in machine
tools.

In the above examples the central and planctarv gears are
external, bul similar drives can also he arranged wilh internal

gears.

166. The Geomeltry of Toothed Gearing

To express the pitch-cirele diameler /) in relalion Lo the tooth
pitch ¢t we use liq. (130):

D
[ —_ z ’
from which
D=2z (137)

Accordingly, the distance A belween axes O, and 0O, of the

two meshing gears, as shown in Fig. 199, is:
D, + D { oL v+ z

A-00 =270 =—xITh (138)

But when this centre distance is expressed through the incom-

mensurable quantity =z, it cannot bhe calculated exactly and the

fraction obtained is clumsy and inconvenient for practical use.

Nevertheless, this measurement must be oblained with great
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precision when assembling a gear mechanism. For this reason
a quantity called the module. expressing the relationship of the
tooth pitch to = has been introduced. Since the tooth pitch is
expressed 1n millimetres, whereas n s an abstract quantity, the
module 1s therefore also expressed 1n millimetres and denoled
by the letter m Accordingly,

t
m = —mm (139) Tooth profile

and the tooth pitch
[ = zm mm. (110)

By adopting this quantily,
Eq (137) offers 1the following

expression {o1 the diameter of -
the pitch cirde | 7 > Z
D - ngz, (111) l

that 1s, the diameler of the pilch
carcle in q®rs, expicsscd n
mullimetres, s equal to the
module multiplicd by the number
of leeln

Dedendum circle

. Piteh curele
- Addendum cirele
From this 2 stmple expiession /
15 evolved fot Lhc ccnlie dis-

lance Lig 211

A—m™E® (142)
that 1, the ccnlre distance tn millimetres 1s cqual lo the mod ile
multiplied by half the numnber of tecth of the meshing gears.

The potlion ot the tooth, extending hoyond the pitch crcle
efgh (Fig 211), 15 called ats poind while the part lying within the
pitch cucle fhlg 1s known as the 100l \nd correspondingly, the
racdhal distance A from the pilch cnde to tie top of the
pownt 1s called the addendum, and the radial distance #” trom the
pitch cucle to the hotltom of the 100t 15 called the dedendum.

These distances, relative to the module, are
h' n, and (143)
h" =12 m, (144)
hence the whole height of the tooth i - b | h* 22 m (145)

Knowing the addendum of the tooth, then the diameter D,
of the circle against which the tips of all the teeth e and which
is called the addendum circle, can be expressed as

D, =D+ 2K,
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which. after substituting the values of D and h’ from Eqs (141)
and (143), becomes

D, = mz 4 2m = m (z -|- 2), «46)

that is, the diameler of the addendum circle is equal lo the module
multiplied by the number of leeth plus 2.
We find diameter D, of the dedendum circle in the same way:

D,—D—2h =mz—24m=m(z— 24). (147)

It is easy lo sce from the above that the following relationships
are oblained for inlernal gearing:

D,=D- 2I' = mz --2m m((: -2) (148)
and ‘
D, D |20 - mzq 21m- m(z | 24). (149)

The looth piteh { is measured along Lhe piteh cirele and is
equal lo the (hickness of the loolh s plus the width of the looth space
S5 in which the thickness of the tooth 1s equal to the widlh of
the tooth space, i.c.,

s s, 051 -057am (150)

Besides 1he gear dimensions indicated above, there is also the
face width b (i.c., the width of the rim ol the wear). There is no
exacl standard (or Lhis dimension; it is selecled 1n eacl individual
case according lo Lhe load to be borne hy the tooth.

In the U.S.S.R. there is an approved slandurd of modules
(see Supplemenl IL1).

In the United Stales and Greal Dritain, diametral pieh is used instead
of the module. Diawnetial pileh is expressed in ches and is the quotient
obtained by dividing the number ol teeth 1 a gear by the diameter of
the pitch cirele. In other words, 1L may be said that diameiral puch s the
ralio of the number of lecth tn « gear per tnch of us diameler of puch circle.

By denoting diamelral pitech as p we Lherclore obtain

I T =
P=-p (in inches). (151)
If D and { be expressed in inches in the equation z = "lj—) and this
equation be placed in the above Eq. (151), then .
o ,ab _ = .. =
Pz’ p =75 (in inches), (152)

thal is, diametral pilch is equal lo = divided by the loolh pilch cxpressed
in inches.
To ftind the relationship between diametral pitch and module, we
pl:\co D = mz (mm) mto £q. (141) and, bearing in mind that one inch =
= 25.4 mm, we obtain

. (153)
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We ihus see that the module is the reciprocal of diametral pitch:
the larger the one, the smallcr the other. It may likewise be said that
as ihe modul" increases, the tooth piich also increases, but with an
increwe in diamctial pitch the toolh pitch decreases.

Oral Ezercises

1. Calculate the tooth piteh tor mmodules of 2 mmm, 5 mm, and 10 min,
respectively.

2 1If t = 15 mm is the resull cvolved [rom calculation of a tooth
pitch what is Lhe ncarest value of the module (hat corresponds to this
pitch (sce Supplement 111)?

Illustrative Problem 85. Calculations show that the Looth pilch of a
gear ol z = 60 teelh should be approxunatddy, but not loss than, 15 m.
Calculate the chief elemenls of Lhe goar.

Sc;lullon: the module mas 4.7761. By choosing the nearcst

4

larg'r modul* as m — 5 wm, we Ood hal the addendum kK = 5 mm,
the d*dendum b = 1.2 J 6o, the haeht ol the looth hh = 11 mm.
The thickness of the Loolh and width of e looth spacc mie each equal
to s =, = Odvm= 7.80 mm. ‘LThe diymetar ol the addandum cirele
D, = 5 (60 4 2) — 310 mm.

Hlustrative Bgoblem 86. 'ind the module of a geay hy makmg the
requited moasulcments.

Solulion: we measme the diamela of Lhe add ndum enelr and find
that it 1s, (o1 example, 1260 mm. 1 the number ol teelh e, let us say,

126

36, then the module wil he m 30 35 mm.

IHustrative Problem 87. A ocar of z 10 {eeth and a module of 4 mm
is Lo be made. \Whalt must be the diamelcy ol the himishod blank, and
ihe culling deplh ol the milling machime?

Solufron: the lathe opcrator must machine the blank according to
the diameter ol the addondum endle; thus iust be Dy = t (45 + 2) =
= 188 mim.

The nulling machine opcrator must cul the tooth spaces Lo a depth
equal to Lthe jull height ol the lecth & 2.2 ~ 1= 6.8 mm.

167. Chief Forms of Spur-Gear Tecth

In order Lhal a mating pan ol gears operale salisfactorily,
the sides of the leeth on holh gears are given precisely the same
form. The curve ol the side sutface of a tooth 1s called its profile
(Fig. 211). The proiile for the teclh of a pair of mating gears
must be designed so as 1o

ensure uniformily of speed - ] é,]
ratio for all moments of time. -_ ]
The mosl comtnon curve for — ] 1
this profile is the involute curve.  —F—={~ —1
Teeth of Lhis shape are called L F——
involule leclh. S e
Gears are also distinguished .
according to their form along 9 )
the face width, the most com- Fig. 212
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mon form being the straighl spur gear shown in Fig. 212a. If the
lines along the face width are slanting, the gear is called a helical
gear (Fig. 212b). Often helical gears are cut as shown in Fig. 212¢,
where each tooth line along the face width is formed of two
slanting segmenls meeting at an angle. This type js_called a
herringbone gear. Both helical and herringhone gears result in
smoother (ransmission, and the herringbone type of teeth lend
particular strength to the gear.

168. Jantermittent Transmission of Rotation

In transmilling rotational molion it is sometimes required that
the conlinuous rotation of Lhe driver shaft be changed to intermit-
tent rotation of the driven shatt, the lalter pausing fully a number
of times during the course of each revolution. One of the mecha-
nisms used for this purpose is e Geneva wheel, a simple type
of which 1s shown 1 [fig. 213,

The continuously rolaling crank A, which is fixed fast to
shaft 0, has a dnving pin D made lo f1l 1mlo the radial slots
C in disc B which is part ol shall O,. As the pin entd s vne of these
slots, the rolating erank forees dise 3 (o turn until the pin aban-
dons the slot. at which moment dise I3 stops turning and dwells

in this position. [Bul as the crank conlinues to rotate, the pin
enters the next slol and again imparts rofation to the disc as
before. In this way as the centre of the driving pin D describes
a circle around axis 0, as it rotates, it will successively enter all
the slots in the disc in a radial direction, first approaching axis
0O, and then receding from it. The numbher of pauses (periods of
dwell) made by disc B will depend on the number of slots in the
disc. It there are three slots, the disc will rotate between each

236



period of dwell through an angle g = 3—630: = 120°; if there are

four glots, it will rotate through an angle g — —3—2(): = 90°, etc.

Thus, whereas the driver crank A will rolate uniformly, the follow-
er disc B will turn intermullenily. When the pin lirst enters a
slot, the velocity v, of the centre
of the pin will he directed towards
the centre of the disc and the speed
of the disc will be zero. The isc
will subsequently rotate with
increasing speed till it reaches
its maximum when the crank
cointides with the centre ine 0,0,.
Then a slowing down will occur,
reaching a full stop when (he
cranhk is in position O,F and the
pin abandons the slof.

However, this simple type of
Geneva whegl 15 nol eninely
satisfactory. If for some rcason
the disc should turn c¢er <o slightly after the pin leaves a
given slot, all the slots will be thrown out of line with the
crank, and when the pin 15 again ready to enter a slot, the
latter will not be in its desired position and the mechanism will
break. To prevenl this, the mechanismm musl he constructed
so that the disc 1s loched m position during each period of

dwell.

A mechamsm of
this kind, in which
the follower shaft O,

2 makes one full revolu-
tion with six periods
of dwell equal to six

Yo, revoluiions of the

driver shait 0,, is

shown in Ifig. 214.

Disc A and the crank

. are fixed fast toshaft
Fig. 215 0,. Disc B hasradial

slots, hetween which

it is cut away by ares cd, the radii of which are equal to
the radius of disc A. Disc A 1s also cut away (arc ab), making
it possible to clear disc B and rotate unhindered together with

the crank, as shown in the drawing. As the pin abandons a

slot in disc B, the convex side ol disc A slides into one of the
hollows cd, thereby locking disc B in position. Disc A itself,
however, continues Lo rotate, its convex side sliding through the
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hollow in disc B. This arrangement is used in cincma apparatus,
in the reversing mechanisms of machine tools, cte.

Another type of mechanism for transmit!ing intermillent
rotational molion is the ralchel-and-pawl (Fig. 215). A toethed
wheel A, called a ralchel, is lixed fast to shaft O which is to rotate
intermittently. The paw! B turns freely on pin O, of the lever C
and is pressed Lo disc A by a spring (not shown in the drawing). "
Lever ( is pin-joinled by means of O, to slider E which, in its turn.
is pin-jointed by means ol O, lo Lhe crank D rotaling around the
fixed axle O,. If the teeth are shaped as shown in the drawing,
the pawl will he driven into a looth space when the lever C swings
counter-clockwise and will turn the wheel through an arec depend-
ing upon the amplitude ot swing. When the lever swiugs in Lhe
other direction, the pawl will slide over the teeth of the rakchet
without causing the latler 1o move. In order to cnsurc that
shaft O will dwell abhsolutely motionless during the given
moment, a seccond pawl K, on a f{ixed axle, is introduced.
The pin 0O, can be set to any vosition in the slol of crank
D for the purpose of regulating Lhe amplitude of swing of lever C.

Ratchet-and-pawl mechanisms are used a great (Lgl'll in machin-
ery, particularly in planing and other machine tools

169. Questions for Review

1. What is the dillerence befween Lhe speed 1alios 1, and i,,?
L 1 -
2. If the speed 1atio § ), - - what 1s Lhe lransmission number?

3. The rpm of the dniven shalt in a diive wilh plizaml connectors must
be increased m tunes. Whal change must be made v Lhe diameter of
the diiving sheave? In the diameter of the dyiven sheave?

4. If il were neeessary Lo vll;m,':c Lhe direction ot rolalion of shaft
0O, in the belt drive shown in Fig. 183 while maintlaining (he same direc-
tlon of molion of shai{l 0,, how should it be donc?

5. If slip is ignored, is there any dilference in the speed of the belts
between shaits O, and 0,, O and O, and O, and O, in Fig. 183, when
the sheaves are of different diamelers?

. Are the torque and the power on shatts 0,, O, O, and O, (Fig.
183) the same? (Negleet harmfal resistance.)

. If the rpm of the driver are conslant, will the speed of Lhe belt
on the different sleps of stepped cones be uniform?

8. Given two pairs of gears—one external and the other internal.
The number of teeth on lhe driver and lollower of the first pair are
each equal to the number of tecth on the corresponding gears of the
second pair. Whal will be the ditierence in the rolation of lhe driven
shalts?

9. What rearrangement can be made in a train of several pairs of
gears without changing the full speced ralio of the Llrain?

10. How can one tell the difference between an idler gear and a working
gear in a {rain of gears? \When are idler gears used?

11. Will the rpm of shafls O, and ()A in I11g. 208 change if gears z,
and z; are interchanged?
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170. Exereises

87. Fig. 216 shows a belt drive: between shafts 0, and 0O,
is suated shait 0,, to which is fixed a sheave of diameter D,
connected by a belt with Lhe driver sheave I); on one side and
by another belt with the follower
sheave D, on the other. What are
the rpm of the driven shaft if the
rpm of the driving shait are n,.

88 Shaft 0, (Ig. 183) execules
1,500 rpm. Calculate the rpm ol
shalt O, and also the torque on
that shaft, if the followmg data
is given: power N 225 kw,
diameters of the sheaves 1),
=300, D,= 150, D; 200,
D, - 800, D, — 200, and D, - J
= 250 mm. Fig. 216

89. Using the same data given
in Ex. 88, deterimine the rpm of shalt 0, and the torque of
that shait.

90. Given the rpm of shalt I n, -7.,0 and 800 mm as the
distance belween two shalts (1F1g. 196) At what distance It fromn the
axis of shaft I must the roller /3 be mounled 1f shait IT is Lo

attain n, 250 rpm?

g, 217

91. Shaff I (Fig. 217) transmits rotation to shaft IT on which
are fixed gears z, to z,. On shalt /, gear z, shdes in a keyway
and is permanently meshed with gear z; which rotales on an
axis fixed to the housing A. By moving this housing along axis
0, so that it is opposite any one of the gears z; to z, and then
bringing gear z; inio mesh with it, it is possible to transmit ro-
tation irom shaft [ to shaft I al the required speed ratio. Write
all the speed ralios that can be obtamed wilh this gear

train. .
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92. In th in of gears shown in Fig. 218 shaft 0, transmits
n=150r o shafts 0,. 0,, and O, Calculate the rpm n,,
n,, and n, of these shafts it the number of teeth on the gears
is as follows" z; — 30, z, = 50, z; = 20, z, = 50, z; = 25, z; = 50,
2; == 20 and z; = 45.

»

Z;+60

Zg9<75

Iig 219

93. Calculate the torque on shaft O, in Ex. 92 if the power
transmitted N = 1.5 hp.

94. Calculate the rpm of shafts 0,, 0,. and O, of the mechanism *
represented schematically i Fig. 219, assuming that shaft
0, executes n, = 300 rpm.
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CHAPTER XVII .
TRANSMISSION BETWEEN NON-PARALLEL SHAFTS

171. Transmission of Rotation Between Non-Parallel Shaits
Through Pliant Connectors

Now that we have studied the main types of transmissfon
for transmilling rolational motion belween parallel shafts,
we shall investigate transmission of rota-
tion between non parallel shafts that inter- foltower
sect at onc level and also Lhose that inter-
sect at a distance.

Fig. 220 shows a belt transmission be- ]
iween Lwo shafls that intersect al a distance
and form an angle of 90° In this trans-
mission the cenlre lines of the belt seg-
menls advancing upon the pulleys A and J
B must lie approximalely in the mid-planes
of these respeclive pulleys. Such an arrange-
ment is classiMed as a quarler-turn lrans- ’

mission. lixperience shows thal this kindl

; . f Driver
of Llransmission operates properly it the C =
segment of Lhe bell receding biom  Lhe

driver forms an angle « nol grealer Lhan
approximately 25° to the mid-plane of the , _U
pulley. This kind of transmission is also A
used Dbetween non-parallel shafts thal in-
tersect each olher al a distance al an
angle other than 90°, in which case guide
pulleys are somectimes used.

172. Friction Transmission
Between Non-Parallel Shafis

|

Transmission hetween non-parallel shafts A
can also be accomplished through [riction Fig. 220
gearing. [ig. 221 shows a transmission
of this kind called rolling rones: on the ends of shafts I
and [I, whese axes lie in the same plane and intersect al an
angle at point O, are siluated two rollers in Lhe form of frusta-
cones. If sufficienl friclion is created under the action of axial
forces Q, and Q, the frusta will rotate without slipping. Let us
see how to determine their speed ratio. )

Assume thal at a given moment the two frusta-rollers are in
contact along line Bh, We shall take any arbitrary point M along
the line of contact (Fig. 222), where two poinls on Lhe surfaces
of the two rollers coincide. The point on the driving roller K

16 - 5018 241



lies at a distance of MN, from the of rotation If this roller
executes n; rpm, the velocity at ﬁ{;spomt will be, according
to Eq (54),
vy — 2eMN,n,.
In the same way the velouty of point L on the surface of the
driven rollet
v, 2aMN,n,
If theie 15 no shp, the vcloatics of the {two points will be equal,
1 e, 2aMNn,  24)MN,n, from which the speed ratio 1s
n o 2+MN, M\,
1 7, 2N TMN,’ @

Let us denote /), as the diamcler A £ of the base of the driv-
ing cone, and d; as the diameter ab of ils apex The 11ght trian-

g 221 g 222

gles OMN,, OI3L , and Obf are stmilar, triom which 1t follows that
AN, Br oy

oV T on T 0b .
Likewise from the similanty ol tnangles OMN,, 0BG, and

Obg we obtain
MN _JG _ bg
o =~ o T 0b’
If we devide the hirst group by the second, we obtain

MN, _ BI _ bf

MN,™ BG ~ by~

242



By equating this wmn with the above (a), we evolve
_BE_
21 = LG = 3¢’

[ J L et
But BF=%’4,@d BG:%—, while bf:%‘-, and bgziizl-

whereupon we finaiiy oblain

. D, d, ’
iy =-pt =g (154)

that is, the speed ratio belween two rolling frusta is inversely equal
to the diamelers of their bases or their upices.

8 |

Jp

7
T - ==
L3 S
\l\‘ B

e~ - ——

Fig. 223

)
|

Friction transmission helween non-parallel shafts can also
be accomplished wilh variable speed ratios. Assume it necessary
that shaft I (Fig. 223) with a constanl rpm transmit rotation
to shaft I/, and that shafl I/ rotate at varying angular speeds
as needed. We mount the cone A on the driver shaft with its slant-
ing side parallel with shaft I/ to which wheel B is mounted on
a sliding keyway, thus making it possible 1o set it into any
position. If we denote D, as the diameler of the cone in the sec-
tion corresponding to the centre line of wheel 13, then the speed
ratio hetween the shafls

=2 (155)

Ly, = D

0
Therefore at n, rpm of shaft I, the latter can transmit varying
rpm to shaft I, ranging from a minimum of n, —g'— to a maxi-

D, ‘
mum of n, Do
0 3 - . . .

Fig. 224 schematically represents a friction transmission with
a variable speed ratio for geared shafts whose axes intersect at

right angles. Disc A, which is fixed to the driving shaft I, is
pressed to the friction wheel B which moves in a keyway and
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can thus be set into any position along shaft II. Accordingly,
it is possible to ohtain a circle of contact hetween disc A and
wheel B of any radius R, With the wheel in the position shown
in the drawing, the speed ralio 4
. R
i, = 'If' » (156)
It is ohvious that if the wheel is moved Lo the right, the speed
ratio will diminish; it il is sct opposile to the axis of shaft I,

I
| R
" /
| /
Il ! ]
T 4
= . - -
3 I
s’ f ¢

IYig. 224

the speed ratio will he zero and the driven shaft will not rotate;
if it is moved slill further to the right beyond the centre of the
disc, the direction of rolalion of
the dhiven shafl will be the op-
posite Lo that when the wheel was
fo the leil of the centre and the
spceed ralio will increase as the
wheel is moved further from the
centre. Ilence if the driving shaft
is rolating at n, rpm, the rpm of
(he driven shafl n, will range

from 0 to n, %incirherdirection.
0

Iliustrative Problem 88. Fig. 225 is
a general view of a [riction press. On
the driving shafl O which can move
somewhat in an axial Uirection, are
fixed two friction wheels B and C.
4 The rim of friction wheel A, which is
Fig. 225 fixed fast Lo screw d, is covered with

g. 2= lecather. Screw d turns in a threaded
bushing fixed in the frame of the press,
and to its lower end is attached the ram D in such a way that the screw
can turn aboul its axis. The ram slides in guides.

Let wheel A be pressed against wheel B, and if the driving shaft
is moved in the direction shown by the arrows and the screw has a right-
hand thread, it will screw into the threcaded bushing and tmpart down-
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ward motion to the raf with an increasing specd as the distance of
wheel A from the centre @f wheel B increases. When this stamping
operation is finish~d, driver shafl O is shifted in an axial direction to
the gight with the aid of a special mechanism and wheel € becomes
pressed againsl A. Then the screw will begin to turn in the opposite
direction and Lhe ram will rise with decieasing speed.

173. Bevel-Gear Transmission

Let us assume that we have cut teelth on a pair of rolling
frusta-cones in such a way that 1f their cdges were prolonged
beyond the apices of the cones they would intersect at point
0 (Fig. 226). We would then have a pair of bevel gears. Axes
0, and 0, of the gears in I'ig. 227 intersect at O. forming the
andle 4. Bevel gears are mostly used belween shalts that are
perpendicular Lo cach other.

T, 226

Assume Lhat the gear on shall [ has z; teeth, that the one on
shaft 1] has z, teelh, and that the driver gear makes z, rpm, 1. e.,
n, - z,; therchy z, ¥ z, teeth would pass an immovable mating
point of the gears and the driven wheel would therefore execute

2X4 — 7z, = n, rpm. From this it tollows that
: i, — M h, (157)

Wherefore, the speed ratio i,, of bevel gears, juslt as of spur
gears, is equal to the ratio of the number of leeth on the driving
gear o the number of leeth on the driven gear.

As concerns the direction of rotation of bevel gears, it is de-
termined ecither with respect to their bases or their apices. If
the bevel gears are external, the driven gear will rotate in the

opposite direction to the driving gear.
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Bevel gears may be internal (Fig. 228) as well as external.
If internal, the rotation of the driving and driven gears will
be in the same direction. Internal gears are little used dye to
the difficulty of cutting hevel gears with the teeth on the 'ullkside.

