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Notation

external work, Holder’s constant, work of defor-
mation

covariant and contravariant vectors

covariant, contravariant, and mixed tensors
covariant derivatives of tensors 4,,,, A™", respec--
tively

thermal diffusivity

components of vector e in rectangular Cartesian:
co-ordinate system

projections of vector a on e,, e, respectively
physical projections of vector a

covariant derivatives of vectors Bjy, BB, respec--
tively

elastic coefficients

height, phase velocity, specific heat

specific heat at constant pressure

specific heat at constant volume

wave velocities

flexural rigidity of plate, torsional rigidity
modulus of elasticity in tension or compressiom
unit vector

extension along co-ordinate line

covariant and contravariant base vectors
components of small strain tensor

Helmholtz free energy

body force vector per unit mass

body force vector per unit volume

complex torsion function

invariant or scalar
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Ghn cofactor of element gy,

g acceleration of gravity, determinant

&nnr 8%, gh covariant, contravariant, and mixed metric ten-
sors

H, scale factors

h height, thickness

I moment of inertia, Reissner’s functional

I, polar moment of inertia

I, (ikr) Bessel function of zero order

I, (ikr) Bessel function of first order

L, I, I, invariants of stress and strain tensors

¥ imaginary unity

im unit vectors of rectangular Cartesian coordinate
system

K bulk modulus, curvature of elastic line, kinetic
energy

k surface heat transfer coefficient

L resultant moment

l arc length, length

1y direction cosines

M moment of couple

W, couple-stress vector

M; twisting moment (torque)

m mass

n unit normal vector

P surface force vector

D load intensity, pressure

Pmn affine orthogonal tensor

D ik physical projections of tensor pp,

Q heat quantity, shearing force

q frequency, load intensity

R external work, radius, radius of curvature, strain
energy

R* complementary energy

Roprst Riemann-Christoffel tensor

Re real part

r radius

radius vector
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A*

A p

v

Em, ¢
II

plane polar co-ordinates

cylindrical co-ordinates

spherical co-ordinates

entropy, static moment of area

upper and lower half-plane, respectively
absolute temperature, tension

stress vector

contravariant components of stress vector
point of curve, time

internal energy

displacement vector

resultant vector

velocity, volume

acceleration vector

deflection of plate

rectangular Cartesian co-ordinates
curvilinear co-ordinates

coefficient of linear thermal expansion, Holder’s
exponent

Christoffel symbols

specific weight (weight per unit volume)
Laplacian operator

thickness

Kronecker symbols

Dirac function

absolute derivatives of vectors By, BB, and tensor

A .., Tespectively
e-tensor

components of finite strain tensor
principal extensions
volume strain

angle

thermal conductivity
Lamé’s elastic constants
Poisson’s ratio
rectangular co-ordinates
potential energy
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o density

c = gl-okk mean (hydrostatic) pressure

Omn components of affine orthogonal stress tensor

i contravariant components of stress temsor

G normal stress vector

01, Oy, Oj principal normal stresses

T angle of twist per unit length, volume

T, shearing stress vector

() Airy’s stress function

D (z;, x,) stress function in torsion or Prandtl’s stress
function

D (z), ¥ (2) complex potentials

) polar angle

¢ (4, Z,) Saint Venant’s torsion function

@ (2), ¥ (2), % (2) analytic functions of complex variable z

R4 flexure function

) angular velocity, surface area

Wyn rotation tensor

\Y Hamiltonian operator



Introduction

The theory of elasticity is concerned with the mechanics of defor-
mable media which, after the removal of the forces producing defor-
mation, completely recover their original shape and give up all the
work expended in the deformation.

The first attempts to develop the theory of elasticity on the basis
of the concept of a continuous medium, which enables one to ignore
its molecular structure and describe macroscopic phenomena by the
methods of mathematical analysis, date back to the first half of
the eighteenth century.

The fundamental contribution to the classical theory was made
by R. Hooke, C. L. M. H. Navier, A. L. Cauchy, G. Lamé, G. Green,
B. P. E. Clapeyron. In 1678 Hooke established a law linearly con-
necting stresses and strains.

After Navier established the basic equations in 1821 and Cauchy
developed the theory of stress and strain, of great importance in the
development of elasticity theory were the investigations of B. de
Saint Venant. In his classical work on the theory of torsion and
bending Saint Venant gave the solution of the problems of torsion
and bending of prismatic bars on the basis of the general equations
of the theory of elasticity. In these investigations Saint Venant devi-

‘sed a semi-inverse method for the solution of elasticity problems,
formulated the famous Saint Venant’s principle, which enables one
to obtain the solution of elasticity problems. Since then much effort
has been made to develop the theory of elasticity and its applications,
a number of general theorems have been proved, the general methods
for the integration of differential equations of equilibrium and motion
have been proposed, many special problems of fundamental interest
have been solved. The development of new fields of engineering de-
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mands deeper and more extensive studies of the theory of elasticity.
High velocities call for the formulation and solution of complex
vibrational problems. Lightweight metallic structures draw partic-
ular attention to the question of elastic stability. The concentration
of stress entails dangerous consequences, which cannot safely be
ignored.



CHAPTER ¢

Elements of tensor calculus

Many problems of mechanics, theoretical physics, and other
sciences lead to the concept of a tensor. This concept is of a more
complicated nature than the concept of a vector. The definition of a
vector as a directed segment does not allow one to pass to the con-
cept of a tensor by a natural generalization. We shall therefore try
to give a definition of a vector, equivalent to the former one, such
that its generalization will lead to the concept of a tensor, which
cannot be explained by means of a simple geometrical image. To do
this, we have to introduce into consideration arbitrary curvilinear
co-ordinates. With