Fig. 229 shows another (ype of hevel
gear in which a conical gear A is in p)

. | A o,
mesh with a toothed disc B. |
Differenlial mechanisms are made wilh IO\
bevel gears just as they are with spur .

gears. Fig. 230 represents a simple type
bevel-gear differential. Shait I, which is
in one picce with spider /3, passcs {recly

IFig. 229

through the hub of gear A. Gear K is mounied on the spider
and meshes simultaneously wilh gears A and L, the laller
being a parl of shaft /1. \WWhen gear .1 and shalt /. together
with its spider, rotale, the [wo molions combine lo rotale
gear L logclher with shalt [[. If gear A is prevented from
rotating, shafl I will recewve rolation [rom one source of
motion only —from shall [. Gear /v is a planelary gear.

T iy g, A
\\\\\\“N”///////é 4 \\1/2' A /2y
/ — J 1.7
>4 Ny
5/22
H .
Fig. 230 Fig. 231

INlustrutive Problem &#9. 141g. 231 represents bevel gears which allow
the direction of rotalion of the diiven shail to be changed. A, and A,,
whose apexes face each other, form a double bevel gear capable of shiding
along a key on driving shafi I. Gear B s pail of the driven shaft If

* which is perpendicular Lo the driving shaft. In the position of the double
@ear shown in the drawing, gears 4, and B are in mesh. BBut if the double
gear is moved to the extreme left, gears A, and B will be disecngaged and
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A. will be brought into mesh wilh gear B. It is evident that shaft II
will then rotate in the opposile direction, allthough the driving gear
will conlinue to rotate in the same direction. The speed 1atio in both

cases ®1ll be the same, i.c., % When {be double gear 1s in the central

postition, shafl JI will nol 10tate.

Mustrative Problem 90. 12 2321llustiates a bevel-gear drnive intend-
ed to mmpait two angular veloatics of dilfcrent magmtude and direc-
tion to the dnven shaft IT hom Lhe unilormly rolating dnving shatt
I. Gears A, and A possess dilferent numbars of tcdlh z, and 2z, (thus
differmg from Ix. 89), and thare are {two gcas on the diiven shaft B,
and B, with z and z, lecth In the position shown in the diawmg the

z
speed ratio 1, = 7‘-, bul when A, and A are al the extireme left it

z
will Become 1,, = = and 1olation will be n 1he opposile direction.

When they are 1n tl;:* cential position, shall 17 will not 1o0late.

!
A1/21 A2z b/
c 2 wy U!' "

%
»2,/‘&\\\\\\\\|||nr///////'§./_¢/‘
g

7
Z
81/2; Be/z4 .hi
/H
/4
Tig 232 g 233

IMustrative Problem 91, g 233 <hows a mcchamisim with an idler
gear. Dniver shatt 7 transnis 1olation Lo shalt F/1 by mcans ol gears
A and B. B mshes mbanally witl gear ¢ which s part of shaft I{1.
Shafts 1 and III are coasial (Lhey rolate aboul onc axis)

It 15 seen Lhal gear B s an dla Hence the speed 1alio 1, =
and 1olalion of shait 71/ 15 opposite {o Lhal ol the duving shaft 1.

174. The Serew

Let us cut out of paper a righl lnangle ABC (Fus. 231); the
leg AB will be equal to the circumierence of the cylinder shown
in plan and eclevalion 1n I1g. 2344. Let us wrap the triangle about
the cylinder, whose diameter 15 denoted by d, 1 such a way
that 1ls apex A will coincide with some arbitrary point K on
the cylinder’s hase, and leg AD will he along the base. Since
AB is equal to the circumierence ot the cyhnder, point B will
coincide with point K and the imlial point A, and the hypote-
nuse AC will rise around the side of the cylinder in a three-
dimensional curve called a heliz. Angle BAC is formed by
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the tangent to the helix and the plane of the cross-section of
the cylinder and is known as the lead angle a of the helix. Leg
BC is perpendicular to the base of the cylinder and ocgupics

& _c
| - - —_—— q—————
|
77 /’/// ,'L/
\- -y / :
- or lB’ ﬁ
4

Tig. 234

position KC’. We thus sece lhat the dislance between two turns
of the hehx, mcasured along a line perpendicular to the base
of the eylinder, is a constanl quantily
| — called the lead of the heliv and is desig-
| nated by s.
l From triangle A3 we obtain the rela-
tionship

il I s  adtan a, (158)

thal is, the lead of the helix is equal lo the

crreumference of the eylinder multiplied by
Wy Lhe langent of the lead angle.

It is evident trom triangles ABC and

' l ADBC, in Fig. 234b thal it the lead

| remains the same, the smgller the dia-

4 meter of the lielix {he greater will be

the lead angle «,.

It we cut a groove of definite profile

Fig. 235 along 1he line of the helix, we shall

obtain a {fhreaced screw. The groove, or

thread. may be triangular, rectangular, or square in profile, known

correspondingly as V-thread, flat thread, and square thread.

A screw has external and internal diameters d, and d, respectively

(Fig. 235). It is apparent from what has been said above, that

[N Wy |H||I|||||

dg_'
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the lead angle of a screw with a given lead s will differ in its
internal and external cyhnders, for which reason it is classified
on the bawis ol its average diameter, denoled by d.

Assume that after having dehincated one helix s A A,A A,
we dclineate another LB, B,B;B,, with the same lead angle
(Fig. 236). I the sccond bhehx s started atl poml L, exactly op-
posite the starting pomt A, ot the first hehx, 1t will occupy

Ay ]' 8,

g, 236 g, 238

a position between lhe (urns of the Lirst helix and cut its lead
in halt. A screw threaded 1n this manner 15 said o have a double
thread (Fig. 237). Triple-threaded screws are made in the same
way: hetween tlic turns of Lhe first thread, two more Lhreads

are cut at equal distances {1om cach other and irom the first
. . 360
thread, their angular distances from each other being 3 =

= 120°. In a quadruple-threaded screw the angular distance
between threads would be 3?— = 90°, and so forth with addi-

tional threads.

249



In a multiple screw, the pitch is the distance s between cor-
responding points on two adjacent threads and the distance
between corresponding points on one and the same thread will
be the lead. 1lence by denoting the lead as It and the nulnber
of threads as z, then

I -- sz (159)
Accordingly, for a mulliple screw, Eq. (158) becomes
h — nd tana (160)
while the pitch becomes
ad tan ¢ (161)

In all the above cases the thread of the screw rises from left
to right. Such a screw is sind (o have a righl-hand thread. T{ the
thread rises from right lo lell (I'ig. 238), Lhe screw is said to
have a lefi-hand |hread.

Oral FExercises

1. The lead angle of the Unecad on {wo eylinders of diffrent diameters
is the same. Whal can be saud of the lead?

2. The threads on Lwo eyhinders have the same lead angle but a differ-
ent lead. What can be said of the diameters of the eyhinders?

175. Helical-Gear and Worm-Gear Transmission

We shall now pass on to lhe sludv of gear (ransmission he-
tween shalls whose axes inlersecl at a distance and for which
purpose helical gears ame used (If1g. 259). A helical gear may
be regarded as a mulliple-thicaded screw
withinvolule teeth, the number ol threads
of which is equal 1o Lhe number of
tecth (Fig. 240). Heheal gears are mostly
used belween shafts which cross at a
distance and form an angle of 90°,

Reasoning as in Lhe case of hevel geurs,
we come to lhe conclusion that while the
driving gear makes one revolution, the

Fig. 239 driven gear cxecutes a turn of in

which z, is the number of tecth on the
driving gear and z, the number of tecth on the driven gear.
Thercfore the speed ratio for helical gear is

In helical gears one must understand the difference between
normal and circumferential pitch. Let AB and CF (Fig. 241)
represent the pitch elements of two adjacent teeth on a gear,
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The distance between lhem {, — BD and is measured perpen-
dicular to their length; this is called the normal pich. The dis-
tance § =~ BIF and is measured along the pitch circle; thisis called
the ctrcumferential piuch. By denoting, as we did with the
ordinary screw, the lead angle of the thread as «, we obtain
from triangle BDF the relationship betwecn these two pitches:

{, —= {, sina. (162)

A varianl of the helical gear is the worm gear. The worm A
(Fig. 242) 1s part of the diving shaft and {ransmits rotalion

Fig 210 Ig 211 Lip 212

to Lthe worm gear 13, which is parl of the diiven shalt Tt s clear
from [he 1llustralion thal the worm 15 a cyhnder with a screw
thread cut into 1t, which hits into the tooth spaces of the mating
worin geal. The worm may bhe sigle- o1 mulliple-threaded and
either lelt-hand or nght-hand. It 15 obvious that the pileh of
the worm and the worm gear are the same

Let us denole the number ol thicads on the worm as z, and
the number of teeth on the gear as z, It z, 1, which means
that the worm 1s single-threaded, 1n onc revolution it will turn one

tooth of the mating gear, that is, lhe gear will lurn 71- of one

revolution and the speed ratio ’
1

If the worm is multiple-threaded, it will turn z, tecth of the
mating gear when it executes onc revolufin, 1. e., the gear will

turn % of one revolution; hence, the speed ratio
. n Zy
gy = _n.-?,zz_:' (163)
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that is, the ralio of rpm of the worm gear to rpm of the worm is
equal to the ratio of the number of threads oa the worm lo the num-
ber of teeth on the wormn gear.

It is thus clear that the speed ratio of worm-gear mechanisms
is expressed similarly to the speed ratio of spur gears, the only
dittcrence being that the number of tceth on the driving gear
is replaced by the number of threads on the worm. The spe-
cial feature of the worm-gear drive is its possibility of obtaining
very small speed ratios.

The direction of rolation of the gear depends on the direction
of rotation of the worm and direclion ol the thread, i.e., whelher
it is right- or leit-hand.
It is not always possible
to transmit motion {romn
a worm gear to a worm;
it depends upon the lead

Iig. 241

angle of the thread on the worm and the coetflicient of [riclion
between this thread and the tecth of the gear. The grealer the
coeflicient of {riction, the greater (he lead angle must be.

Fig. 243 illustrates the meshing of the worin and worm gear,
where it can be seen that the thread of the worm in cross-section
possesses the form of an cquilateral trapezoid.

Hlustrative Problem 92. Fig. 244 shows schematically an ordinary
index head of a horizontal milling machine. The worm A, which is part
of shaft I, meshes wilh the worm gear 3 mounted on qpmdle 1I with
which the workpicce is connected. Shafl J, to the front end of which
is fixed the handle D, passes [reely lhroupzh the rigidly fixed index
disc C. On disc C Lhere are periorations arranged at equal distances
in concentric circles. The handle ) can be sct on the shaft I so that its
dowel E aligns with any one of the pcrforaled concentric circles. Assume

it neccssary that a workpiece cxecules% of a turn. By setting the dowel
to align with the circle with ¢ holes and by turning the handle along
that circle for a distance of p holes, we transmit v{-‘)' turns to shaft I
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carrying the worm. If the number of Lhreads on the worm is z, and
the number of tecth on the gear is z;, we obtain

Lo L
q zq z

from which Z— == .:"

-
o~

The worm in index heads is made single-threaded as a rule, and the
number of tecth on Lie worm gear s usually 40,i.c.,z, = 1 and 25 = 40.

. ) 40
Accordingly, l? =

Assume il is necessary Lo mill a acar with 28 teelh. By giving z its
numerical value ot 28 in this equation, we oblamn
p _10 _ 10 3

¢~z 7~ 5

Accordiugly, since we must dive the handle 1:; turns, we choose a

perforated circle 01 Lhe dise corresponding Lo [he number of holes divis-
ible by 7, for example, 49. We set the handle with the dowel 2 to align
. N

R . . 3 2
with that circle and subsequently give the workhpieee 12 1 l"lf Lurns
. . » . ! LY .
each time, i.e., we give it one full Lurn pfus 2t divisions in addilion.

176. The Universal Joint

The universel joinl is another mechanism thal serves to trans-
mit rotation betwceen non parallel shaflls. Ifilg 215 represents
one such mechanism schematically: the ends ot shails I and [1
rotate in bearings Af and N (Fiq.
245a). Shackles € and A are hixed
to Lhe ends of the shafts in such
a way that the axes J/7 and
IV passing through the shackle
holes are perpendicular to the cor-
responding shalls. The hitting of
the ends of a right-angle spider
into thesc holes completes the uni-
versal joint.

When shaft I carrying shackle
C rotates, the shackle also rotates
while its ends turn ahout axes
III and IV and transmit motion
to shackle A which is part of shaft
II1. The driven shaft makes one
turn to each turn of the driving shaft. I7ig. 245 illustrates the
symbol used to represent this mechanism is kinemalic diagrams.

However, the angular velocily of the driven shaft is not con-
stant, because while the driver rotates at uniform speed, the follow-
er rolales at a variable speed.
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Sometimes a double universal joint (Fig. 246) is used to transmit
motion hetween non-parallel, non-intersecting shafts (in auto-
mobiles, machine 1ools, ctc.). In the double universal joint
the two shafts J and II arc connected by an intermediaty. shaft
III by means of two joints A,B,C, and A,B,C,. The axes of
the shackles A; and A, attached to the ends of the intermediate
shalt must both he in one plane, while Lhe axes of shafts I and
II musl be parallel to each other or be in a symmelrical posilion
with respect to axis 0,0), connecling Lhe centres of the joints,

It is Irequently neccessarv to transmil rota-
tion to a driven shatt whose posilion is not
permanent. Fig. 247 is a (hagram of a mechanism
used in such cases. Assume Lhat the driven shaft
II changes its position in relation to the driving
shaft I when the machine is in operation, thus
causing Lhe distance belween Lhe Lwo joinis Io
vary. To provide for s situation. link I/I must

i 7
H &
¢ D' b
\‘; I
8
I % ‘oA
Fig. 246 Iig. 247

be abhle to vary in lenglh: spindle 1, which carries on one of
ils ends the shackle ol universal joinl B3, is made to slide in an
axial direclion inlo Lhe eylinder € which is part of the shakle
of the second universal joinl A. There is a keyway in spindle
D in which a key, [aslencd to the wall of the cylinder, slides
freely. With this construction, shaft II can change its position
while receiving rotalion through the variable-length link I1],
which is known uas a lelescopic jornt. This type of mechanism
with its two universal joints and telescopic joint, is used in cer-
tain kinds of machine tools.

177. Questions for Review

1. Are the diameters of ihe friction frusta, reprcsented in Fig. 222,

the same at points B, M, and b?

2. Which of the mechanisms shown in Figs 223 and 224 makes it
possible to change the direction of rotation of the driven $haft while
maintaining a constant direction of rotation in the driving shaft?

3. Is the pitch of a bevel gear the same, no matter at what point along
the pilch elemenis it is measured? .

4. Which is larger in a helical gear, the circumferential or the normal

pitch? N
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5. What change occurs in the normal pitch of a helical gear if the
lead angle is increased while the circumferential pitch remains the same?
What will the normal piteh be when Lhe lead angle a = 90°?

b. Jn one worm-gear transmission the worm is single-threaded, in
anotfer it is double-threaded. If {he number of turns on the worms
and the number of tecth of the worm gears are the same, which ot the
driven shalts will rotate faster, and how much faster?

178. Exercises

95. The diamecter ot the apex ol the friclion cone, shown in
Fig. 223, D, - 280 mu, the diameler of its base D, 400 mm,

E.
/

11

N

——rd

and of the roller Dy — 300 mm. The rpm ol the driver shaft
I is n; = 350. What are the maxnonum and sunimum rpm thal
can bhe atlamed on the driven shafl?

96. In the inetion transmisston shown i Ifig. 221, the grealest
possible distance R obtain

able helween the roller 3 2zl ¥ Zy
and Lhe cenlie of disc A . ~ 2
is 250 mm; the diameler % 2 -

of the roller is 125 mm. i Z, —1 Zg

\

the rpm of shatt J is 71 Y w
n, = 800, what is the Lodx] [t
maximum rpm that can o Zy3
be obtained on shaft I7 Z4

. I Z3
of the drive? \ % 7
97. Crank A of the wind- X X 2

N

lass in Fig. 248 turns with pa

a peripheral velocity v, = 5 5 :E ~
= 0.785 m/sec. Calculate 2 Zs 'u\z Zg X
the speed with which it 7

can move a load on the Fig. 249
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cable that winds ahout its drum if ¢ -- 250 mm, z, = 15, zp =
=49, and d = 180 mm.

98. A single-threaded worm executes 900 rpm and its mating
worm gear possesses 45 teeth. FFind the rpm of the gear. ..

99. Solve Iix. 98 for a triple-threaded worm.

100. I'rom the driving shaft I in Fig. 219 rotation is trans-
mitted as follows: a) to shaft III through shaft [/ according
to the schemes z, X 7z, -23 X 24, OF 2, X 27,, OF 24 X 24; b) to
shaft VII through shafls 11, IV, V, and VI according to the
scheme z, X 2z, -2z3 X 7y X 249 - 2;; X 22 - worm with threads
255 ]XVZIMI. Shalt I executes n, rpm. [Find the rpm of shafts II[
an( .

CITAPTER XVIII

CONVERSION OF ROTATION_INTO LINEAR TRANSLATION
AND YICE VERSA

179. Conversion of Rotation into Linear Trjn<lation

Motion in cngineering is notl limited to rofation. In machine
tools the basic motion is rolation, but it is also converled inlo
other kinds of required motion. l'or instance, the rolation of
the driving shaft of a thread-cutting lathe is converled inlo
motion of {ranslation for ils carriage by means ot a train of gears
and racks (for longiludinal machining) or with the aid of a screw
and nut (for culting Lhreads). The rolation of a sheave ullimalely
becomes lincar translation for the table of a planing machine,
for the cutler of a shaper, etc. The conversion of livear Lrans-
lation into rolalion is exemplified in piston cngines, hutl on the
whole is less frequently applied.

There are even more complex forms of molion often met with
in machines. bul in this chupter we shall study the chief ways
of converting rotation into linear translalion, and vice versa.

180. Frietion Meehanisms for Ohtaining Linear
Translation

A friction mechanism employed to obtain linear tianslation is,
for example, one that transmits motion to the head of a fric-
tion stamping hammer (Fig. 250): the head B of the¢ hammer
is suspended from a hoard A of hard wood (usually beech or
hornbeam) which is held pressed betwcen rotaling rollers and
guided by slides. If the force of friclion between Lhe rollers and
board is greater than the wecight of the hammer and board, the
board will rise when the rollers revolve in the direction shown
in the drawing. The speed v of the board (if there is no slipping)
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will be equal to the peripheral speed of the rollers and is there-
fore
aDn

in which D is the diameter of the roller in mm, n is its rpm,
and v is the speed of the hammer in
m/sec. L

The downward movement of the ham- 1
mer occurs under the action of 1its own
weighil. As 1t falls the rollers aie moved
apart by a mechanism not shown in A
the drawing.

The motion of translation of the ingol
held between the rollers of a rolhng mill, a
or of logs in a sawmill, etc., 15 hased on
the same principle. !

/

Illustrative Problem 93. The weight of the
dropping paits of a fiiction hammer which 1s
raiscd bv two eloll s 18 G = 430 kg, lhe
cocfficient of friction b tween the rollars and
the lifting boamd f = 045, the diameti1 of
the rollir D = 350 mm, (he rpm of each
roller n = 135, and thc forec rasing the [ {ting
board and the¢ hannner musl be doublt thiu
combined waight What prcssure Q musl b
exeited by Lhe 10ll'rs on th hifting board and
al what specd will the board rnsc?

Solution: the iction F b tween the rollas
and the lifting board 1s 2/Q, wheran Q = ‘:7

And since the force of fiiction must b+ double
the weight of G, g 250
2G G 450
The speed a1 which the load Is yaised
_ 7350 x 135
T 60 A 1,000

Ll ﬂ

IIITII T //W% €§
O

Ll

m/sec &5 2.5 m/sce.

181. The Rack-and-Pinion

In the transmission just previously presented, motion was
imparted under the action of friction. Now let us assume that
we have cut teeth into the surface ot the aforementioned lifting
board and its rollers. We would then have a toothed mechanism
consisting of a spur gear A (Fig. 251) and rack B. This kind of
transmission is used to impart motion to the table of planing
machines, the spindle feed of a drnlling machine, elc.

It is obvious that the speed of the rack is equal to the peripher-
al velocity of the pitch circle of the gear, for which reason the
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former Eq. (164) is appliced, but in a slightly changed form than
in the case of [riction transmission. By bearing in mind that the
pitch diameter D = mz, then the speed of the rack

aDn 7mzn amzn
V=T =" o Mm/sec = o 7 1,000 m/sc’c, (165)
in which
m — module ol engagement;

z — lhe number of leeth on the pinion;

n—rpm of Lhe pinion.

The force P which transmils molion of (ranslation to the rack
is easily expressed. Il we denole the torque on shatt O of the
pinion as Al then the elfective pull on the pitch cirele will be

AI:’ , in which R is the radius of the pilch circle, hence
2 v
r “’ . (166)

We have been assuming that the pinion 1s transmitling mo-
tion 1o the rack. The opposile is also possible when the rack,
possessing molion of linear {ranslation, transmits rotlalion to
the pinion. And obviously the relationship jusl oblained like-
wise holds true here: knowing the speed of the rack we can cal-
culate the rpm of the pinion by LFq. (163) and the effective pull
on Lhe pinion, accordinglo theforce
applied to the rack, by Eq. (166).
Lu both presented cases the pinion
rotales aboul a lixed axis 0.

A
——] '0 ID V_
8
\\ '
e WWJW
I'ig. 251 FFig. 252

Now assume hat the pinion A in Fig. 252 is rolling on an im-

movable rack B. Such a lransmission is similar t¢ the rolling
of a wheel on an immovable surface. It is easy to see thal in one
revolution the pinion’s axis will move a distance [ = - aD, which
is equal to the length of its pilch circle, while in n revolutions
(n may be a whole number or a fraction) it will attain a distance
[ = aDn. An example of a transmission of this kind is found
in the aulomatic longitudinal feed ol a lalhe where, geared to
an immovable rack ngully fastened Lo the frame of the machine,
is a pinion which is part of the shalt in the apron of the carriage.
As the pinion reccives rotation [rom {he feed mechanism, it
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rolls on the rack and thereby transmits motion of translation

Lo the carriage.
Finally there is lhe rack-and-worm transmission in which the
wormes the driving link instead ol the pinion.

Hlustrative Problem $4. TFig. 233 is a kinemalic diagram of a rack-
tvpe jack. When crank A is rolated, shalt O, carrving
rotale. Gear z; fransmils motion lo rack '
B according to the scheme z, 1z, -
— 2z, Xz, — 7 xrack B Find Ihe time
[ required to raise a load verlically Lo o
height ho.= 220 mm, il the peripheral sperd
of the crank ¢, = 0.8 m see, the lenglh
0,C of the handle a = 250 wmm, the num-
ber of teeth on the gears =, -. 3, 7. - 20,
S, = 0g 5y = 20, z, == D, and the moaodule ol
ithe mating rack and gear m - {4 mm. Also
determine the lifting capacily Q of the jaclk
il the force exerted on he erank P o=
=35 hg, and the efticiency of he jack
7 = 0.75.

Solulion: wilh o peripheral speed p, -
== 0.8 m'sce, the erank exceules n, =

=‘—$£:l"’ =305 THm. The speed  ralio Iig, 253
between  shaft O, and <hafl 0,
shaft 0, s i, -= .l(; : Zl!(')A 2 ll(i_' Henee, us the crank ¢
atlains n, rpm, gear z, allains n, = nr,, 300 —ll'»’ rpm. Corre-
spondingly, the ve rlieabdisplacement of the vack pevminute by zmzn,
= 5—-‘-4—-'1'“')-~—‘ ) = {20 mm, and the time neceded (o raise a
lvad to a height h — 220 mm is
220 - -
o T 0.525 min. == 31.5 sce.

To determine the lifting capacily Q, we use Iiq. (136) from which

we Tind the Lorque on shuft O

A 35 0 200 - - . —-
V, 33 0 0 = 250 6~ 6.75 Kkg-num,

M, = i 1y o= — 1-“ > 075 =
16

The diameter of gear
to IXg. (168),

b * 9 R I 3 } v Il )
21, 2 < 3) < 200 % lh' 0.7 » 3.000 kg = 3 lons.

I 08 Dy = mz; = 4 X 5 mm and, according

Y R T R
182. Kinemalties o! (he Serew-and-Nut Drive

The transformalion of rototion inlo linear translation is widely
achieved through a mechanism consisling of a screw and nut.
Fig. 254 is a diagram ol such an arrangement: a single-threaded
screw 2 rotates in fixed bearings; the screw carries a nut I which
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slides in guides but cannot turn. When the screw turns once,
the nut is displaced for a distance equal to the pitch s of the screw;
when the screw revolves half a turn, the nut is displaced for a
distance of 0.5s; and at a quarter of a turn the displacert.ent is
for a distance of 0.25s, etc. I'rom this we may say that when

) R
the screw cxecules % turns, the nul moves for a distance

S = % s. (167)

There is a mechanism of this kind, for example, in a thread-
culting lathe, where the rolational motion of the lead screw
is Lransformed into linear translation
of a nut connected wilh the apron.

I

Fie. 254 {ig. 255

The principle of the screw-and-nul drive is used in other
devices for (he transformation of rotation into linear trans-
lation, an inslance being the parallel visc illustraled in Fig. 255:
secrew 2 turns within nut 7, which is immovably (ixed Lo the base

of the vise B. Furthermore, screw 2 turns freely
in the movable parl of the jaw 3 and transmits
linear translation to it, thus pulling it so as to

3 2 pinch the workpiece beliween the immovable and

movable jaws A and 3, respectively.

In the above illustrations the screw is the driv-
ing link. I{owever, the opposite is also possible,
where the nut acts as the driver. Ifig. 256 is a

!  diagram of a screw jack which works on this
principle: the nut 3 can turn freely in base I
but cannot move axially. Screw 2, passing
through the nut, can move axially, but cannot
turn. Accordingly, by turning the nut we impart
linear translation to the screw.
Fig. 256. It is quile obvious that in all these cases we

may apply Eq. (167), in which % may denote

either the turning of the screw in the nut, or the turning of
the nut on Lhe screw. The direction in which the screw (or the
nut, as the case may be) moves, depends evidently on whether
the thread is right-hand or left-hand, and in which direction
the screw or the nut is being turned. -
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The screw-and-nut drive may also he used to convert linear
translation into rotation. For instance, hy moving a nut in an
axial girection, we can impart rotation to ascrew if the lead angle
is sufficiently great. The hand-drill shown in Fig. 257 operates
on this principle: the screw 2 rotates together with the chuck 71
when the nut 3 is moved along ils axis.

Incidentally, a screw-and-nul drive of this kind will nol work
if the lead angle of the thread 15 small. A serew mechanism in
which the screw cannot rotate under pressure of 1he nut, is
called a self-locking mechanism.

Fig. 258 is @ diagram of whal is called a differeniial screw.
Screw 1 has a pitch of s, along part a. and a piteh ol s, along
part b. Part a of the sirew rotales within the immovable nut
2, and parl b rolates within nut 22 which cannol turn bul can
move in an axial direclion. Assume thal the direction ol Lhe

thread on parts a and

b is the same. B3y ¢1ving 4

the screw one {urn. we s
displace it axially wilh- ¥ UL AL i :/ //A/_L
in nut 2 for a distancc SIVE
equal to the pitch s, W/ TITL 7777 //r AV A4
If nut 3 had turned with / b 3

the screw it would also a

have moved in an axial L, 258

direction for a distance
of s,. ITowever, since (he nul cannot Lurn, it moves along the

screw in the opposite direction for a distance equal to Lhe pitch
8. Consequently Lhe absolule displacement of the nut with
respect to the immovable guides is s, —s,. Il the threads a and

b were dissimilar, the displacement ot nut & would be s, + s,.

From this it iollows that if the screw rotales for —g turns

the nut will be displaced for a distance
s=L (s, £ %) (168)

The minus sign is used when threads a and b have the same
direction, and the plus sign when they have opposite directions.
It is readily understood that when both threads have the
same direction, the displacement of the nut will be small because
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forteach revolution it will only amount to the difference between
the pilches.

All these simple screw mechanisms can be used in a great
varicly of combinations. Take Fig. 23Y for example: screw 2
is prevenled tromn moving in an axial direcetion by bearing 1;
on parts « and b of the serew the Lthreads have the same pitch but
are opposile in direction. Nuls 3 and 3” cannol rotale and
when the serew is turned they will either move closer or further
apart, in cither case with equal speed. This hind of mechanism
is usced in a double-jawed drill chuck.

Lie, 254 IFig, 260
L ¢

The furnbuchle shown in Ing. 260 works on the same prineiple.
When the serew 2, which has a mzhl-hand thread al one end
and a lell-hand thread on Uhe other, 1s buned, the stirrups 77 and
17 aud the rvads (or ropes) connecled with them will he pulled
logether. [Qie. 261 also shows a tutibuekle. but with another
arrangemenl ol i ls.

3 7 7 20 7
2 =~ Py
= - sz 7/ 27
- - 2 3
[Fig. 2061 Fig. 262

Hustrative Problem 95, The screw 7 in [Fig. 262 has a right-hand
thread wilh a piteh s = 2.5 mm. One of its ends is within the inunov-
able nul 2 and (e other rolales freely in the bloek 3 which slides in

fixed guides. TTow many Llimes, and in what direction, must the screw
be turned to displace Lhe stideblock for a distance S = 81 mm fiom left

to right?

Solution: £=%__- ?L turns - 32.4 turns = 32 {ull turns plus

Yl
144°, all clochwise.

Hlustrative Probhlem 96. The screw mechanism shown in Fig. 258
has a vighi-hand {hread with a piteh s, — 4 nun on its length o, while
on length b it has a Lhread of [he same direclion but with a piteh s, =
—= 3.5 mm. If the serew is turned 43° clockwise, how far will the slide
block 3 he displaced, and in what direction?
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Solution: by applying Eq. (168) (wilth the minus sign because the
threads are in the same direction) we obtain

A ¥ Q<Y -
S = 360 4 — 3.5) == 0.0625 mm.

Since {he screw is turned clockwise, the slider moves from left lo
right.

183. Staties of the Serew-and-Nut Drive

Assume that a force P is applied al poinl .4 of the fever 3
lixed 1o screw [ and having an arm «a (IFig. 263). Under the aclion
of this force the serew will turn in the ngidly hived nul 2, moving
upwards and overcoming uselul resistanee Q. luxpress he re-
latiohship between torees Poand ().

As we have already pomted oul several [imes, the work of
the molive force musl be equal to The lolal worlk done by the
forces of reststance. For the time hemng we shall assume that harm-
ful resistance is neghaible and can Lherelore be
ignored.

Now lel us gequale the work ol the motive loree
P and the toree of usclul resistance, diming one
turn of the screw.

When the serew 1s Lurned onec, the ponl ol
application /4 ol foree PP deseribes a hiajeclory
equal to 2za. 1lence the wark perlormed by loree P

\"p 29a. &3 <z

During one lurn, lhe serew moves anially lor

a distance equal lo ats piteh. Accordingly, the

work pertormed by the force ol tessstance Q s

Wy - 0s. By equating  the amount ol work
we el

200 (D,
whenee
0 227D (164) Fig. 263
From ihis we conclude that the longer the arm of applicalion
of the molive force and the smaller the puleh of the screw, the greater
lhe mechanigal advaninge.
In order to actually express the oblamed force Q, we must
multiply the right-hand part of this equalion by ethiciency #:

Q ~= 2z % n. (170)

Eq. (169) may be prescnted differently. By expressing the
pitch of the screw in terms of its average diameter d,, accord-
ing Lo Eq. (158) we obtain

s = nd,, tan «.
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By substituting this value for s in Eq. (169) we obtain

2a

Q= dtan a P, ‘(171)
that is, the longer the arm of application of the motive force
and the smaller the average diameter of the screw and the tangeni
of the lead angle. the grealer the mechanical advantage.

Accordingly, when taking the force of friction into account,
Eq. (171) becomes

2a
Q= d,, lan « Pn. (172)

Finally, the relationship we seck can be obtained in another
form: since Pa is the moment of force of P relative to the axis
of the screw (the torque M;), we may, thereby, write *

_ M
0=g, tna™ (173)
that is, the magnitude of the force acting on the screw in an azial
direction 1s equal lo twice the torque mulltiplied by the efficiency
coefficient and divided by lhe average diameler of the screw
thread and the tangent of the lead angle correspondifig to this aver-
age diameler.

Since the lead angle ot the screw may be made sufficiently
small, a great mechanical advantage can be obtained with
a screw transmission. With the aid of the screw and nut, we
can make very strong fastenings with comparatively small
physical effort, can hold workpieces in a vise, and apply the
same principle to jacks, screw presses, etc.

The efficicncy coeflicient is calculated for each individual
case, depending on the lead angle of the screw and the coeffi-
cient of friction. .

Ilustrative Problem 97. In the screw jack represented in Fid. 263
the arm a = 800 mm, efficiency 7 = 0.4, and the pitch of its screw

s = 8 mm. What force P must be expendcd in order to raise a load Q =
= 3 tons at a constant spced*?

Solution: from Eq. (170) we obtain
- Qs _ 3000 x8_
2xany ~ 273800 x 0.4

A 12 kg

184. Thread Proliles ¢
of Principal Types of Transmission Screws

If we cut a screw across a longitudinal plane coinciding with
its axis, the section thus obtained will be through the turns
of its thread. A thread receives its name in accordance with the

# Screw jacks must be self-locking, which means that the screw must
not turn under the action of an axial load. For this reasqp the efficiency
of a screw jack is always l:ss than Q5.

264



profile thus revealed in section. There are various types of profiles,
corresponding to intended use.

If screw is to transmit motion, it is obvious that it must
Fossess the greatest efficiency.possible and the least mechanical
oss. If the screw and nut are to be used for the fastening of all
kinds of partis, they must be constructed so as to create the greatest
possible amount of friction between their contact surfaces to
keep the nut from unscrewing.

7

7

Fig. 264 Fig. 265

7

=
3
-

In more detailed courses of engineering mechanics it is proved
that, other geomelrical elements being equal, the loss due to
friction is the least when the thread 1s rectanqular (Fig. 264)
and the depth of the thread {, is equal to half the pitch, i. e,

when {, = % Such a rectangular threud is called a square thread.

The square thread has certain disadvantages, the greatest being
the difficully of achieving preciston 1n 1ts manufacture, for
which reason 1l 1s being displaced by the Acme thread shown
in Fig. 265. In cross-section this thread is an equilateral trapezoid
with the inclination of its sides forming an angle of 30° with
each other. The technical terms of other elements of threads
shown in Figs. 264 and 265 are desciibed 1in Sec 200 and illus-
trated 1n Fig. 293.

185. Slider-Crank Mechanism

The slider-crank mechamism shown schematically in Fig.
266 is another means of transforming rotation into linear trans-
lation. The crank 2 which is part of shaft A turning in fixed
bearings in the frame 1, is jointed to the connecling rod 3 by
the crankpin B. The other end of the connecting rod is jointed
by means of a wrist pin C to the slider 4 which moves in straight
fixed guides. Thus we see that when the crank is continuously
rotating, the slider will achieve reciprocal motion of translation
and reverse its direction at the end of each siroke. Accordingly,
during one revolution of the crank the slider will execute two
strokes, first in one direction and then in the other—a feature
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of this mechanism which chiefly distinguishes it from other
mechanisms presented in this chapter.

The slider-crank mechanism is also employed for tonvgrting
reciprocal linear translation intq rotation, as for instance in
steam engines and internal combustion engines, where the driving
link is the piston which, with the aid of a connectling rod, causes
the crankshafl Lo rotate. In this arrangement another specific
factor must be coped with:
when the slider 4 moves from
left 1o right, the crank will
rotate clockwise and when the
slider has travelled as tar as it
can go, the crank will occupy
position AB; before the Slider

Fig. 266 begins (ravelling in the opposite

direction. This position of the

crank is called the dead centre. In order that the crank countinue

revolving past the dead centre when it is Lhe driving link of

a mechanism, a flywheel is used, which is a wheel with a heavy

rim and mounted on the crankshail. The kinctiowenergy of the
flywheel keeps the mechanism in constant motion.

186. Kinematies of the Slider-Crank Mechanism

Now let us study the motion ol the shder when the crank is
rotating umlormly.

Assume thal the crank in Fig. 267a is rolating uniformly in
a clockwise direction. We shall tuke A 13, as the inilial position
of the crank. IFrom B, we mark off with a compass a distance
equal Lo the length ol lhe connecting rod along ihe line on
which the wrist-pin centre ¢ moves, and obtain point C,
which al the given moment coincides with the centre of Lhe pin.
This poinl is the extreme left position of the slider. To tind the
position of wrist-pin cenlre (¢ at other moments of time, we
divide the circle described by the centre of crankpin Bintlo several
equal parts, let us say 12. Then each part will represent an arc
equal to —115 of the circle through which the crank moves at equal
intervals of time while executing onec revolution (previded it ro-
tates uniformly). In the course of its movement it will occupy,
in turn, position AB,, AB,, AB,, ..., AB,;. and finally return
to AB, (its initial position). Now, with a radius equal to the
length of the connecting rod BC, we will mark off points from
B,, B,, B,, etc., on the straight line along which the wrist-pin

centre C moves. As a resull, we find that after % of a turn of

the crank, point C is at C;, having moved from its initial position
for a distance §; = C,C,; after two such intervals, the displace-
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ment of point C will be §;=C,C,; after three intervals —§;=
= C,C,, etc. When the crank reaches position AB,, point C will
be at position C, at a distance equal to the length of the connegting
rod from point B, and corresponding to the extreme right position
of the slider. Then the slider begins to move in the opposite
direction (from right to left) and its distance from s initial
position steadily diminishes. Thus, position AB, of the crank
corresponds to the position of wrist-pin centre C at point C,
and which coincides with point C;; position AB, of the crank
corresponds to the position of wrist-pin centre C at point C,
etc.c When the crank returns to its initial position, point C will be
at C,.

We thus sce from this diagram that the linear segment (Z,C,
equals segment B,B,, i.e., the diameter of the circle described
by the crankpin DB, while the diameter of this circle is equal to
twice the length of the crank. Therefore, by denoting the length of
the crank as r and a stroke ol the shider as H, we find that

H = 2r, (174)

that is, in a slider-crank mechanism the siroke of the®slider is equal
lo twice the length of the crank.

From what has been said 1t follows that in order to find the
postlion of the shder at a given moment, we must mark off from
the crankpin centre at thal moment (using a radius equal to
the length of the connecting rod) a point on the line described by
the wrist-pin centre. And, vice versa, 1t the position ot the slider
is given. the position of crank can be found by marking off from
the wrist-pin centre (using the same radius) a point on the corre-
sponding semicircle described by the crankpin centre and connecting
this point with lhe centre of this circle.

IHaving located the centre of wrist pin C, we can now plot
a curve representing its distance from the initial position C,, by
the method explained in kinematics (Sec. 57). By adopting a right-
angle system of coordinates as shown in Fig. 267b, we lay out
equal segments according to a chosen scale along axis O,, each
segment representing the time during which the crank achieves

-1% of a turn. Then constructing perpendiculars at points 1, 2, 3,

etc., and laying out segmenls I S,, 2—38,, 3—S;, etc, represent-
ing the distances C,(,, CoC,. C,Cs, etc.. from the initial position,
we obtain a line of points S,, S, ;. etc., which we connect with a
curved line. In this way we obtain a displacement-time graph
for the centre of wrist-pin C and can find its position for any given
moment of time.

From this curve we see that displacement of the slider differs
for equal intervals of time although the crank rotates uniforméy.
For instance, when the crank turns through the angle B,AB,,
the slider moves a distance of 7—S;; when it turnsethrough angle
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B, AB, the slider is displaced for a distance of a,—S,; while
throug'h angle By B, it is displaced a distance of a, S,, etc.
Thys the displacements first increase and then decrease.

Fﬁm this we come to the conclusion that when the crank is
the driver and rolates uniformly, the slider moves non-uniformly;
and vice versa, when the slider ts the driver, ils motion is uniform
and the crank’s rolation is not unijorm. This is an important feature
of the slider-crank mechanism.

Having solved the displacement-time graph, we can now plot
the velocity curve which makes il possible to determine the
velocity of the slider for any moment of lime. As already explained,
while the crank is moving through the angle B,ADB, (Fig.
267a), the slider is displaced tor a distance of I S, (Fig. 267b).
By dividing this displacement by ils exeenfed lime, we obtain
the average velocity of the slider during that intlerval; similarly,
by dividing the displacement a; S, by the same interval of
time (for we have already divided one revolution of the crank
into even parts), we obtain its average speed lor that interval,
ete. Thus we may calculate the average velocity of the slider
during a 1802 turn of the crank.

Now let us draw a righl-angle system of coordinates at a
suitable scale, and lay out (he tune along axis Of and the average
velocity of point C of Lhe wrist-pin on axis Ovo (Fig. 267¢). We
mark off these speeds on perpendiculars constructed on the lime
axis Ot at points 1, 2,, 3,, etc., and lying belween the segments
0—1, 12, 2—3, etc. (IYig. 267b). As a resull we obtain points
vy, Uy Dy ete., (Fig. 267¢) Lhrough which we draw a line Ov;o,0;0;
Ugbes Which constitutes the velocity-time curve of Lhe shder
during the first half-turn of the crank (the time consumed in
turning from posilion AB, lo ADL,).

From this moment the slider starts moving in the opposite
direction, from right to left, and its velocity is directed in the
opposite direction; therefore we construct a second leg of the
curve. symmetrical with the first bul helow the time axis.

When analysing the velocity-time graph thus obtained, we
see that when the crank is at the lefL dead centre A By, the velocity
of the slider is zcero (point O on Fig. 267c). As it rotates further,
the velocity of the slider grows and reaches its maximum when
the crank is between A B, and A DB, (Fig. 267a). Then its velocity
begins to decrease till it again becomes zero when the crank is
at its right dead centre AB,. Then, as the crank executes the
second half of its turn, the curve is repeated in reverse order.

Oral Ezxercises

1. What 15 the sum of the segments (Fig. 2675), 1 — S, @, - Sy
a— Sy a3 — 84 @ — S @O — o ? .

2. Indicate these sums on Fig. 267a, on both the left and right sides
of the diagram.
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3. Indlcate on Flg 267a the position of the crank corresponding to
point p, on the time axis-in Fig. 267c.

Illustrative Problem 98. The length of the crank AB (Fig. 266) is
120 mm and the length of the connecting rod BC is 420 mm. The ®ank
attains n = 180 rpm. Plot the displacement- and velocity-titne curves
for point C and find its velocily at the moment the crank forms an angle
a = 50° with the left dead centres

Solution: we draw a diagram of the mechanism similar to Fig. 267a
at a scale of 1:8, then divide the circle described by point B into

12 equal parts. Selting our compass al a radius ol 5 = 52.5 mm, we

mork off points C,, C,, C,, ete.,, and then delineale a displacement-

time curve (Fig. 267b). AL 180 1pm Lhe segments 0- 1, 1-2, 23, ete.,
(‘0

on the Lime axis (5 mm each) represent intervals of time equal Lo — BOxd2™

% sec, or a 30° lurn ol the crank.
By measuring the displacements 7 — S, a, — S, a, — §,, ctc,
and mulliplying them by the scale of 8 and dividing by 3—1‘)— see, we

obtain the average velocily for cach interval ol lime. Then establish-
ing a scale of velocitics of 50 mm ‘see = 1 mm, we lay out poinls I1,,
2.y 3,, cte., as the ordinales 1epresenling the vclomtv € this scale and
then connect the points with a curve.
The position of crank A B, forming an angle ¢ = 50° with AB., will
x 20

correspond with a poinl on Fi¢. 267b, lying at a distance of ——— Jt) =

= ‘3—;— mm to the 1ight of point 7. By plotting a line from Lhis point to

its intersection with axis O/ on ihe velocily-lime curve, we obtlain an
ordinate ol 28.5 mm in length repiese nting the sought velocity which,
at the chosen seale, 1s v, = 28.0 x 30 - 1,425 mmsce = 1. 425 m/sce.

187. The Ececentric Meehanism

Assume that we increase the dimensions of crankpin B shown

in Fig. 266 to the size illustrated in Ifig. 268, and that now
crankpin I3, is part of the

crank while ils bushing B, is

part of the connecting rod.

3 4 c It is evident thal the mecha-
7 N \\ / nism is still a slider-crank
__6_ in which the length of the
7 crank 2 is equal 1o AO, the
; <1 7 lenglh of the connecting rod
S~ 3isequal to OC, and in which
Fig. 208 O remains the centre of the

main bearing. By still further

increasing the diameter of the crankpin, we obtain a mechanism
whose skeleton outline is shown in Fig. 269: a round disc B, turns
freely within the bushing B,, which latter is part of the connecting
rod 3 rotating around axis A. This mechanism works similar to

B, /] /52

N
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a slider-crank which has a crank 2 whose length A0 equals the
distance between #he axis of rolation A bf disc B, and the geo-
metrical axis of the disc, and a connecting rod 3 whose length
ocC ealals the distance between this axis and the wrisl-pin centre
on slider 4. This is called an ecceniric mechanism, its disc B, is
known as the eccentric, the
connecting rod 3 is the
eccenlric rod, and Lhe seg- 5
ment O A is the eccentricity.

It is apparent from Lhe
above that an eccentiu
mechanism operates like «
slider-crank whose crani
lengli? 1s equal lo Lhe eccen-
tricity, and the length of the —’ 4
connecting rod s equal lo Fig. 209
the distance belween arves 1) ™
and C of the eccenliric rod.

The special feature of this mechanism is thal us slider possesses
a short stroke gnd the diameter ol the crankpm s large enough lo
withstand greal pressure. The cceenttic mechamsm is widely
used in slamping and forging presses. cle

188. The Rocker-Arm Mechanism

Fig. 270 is a scheme of a mechanism with a crank [ which

rolates about the fixed axis . On the crank’s end is a pin, cenired
on A, upon which 1s freely

monnted the shde-block 2 which
slides 1n a straight longitudinal
7 —4 guide cul into the arm 3. Th's
L e - 3 —#L arm, known as a rorher-arm, can
swing from the fixed axis O,
N/ 2 / when (he crank rotates: swing-
: A ing is caused when Lhe slide-
/ block 2 shides in the guide of
_i\a }——---—r the rocker-arm.
4 A 44 Assume that the crank turns
/% in the direction shown by Lhe
- '\-% 7 arrow. After an interval ol
I
q

\A . time, Lhe axis 0, B of the rocker-
[/ by arm will be in position O,L,
\ ‘ / tangent Lo the circle A;AgA,A,
described by the cenire of the

crankpin A. Al this moment
4——+=———- the crank 0OA, occupying a

% radial line of this circle will
Fig. 270 be perpendicular to the axis
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of the rockeér-arm. Obviously this will be the extreme right
position of the arm, since as the crank cdMtinues turning as
before, the arm will begin moving in the opposite direction —
from right to left — and when the crank has turned througn the
angle A,0A, = f, the arm will be in its extreme left position
0,K and perpendicular to the crank OA,. Then the arm av1ll again
move {rom left to right and when the crank has turned through
the angle A,0A, = «, it will return to position O,L.

Thus, while the crank in its continuous rotation executes one
turn, the rocker-arm oscillates, with axis O, as its centre, passing
from its extreme left position to the extreme right and back again.

Now let there he a pin B at the upper end of the arm, around
which shder § turns freely as it moves 1n straight guides which
are part of the slider M which, in its turn, moves in immovable
guides 4. When the arm oscillates with this arrangement, slider
5 will transmil motion to slider M as it moves in the guides which
are part of it. M will move irom one end position 1o the other and
back.

Thus with the aid of the rocker-arm. the rotational molion of a
crank 1s converted 1nto reciprocal motion of translatipn of the slider.
The crank is usually made so that its length can be changed,
thereby changing the length of the shder stroke.

This rocker-arm mechanism is used in a number of machines,
including planers. .

189. Kinematies of the Rocker-Arm Meehanism

We have shown that the rocker-arm mechanism converts
rotation into reciprocal translation. In this it 1s similar to the
slider-crank, but there is a good deal of difference between them
in other respects.

First let us take up the method for determining the length
of the stroke of the slider 2 in relation to the geometrical elements
of the mechanism. We will denole the lenglh of the crank OA as
r, the length of the rocker-arm 0,B = 0,K = O,L as [, and the
distance 00, hetween the axis of rotation of the crank and the
axis of oscillation of the rocking arm as a.

Since the right triangles O,CK and 0,4,0 have a common
acute angle, they are similar, from which it follows that

O.K _ KC L~ H in which % = KC and rei)resents half

0,0 =04, O g= 3 W ,
a stroke of the slider. From this the length of the stroke is

H=2L (175)

a

It becomes evident that the stroke of the slider is directly
proportional to the length of the crank and the length of the
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rocker-arm, and inversely proportional to the distance between
their axes of rotation*.

Hence, in order to determine the distance r = O A for a given
strok®, we evolve the relationship

Ha
r=r- (176)

The slider makes its stroke from left to right in the time interval
that the crank turns through angle «, and executes its return
stroke during the time the crank turns through angle . We will
denote the time it takes the crank to turn through angles « and
B as 1, and I5, respectively. Then the average velocily of the slider

from,left to right v;, = -, while from right to left v, — _{%

and the relationship betwcen these velocities will be

Yoo _H M _ 1t

iy Sl P (177)
Inasmuch as the crank rotatcs uniformly, the time spent by

it to turn thrdigh angles « and g is direclly proportional to the

angles:

which when placed into Iiq. (177) gives
Yo _ B (178)

Dy o

If we name the left-lo-right siroke, during which the crank
turns through angle «, the advance siroke, and the right-to-leit
stroke when the crank is turning through angle g, the return
stroke, then®on the bhasis of Eq. (178) we may state that the average
speeds of the advance and return slrokes of the shder are 1nversely
proporlional to their corresponding angles.

Hence the time taken by the relurn stroke is less than that of
the advance stroke in the same ratio as the angle « is greater
than angle §. This is the chief difterence between the rocker-arm
mechanism and the slide-crank mechanism, and it is this very
feature of quick return that explains its use in shapers where the
advance stroke is slower because it is limited by the cutting speed,
and where it is desirable to make the rcturn siroke as fast as

possible.

* In the mechanism used in shapers, the length of the crank is adjust-
able; this is done by shifting the crankpin A in a radial slot provided
in the disc of the gear fixed to shaft O and which operates as the arm

of the crank.
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Heretofore the inferred speeds of the slider have been average.
But the actual speeds are not constant: at the end position the
slider speed is zero, from where it gradually increases its speed till it
reaches the centre position and then its speed again falls &f till
it reaches zero at the opposite end. Thus in the rocker-arm mecha-
nism, just as in the slider-crank mechanism, the slider. possesses
non-uniform motion and the crank has uniform motion.

There is a variant of the rocker-arm mechanism in which the
arm rotates instead of oscillating.

Illustrative Problem 99. If it is nccessary to sel the stroke of a shaper
at H = 400 mm (Fig. 270), at what distance OA = r must the slide-
block 2 on the arm be set from the axis of rotation and whal will be the
average speed of the working (advance) and of the return strokes p,
and o, it { = 900 inm, a = 540 mm, and the rpm of the crank s 40?

Solution: we find the length r of the arm through Eq. (176):
__ Ha 400 x 540

r= S5 =5 xgop — 120mm.

We find angles « and .

From tiiangle A,0,0 we cvolve OA, = 00, cos %' whence

B r_ 120 . B ,
CO8 =, — = ; = m = 022..), andf = 77°10’.

B = 154°20’, and « = 360° — 154°20' = 205°40".
At 40 rpm the crank cxecutes one turn in %Omin. = 2—3— =1.5 sec.
The time spenl to turn through the angle a« = 205°40° will be

ta = 12X 2900 _ 0,857 see. Hence tp= 1.5 —0.857 = 0.643 sec.
400

The average spced of the workingstroke vgy,y, = 0857 — 467 mm/sec =
__ 467 x 60

m/min = 28.02 m/min.

~ 1,000
The average speed of the return stroke vgy.re = _4;)23 — 622 mm/sec =
622 x60 _, . .

1,000 m'’'min : 37.32 m/min.

190. The Cam Mechanism

Let slider A (FF1g. 271) execute reciprocal motion of translation
and move in fixed guides. To the slider is fastened a fascia piece
K called a cam. A rod B, called the stem of the follower and which
moves in fixed guides, has its end pressed against the cam by
means of a spring C. Assume that the cam is in the position
indicated by the dotted line and the end of the follower-stem is
in contact with the surface of slider A. As the slider moves
from left to right, the tip of the follower-stem will rise along the
incline nm of the cam, then from surface m to [ the follower will
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remain motionless if this surface is parallel to the axis of the
slider, and from I to k the tip of the follower will move down, to
the qud of the incline. When the cam moves in the reverse di-
rection, the follower tip will slide along the cam’s surfaces in
the opposite order. If the cam had no horizontal segment, there
would be no prolonged pause of the follower-stem at the apex
of its position. If the shder moves uniformly, the character of
motion (speed and acceleration) of the follower will depend on
the profile of the cam and the speed of the slider.

"~ Direct contact betwecn the follower and the cam would create
friction and subscquent wear of the {wo contiguous surfaces.
To avoid this, a roller, which rolls on the surface of the cam, is
usua{ly attached to the end of the tollower.

2

c
-8
Y\
. e L um K A
el
g 271 Fig. 272

If the follower were given the form of a lever wilh one end
pressed to the cam by means of a spring, it would achieve oscillat-
ing motion around ils rotational axis.

In the above cases we have deall with linear translation of one
direction being transformed 1nto linear translation of another
direction or into oscillating motion.

Fig. 272is a diagram of a cam mechanism Lransforming rotalion-
al motion into linear translation. The cam K, which rolates
round axis O, imparts to the [ollower B reciprocal motion of
translation, the nature of which is determined by the profile of
the cam. If the curve klm were a circle with ilts centre at O, the
follower would remain motionless as it skirts along this part.
Fig. 273 shows the skeleton outline of a mechanism in which
the rotation of the cam K causes oscillating motion of the
follower B.

In the cam examples presented thus far, their profiles and the
trajectory of the various points of their followers lie in a single
plane or in parallel planes. This type is called a disc cam, aa
distinguished from a cylindrical cam, which does not answar to
the enumerated conditions. Fig. 274 is a schematic view of #
cylindrical cam K, ringed with a groove that is not parallel with
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any cross-section of the cylinder. A roller C that moves in the
roove, turns freely on a spindle which 15 part of follower B.
ollower B moves in fixed guides parallel to the axis of rotation
of the cam. When the cam rotates, the follower receives reciprocal
motion ot translation

lig 273 Fig 274

Itis clear Irom what has heen presented that inacam mechanism
the motion ot the follower 1s delermined by the profele ol the cam
Cams are eytensively used to impait many kinds of motion,
particularly 1n automatic machines and machine tools.

191. Determining the Working Surface
of a Dise Cam

To determine the required profile of a cam, 1t 13 necessary to
fust know the required molion of the [ollower, or as they say,
the “‘specification” of the follower’s motion

Assume that the diagram shown in Fig 275b 1s just such a
specification The angles « ot the turn of Lhe cam are laid out
on the axis of the ahscissae Oa, and the corresponding distances
between A of the follower B and the rolational axis O, of the cam
are plotted on the axis of Lhe ordinates OS It 1s furthermore
specitied that the cam rotale umformly and that ils rotational
axis intersect the axas of the tollower (Fig 275a4) It 1s seen that
the curve representing one 1evolution of the cam has becen equally
divided into 16 parts

From the displacement diagram (Fig 275b) we find that when
the cam makes 1ts fust two-sixtcenths of a turn, the distance
between the contact surface of the follower and the axis of rotation
remains the same, as shown by the equal segments O —a, =
=1-—a, =2 — a,, and then this distance increases. At the end
of the third-sixteenth of a turn, 1t 1s equal to the linear segment
8~—ay,, at the end of the fourth- and fitth-sixteenth it will be equal
to segments 4 — a, and 5§ — a;. Then the follower remains mo-
tionless during two-sixteenths of a turn, after which the distance
grows until a moment corresponding to linear segment 10. During
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turns 10—1I11 the follower again has a period of dwell; then be-
ginning with moment 11 the distance decreases, i.e., the follower
maves in the reverse direction; at the moment corresponding
to tift completion of the full turn of the cam the distance between
the end of the follower and the axis of rotalion is represented by
the linear segment 16 — a,, which is equal to the initial distance
O — a, and means that the follower has returned to its initial
position. As the cam continues to rotate, the follower again
exccutes its motions in the same order, or, as they say, repeats
the cycle.

Now Ict us proceed wilh the construction of the working surface
of the cam (I1ig. 275a). We cxlend axis Ox Lo the left and mark
upon it an arbitrary point O,. This we shall consider as the rota-
tional axis ol the cam. Assume that the follower D is moving
vertically upwards. Since 1t has been stipulated that its axis
intersect the axis of the cam, we delineale a vertical line through
point 0,, and by laying out on it Lhe linear segment 0,4, = Oa,,
equal to the initial distance between the contact surface of the
follower and Lhe axis of rotation 0,, we obtain the initial position
of the contact surface 6f the follower A, At moment 3 the con-
tact surface of the follower A will be al a distance of 5 — aq
from the rotational axis; by laying out this segment on the axis
of the follower we obtain position Ay of its contact surface,
Transferring the other points q,, a,, a, etc., on the displacement
diagram, we obtain a number of positions for the contact surfacs
of the follower, to wit, A, and A,, which coincide with positions
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A and A,, and A, A, A,, which coincide with position 4,,,
etc.*. ‘

Now we draw a circle with point O, as its centre and a radius
equal to the shorlest distance 0,4, and, dividing it als® into
sixteen equal parts corresponding to sixleen cam revolutions,
delineate radial segments through points I1,, 2;, 3,, 4,» §,, etc.

When the cam turns through an angle of 22.5° X 2 = 45°,
the contact surface ol the follower A will remain in its initial
position A,; by the end of the next
turn through the angle 2,0,3, of 22.5°,
the contact surface of the follower
will be at position A;. Hence, in order
Cam prafile Lo find the point on the surface of the

cam corresponding to point A, of the

Fig. 276 follower, we plot an arc from centre

0,, with a radius equal to 0, 4,, to the

point where it intersects the radius 0,3,. In the same way position

A, of the contact surface of the follower will coincide with point

4, of the profile, etc. Repeating this process for all the other

positions of the follower we obtain the other points on the

working surtace, which we unile with a curved line and thus

obtain the profile of the cam. Between points 5, and 7,, and

10, land 11, (just as between A, and 2,) it will consist of arcs of a
circle.

If the follower had a roller on its end, we should first have found
the curve corresponding to the motion of the axis of the roller
and then, having delineated from various points on this curve
a number of circles wilh radii equal to the radius of the roller,
we would plot the protile ol the cam, 1angent to all these circles

(or arcs) (Iig. 276).

192. Questions for Review

1. In the rack-and-pinion transmission represented in Fig. 277, the
pinion z, transmits motion to the tack B through the idler gear z,.
What change would there be in {he speced and direction of the rack if

pinion 2z, was in mesh directly with the rack?
2. Two screws of diffcrent diameters arc threaded to the same pitch.

What can be said about the lead angle of their threads?
3. In two screws of the samc diameter the distance between turns

of the thread Is the same, but one is single-threaded and the other multiple-
threaded. What can be said about their lead angles?

4. In the mechanism diagrammed in Fig. 258 {he threads on lengths
a and b have the same direction and pitch. What is the absolute dis-

placement of nut 3 when screw 1 is rotated?
5. What would be the answer to question 4 if the threads on lengths

a and b possessed different directions?

* Positions A,., A,;,, A4,, and A,;, are not shown so as not to compli-
cate the drawing,
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‘What change would there be in the mechanical advantage obtained
with a screw-and-nut if the lead angle were decreased?

/4 4 7 4

Fig. 277

7. What kinematic diffeiences are there between the rocker-aim
mechanmism and the shder-crank mechanism? Why is the shider-crank
mechanism 1mpraclical for use in a shaper?

hd 193. Exercises

101. A load of Q = 1.5 tons is raised to a height h = 180 mm
in 25 sec by the screw jack whose prircipal properties were
enumerated 1in Ex. 97 (Fig. 263). What force P 1s exerted on its
handle and what power expended 1t the eliciency of the jack
7 =047

102. The rack B n [1g. 278 is pul in molion by the train of
gears z;, Z,, Z3, and z, in which z; 15 the dirver The power
on shatt 0, 15 N =12 hp. [ind the
force transmitted to Lhe rack and
also its speed if the rpm of the driving
shaft n, -= 900, the number ot leeth on
gears z; = 24,2z, = 60), z3 = 25, z, = 75,
the module of the last gear m =5 mm,
and the efficiency of the drive n = 0.85.

103. The dniving gear z;, 1n Fig. 279
transmits motion 1) to rack A accord-
ing to the scheme z, X 2z, —z3 X z, — Fig. 278
— zg5 X rack, 2) to the screw mecha-
nism with nut C which cannot turn and according to the scheme
Z, X 23— 23 X 7, X 2z, — screw B X nut C, and to 3) shaft VI
according to scheme z; X z; X z; — worm D X worm gear z,.

Given the following. z, = 30, z, = 60, z; = 25, z, = 80, z; =
= 40, z, = 50, 2z, =40 teetn module of the rack my =4 mm
pitch of screw B =5 mm, the worm D is tnple—threaded thé
nimber of teeth on the worm gear z; = 60, the rpm of the driving
shaft n = 400,
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Find the speed v of the rack A, the speed v, of the nut, and

the rpm n, of shaft VI.
104. Fig. 280 shows the skeleton profile of a slider-crank

mechanism with the following working propertics. The %lider

g 279

Fig. 280

3 turns freely on crankpin B of crank 2 which rotates about the
fixed axis A. When the crank rotates, the slider receives relative
reciprocal motion of translation in the slot of arm ¢ which slides
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in fixed guides 1. The length of the crank AB = 120 mm and it
achieves 180 rpm. Plot the displacement ahd velocity curves for
the mechanism.

CHAPTER XIX

AUXILIARY PARTS EMPLOYED IN TRANSMITTING
ROTATION

194. Axles and Shafts and Their Components

In order that sheaves, gears, cams, elc., achieve rotation, they
are mounted on parts called axles and shafis. Assume that sheave
K (Liig. 281a and b) recerves rolational molion from a belt
and transmits this rotation further through sheave L. Rotation
is imparted by the elfective pull P, which creales the torque
M, =P, —DZ’ , whence D), is the diameter ol the sheave K (IFig.
2810D). Acling againsl this tlorsion is the moment M, -- P, -I;ls

equal in maggilude and opposile in direction, in which P, is
the pull transmitted to the sheave connecled hy belt with sheave
L, and D, is the diameter, of sheave I.. In Lhis way the part ot the
shaft 2 situated between sheave K, which receives Lhe pull, and
sheave L which imparts il, tends to twisl under the aclion of two
equal and ojpposite moments. [Furlhermore, the shait tends to
bend because it is subjected to its own weighl, the weight of
the sheaves, and the stretching action ol the belts. Due to all
these factors we may say thal under operalion a shafl s subject to
combined lorsion and bending.

! 3
%mzﬁ

.

Fig. 281 Fig. 282

Now let us assume that a unit consisliing of two sheaves B is
turning freely on a cylindrical shalt A (Fig. 282). It is clear that
in this case the cylindrical shaft will be subject only to bending,
inasmuch as torque will be imparted from one sheave to the other
via the bushing C. This type of detail, whose geometric axis
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coincides with the axis of the revolving part that it carries, is
known as an azle. Accordinglv, the principal difference between
an azle and a shaft is that an axle is subject only to bending,
whereas a shaft bears both bending and torsion forces. _

In the above example there is no need for the axle to revolve in
order that the sheaves turn. But there are other instances where
the axle must turn, an example of which is the axle of"a railway
carriage: as the whecls revolve, the axle upon which they are
mounted also revolves but is not subject to torque.

Shafts and axles are held in supports the construction of which
corresponds to the given function of the detail. Thus, the trans-
mission shaft A schematically shown in Fig. 281a is installed in
three supports, or sliding bearings. The part of the shaft within
the bearing is known as the journal. .
Shaft A thereby possesses Lhree journals
1,2,and 3. Journals I and 3 at the end of
the shaft (or axle) are called pivots, while
the intermediate journal (numbered 2 in K
Fig. 281a) is a neck journal. If the longi- r A
tudinal (axial) forces acting ypon the shatt 7 a)
are very greal (1g. 283), abutting journals g ‘
are used to bear the thrust and they -1—-——F

are therefore known as lhrust

bearings.

\’ The shaft and supports b)r
must mate in such a way as F‘,‘
to prevent any motion ot ‘>

l the shatt in an axial direc- |
l tion. There are various ways
of doing this. One method | ~
is to cut out a parl at the 4 —l-J
end of thehshait or }he axlci ¢)
; so as to have a cylindrica .
Fig. 283 porlion of less %:lhickness Fig. 284
than the rest, thus making
a pivot with iwo shoulders (m and n in Fig. 284a) which will, it
is clear, prevent axial displacement. A simpler construction is a
pivot with a single shoulder (Fig. 284b).

The transition from a surface of greater diameter to one of
lesser diameter (r in Fig. 284a and b) and called a hellow chamfer,
is made in the form of an arc, of definite radius for every shaft
diamecter. The chamfer is indispensable for long service of shaft
or axle.

Often collars are used to prevent axial displacement of the
shaft (A in Fig. 284c). These are fastened to the shaft with set-
screws. When necessary, collars are also employed together with
neck journals.

4
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195. Main Types of Sliding Bearings

The support in which a shaft or axle rotates is called a bearing.
In sothe bearings the force from the shaft is perpendicular to the
axes of the bearing (Fig. 281) and then they are called radial
bearings; in other cases the force is directed parallel to the axle
or shaft. in which case they are known as thrust bearings or slep
bearings. Some bearings may be of the combined radial-thrust
type. .
yBearings for the axles of rolling stock of railways are galled

journal bozes.
The choice of bearings depends on the conditions under which

they are to work; the most imporlant factors are the applied
load and the rpm of the axle, or shaft. -

In sliding bearings, the journal of the axle is in contact with
the inner surface of the bearing and slides over it, thus creating
the first kind of friction.

196. Antifriction Bearings

As already explained in Sec. 50, the loss from rolling friction is
much less than that from shding friction and explains the wide
use of antifriction bearings.

Antifriction bearings are of various types, depending upon the
direction of the acling forces. IFigs 285 and 286 show one {ype —
ball bearing — and its components (the numerals for the respective
parts are repeated in both illustrations).

The split sleeve 1 is mounted on the journal of the axle, or
shaft. The outer surface of the sleeve is slightly conical and carries
the inner race 2. The outer race 4 is concentiric with the inner one
and between them are 4he steel balls. When the round nut 3 is
screwed on to the sleeve I, the latter is drawn into the inner race
2, thus fastening it on the journal. When one race turns relative
o the other, the balls roll in the grooves in the outer surface of
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the inner race and the inner surface of the outer race. To keep
the balls'at a constant distance from one another they are placed
in the dage 5. e

_ When the ouﬁﬁr race 4 is fastened to the shaft housin® (Fig.
287)*, we get a

earing to support a rolating axle or shaft. Fig.
288 shows a similap arrange-
ment for a sheave; the ball
bearings are mounted in
the hub.

. .In,the bearing just present-
c¢d, the balls are arranged
in one row and from which
it derives its name — single-
row ball bearing; whereas
IFig. 289 shows a cross-section
of a double-row ball bearing.

Another type of antifric-

tion bearings is where rollers
are used instead of balls,
Fig. 287 these are caljed roller bear-

- ings.

Bésides rddial ball- and roller-hearings, thrus{ and combined
rddial-thrus bearings are also used. Fig. 290 shows a cross-section
of one type of thrust ball bearings: the shoulders of shaft A rest
on race’] which is faslened tightly to the pivot; race 2 is immov-
aBle-and the balls, rolling in the grooves between the two races,
take up the thrust transmitled by the shaft.

KTX
WY

Fig. 289 Fig. 290

Antifriction hearings arc belter than sliding bearings in several
ways: there is less friction loss, a smaller amount of lubricant is
required, a smaller longiludinal clearance is achieved, etc. But
they also have a number of objectionable features, amongst
which are their larger diametrical clegrance and at times the
complication of their assembly.

* The housing is shown with the cover removed angd lying al'o'ngside,‘
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197. Couplings

Coagial shafts are joined by a méchjne part catled coupling®.
The” simplest couplings, used rigid conpections of the
ends of two shafts, are called rigid eouplings. Fig. 291 is a cross-
section of a flanged rigid coupling: two llanges I and 3 are kejgd
to the-ends of the shafts and bolted togetheg, To ensufe alighinent,
one of the flafiges has a A proi

-,
&

’ 2 cction 2 which fits into'a
\ T 3WWSion ‘in the other [langes ™ &%=

v
272 S\ L TG

O T
i

Fig. 29% . Fig. 202

Another type of coupting is‘the ribbed coupling shown in %
292. This consists of two longitudinal halves mounted simultane
ly on the ends of both shafts and -then tightened with bglts. To
preclude the possibility of the shaft twisting in the conpling
the ends of bolh are kecyed together. . T
It is often nccessary to engage or disengage two coaxigl shafts
during their rotation. Couplings used for this purposc a#f called
clutches.
198. Questions for Review

1. What is the main diffcrence b tween an axle’and a shaft? »*§

2. What is the dilference belween neck journals of an axle or shaft,
and pivots? .

. When is a bearing called a step bearing?

3
4. What are collars used for?
5. Iow are bearings classificd as to load and type of friction?

CHAPTER XX
DEMOUNTABLE CONNECTIONS

199. Threaded Connections

Every machine or assemblage of engincering equipment consists
of parts joined into uni®. In some insiances the parls forming
such units move relatie to one anolher, in other cases they

* The cohnections used in joining pipes, spars, tie rods and other
simllar equipment are, incidentally, also called couplings. .
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comprise a fixed whole without any movement relative to each
another.

Often the parts are so joined that when necessary (as éuring
repairs or overhauling) they may be taken apart without damag-
ing the joint. Such connections are said to be demounjable, as
distinguished from permanent connections which cannot be sepa-
rated without destroying some of the members.

Jhe miost prevalent demountable connection is the threaded
tzpp..lts construction depends on the parts to be joined and on
the expected load. The threads are either cut into the parts to
be joined, or are prepared on special fastening detaits — screws,

, bolts, nuts, etec.
amples of permanent connections are those that are riveted

or welded; the only way such assemblies can be taken apart
1s to destroy the basic elemenls forming the riveted or welded
seam.

200. Threads for Connections

The chief element in a threaded connection is & helical thread
classified by its diameter, pitch and profile. In the U.S.S.R,,
government standards (GOST and OST) have been established
which must be strictly observed.

s
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Fig. 293

The reliability of a threaded connection depends on {he magni-
tude of friction acting between ils elements; the greater the
friction, the more reliable the connection. Since the greatest
friction is obtained with a triangular thread, it is the one chosen
for holding purposes. Fig. 293 shows a thread dimensioned by
the metric system and designed for thread diameters of from 1 to
600 mm. The drawingshows that the apex angle of the thread is 60°,
and since the sides of the thread form equal angles with the axis
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of the bolt, the thread has the form of an equilateral triangle.
The height of the triangle

l, = 0866 s, (179)

in which s is the pitch of the thread.
Since the amount cutl off at the thread’s apex and base 1s —’8"-
the actual height of the thread

fy =ty —2 -2 = 0.75¢, = 0.6495 s. (180)

Further examination will show that between the rootsof the
thread on the bolt (diameter d,) and the points of the thread'on

55 LS,
// f/ /Vut/
/Ao kc Z:

In- 7.~

NTe\TIN
Rley \’4/: \'

‘\“'A

\\\

\\ Bolt
N @ S

Fig. 294

the nut, a radial clearance has becn lefl the magmtude of
which

e’ ’

5 =hL—1, (181)
whence #, represents the depth of the working profile of the
thread. OST Specifications for each size of screw include the
dimensions of the external diameter d,, average (mean) diameterd,,,
internal diatneter d,, pitch s, height of thread {,, and the
clearance e’.

When dimensions are given in the metric system, they are
marked with an M followed by the external diameter and pitch.
For instance, M 30 X 3.5 infers that the screw has an exlernal
diameter of 30 mm and a pitch of 3.5 mm. Screws with dimensions
based on the inch are also used in the U.S.S. R. I'g. 294 shows
such a thread with a profile angle of 55° used for diameters of
from 3/16” to 47 (OST 1260). The cross-section of the thread is
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in the form of an isosceles triangle with an angle of 55° at its
apex. The altilude of this triangle

t, = 0.96049 s, (182)

in which s is the pitch of the thread.
The distance of the cut-off of this triangle from the apex is

%A trom which we obtlain
1, 2

Another ditference of this thread as from one of the metric

type is that there arc two clearances %— and £ + belween the bolt

and the nut at the root and apex of the proflle The rest of
the notations in Fig. 294 are the same as for the metric-type thread.

The number ol threads per inch ranges from 3 (when the
diamecter is 47) to 24 (when the diameler is 3/16”). The inch-style
thread is torbidden* in the manulacture of new articles. Among
other threads tor connections is the GOST ()‘3.)7 52 for pipiny
with diameters of 1/8” to 18”.

201. Tapered-Pin Connections

Some demountable conneclions are implemented with tapered
pins and are therefore called pin conneclions. Assume it is nec-
essary to join two delails I and 2 as in I'1g. 295a. After dnilling
holes to fil the exacl shape of the pin in both details (FF1g. 2950),

Fig. 295

we drive in the pin wilh a hammer or a press. Under the action
of the tapercd pin 3, the cnd of delail 2 will be drawn into the
socket in delail 1. 1f there is a flange m and the pin is driven in
firmly, a rcliable connection is formed which, if necessary, can
easily be taken apart by forcing the pin out in the opposile
direction.

*In the U.S.S.R. — Editor's nole.
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Such connections may 4lso be made as shown n Fig. 296a:
the two parts to be joined are cnclosed in a common bushing

and the conncction is made with two pins.
Tapefed pins are held in place by friclion, which increases as

forces N, and N, increase (sec Fig. 162) As already explamed in

g

A 12
_ _ .
] |
f -l
Y] l
a) )

ag 296

Sec. 110, these [orces 1ncrease as the angle  tormed by the sloping

sides of the pin decreases. [lcnce angle « 15 made as small as pos-
1 i (1 ] RIS n ’ 1 N _]_ L
sible, 1its ratio 7 (Fig. 2960) lo [he length bewng o0 25° °T 3p

and very seldom gieater.
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STRENGTH OF MATERIALS

CIrartT LR XXI

BASIC PRINCIPLES

202. Stress and Strain in a Body
Under the Action of External Forces

Assume thal a rectilinear har is resting wilh ils ends on (wo
supports and we exerl a {orce onil, at some point belween the
supporls, by hanging a delimte weight to il. Under the aclion
ol thus force the bar will bend and become curyilinear in form.
By repeating this expernment with weighls ob various magnitude
applied at the same poinl, we will find thal the bar bends more as
we increase (he foree. Suel a change in form, or dimensions, of
a body under the aclion of applied [orces (called loads) is known
as strain

By observing the form of Lhe bar alter removing Lhe load
causing the strain we will see one of two Lhings: either the bar
will return enlirely to ils original shape, or its torm will be only
partially restored. In the lirst instance the strain 1s called elastic
while in the second case, when (he bar remains parliallv de-
formed, il is said lo haveuatlained plaslic strain or a permanent
(residual ) sel. We thus see that when a body is subjected to the
action ol a load under certain conditions clastic strain may be
accompanicd by a permanent set. II the load is still further
increased, strain will becomne so greal thal the bar will fail.

Strain is not only caused by direcl aclion of one body upon
another. but also by a body’s own weight. If we place a metal
baron tlwosupportsand it is very longin comparison toils thickness,
we shall see Lhal its own weight and corresponding reaclions at
the supports will cause il 1o bhecome curvilinear it form.

In the above examnples, strain is so great Lhat it becomes visible ;
such strain is nol permissible in engineering struclures or machines
except where special parts are used (springs of various kinds),
meant to ahsorb strain of considerable magnitude. However, all
parls of any structure or machine may become somewhat strained
under the action of applied external forces; and though such
strain may not be visible, it can be measured with precise instru-
menls. .
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203. External and Internal Forees,
and the Cro«<-Section Method

WE€ know from experiment that the grealer the force applied
Lo a body, the greater the slrain. I'or instance, in the case of
the bar just mentioned as heing subject to bending, the extent
of curvature depends on the magnitude of the applied forces al
a given cross-seclion.

In all cases when external forces cause strain in some member,
internal lorces arise, in proportion to the magnitude and direction
of the forces, to resist the external forces. [low can we determine
the magnitude of internal

forces caused Ly lhe action P> P
of external lorces? \ !

Assume thalabeam A BCD 8 - c
(Fig. 297) is under the action | "r—;—j,‘,‘ﬂ
of asyslem of balanced forees | L —"N __:
P,P, I, P,und P, Lelus & Rl LTI,
lind Lhe inlernalforces acting A== LAY 4

in the cross-s¢gtion mn. To
do this, we reason as [ollows.
if the beam as a whole 1 1n
cquilibrium, Lhen all parls Iia. 247

of il are also in equilibriinm.

Lel us try lo determne, for example, whal forees would be
acting on the parl mCDn. In the first place there ar external
forces P, and P, and then there are, appuarently, some [orces
acling from portion BmnA. Lel us imagine {hal we cul the beam
along line mn, and remove Lhe portion BmnA. I[ we denote R as
the resultant of the clementary forces acling Liom the discarde )
portion upon the remaining free hody, then we may say Lhat the
free hody mCDn is in equilibrium under the action ol forces Py,
P;, and It. This torce R is Lhe internal loree thal balances forces
P, and P;. As already explained in Slalics, when there is a system
of forces in equilibrium, any one of the forces balances all Lhe
others. Ilence the force R is equal and opposite in direction to
the resullant of forces P, and P,

Rcasoning in the same way wilh respect to portion BmnA
(that is, discarding portion mCDn), we come to the conclusion
that it is under the action of the internal force R’ which is equal
to the resultant of forces P, and P;, or what is just the same, force
R’ balances the external forces P,, P,, and P, as applied to
portion BmnA.

We therefore find that the internal forces in Lhe right and lelt
portions of the heam are cqual in magnitude (which is as it
should be according to the law stating that action and reaction
are equal and opposite), but Lhe direction of these forces depends
on which of these portions we consider as ithe given free body.

Py
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As we shall eventually sce, the direction of internal forces deter-
mines the nalure of strain that the body undergoes.

In this case the system of exlernal forcesis such that the result-
anl R of the internal forces is not perpendicular to the given
cross-section mn. We therefore resolve R into two components - N,

qpi]erpendicu]ar lo the vertical plunc and T, lying within it. We
ay thus replace R with these {wo components. The first is called
the normal force, aud the second the langential force.

Now letl us find the answer {o the question as to whether the
internal force will he the samc in all sections of the beam. Assume
that we cut 1he heam along line m, n,. parallel Lo mn, and discard Lhe
left portion IBm;n; A. With he given dislribution of forces we see
that there arc now three forces instead of two - P, Py, and P, —
acting on the remaining {ree body. Ilence lhe force balanéing
them and equal to the resultanl of the discarded forces P, and
P; will differ from them and (hereby the internal force in this
cross-section will also differ.

Furthermore, if instead of a vertical plane we had laken our
section of the heam in some direclion olher (han perpendicular
to its axis, the force R would be directed lowards this plane
at a different angle and conscquently the components N and T

would have been different. There-
fore in general ihe iuternal forces
dilfer at dillerent sections of the
beam.

‘I'his method for delermining inter-
nal forces in a strained bodyis called
the cross-section method and is made
wide use of in solving strain prob-
lems of bodies.

Illustrative Problem 100. A roof lruss
is resting on {wo supports A and B
(FFig. 298¢). A vertical force I® is applied
al C. Since the Lruss is symmetrical with
respeel lo Lhe king-postC D, the reactions

of Lhe supporls will each be g— , i.0.,

Ra = Ry = 0.5, Find the inlernal
forces acling in the ratter AC and the
{ic beam AD.
Fig. 208 Solufion: l.et us assume that, by
culting -through plane mn, we have
procured a free body al joinl A. A is in equilibrium under the action
of the reaction R4 and the internal forces in both AC and AD. We begin
with a point A, below the diagram (IFig. 298b), and after delincating
the vecior of Jorce M4, we resolve it inlo two components A,D, and
A C, dircceted lowards AD and AC. In order thal these two forces be
balanced by force Iy, they must be directed in opposile directions.

In this way we oblain a balanced syslem of forces Ra, A,D’, and AC".
IFFrom this we find that the lie beaun A D is under tension, while the rafter

AC is under compression
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204. Internal Forees of Elastieity

When a body is strained under Lhe action of external forces
the points of application of these forces are more or less dis-
placed, with the resull thal these forces perform a definite amount
of work in the strained body. ‘This work is equal to the negative
work of the internal forees resisting strain. 1I strain is elastid®
the work of the internal forces is equal to Lhe potential energy
accumulated by the strained body. This energv is returned when
the body assumes ils original form.

This faclor connected wilh Lhe polenlhial energv of strain is
frequently utilised in engineering - among olher things in
machines and instruments employing springs, membranes, and
similar resilient parls.

205. Stress in Strained Bodies

The internal lorces R and R’ as presented in Sec. 203 are result-
ants of the elemenlary forces of inleraction hetween the parlicles
of two partssof a stiained vody. Thus it the strained bodv repre-
senled m Fig, 209 were imagined to he cul as shown, Lhea we
may assume such an (lementary foree acting on cach particle,

Lel  the elementary foree 1V e acling on some small area
AL ol portion [ of the body. Tt 1s obvious that the grealer the
force, the dgrealer (he anlernal torces set up i the material,
These forces are measmed by a ¢nantity called sfress, which
is found by dividing the

elemenlary force /AP hy 4 4

the area /7. By denoling

the force as a, we obtain T 4P Or——
o= /I (184) X

In general, siresses difler
in different parls ol a Fra. 209
strained body.

Inasmuch as [orce 1s expressed i lalogrammes and area in
centimetres or millimelres, then stress is expressed in kg/em?
(read, kilqurammes per square ccutimetre), or kg/mm?.

It internal forees are distributed evenlv over Lhe given cross-
seclion, the slress will be the same al all ils points and can he
determined by dividing this torece P by 1he whole arca of the
cross-seclion I:

1)
ag = _ﬁ . (185)
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206. Ultimate Strength and Safe Stresses

If we take two pieces of steel wire of the same quality and
length butfof different diameters and hang them so as to support
equal loads, we shall find that the one of the smaller diameter
will have the greater clongation. Thus, under the same load, the
strain of the wires will differ. If we further load the wires, we
shall find that at a cerlain load the thinner wire will acquire a
permanent set and will not recover ils inilial shape when the
load is removed, whereas slrain in the thicker wire will remain
elastic. Finally, at a certain further load the thin wire will snap,
whereas the thick onc will remain unbroken under the same Joad.

Thus we see Lhat slrain in the two wires dilfers under one
and the same load. The reason is that the stress is less ih the
cross-section of Lhe thicker wire hecause its arca is greater.
From whirh it follows that il is nol the magnitude of the exerted
force (hal determines the nature of strain, bul the magnitude
of stress. llowever, stress alone does not determine the charac-
ter of strain. Indced, if we repeal the experiment wilth iwo
pieces of copper wire of the same diamelers, we yould find that
they acquire grealer elongation under the same loads and hreak
under smaller loads. This means that Lhe nature and magnitude
of strain depends also on the physico-mechanical properties
of the material.

Strains of various kinds find practical application in engi-
neering. For instance, in the forging or rolling of melal we force
it to undergo non-claslic strain which enables us to give it the
required shape. In the culling ol metals, forces required for
separaling the chips are pul inlo action. Tn all these cases we
create stresses which correspond o Lhe produced strain.

Where machines and other engineering equipment are con-
cerned, however, the problem is enlirely different. Obviously
in their case there musl be no permanent set, since such strain
would cripple normal work of the parls. Accordingly, all parls
of machines and other equipment must be subject to only elastic
strain, o disappear when the action of the load is removed.
Whercupon machine parls are so construcled as to keep strain
within permissible limits, from which it is clear that the created
stress under a load must also be within permissible limits. To
accomplish this, calculations in design are based on certain
safe stresses which are established as a delinile fraction of the
stress thal would break the member. Obvivusly the magnilude
of a safe stress depends firstly on the material of which the part
is to be made.

All these factors concerning determination of strain and stress
under the action of external forces, as well as calculations of the
strength of elements of machines and all other Lypes of struc-
tures, are treated in lhe science called Strength of Materials,
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207. Statie and Dynamic Loads

There are various kinds of action of a load on a structure.
Let '»s consider-a bridge for example; here the load fluctuates
within narrow limils. Its own weight is constant, but the load
created by the traffic passing over 1t changes gradually in the
course ol comparatively prolonged intervals of (ime. The floor
load in an apartment house changes in a similar way, as docs
also the hydraulic pressure exerted upon a dam, ete. This kind
of load, which grows graduallv and then either remains constant
or undergoes comparatively little change, is called a sfatic load.

There are other cases where exlernal forces applied to a body
do not increase slowly hut act with a torce thatl grows quickly
to ity maximum; and linally there are cases where the whole
load is applied simullaneously and produces impact. These are
called dynamic loads. Wagon couplings undergo such loads when
a train starts suddenly, and such loads occur when a forge is
working, and when badly centred workpieces are being ma-
chined on a lathe.

A dynamic load produces grealer sirain and stress Lhan a static
load. Hence, ir®the designing and operation of machines and other
engineering slructures, cverything 1s done to avord dynamic
loads excepl when impact is needed te oblain greater effect
(the blow ot a forge hammer, pile-driver, elc.).

208. Chicf Types ol Strain

All parts of o strueture act upon each other 1n various ways
and, accordingly, the lorces exerted by one parl upon another
cause differen! kinds of sirain: the cablc of a hoisting machine
is stretched, the foundation ol a

structure is compressed, a hori-

zontal beam is benl, cte. a)

Strain is divided into the follow- i
ing categories: ' ‘%'
1. Tension and compresston (I4ig. |

300a and b): such strains occur in a 1) g
the elements of bridge trusses, {orge 1\ //
hammers (compression), the shank (c—©
of a bolt when tightened by a nut, 4) i

ete,
2. Transverse displacement (shear) . p A,
(Fig. 300c): under the aclion ol

equal and opposite forces a rivet Fig. 300

may shear along the line ma; a too

great tightening of a nut and bolt will cause the thread to
strip off the shank of the bolt along the internal diameter,

. ete,
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3. Twist (Fig. 300d): twist is a strain that occurs in all parts
that undergo torsion. Shafts of machines are most subject to
twist. .

4. Bending (Fig. 300e): beams and girders of all kinds are
subject to bending, any axle may bend under its own weight,
the weight of other parts mounted on it, and the actioi of applied
forces.

All the above strains arc classified as simple; but very often
machine parts are subjected to several stresses at once. Shafts,
for instance, are acled upon by lorsion and tension at the same
time, resulling in combined strain.

209. Questions for Review

1. What is mecanl by strain and upon what laclors docs its magnitude
depend?

2. Is it possible to judge the magnitude of slrain by only the magni-
tude of the load acting on lhe member under consideration?

3. In what cases is it necessary lo induee a permanenl set in a material?

4. Tn what kind of calculalions is 1l cross-section method used?
Explain il in biric.

. State the kinds ot stiain produced m the following components:

a) an ordinary culler when a surlace is being machined;

b) a drill in operalion;

¢) the lead screw ol a thread-cutting lathe when in operation;

d) the jaws ol the chuch on a lathe when Lhe ouler surface of a work-
piece is being laslened;

¢) the serew of a parallel vise holding a workpiece;

f) the shank of a rivet in ils cross-sections directly beneath the heads
where they hold he rivetted parls.

CHAPTLU R XXII

TENSION AND COMPRESSION .

210. Tension. Absolute and Unit Elongation

Assume that a force P, conslant in magnitude and axial in
direction, is applied to the lower end of the immovable pris-
matic bar shown in IKig. 301. The bar is in equilibrium under
the action of two equal and opposite forces — P and the reaction
P'*, Lel us take a cross-section mn perpendicular to the axis
of the bar al an arbilrarv plane; by imagining that wc have
discarded the lower parl of the bar, we come to the conclusion
that the upper parl as a free body is in equilibrium under the
action of force P and its opposite force P’. Accordingly, the bar
will stretch along its whole length under the action of force P.
If the cross-sectional area of the bar is equal to F, the stress

* In the given cxample the welght of the bar is ignored,
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in the cross-section

P
g = T
from which
P — oF. (186)

If we increase the magnitude of force P, then the length of th®
bar also increases. Assume thal with a certain magnitude of
force P, the length of the bLar [, =-1 4- 4, in
which ! is the original length, and 4! is its
elongation when in a state of slrain. This
final length is called absolute elongation. iBut
absplule elongation docs not tell us all about
the character of strain. To illustrate this let
us take a rubber band, cut it into two unequal
lengths and hang equal weights on them; it
will be found that their absolufe clongations
differ in magnitude. Tlence, absolule elon-
gation is no indication of proporlionate strain
under the aceion of a given leusile force. {lowe-
ver, it we compare lhe clongation per unit
length of (he {wo bands of rubber, we shall find
that 1t is the same for bolh. This is called unu!
elongalion and is a ratio of absolute elongalion

to original iength. By denoting unit elongation 7%
as ¢, we oblain v}

' ///’/ 7/,

e = - (187) A

Since the numerator and denominator of I9g. 301

this fraction arc bolh expressed in units of )
length, it is an abstract number. Oudinarily, unit elongation
is expressed 1n percentage, then

e% - - 100. (188)

Wheretore, longuudinal stiain of a body under lhe aclion of a
tenstle force (s measured by ils unil elongation.

211. Tran<ver-e Strain of a Body
Under the Action of a Tensile Force

Experience has shown that the elougation of a bar under a
tensile force is accompanied by transverse contraction, that is,
by a decreasc in cross-sectional area perpendicular to the line
of action of the force. Assume that the bar in Fig. 301 is heing
stretched by two equal and opposite forces P and P’, that it is
square in cross-section, and that one of its sides is equal to a.
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When the bar is elongated by a length equal to 4l, the dimension
a is decreased to a,, and the difference between a and a, is the
absolute iransverse contraction Ada, i. e.,

daz=a--q,. R189)

Transverse slrain of a bar is measured by unil [ransverse
,compression:

e = 4 (190)

The relalionship between unit transverse compression &’
and unil elongation ¢ is

== pE, (191)

that is, transverse strain is proportional to unil elongation.
The coefficient g is known as the coefficient of transverse compres-
sion and is a constant determined empirically for each material.
The cocllicient for carbon steels, for instance, is from 0.21 {o
0.28; tor copper it is from 0.31 to V.34; for aluminium it is from
0.32 to 0.36, ete. It is less than 0.5 for most malerials, while
for rubber it 1s almost 0.5. Unil elongation for Mmosl malerials
is three to four times more than transverse compression.

212, The Tensile-Stress Diagram

In mvestigatmg Lthe properlies of melals in the study of ma-
{erials, changes are examined in the lenglh of a bar when
it is stiretehied in a lensile lesting machine. In the tensile
diagram {he loads arc plolled along Lhe vertical axis and
corresponding elongations marked off aloug the horizontal
axis.

Up lo a cerlain load P, elongalion is proportional lo Lhe load.
Under greater loads, elongation increases taster in proportion,
and al a still greater load [’; elongation continues without an
further increase of the load: the material begins to “‘yield”.
Then resistance to strain increases unlil a moment is reached
corresponding to a cerlain maximum load. At this stage a cross-
sectional reduction (a ‘“‘bottleneck’) becomes apparent at
some place along the specimen’s length. This is the beginning
of complete failure: for henceforth the bhottlenack narrows
rapidly even with a decrcased load and finally the specimen
snaps.

With such a lensile diagram we can make a lensile-stress
diagram to show the relationship between stress and unit elon-
gation. .

On a rectangular system of coordinates (Fig. 302) we plot
unit elongation in per cent (¢9) along the axis of abscissae,
and corresponding stresses o along the axis of ordinates. The
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form of the curve obtained will be similar to that in the tensile
diagram. Point A on the curve will correspond to a stress beyond
which unit elongation ceases to be proportional to the stress.
The f$tress at this point is the limil of proportional elongaiion
and is denoted as o,. Point B on the curve will correspond
to the stress o, and is called the yield poinf. Point C will cor-
respond to the stress o, when a neck begins to form on the
test bar and will show the moment when failure begins; this
stress is called ultimale strength*. And finally, 1> will mark the
point at which the metal snaps.

It must be addilionally noted that slightly higher than point
A is a point corresponding to the stress at which strain passes
from elastic to plastic: this is called the elasiic linut. 1lowever,
since *this stress is very
close to the limit of pro- G
portional elongalion, the
two may be considered
the same for praclical
purposes. I

The magnitude of stress- |
es oy, 0, and o, charac- |
terise the mechanical prop- |
erties of a material, 1. ¢., L 1 —
the capacity for resisling OL_ B} _§ ~ _,l €%
the action of external
forces causing strain aud
failure. For steel contain-
ing 0.15%, carbon, a, — 35 15 kyg/mm® and o, 20 kg/mm?,
for steel contamning 0.6% carbon, ¢, 61 -87 kg/mm?
and o, = 50 kg/mm?; for chromium-nickel steel o, 90 kyg/mm?
and o, = 75 kg/mm?. From this we sce thal the strength of
stecl increases as its carbon contenl increases, and also as spe-
cial alloying clemenls are added.

The unit elongation of a material undergoing a lensile lorce
is denoted as 4, is expressed as a percentage, and characlerises
the elasticily of the material. The smaller il is, the more brittle
the material.

An illustration is grey casl iron which fractures before hardly
receiving any elongation or {ransverse contraction. The ullimate
strength of tast iron is considerably lower than that of steel:
for grey cast irom, o, = 18—27 kg/mm? Thus the tensile-
stress diagram for brittle materials is quite differenl from the
one characterising the previously-examined materials.

4

Fig. 302

* Sometimes this stress is called temporary resistance.
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213. Relationship Between Stress
and Unit Elongation. The Modulus of Elasticity

The reader is reminded that up to the limil of proportional
elongation o, elongation of a test bar is proportional to its stress
and the lmear segment O A is a straighl line, as is séen from the
diagram in Fig. 302. Within these limits, if under the stress
o, the bar receives a unit elongation of ¢ and under the stress
a, receives an elongation of ¢, etc., we obtain the following
identities:

This means thal the relationship between stress ahd cor-
responding unil elongalion is a constanl, which, if denoted as
E, assumes the general form of

o
=E,
€

or
o ek (192)

‘This cocllicient 15 is called the modulus of elasticity; giv-
en an equal strain, then the greater the siress the greater the
coefficient L. Since siress is expressed in kg/em? or kg/mm?,
and unit elongalion is an abstracl number, (he modulus of
elaslicity is expressed in {he¢ same units as stress - ordinarily as
kg/cm2.

As already noled, the limil of proporlional elongation may be
considered the same as the elaslic limil and, hence, Eq. (192)
may be used either to find the magnitude of elaslic strain under
a given stress or to oblain the siress corresponding to a given
strain. The numerical value of the modulus of elasticily has
been determined cmpirically for ditferent materials with the

aid of the equation E = —Z— , by measuring their elongation under

a given stress.

For example, the moduli of elasticity, in kg/cm?2, of carhon
steel is trom 2,000,000 to 2,200,000, for steel casljngs 1,750,000,
for cold-drawn brass from 910,000 to 990,000, for wood along
the grain from 90,000 to 120,000, for wood across the grain
from 4,000 to 10,000, and for leather belting from 2,000 to 6,000.

Illustrative Problem 101. A steel specimen, pulled with a force P =
= 500 kg, received an clastic elongation Al = 0.0272 mm. Its cross-sectio-
nal arca I' = 181.2 mm? and length [ = 200 mm. Find its modulus of
elasticity E.

Solution: we find t:hat the stress ¢ = TP' = -l—r)g(i(% _kg/mm? and unit
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. Al 0.027:
clongation & = - = %JZ, and by applying Eq. (192) we obtain

g _ Pl 500 x 200
T T Fdl T i812 > 0.0272 = 20,250 kg/mm* =

= 2,025,000 kg 'cm=
Illustrative Problem 102. Deiermine the absolute clongalion of a

steel bar of length [ = 2 m and cross-sectional area M = 2 e¢m?® under
a load P = 3 tons.
Solufion: Eq. (192) indicates that unil elongation & _—_—77 and stress
I N - I
g = T Ihercfore ¢ = niE =T from which Al = F e
2,000,000 kg/em® and substituting numerical values, we oblain
_ 3,000 » 200
2,000,000 x 2
INtustrative Troblem 103, [Kig. 303 shows a shall of length 1 - 20 m
and diameler d = 50 mm. IL 1evolves in three bemings with collars
A and B al Lhe ends of the shatt to

&=

Taking E as

Al =0.15 cm = 1.5 mm.

prevent longitudinal  displacementl. 4 A
The collars were installed on the N

shait in close contact wilh the bearings = — e
during the summesg months when the ~— " .
Llemperature was 30°C. Whal aval [ - — ——]

force will the collars exerl on Lthe
bearings in winter when the lempera- IFig. 303
ture in the building is 10°¢.?

Solufion: the coclticient ol hnear expansion of steel is 0.0000125.
Since Lhe tempesature talls 30° - 10°=20°, the shaft contracls 0.0000125 x
20 = 0.00025 of s length. This will give 1ise to a tensile siress in
Lthe shafl which we find Lhrough Lq. (192) and by taking the modulus
of elaslicity F@ = 2,000,000 kg,em? and ¢ — 0.00025. Then by substi-
tuling numerical values we obLan

o = 2,000,000 > 0,00025 = 500 ke /cm®.

In order to find the lorce P acling on the shail axially, we multiply
this .sll-(-ss2 by U;u- cross-sechional arca ol the shatt:

F = % = ”r;)—- = 19.6 em?, whenee Lhe 1equired force PP = 500 %
x 19.6 = 9,800 kg.

If nothing prevents the shatl hiom shorloning, 10 will actain its abso-
lute longitudinal conliaction which, according to liq. (187), will be

Al = el = 0.00025 x 20 = 0.003 M = > mn.

We thus sce Lhat the collars are exerling too greal a pressure on the
bearings to achicve normal operation, and the work of the drive will
be disrupted.

Hlustrative Problem 104. Assume that Lhe bar vertically suspended
in Fig. 301 is not unde1 the action of any cxternal force P, but only of
its own weight. At a freely-chosen cross-scclion mn the internal forees
will be equal to ihe weight of the part of the bar below il. Obviously
the higher the cross-scction, the greater the internal forces, and the
greatest force will be in the uppermost cross-section where the bar is
suspended. The greatest stress will also be in this cross-section, i.e.,

o= % , in which G is the weight of the bar and F is the cross-sectiona
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area. By denoting specific gravily as y, then G = Flyand o = El_l’ ly.

We thus see that in this example the stress does not depend on cross-
sectional area.

214. Compression

Compresstve strain is the opposite of tensile strain. All the
relationships that have heen given for tension are also applic-
able to compression: if the bar in FFig. 304 were under the action
of compressive torces P and P, at any cross-section perpendic-
ular to the line of action of the load there would be compressive

slresses o - % , in which P is the load and

P I is the cross-scctional arca. The bar will
bi7444 slrain longiludinally along the direction of
}'"_"_ 'Wf the load and 1its length will diminish as
} (3% expressed by € - -‘%’, or in percentage as
I L
]l : J__JJ expressed by £% — illfx 100.
T‘—;ﬂ Compressive stresses arc proporiional to
pl unil longitudinal strain, i. e., o == Ig. The

modulus of elasticily E for compression is the
Fig. 304 same as for tension for most materials.
Under compression, contrary to tension,
the lateral dimensions of a specimen bar will increase.
1Xq. (191) expresses the relationship between the magnitude of
these dimensions and longiludinal strain.

215. Design Formulae for Allowable Tensile
and Compres<ive Stresses

Tensile or compressive stresses, occurring in the same direc-
tion as the load, are defermined by Eq. (186):

P _-ofF.

As already explained in See 206, machine parts are designed
so that their stresses do nol exceed safety limits. By substituting
the allowable tensile or compressive stress for the stress ¢ in

1q. (186). we can determine cross-sectional area for a given load
to ensure the strength of a machine part.

The allowable tensile stress is denoted as R, and Eq. (186)
becomes

P =R,F. - (193)

We replace stress o by the allowable compressive stress Ry
in the same equation, which becomes

P —R,F. (194)
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_Eqs (193) and (194) are for solving allowable tension and compres-
sion.

In gletermining the cross-scctional area of a part, the magni-
tude of the tensile or compressive load and the allowable stress-
es must be known. As already noted, the allowable stress is
a fraction of ultimate strength and may be expressed as

R 2 (195)

in which R is the allowable lensile or compiessive slress (R, or
Ry), o, is the ultimate strength, and n 1s a number wncheating
how much larger the second is than the {usl and called the
factor of safely.

This safety tactor1s not a constant, 1t must ensure lhe sirength
of the given part against permanent set and depends on a num-
ber of circumstances. For instance, the salety lactor tor hrittle
materials is larger than for elastic matenals. and larcer for a
dynamic load than for a static load, etc.

Hlustrative Problemn 105, Artn A3 ol the bracket i Hlusti tive Prob-
lem 6 (Scc. 21) i§ 1o be made of muld slacland round cross section, Caleu-
late its diameler d il the allowable
stress R, is 1,400 hg/cm?.

Soluiton. in the quoted piroblem
it was found that lorce P, acting
along arm A B was equal Lo 900 kg.
Whereupon

. wdr P
F=% =’
B
whence d — V”, — 9 mm.
7R,
INustrative Problem 106, 1<yceboll

2in g, 305 iy passcd freely thiough
the wooden beam [ and has a 10d
6 suspended fiom pin § passcd
ithoough 1ts cyes. A tensile foree
P is applied Llo the rod. Denote
the internal diameter of the bolt
as d, and calculatle the dimensions
required for the various membeis
of this assembly.

Solution: from Iq. (193),

P _ adi
TR, 4
l)
whence d, =2 I/Ff: ’

which, when the numerical value of the allowable striss enters the
equation, gives us the Internal diameter of the bolt, and iroin Standards
Talbles (OST) we then fipd the corresponding external diameter of the
bolt.

303



Then we calculate the dimensions of the eyes of the bolt. We see that
failure may take place along cross-section ki, the area of which for the
two eyes is 2(D — d,)e¢, in which d, is 1the diameler of Lhe hole for the
pin, and ¢ is the thickness of the cyes. Hence the design equation wil be

P = 2(D — d;)eRt..

Lastl¥, we calculate the siz¢ of rod 6. With a thickness of, a and a
width of b, the arca rosisting fracture I, — bua. The design equation is
2R, = P, from which, having found Llhe arca bua, we can lake some
suilable value cilher lor a or b, and calculaic Lhe other dimension. Sinoe
at cross-seclion kI the rod is weakened by the holc required for pin §,
it must satisfy the cquation

(I) - d,)(le - P.

216. Compression and Buckling

Try the following experiment: place a thin sleel bar in a
vertical posilion on spring scales as shown in Fig. 306. Press
your hand vertically down upon the upper cud of the bar, thus
gradually increasing the axial compressive force P hut mainlain-
ing the Dbar’s verlical posilion. By observing the pointer on
the scales we will see (hat [orce P increases but the bar remains
straighl. As we increase the pressure, il reaches a puint al which
lthe bar begins to bend, bul when we release
P\ the pressure, it recovers ils original shape. If

we increase Lhe torce beyond the poinl where
: the bar just begins'lo bend, bending will increase
! and, wilh further pressure, the bar will acquire
a permanenl set and then break.

Il we repeal this experiment wilh bars ol
different lengths but wilh their cross-sectional
dimensions and their malerial remaining the
same, we shall see Lhal the magnilude of the com-
pressive force al which the defleclion ot the bar
ceases to De elastic depends upon its length,
i. e., as the lenglh increases. Lhe magnitude of
this force decreases. This is called the crilical load
and is dcnoted as P,.,.

Fig. 306 Thus, the tailure of an axially-compressed bhar

may occur not Dbecause compressive stresses

exceed their allowable magnitude, but because of longitudinal

distortion, technically known as loss of slability and resulling
in buckling.

The eminent Russian scienlist Academician L. Euler was
the first to investigate buckling; the formula determining the
critical, or buckling, load for slender columns is known as Euler’s
Equation.

Columns, compression struts of various types of trusses, the
connecting rods of piston engines, and other machine elements
and members of engineering structures are all subject to buckling.

304



217. Questions for Review

Two bars of the same material and similar cross-sectional area
becOme elongated to different extents under ecqual loads. What is the
explanation for this? What can be said about their unit elongations?

2. Can it be said that absolute elongation is proportional to unit

elongation? -
3. Why musl machine parts be made so they can acquire only elaslic

strain ?
4. Does the load alone indicate {he magnitude of the stress in a mate-

rial? Does the absolute strain indicate it?

5. What can be said ol the modulus of clasticity of matcrials that have
different unit clongations under the same load?

6. Under what condition will a veitically suspended bar fail because
of the action of its own weight? At what cross-section will the fracture
take place?

218. Exereises

105. A chain made of 16-mun round stecl links is under a
load of two tons. Calculate the tensile stress in its links.

106. Whatewill be the absolute elongation ot a steel rod 8 m
long and 60 mm in diameter undcr the action of a load P =
== 30 tons? (The moduus ol clasticity
L = 2,000,000 kg/em®.)

107. What stress is crecaled in a sLeel
bar 6 m long and 25 mm in diameter
if its absolute clongation under a
load is 3 mm? (The modulus of elas-
ticity L -= 2,000,000 kg/cm?)

108. A copper bar 100 mm in dia-
meler was tightly fixed between two
immovable walls when the tempera-
ture was 15°C. What stress will be
crealed in Lhe har and what pressurc
will it exerl on the walls al a tempera-
ture of 50°C? (The coelficient of lincar
expansion of copper is 0.0000167; and
FE = 1,000,000 kg/cm®.) Fig. 307

109. At what length would a har ot
mild stcel break under the action of its own weight if its ultimate
strength is 4,000 kg/cm2? (Specific gravity y = 7.85 g/cm3.)

110. A copper bar that is being tested in a tensile testing
machine has an initial length, between two marks, ! = 200 mm.
Under a load P =500 kg the marked Ilength -clongates
0.032 mm. Find its modulus of elasticity if Lhe diameter of
the bar was 20 mm before the test began.

111. The chain of a hoisting machine is under a load G = 500 kg.
Find the tensile stress in the links of the chain if it is made
of 8 mm round steel.
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Hinl lo solution. It must not be forgotten that the load is
distributed hetween two cross-sections.

112. Whal must be the diameter of rods 1, 2, and 3 (Fig. 307)
whose allowable stress is 1,400 kg/cm?, « — 30°, g — 60°, and
from which a [ixed pulley is hung and with the aid of which
aload ¢ 2 tons is raised?

CHAPITLR XXIII

SHEAR AND TORSION
219. Shear (Strain in Lateral Displacement)
A sheave, prismalically keyed Lo a shaft revolving as shown

by Lhe arrow in Fig. 308a, transmils rolation to another (driven)
sheave mounted on a parallel

F b shaft. A ftorce P is acting
A from the {irst-menlioned

W/ SN 7 shatt (right to left) upon the
\\ lower part of the key, while

N an cqual and opposite force

& \\\ P’ is exerted on Lhe part of
/ the key entering the key-seat

’ 7 in the sheave’s hub. If the
1 / key is not strong cnough it

a) 4 will shear along line mn as

. shown in Fig. 308h. From

Ig. 308 Lhis it follows Lhal internal

slresses, due lo the interac-

tion of these forces, arc sel up along line mn that resist the shear.

By dividing the internal torce, cqual to force P, by the area
I’ of the cross-section mn, we obtain the siress z:

i= 1 (196)

or, by denoting the width of Lhe key as b and its length as [,
P
T = 5T

The siress v is the shearitng stress and is expressed in kg/cm?
or kg/mm?. This stress acts along the plane of slrain mn and is
a tangeniial siress. Depending on the magnilude of the tangential
stress, strain may he either elaslic or plasuc, or it may even result
in complete shearing of the member.
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220. Determining the Amount of Shear Strain.
The Modulus of Elastieity for Shear

Lel us investigate, as we id in the case of tension, what
quantity may be used to measure the magnitude of shear strain.

Assume that {wo equal and opposite forces P and P’ are act-
ing on a porlion of a beam (Fig. 30%a) at cross-sections AC and"
BD, situated at a small distance x from cach other. Under
the action of these {orces the paruallelepiped ABDC (shown at
an enlarged scale in IFig. 3096) will become twisled and take
the form of the parallelogram AI3;D,(. 1in I[1g. 309¢c. tlence,
points 3 and D), and any other point lying along segment BD,
will be shifted with respect to segment AC to lhe exienl of

B.Bl-"5 DDl — S.
P r
4l 4 pAe—p 2 LL
-] L2
14 W]
P X
a [ —— ) — ]
g ) 4/l c ~— 5
b — ©
TS

FFig. J3uY

This quantity s may be considered to be the ahsolute shear
strain in the scction ol beam under consideration. Ilowever,
just as wilh absolute elongalion, absolute shecar does not give
a full picture of the degrec ol slrain, since Lhis latter depends
on the dimensions of the body.

If we take cross-scction 3D’ at a distance of z; from AC,
absolule shear slrain will be 3By YDy -s,. lI'rom the
similarity of triangles ABDB, and ADB'B] we oblain

S z S S -
— == 0r —= —‘- which denoles a cerlain value of .

Thus we see that Lhe ratio belween absolute shear strain and
the distance helween cross-seclions is a constanl and for that
reason is used as a measure ol shear. The quantity y is called
unit shear siratn (the angle of shear).

Wherefore, unil shear strain 1s equal to absolule shear s'rain
divided by the dislance between the planes of shear.

When 1nvestigating elongation we found that the stress o is
proportional to unit elongalion within the limits of elastic strain.
Theory confirmed by empirical research show that the same
relationship exists with respect to shear, that is,

7 = Gy, (197)
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in which 7 is the shearing siress, y is the unit shearing stress,
and G is a coefficient called the modulus of elasticity for shear.
This equation is analogous to Eq. (192). And since r is expressed
in kg/cm? (or kg/mm?) while y 1s an abstract number, the mod-
ulus of elaslicily & for shear is expressed 1n the same unils as
_stress (usually in kg/em?). .

‘ Several values for he modulus G, given in kg/cm?, are: car-
bon steel —810,000; aluminium -- 260,000 to 270,000; copper —

400,000, elc.

221. Allowable Shear

Let us denole L2, as the allowable shearing stress considered
necessary Lo ensuie the strength of a part. By assuming that the
stresses are cqually distribuled over the whole cross-section,
we oblain the {ollowing design equation for shear:

r  RJr (198)

with which, knowing the ¢iven force ' and the allowable shear
stress I3, we can determine Lhe area of Lhe cross-seetion required
to ensure necessary strength of a parl. I'he value {or allowable
shear R,, just as lor lensile and compressive stresses, varies in
each case and depends on the material and specitic conditions
that must be provided lor. Allowable shear is smaller than
allowable tensile stress IR, Il mayv be approximately consid-
ered Lhal IR, tor plastic materials ranges hrom 055 R, Lo 0.7
R, and for bnttle malerials from 0.8 [, lo R,.

IMustrative Problem 107. 1 1ag. 305 the pin 4, 1eferred Lo in IHlustra-
tive Problem 106, has a diameler d; = 15 mm. What 15 the maximum
shear I* thal 1L can wilhsland 1if Lhe allowable shear R, = 900 kg/cmz?

Solulion: under the action ot load P the pin may shear along Lwo
planes m,n, and m_n,, corresponding to (he planes of contact ot the cyes
and the rod 6. This shear strain is 1esisled by two cross sections ol area

"ng cach. Ilence, through Eq. (198) we obtain
¢ n2
p=27 ’—4-1-'"- £ 900 & 3,200 keg.

Ilastrative Problem 108. A shaft transmils torque M; = 29 kg-in.
Find the shear exerted on the prismalic key (Fig. 308) along section
mn if the diamefer ol the shafl d = 45 mim, the widlh of Lhe key b = 14
mm, and its length I = 70 mm.

Solution: (he plane of shear I = bl = 14 x 70 = 980 mm?== 9.8 cin?,

%k
The stress along plane mnisequal to P = AM;: g-.—_ —2—’222%- kg, and the

shearing stress exerted on the key

) .
T = P 2000 132 kg/cm?.

F 7225 ¥ 9.8

* We express torque in kg-cm, and diameter in cin.
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Hluastrative Problem 109. Tensile forces P = P’ = 2,900 kg are acting
in opposite dircctions on the lap joint shown in Fig. 310. 1t is held together
by two rivets of diameter d = 13 mm.

Findg the shearing stress in the shanks :

of the rivets. | — 7
Solution: the rivets may shear along 7 |
the cross-seclions of their shanks where @ ,l ’
both laps of the joint are in contact with P I i
them. The arca of shear of Lhe two - q}”
2
rivets F = 21“:—, and tihe shear in their A
shanks Ig. 310
r . N P L0002 ,
T g7 < 2,900 9 P L3 1,094 Kgl/em?.

DD 1]

Punching of Metals and Catting Them
with Steel Blades

Shear slrain 1s taken advantage of in enlting metals by means
of dies and sleel blades. Unlike machines and other engineering
structures whére strain mnst nol be allowed Lo exeeed the elaslic
limil, strain in culling is carricd 1o the 1ailure slage of (he mate-
rial along the plane of shear.

Fig. 311 is a schematic illustiation showing sirain in metal
when it is heing perloraled by a punch. Under the pressure

p P of Lhe punch A, the melal lirst hegins to
bend within the die 8 (. 311a) al Lhe

sane time acquiing compressive strain. As the
punch subsequently presses harder on the

8 5
Tt 311

melal, the slress becomes so great that the
melal begins lo shear, which is manifested by
crack formafwon in the workpicce along the
cdges of the punch amd die (Fig. 3t16). The
same thing occurs when metal 18 cul with
stecl.

Pressure I* is determined aceording 1o the

equation
P =oF, (199)

in which I is the area of shcar (the product of the length of the
shear [ and the thickness ot 1he metal ), o is the shearin the met-
al and is found empirically. For steel, for example, it has been
thus delcrmined as

g = 11.0 + 0.56 0, kg/mm?,

in which o, is ultimate sirength.

MMustrative Problem 110. }ind the pressure P required to punch a
hole of diamecter d = 10 mm in sheet steel of thickness ¢ = 8 mm
and ultimale strenglh o, = 60 kg/mm?®.

(200)
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Solution: the pressure (stress) ¢ = 11.0 + 0.56 x 60~ 45 kg/mm.?
The perimeter of the hole | = nd = n x 10 = 31.4 mm; the area of
shear F =16 = 31.4 x 8”251 mm? and the pressure required is
P = Fo = 251 x 45~ 11,300 kg.

223. Torque

~ Assume that we have a cylinder on which we delineate a line
Ao, parallel to the axis on one side, and mark two plane circular

| sections mn and m;n;

(Fig. 312a) lying al a

x ‘lﬂ l » short distancz z from
77T 7N\t onc anolher. Assume
—_ 5 thal the cyhinder is

L - Ihxed at its lelt end and

4 \*l Lhat torque M,is applied

to the right end. The
torque 1S ol course
balanced by an equal
and opposile moment

._,
~
=~

- X 1 acting on the fixed end

p A of the e$hinder. Under

e — the action of these mo-

&y pa v O ments lhe cylinder expe-
< | riences strain.

This strain consists

i the turning of sec-

n ~ tions mn and m,n, with

4 respecl to each other
around the axis of the
cybnder 0O,. The line
AgB,, which was per-
pendicular Lo Lhe cross-
section bLefore torque
was applied, hecomes
a hehx whose langent
1s inclined towards the
cross-seclion. Thepoints
A, and B, which were
mutually exactly op-
g 312 posite at different ends

of the cylinder, are now

shifted with respect to each olher along a length of the
arc B,B which corresponds lo the central angle B0, = ¢.
This is called the angle of twist and shows the absolute strain.
By dividing this angle by the length I of Lthe twisted cylinder, we
obtain the unit angle of {wist. By denoting this angle by the letter
6 we obtain 0 — % . (201)
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If we express the angle ¢ in degrees, unit twist will be expressed
in degrees divided by the length in metres or centimetres. By
knowing the unit angle of twist 6, it is possible to calculate the
ang@lar displacement of one plane circular section with respect
to another when the distance between them is given. Thus,
the displacement of plane section m,n, in relalion to plane section
mn will be ¢, = 6z, and with respect to the left-end plane section,
it will be 0(; -+ x).

224. Torque as a Form of Shear

* Assume that two lines ayb, and ryd, (Fig. 312b) are delineated

between sections mn and myn, on the already-mentioned cylinder
before il was subjected to lorsion. It the figure ayb,dyc, were
unfolded it would be a rectangle. And it is clear thal alter twist-
ing, this reclangle will become a parallelogram agbedyc,. The
line a,by, which was at first perpendicular to the section mn,
will become inclined through an angle byaybg, point b, will shift
to bg, line cydy will be inchned through —“dycody /7 beayhy, and
point d, will shift a distance dyd; - bebs. BBy comparing Lhis
strain with Bhe shear strain shown schematically 1in Fig. 309c,
we see Lhal 1l is similar excepl thal wthe given case the displace-
ment of a point on plane section mn, is along a peripheral
arc, whereas in the former case point I3, hke any other point on
seclion BD, was displaced along a slraight line. Therefore, we
come to the conclusion Lhat lorque 1s a form of shear.

295, Distribution of Torsional Stress
in a Plane Circular Section

If torque strain is distinguished by the turning of one plane
section with respecl to another, then the same relationship is
valid for it as between stress and unil clastic sirain, as already
expressed in Eq. (197), i.e.,

T=0y,

in which (v is the modulus of elasticily for shear.

It need only be determined whether the tangenlial stress
is the same at all poinls on the planc or whether it changes accord-
ing to some specific principle. To answer this question we must
first find if«the unit strain y is constant at all points on the plane
section.

Let us assume as before that for the short distance = between
circular plane sections mn and myn, (Fig. 312c), absolute strain
is expressed by the arc b,b;. The length s of this arc is related to
the angle b,ayb, as given in degrees and to the distance z through

ithe identities
2nx nTa

s =bobo = 355 % = 150 *
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By entering the unit shear strain y instead of 180’ we obtain
s = yz. (202)

On the other hand, we can find the length of this arc from
plane section mn, in which it corresponds to the cenjral angle
bo01by; this angle, as already explained in Sec. 223, is Lthe angle of

“Twist ¢, along the distance x and is equal to 6z:

2nr0z _ AT o
360 180
in which r is the radius of the plane circular section.
By equating its right member with Eq. (202), we evolve

S =

r
YT = g 0%

arfd
whenece y = ';tsf) . (a)
We now mark point f at a distance of p from the axis on radius
Osby of ihe plane section myn, and delermine its absolute displace-
ment as expressed by tho length of the arc ff'. A( cording to
Eq. (202) the length of this arc

S =" Vabs (b)
in which y, is the unit torque at this poinl. as dislinguished from y
(for s, is not equal to s although the length r is the same). On
the other hand

20 - 0
Se ~ 36000 qmo ¥

By equating its right member with Iiq. (b) we ohlain
, ol
Yo T 180
Then by dividing cach member of Lhis equation by equation
(a), we evolve the sought-for equation:

Ye _ 02 .
PR (203)
Whercefore, the unil strain at various points of the cross-section
is proportional lo e distance of these poinls from the aris of the
cylinder subjecled to torsion.
By denoting 7 as the shearing stress at a point onf the side ol
the cylinder and 7, as a similar slress al a point lying on the
same plane section at a distance of p from the axis, then acc ording

to Eq. (197) . 00
frnd _l‘y’
7, =Gy, (205)
T 0
L (206)
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Wherefore, the siress at different points on the cross-section
of a cylinder is not constanl under a given torque; it is proportional
to the distance of the point from the axis of the cylinder.

The greatest stress is at points farthest from the axis, i.e.,
on the surface of the cylinder. It follows that shearing strain is
zero at poinis on the axis of the cylinder,
and therefore {lie stress is also zcro al
these points. This can bhe cexpressed
graphically as shown in Tig. 313: if
we Imagine that the cross-scclion is com-
posed of an infinile number of concentric
rings, we can then evolve the principle
governing the change in stress by deli-
neating the triangle ABC. The stresses Fie. 313
are grealest al the surtace of the cylinder
and decrrease as Lhe diameters of the rings decrease.

Oral Lxercises
1. Which angle in IFig. 312¢ is larger, » or yg?
2. Is absolule shear strain the same at all poinls on a ceircular section?
Is wnit stiain e same?

226. The Fundamental ¥quation for Torque

Herctofore we huve established the relationship hetween
stresses in a strained body and the external forces causing these
stresses. Torque strain is caused by the action of the torsional
momenl. Now lel us see how loisional stress is delcrmined if the
moments causing torque
arc known.

ah We shall use the already-

Pf~fR2 X / i \ cxplained  cross-scction

uin - . M +_1_ method. Let a cylinder be

{ \ I twisted by equal and op-

\ / posite torques M, and M;

q—/ applied at its two ends

n (Fig. 314). Assume that

Tig. 314 we cut the cylinder at

section mn; after discard-

ing the right half, we examine the remaining hall as a free

body o see what forces or moments are acting upon it Lo keep
it in cquilibrium.

Moment M, is applied to this hall of the cylinder, and in cross-
section mn there are elementary shearing forces acting opposite
in direction to moment M,. in order that this half of the cylinder
be in equilibrium, the sum of the moments of the elementary
shearing forces must be equal to the moment of the external
forces M,.
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At an arbitrary point K we select an infinitesimally small area
{ at a distance of ¢ [rom the axis of the cylinder. By denoting
7, as the shear at this poinl, we obtain the elementary shearing
force in this area, which is equal to 7f, and the moment oMthis
force with respect to the axis of the cylmder which is equal to

7,fo. There will he as many moments as there are such areas in

e cross-scction mn and the sum of these areas will he equal to
the entire area of the cross-section. Whereupon, by indicing all
thesc small areas, their distances from the axis, and their corre-
sponding stresses, we ohtain the following equation for equilibrium
of the given free body of the cylinder:

My — t5/101 | Toaf20: t Teafals + ... cle. (a)

By denoling, as helore, * as the stress in Lhe plane cigcular
section of radius r, we obtain, on the basis of Eq. (205),

th _ 02 | __ .0
_17' T, =7T-—; r,_rT“, ete.,

T el r 5

el
which, after it euters (a), hecomes
M, = = /1"1 t 1—/@ + t——]Jg, t ele.,
or
My- 7 (héd | [0+ fagd +- - - ete). (b)

The expression enclosed in parenihesis comprises the sum of
Lhe products ol all Lhe elementary areas multiplied by the squares
of their distances irom the axis of the cylinder, and is called the
polar moment of tnerlia of the cross-seclion with respect to the axis.
Its denolation is J,.

Accordingly, equdtlon (b) au{ulres the torm

M=z (207)

This relationship, which is the fundamental equation for torque,
links torque with thec maximum stress T on the surface of the
torsion-subjected cylinder in the given section by means of the
polar moment of inertia and the radius of the section.

The quotient obtained by dividing the polar moment of inertia
by the radius of the plane section is the cylinder’s resisling moment
under forque and is denoted as W,, i. e,

J
W, = T" (208)

and
M, = W, (209)

Since the full deductions of this formula are extremely compli-
cated in calculating the magnitude J, of the cylinder, we have
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evolyed it in its final form as follows:

art dé
Jo="3 =% (210)

where r is the radius and d is the diameter of the plane section.
After placing this value into Eq. (208), we obtain

_ ot ar' ad
. W, = =73 =73¢ (217)
an
M= "Cx (212)

Of course both sides of this cquation are to be expressed in
the same units; if d is given in em, and 7 is in kg/cm?, the right
half df equation will be in cm? X kg/cm? — kg-cm, and according-
ly the left part of the equation will be expressed in kg-cm.

Having found the rclationship between the stress T and the torque
(\\ét:nran now determine the angle of twist ¢ of the cylinder. IFrom Iiq.
)

A’[ﬂ' .

A Jp

On Lhe other hand, according to Iiq. (204),
T == Gy.
(onsequently Gy = M-r-, from which y — —l‘.,—’L .
Jp GJp

By installing here the value of y from Eq. (a), Sec. 225, we obtain

a0 _ My ich o 180, M :

180 = GJ,° from which 0 = — x aJ, (213)

Angle 0 is the angle of twist in degrees per unit of length. Ilence the
full angle of twist along the length [ of the cylinder
_ 180 My
p=—=X GJ, (214)
It is fully cvident thal the greater the torque and the greater the length,

the greater will be this angle; and the greater the modulus of clasticity
for shear and the greater Lhe diameter, the smaller will be the angle.

Oral Ezxercises

1. What points on the cross-section correspond to stress r referred
to in Eqs (207), (209), and (212)?

2. What change will there be in stress z if the diameler of the cross-
section is incrcased while the torque remains the same?

Hlustrative Problem 111. A steel shaft of diameter d = 60 inm and
length ! = 1,500 mm is subject to torsion by two equal and opposite
moments M; = M} = 8,600 kg-cm. Determine the maximum stress
on a cross-section of the shaft and the angle of iwist ¢.

Solution: we lind the stress r, acting on the surface of the shaft, through
Eq. (212):
16M, _ 16 x 8,600
nd® — 7 ox 6%

T =

= 203 kg/cm?,



We find the angle of twist ¢ in degrees through Eq. (214). By entering

! = 150 em and the modulus of elasticity for shear G = 800,000 kg/cm?
we calculate

180 _ 8,600 x 150 x 2

? = S X 800,000 x % x 3¢~ *73"

- 227. Computing the Dimensions of Shafts
for a Given Torsion

The slress v, as we have learned, is the maximum shear in a
cglinder under the action of torque M,. It we replace = in Eq.
(212) by the allowable shear R,, the cquatlion can be used to
calculate the dimensions of a shat! which is Lo transmit a definite

torque M;. Whereupon the equation hecomes .
M, = 71‘(’)' x R.~ 02dR,, (215)

from which the diameter
3 p—
R
d= VT).211 . (216)
Another way Lo find the diameter would be to express 1t 1n
relation to the power 1t Llransmits and the rpm, substiluting

71,620 %— kg-cm tor M, m (he equation:
3

71,620 N
d = VTsz x M. 217)

As tor the allowable stress R,, ils magmtude depends on the
material and condilions of service, for steel 1t ranges trom 200 to
1,200 kg/cm?. IFor instance, jor sleel transmission shatts subject
to ordinary service conditions the accepled magnitude R, = 420
kg/cm?; tor short but nol heavily loaded shafts I}, -- 600 kg/cm?;
and when the shaft is subject Lo impact, R, =280 kg/cm? cte.

When calculations are made on the basis of these figures, the
strength of the shaft 1s ensured. Nevertheless, the diameter ob-
tained by this method is often checked by means of a special cal-
culation of the unil angle of Lwist’of the shaft, which is ordinarily
within the hmits of 1/4°-1/2° per metre of length. «

Calculating Lhe dimensions of heavily loaded shafls (in steam
engines, turbines, inlernal combustion engines, etc.) 1s considerab-
ly complicated because, aside from twist, such members are
subject to exlensive bending. Furthermore, in computing vital
construction, it must also be remembered that additional margins
must be included to make up for such shaft weakening factors as
keyways, transition from one diameter to another, dynamic loads,
and so forth.
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Illustrative Problem 112. Sheave I mounted on a shaft as shown in
Fig. 315 attains n = 200 rpm and reccives power N, = 18 hp which is
distributed through sheaves 2 and
3 testwo other shafts (not shown) !
in the following way: sheave 2 2
transmits N, = 12 hp to a second
shait and sheave 3 Llransmits N, = ]
6 hp to a third one.

What must be the diameter ol 1
the first shaft if its allowable stress
R; = 400 kg/cm?®?

Solulion: as we sec from the
illustration, length I of the shait
imparls N, = 12 hp. The diameter of this length, according lo Lq. (217),

Fig. 315

3
dl _ l/ 71,620 12 ~3.8cm = 38 mmnm.

0.2 x 400 * 200

Since the Standards (OST) do not include a shalt ol exactly this
diameter, we take the next largest, which is d, = 40 mm.
In the same way wec calculate the diameter for length I1:

= A& 3 em - 30 mm.

3
4 = V:U@f’\_“ _
- =} 02 % 400 % 200

228. Questions for Neview

1. How is the magnilude of shear strain measured?
2. In what planc does shear actl in relation to Lhe plane of actlion of
external forees?
3. What is dcnoled by angle ¢ and segment s in Fig. 309¢?
4. Analyse Eq. (203). Can il be used n cascs of permanent set?
J. Why is toique regarded as a form of
2 7  shear?
6. What is the diticience between torque
s and regular shear?
l 7. Name the following symbols in Fig. 312¢
and explain whal they repiesenl: y, angle b,0{B;
and the arc bgbg.

i 8. The mechanical encergy oblained by means

{ of sheave 1 (IYig. 316) is transmitted io another

Fig. 316 shaft by means of sheave 2. Along which
18- 216 length (! or 1)) is the shaft subject lo torque?

9. In what direction will elementary forces
vof (Fig. 314) act 1l we consider the right half of the torsion-subjected

cylinder as g free body?
10. What change would lhere be in Lhe solution Lo 1llustrative Prob-
lem 112 if sheaves I and 3 transmilted power reccived from sheave 27

229. Exercises

113. In a rivetted joint (Fig. 317) the thickness é of plates 1 and
2 is 8 mm, their width 4 = 100 mm, and the diameter of the
rivets d = 13 mm. Find the shear z in the shanks of the rivets and
the tensile stress ¢ in the plates, assuming that all the rivets
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are carrying the same load and that the external forces P =P’ =
= 4,000 kg.

Hint to solution. The weakening of the lateral cross-sectiog of
the plates due to the holes for the rivets must be taken into
account. -

114. A sheave of diameter D = 800 mm rotates uniformly un-
&&r the action of peripheral force P = 50 kg. Find the shearing
stress exerted on the key in Fig. 308 if the diameter of the shaft
d == 50 mm, and the dimensions of the key are: width 6 = 16 mm
and length I = 80 mm.

115. Determine the maximum stress 7 in the cross-section of
the shaft in Ex. 114.

/ 2
p’ /ff}_,l- = ’?;‘/ P
——— — ! : i A e
1 IT—7
~ !

b

L% L
‘9@:@@

\

g, 317

116. Find the maximum slress in a shaft of diameter d = 45
mm which transmits N — 18 hp and attains n = 180 rpm.

117. Assume that sheave 1, in [llustrative Problem 112, Fig.
315, receives the same power N, = 18 hp but changes its place
with sheave 2 which transmits N = 12 hp."Calculate the diameter
required for lengths I and II of the shaft with the same allowable
stress of 400 kg/cm?, and also state which of the two arrangements
of the sheaves is more advantageous.

118. Solve Ex. 117 by assuming that sheave 1 (N, = 18 hp)
is in the place of sheave 2, sheave 3 (IN; = 6hp) is in the place of
sheave 1, and sheave 2 takes thc place of sheave 3.

CHAPTER XXIV

BENDING

230. The Nature of Bending Strain

Let us take a prismatic wooden beam in which several cuts
ab, cd, ef, etc., have been made perpendicular to its axis and
extending half-way up its height. We place it on supports A and
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B with the cuts facing downward (Fig. 318a) and apply force
P to it. Under the action of this force the heam bends, and the
cuts g, ¢, e, etc., widen and take the form of trapezoids as shown
in the same drawing at the right. As compared with a beam under
the same load but without culs, of course this hbeam will bend to
a much greater extent and fail sooner.

The change in form of the cuts showsthat the fibres in the con<~
vex side, curved from the hending of the heam, are stretched;
the cuts on that side
weaken the heam. l/’

Now lel us repeat the
experiment but place the 4

beam with the cuts up- a ¢ ¢ s @ a
ward YFig. 318b). Again a_c e p .
applying force P we see B

AL b4 f 5 U, U,

thal the cuts a, ¢, ¢ in 7 g

the concave side are now b
drawn together as is shown
on the right, and when
the force reachgs a certain

magnitude 1he cul edges %7

will touch each othe., [F——F————————
after which grealer resist- b ——====——==x
ance to hending will be !
set up in the beam. Then,
removing the load irom
the beam, we till the cuts
snugly with little slabs of
wood and again apply
the same force with the
result that the beam
will resist the action of force P just as if 1l had no cuts and
the little wooden slabs will be held tightly in place. From all
this we must come to the conclusion that the libres* in the con-
cave part ol the heam are under compression.

In order Lo better understand the phenomenon just described,
let us perform anolher experiment with another wooden beam.
This time we make longitudinal dovetail grooves in opposite sides
of the beam for its entire lengih (Fig. 319a), and insert into them
planks of wdod of the same shape as the cuts and the same length
as the beam. When the beam has not yet been subjected to defor-
mation, they fit exactly in place. But when the beam is bent
under the action of force P (Fig. 319b) we shall see Lhat the ends of
plank 1 on the concave side of the beam protrude beyond the
ends of the beam, whereas the ends of plank 2 on the convex side

Fig. 319

* The term fibres is figuratively given to longltudinal elements, of
infinitely small cross-sectlon, in beams, bars, ete.
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are drawn within the groove. From this we again conclude that the
fibres on the concave side of the beam are compressed and those
on the convex side are stretched. .
Wherefore, in a bent beam the fibres in ils concave side undergo
strain of tension while the fibres in the convex side are subjected to
compressive sirain. "

231. Distribution of Normal Stresses
During Bending. The Neutral Plane

Our experiment has thereby shown that bending ol a beam is
accompanied by the elongation ol some fibres and Lhe shorlening
of others; from this it is evidenl that in a beam subjected to
bending, tensile and compressive siresses are sel up which cause
this strain. In order to delermine the magnitude ol such siresses
at various points along a
cross-section ol a beam, it is
first necessary Lo determine
how slrain of Lhe fibres of
ithe beam varjes at different
heights along Lthe cross-
section,

Assume thal a straight
beam 1mmovably fixed at
one end 1s subjected al the
other end to a force I’ ap-
plied in ils planc ol sym-
melry zz (IYig. 320a). As a
result the beam bends and
ils axis becomes a curved
line lying in the same plane
of symmetry. Now let us
assume jthat two straight
lines mn and m’n’ are deline-
ated bcelorehand on the flank
of the beawn, |perpendicular
to ils axis. lixpernnent has
shown that when strain has
occurred, these lines will
remain straight bhul will no

Fig. 320 longer be parallel to each

other. This means that, fol-

lowing strain, the cross-sections corresponding to these lines

remain in the form of planes but turn relative to one another
through a certain angle.

Now let us take two cross-sections mn and m'n’ situated very
closely together (Fig. 3205). When strain has occurred, these iwo
sections will form a small angle mAm’ = « with each other. It
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¢onsequently follows that the fibres along the convex side of the
beam — for example, in the same horizontal plane as mm’, aa’, etc.,

- gre stretched while those in the same plane as nn’, bb’, etc.,
are shortened; and the further the fibre is from the convex
surface the less it is stretched, and the turther it is from the
concave surface the less it is shortened. 1t is therefore evident that
there should be fibres in some part of the beam that are nBl
strained al all. There actually are such libres in a beam; they lie
in the plane yy (cross-section given in I1g. 320d) and coincide
with axis oo which passes through the centre of gravity € of the
cross-seclion*. The plane in which these unstrained {ibres lie is
called the neutral plane.

From all this there is no longer any doubi that all the fibres
betwt¢hi the neutral plane and the convex side of the heam are
elongated, and those between the neutral plane and the concave
side are compressed.

Now let us see jusl how slrain varies helween fibres lying in
different planes parallel to the neulral plane. Let us take hbre
aa’ in the strained section of the beam mun’'n’n (Fig. 320b), lying
at a distance 7 trom Lhe neutral plane oo’. Since the neutral plane
is neither elongaled nor shortened, the length of a very small
segment aa’ hetween seclions mn and m’'n’ is 1he same hefore
strain as that of oo'. Thcmlm‘e the absolule clongalion of this
short lenglh is equal 1o ad’ --00’

By denoting o as the angle mAm’ iormcd l)y these seclions,

_ 2a(o + 2)= e
we obtain aa’ 00" = 360 360 = 180 z, in which p is
the radius of the small arc oo’.
Accordingly, the unit elongation of this scgmenl

ad’ — 0o’ na . 7 z
£ e 180271808 " (2)

By repeating this procedure for a very small segment bb' of
the compressed fibre lying at a distance ol ' from the neutral
plane, we obtain the unil contraction ol the segment as follows:

00" - bl . (b)

ov’ 0

The radius ¢ may be considered to be conslanl when the angle
« is very small. Therefore we deduce that the unil clongation
and unit contraction are both proporfional Lo the distance the

fibre is from the ncutral plane.
Egs (a) and (b) may be combined into one as follows:

A e-—:%- (c)

* It is seen that this planc is perpendicular to the plane of symmetry zz.
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And since within the bounds of the elastic limit stress is propor-
tional to strain, we obtain

o=Ee=EZ, (218)

in which I is the modulus of elasticily and is alike for tensile or
esmpressive strain.

This shows that in the given section stress is proportional to
the distance of the fibre from the nculral plane. Therefore the
fibres lying farthest from the necutral plane, along the convex or
the concave surface of the slrained bheam, arc subjected to the
maximum stress. Fig. 320c shows graphically the distribution
of normal stresses al section mn if we figuralively dlsrcgard the
right hall of the beam. -

Another important point musl finally be noled. Since the
fibres lying in the neulal plane are nol strained during bhending.
it follows that all cross-sections may be considered as turning
about their corresponding axes oo’ (Fig. 320b), i.r., around the
straighl lines along which t{hesc scclions intersect the neulral
plane. IZach such slraight line is the neafral axis of each given
seclion and is perpendicular to the plane of sylnmetry (axis
yy on the cross-seclion shown in [fig. 320a).

232, The Fundamental Equation for Bending

In using Eq. (218) to delermine {he normal siress o at any point
on a cross-scction of a bent heam, we must
' nol only know Lhe modulus of claslicity E

L__ cm , for the given malerial and the distance z of
_lo. ﬁo 2 the point from the neulral plave, bul also
L Lthe ragdius ¢ of the arc oo’ whichis a segment
i___x__—]” of the bent longiludinal axis passing through
— { the cenlre of gravity of the seclion. This

9 _|="¢*—1 radius we do not know, therelore this
cquation must be given a form in which the
stresses causing the bending of the beam
n P are used instead of radius o. As an illuslra-
4 tion, we shall continue the investigation of
- strain of the same preceding beam, using
:L-—x—-:l 17, P the cross-section method already {amiliar
—t— to us.
f—-=t Let us make a cross-section mn (Fig. 321a)
¢ through the beam al a distance of z from
the plane of support. By figuratively
Fig. 321 discarding the left half of the beam, theright
half as a free body is kept in equilibrium
under the action of the external force P on the one hand,
and by the internal normal forces directed perpendicular to
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the cross-section mn on the other. Thus we obtain the arrange-
ment of forces mnoO’ shown in Fig. 3215, constituting a
three-member lever.

As already explained, section mn turns during deformation
about the neutral axis which passes through point o. In order to
-express the condilions of equilibrium of such a lever, we must
equate the algebraic sum of the moments of the internal forces
with respect to the neutral axis and the momenl of force P relative
to the same axis. Taking a very small area f, on section mn at a
distance of z, from the neutral plane, we {ind the moment of force
acting on that area, which is equal o o,f,z;, and the algebraic
sum of all the moments will be o,f,2, + 6./,2s -+ 04f575. elc.

The moment of the external [orce in relalion to the neutral
axis of {hg. given seclion is the bending moment of that section.
By denoting il as the letter M. we oblain

M — o,f12, 4 0,fs2, = 03325 | ... elc.

By applying Kq. (218), we mav rewrite the above equalion as
follows:
')

I ) I o
M - 2 fizi (7/123‘ | L—,/JZS | - ele.
I

=g_(/12% ! Izz% ‘*‘f;:::'; b-- o elel).

The sum in parenthesis is called the moment of wertia of the
section about the neutral axis (i.e., axis yy in Fig. 320a) and is
denoted by the letter ./. Whereupon

- EJ |
M = o (a)

Eq. (218) gives us gx;.
Hence by subslituting it in (a) we finally obtain
M=%o, (219)

== — (220)
J

Thus, by knowing the bending momenlt and moment ot iner-
tia of the beam section, we can delcrmine Lhe normal stress
at any point on that section which is at a distance of z from
the neutral axis. It will be seen that the greater the moment
M and the distance z, the greater the stress. At each scction this
stress attains its maximum when z is a maximum, that is, the
maximum stress is at the points farthest from the neutral axis.
When z is zero, the stress o is zero, which is only to be expected,
since there is no strain in the neutral plane.
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Eqs (219) and (220) can be presented in different forms. The
quotient, obtained in dividing the moment of inertia by the
distance between the ncutral axis and the fibre farthest from it,
is the moment of resistunce to bending W. Then Eq. (219) Btcomes

M = Wo, (221)
9,',. _4_5:‘_ and Eq. (220) evolves into
! M .
n o = W (222)

The magnitude of the momenl of inertia, just as
Fig. 322 the resisting momenl, depends on the form and
dimensions of the cross-seclion*.

For example, for a rectangular section ol width b .and height
h (Fig. 322) the moment of inertia in relation to axis yy is ./ % s

in accordance with which

h bwe 1 hh? e

z=5 and W="T5:5=—¢ (223)
For a round section .
_ oAt b IR ({

J—T-——M—,and simee z =1 — 5>
hence
] dl
W=T0 - - (224)

By subslituling this value for W in Eq. (222) we oblain Lhe
maximum stress ¢ in the given seclion, with Lthe hending moment
expressed in kg-cm and the dunensions of the cross-seclion in
cm; thereby the stress o is evolved 1 kg-em/em® — kg/emé, which

is as it should be.

233. The Bending Moment

To determine Lhe slress al any cross-section of a hent beam it
is first necessary to know the bending moment, that is, the mo-
menls of external forces with regard Lo the neutral axis of the
given section.

Let us examine a few simple cases.

By denoting z as the distance from the section Lo the plane
of support of the beam (Fig. 321a) we obtain the moment of
force P with respect {0 axis o lying in section mn and which is
equal to M — P (I—xz). Then by taking succeeding sections to
the left of mn we shall see that the arm [—z increases with a

# All engineering handbooks contain formvulae for calculating the
moments of resistance to bending and iorque for varlous cross-sections.

324



corresponding increase in the bending moment, which obviously
reaches ils maximum at the plane of support O where z = 0.
It thug follows that the siress will he the greatest at the extreme
left section of the beam where il can be determined by Eq. (222):
M _ Pl
W W

If the cross-section of the beam is rectangular, the bending
stress

O =

. bhr 6Pl
o=Pl: =, - (225)

The section in which normal stresses reach their maximum is
called the_crilical section.

Let us assume that another torce P, is applied to the same beam
in addition to force P, at a dislance ; from the plane of support
(Fig. 321¢). As will be recalled [rom Statices, in this case the hend-
ing moment in relalion to the same section mn will be equal Lo
the sum of the moments of bhoth forces, i.e.,

.I\[ Prd o P .

And as belore, the closer the seclion to the plane of supporl,
the grealer will he the moment.

Now let us find the bending moments lor dilferent sections of
a hean lying on two supports (Fig. 323). Take a section lying
at a distance of 1, Irom lhe sup-
pori at ithe left end, and bv suppo-
sitionally disregarding the part
of the beam.to Lhe right ol Lthe
section. we oblain the bending 1
momenl for Lhe remaining Iree P2 Xy
body M, —= R1,, in which R, is - X
the reaction ol the left supporl.
When r; - 0, the moment will Fig. 323
be zero and there will he no
bending momenl acting on the section lying at the leit support.
As the distance 2, increases, the moment R,x;, also increases,
and when z, — a it will be

P
Ry a Rz
]

7

M, - Rja.
Inasmuch as ‘the reaction R, - P — R,, then
M, (P —Rya -Pa -Ry. (a)

Now lel us take a section lying to the right of the point of
application of force P at a distance 1,>a.
The bending moment in this section

M, = Ryx, — P(,—a) = Ryxy -— Pz, + Pa = Pa—
-_ (P -~ Rl)xz = pa —szz-
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By comparing this equation with Eq. (a) we find that M,, <
< M,. Thus, beginning with the section at which force P is applied,
the bending moment diminishes, and at the right-hand support
where r, = [, it will be M, = Pa — R,l = 0; for when the beam
is in equilibrium the algebraic sum of the moments ip relation to
Lhe left support, just as at any other point, is zero.

Accordingly, the bending moment at the supports of the beam
is equal lo zero, while in the sections between the supports it
increases up to the place where the external force P is acting;
here the moment is the greatest. flence this is the critical section
where normal stresses are greatest.

If the beam is rectangular, the greatest tensile and compressive
siresses — on the convex and concave surlaces respecfively — are
determined through Iiq. (222):

. bh? 6Ra 6P R)a
o—-Ra: = =" @ (226)

Note must be made that what has been satd refers to bending
caused by external forces applied to different sections of the beam
without taking into account the weight of the heam itself.

llustrative Problem 113. The dimension of a wooden beam of rectan-
gular cross-scction lying on two supports (Fig. 323) are b = 140 mm, and
h = 200 mun throuchout its length. Find the maximum stress at the
critical section il the beam is loaded with a force P = 1 ton al a distance

= 1.5 m {roin the left support, and the distance between supports
is l =4 m.

Solufton: hirst we calculate the reaction at support R,. Since Lhe
algebraic sumn of Lhe moments of the external forees with respect to the
right support is cqual lo zero, then

pd -
Ri- PQ a) =0, from wiich R, = ¢ ; “)

_ 1000 x (400 150) -
= it 400 L = 625 kg.

When this value enters liq. (22G) we obtain

6 x 625 x 150 .
o = 2 PSS = 1005 kg/em?®.

INustrative Problem 114. In [llustrative Problem 13 (Fig. 38), work
is done by a cutter fastened Lo a Lool holder of rectangrlar cross-section
whose dimensions b = 30 and h = 40 mun (Fig. 322). Find the maximum
normal stress at the critical section of the tool holder, using the numerical
values given in Illastirative Problem 13.

Solution: the maximum bending moment M = P,l = 5,400 kg-cm.
With Eq. (226) we obtlain

bh* _ 5,400 x 6
6 3 x4

o=M: = 675 kg/cin®,
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234. Questions for Review

1. What direction bave the normal stresses in a bent beam with
respect to a section perpendicular to its longitudinal axis?

2. What direction will the normal stresses in scction mn have (Fig.
320q) if we consider the right half of the beam as a free body and figura-
tively discard the left?

3. Arc the stresses the same in sections mn and mn, of Lhe b&ut
beam shown in Fig. 320a?

4. Define the terms “ncutral plane” and *“nculral axis’’. What is
their position in relation to cach other?

5. Assuine that instead of force P,, indicated by a dotled line in Fig.
321¢, a force cqual and opposile 1o it is applied to the beam."What change
would there be in the maximum slress al the eritical section?

6. Uunder whal circumstances will a reclangular beam (Fig. 322)
best resist bending - when its broad side h or its narrow side b is

in conMcl with the supporis?
_7. Why must the culter on a lathe be set with the smallest possible
distance between the culling edge and the base of the (ool?

GCHAPTEIU XNXA

GENERAL PRINCIPLES OF COMBINED STRAIN

235. Simple and Combined Strain

We have investigated Lhe chief kinds of simple sirain - tension,
compression, shear, torsion, and bending. But it must not be
thought that the elements ol machines and other engineering
structures undergo ouly one kind of strain in each separate
instance. Very frequently members are subjecled 1o Lhe action of
forces applied in such a way that several strains occur simulta-
ncously, accompanied by corresponding stresses which must be
laken inlo account in calculating the dimensions required for
slrength. In such cases we must deal with combined strain as
distingnished [rom simple strain. Lel us examine a lew examples
of this kind.

Assume that a force P is applied lo the centre of gravily of a
bar (Fig. *321). We will take seclion mn, al a frecly-chosen angle
to the cross-section mn. By figuratively discarding the upper
part of the bar, we obtlain an internal force P’ which is equal and
opposite to torce P. Resolving force P’ into two components -—
P, perpendicular Lo section mn, and P, lying within the seclion —
we find that, aside from eclongation the bar is subject to shear
slrain in the sections not perpendicular to the axis of the bar.

Assume thai a reclangular wooden beam is resting on two
supports (Ifig. 325a). Under Lhe action of force P it bends and
its butt ends A and B turn relative to each other. Now assume
the beam to he sawn in width into three boards along its entire
length. When these boards are placed on the same supports and
the former force P applied (Fig. 325b) we shall find that bending
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is more pronounced and the ends of the three boards have not
remained in the same plane but have formed steps. From this
we conclude that the boards slide against each other when they
are under a load, causing their resistance to bending to be fess
under the same load.

Now if we cut transverse channels into the boards amd place
tightly-fitting keys into them as shown in Fig. 325¢, we shall
see that deflection under the samec force P is just as for the whole
uncut beam and that the ends of all the boards remain in the
same plane. From this we deduce that shearing stresses have been

g, 324 g, 325

set up in the bent beam, and il the keys are not strong enough
they may shear along the lines «,b, and a,b,. Moreover, if the beam
consisied of several layers ot plate steel rivetted together to form
its height h, the rivets would be subject to shearing strain where
the planes of their shanks coincide with the planes of the plate
steel layers. Hence, bending is a combination of tension, com-
pression, and shear.

236. Combined Tension, Compression,
and Bending Strains

Fig. 326 shows a spiked-head bolt. If this bolt is used to tightly
fasten a joint with a force P, its shank will undergo tension. On
the other hand, the bolt-head will be subjected, by the surface of
the jointed part, to a reaction P’ equal and opposite to force P.
The bolt will therefore be also subjected to bending under the
action of the moment of the couple P and P’ equal to P’e, in which
e is the eccentricity (the distance to the point of application of
the resultant P’ of the elementary forces exerted on the head of
the bolt and coming from the direction of the parts being fas-
tened). At the same time the combined action of tensil¢ and bending
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stresses will cause a considerable increase in tensile stresses in
the shank of the bolt, which will increase as the arm of the mo-
ment e increases. Hence, when there is eccentric tension and one
of the tensile forces does not coincide with the longitudinal axis
passing through the centre of gravity of a straight bolt, the
resulting tensile stress will he greater than if there were simple
tension.

Now let us assume that the top of the square post of height
h, represented in Fig. 327, is under the action of force P applied
to its plane of symmelry. Under the action of force P the post
will bend, the bending moment reaching its maximum equal {o

P ¢ z

] < [

|

| | s

m - —
ki my Y
p’ my y”’
g, 326 g 327

Ph in section mn where there are tensile slresses between the
neutral axis yy and edge n;n;. and compressive stresses between
yy and m;m,. Furthermore, compressive stresses arc being caused
by the weight of (he post equally distribuled over the cross-section.
Here we have an instance of combined compression and bending
strain; in that part of the section belween gy and edge m;m, the
two kinds of stresses will combine, whereas hetween the neutral
axis and edge n;n,. the stresses at various points will be equal Lo
their difference; whether the tensile or compressive stress prevails
will depend op which is the greater. To preclude the possibility
of tensile str?sses ogcurring where they are undesirable (e.g.,
in brick con$truction, which offers poor resistance 1o tensile
stresses) the cross-sectional dimensions of the post must be
calculated so that the tensile stresses from bending along the
edge n;n, wilknot be greater than the compressive stress due to
the post’s own weight.

237. Combined Torsion and Bending Strains

Combined torsion and bending strains are frequently met with:
when transmitting a definite torque, a shaft is also subjected to
bending from its own weight, the weight of its sheaves or gears,
and the pull of the belt or the peripheral force of the gears.
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By way of illustration, let us investigate the work of shaft
II in Fig. 328a on which are mounted gears 2 and 3. Gear 2
receives rotation from gear I on shaft I, and gear 3 transmits
rotation to gear 4 on shaft II1. Let veclor P, represent the effec-
tive pull acting on gear 2, and vector P, be the effectlve pull acting
on the driving gear 3 from the driven gear 4.

We apply opposile forces PP, and Py, which are each equal in mag-
nitude to force P, and parallel to it, to the centre O, of gear 2. As
a result we obtain three forces P,, P,, P;, of which the first two

result in a couple with the arm

2 of the couple equal to the radius

P, Pl 3 r, of the pitch circle of gear 2.

A ‘ \ p 8 Themoment of Lhis couple is equal
e T \HNG A1) to P,ry i. e., Lo the tOmgue trans-

milted to shaft JI. As concerns

: P;  the third force P, il acts in the
V& } = axial plane of the shaft.

) Fr o Lel us now comnsider gear 3. A

7 4 torce P, equal in magnilude to

a) the torque on shaft II divided

by the radius r:, of gear 3, i.e.,

4 p;, , is acling on it from gear

4. By applying to centre 0O; of

1/74 0, « gear 3 two equal and opposile

< b2 {orces P’, ande P;, each equal to

05 'r”a force P, and parallel to it, the

resull is again a couple P, and P,

P) with uls moment equal and op-

posile to the moment P,r,. Force

g, 328 P; is applied to the shaft at sec-
tion 0,

Thus we have found that shatt I1 is under the action of torque
Mt = Pyr, - P,y along Lhe parl between scctions O, and O,
and ot iwo forces P, and P; applied to these sections. In the
present case these Lwo forces are parallel. Fig. 328b conlains a
diagram of the system of forces applied to the shaft: forces Py
and P; and the reactions R, and R, at the bearings. Under Lhe
action of this system of forces the shaft will bend throughout
itslength between the two bearings and also twist along length 0,0;.

In detailed courses ol Strength of Materials and machine parts,
methods are given for calculating the dimensions of heavily
loaded shafts. These methods of calculation take into account
the stresses arising from combined torque and bending. I3ut when
the bending moment is small, as compared to torque (as for
example in transmission shafts), bending is ignored and, by in-
corporating the smallest allowable stresses, calculauons are based
only on twist strain.
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Supplement 1

Coefficient of Sliding Friction f (for dry bodies)

Materials

Materials

Mild stcel on mild
steel
Cast iron on cast iron
Bronze on bronze .
Mild steel on bionze .
Cast 11on on bronse .
Cast iron on oak .. .
Wood on wood .....
Oak «¥ak (along Lhe
grain of bolh bo-
(s JTT) I
Oak on vak (onc body
along the graun, the
olher acioss the
grain) ..........

GCoctlicient of Rolling Friction &k (in ecntimetres)

Materials

Wood on woéd
Steel on slcel
Steel ball on steel . .

0.3;
25),

0.
(3.25); 3.
14; 15; 1

044

r

0 05 0.08

0.005

0.0005 0.001

L.eather on casliron .

Leather on oak

Steel on ice (skales) .

Steel runners on meOlh
wooden orstone floor

Wooden runners on
snow and ice

The same but runners
faced with steel ..

Supplement 11

Materials

car wheels

Sleel railwayv-
oniails

0.05

Supplement I11

Modules of Gears

4; 0.5; 06; 0.7; 0.8; 1, 1.25; 1.5; 1.75; 2 225 25 (2.75); 3;
5; (3. 75) 4 (4 25), 45 55 6; 65
6; 18; 20; 22 26; 28; 30 33; 36 39; 42 45 50

Modules in parenthesis should not be used if possible.

For bevel gears the module refers to the external diameter.

11 12;

13;
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Supplement IV
The Greeh Alphahet

Nume of Name of
I etter Iata Letler

Alpha N Nu
Bela =& NI
Gamma 0o Onmaon
Della 1= I
I"psilon Py Itho
Zela 2o Sigma
l.la 77 lau
1hela Y v 1 psilon
Tola Dy h
Tappa X x (h
Lambda Yy s
Mu . 0o Oome ga



ANSWERS TO EXERCISES

Staties

| J

4. 141 kg; 5. P = 429 kg; 6. P’ = 245 kg, P, = 350 kg; 7. Support
A DB is compressed with a force of 600 kg, supporl BC is siretched with
a force of 1,082 kg; 8. Bar is stretched by a force of 150 kg, and bar is
stretched by a force of 250 kg; 9. The system is in equilibrium; 10. At
a distance of 90 mm from lhe linc¢ of force I°,: 11. 60 mm to Lhe right of
the line of force P,; 12. R = 300 kg (downwards), ils line of action is
1,583 mm from Lhe exireme lefl-hand force; 13. A couple with a moment
of 120 kg-m; 14. R4 = 190 kg and R, = 800kg. bolh reactions being
direcled upwards; 15. P, = 34.5 kg, R = 214.5 kg; 22. 2.515 kg;
23. Tipping moment = 727.4 kg m, cocificient of slabilily = 1.73;
25. 187.5 limes; 26. I’ = 5.2 and 7.5 kyg; 27. I’ = 12.1 hg; 28. I’ = 11 kg;

29. P 2,7.65 kgi 10, tan @ =

R’
Kinematies
35. v, = 16 m/min, vy=30 m/min; I6. «= 0.25 m/sec?, p= 54 km,hr;
37. a = 0.125 musec, T = 10 min 30 seec, n,, = 55.8 km/hr; 38. h =
- 7848 m, [ = 8 sce; 4118 km: 42, p=100 mm/min, v, =608 mm 'min;
43, v, = 1.

2 1114‘.0(', ar = 0.21 mysee-, a, = 0.72 m/sec?, a, = .76 m/sec?;
45./2 1,000 rpth; %6. D =280 mm: 47. v =215 wm/min; 48.=:2,740
rpm; 49. ¢« = 1.04 deg/sce?, ¢ = 0.02 m/sec, o = 881 deg/sec, v = 10.8
my/sec; 50. ¢ = 21.33 dacg/sced, @ = 0.238 m/sec?, p = 16.7 m/sec;
51. ¢ = 4.8 deg/scc?, n ~s 460 rpm.

Dy namies

52,200 kg-m "secd; B3 G - 1,177.2 lons, p=06.75 m/sec; B4 P=20,194
kg; 38. P = 13,501 kg; 56, § = 26.5 m; 57. N = 0.102 kg; 38. ~ 20,680
kg; 59. AL ils highest posilion 1.67 kg, al ils lowesl posilion 3.17 ky;
60. T, = 0.245 kg, N, = 112 kg; Gl. a = 7 20°; 62. W = 2 PS; 63.
2.67 hip; 64. 30 kg-m/sec; 68. N = 1,778 hp; 6G6. ¢ = 730 lons, > = £,625
kg; 67. N = 3Q.2hp, M, = 108 ke-m; 68, Al = 3.56 hg-m, P = 39,5 kg;
69. n = 240 rpm; 70. N=13.3 hp, . = 800 khg; 71. v~ 0.34 m/sec;
72, 2,618,700 kg-m, 5.297,400 hg-m; 73. &~ 4 min, § = 2,119 m;
74. P = 7097 kg, N = 916 hp, F = 4,078 kg; 75. y = 0.78.

/ Elements of the Theory of Machines
76. P ="11

7.3 kg; 77. 5 = 0.85; 78. 19°28°; 7% G, = 1,414G,;
80. x = 200 mm; $3. I’ = 1 hg; 85. 18 times; 86. P~ 21.9 kg; 87, n, =
n, %; 88. n, = 200 rpm, M, = 1090.5 kg-m; 89. M. = 21.92 kg-m,
3 L]
n, = 1,000 rpm; 90. R, = 200 mm;91. 2%, =, = .. ZL 92. n, = 36,
1 2 2
Ny = 450, n, = 100 rpm; 93. M, = 10.74 Kg-m; 94. n, = 6. n, = 50,

n, = 450 rpm; 93. 327 and 467 rpm; 96. n,=3,200 rpm; 97. 0.094 m/sec;
98. 20 rpm; 99. 60 rpm; 100. n,= n, TiZy 2kZ) 2175

2 or ny = L or ng—
T2Zg 232, 2374

n, = -A%hiu. 191 pa6 kg, N =0.036 hp; 102. P = 324 kg,

23219Z122)4
V= 141.é) m/min; 103, v, = 31.4 m/min, v, = 0.5 m/min, n, = 15 rpm.
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Stress and Strain

105. o = 497 kg/em?; 106. Al = 4.24 mm; 107. 0 = 1,000 kg/cm?;
108. 0 = 584.5 kg/cm?, P = 45,900 kg; 109. 5 km 96 m; 110. a4 1,000,000
kgfem?; 111. 0 = 495 kg/em?; 112.d, = 19 mm, d, = 13.5 mm, d, =478
mm; 113, o = 675 kg/cm?, v = 502 kg/cm?; 114.v = 62.5 kg/cm?; 118.
T = 81.5 kg/cm?; 116, T = 393 kg/cm?; 117. d;, = 43~ 45 mm, d, =
=30 mm; the first variant is more advantageous; 118, d, = 43 & 45 mm,
de= 38 ~~ 40 mm, the least advantageous variant.
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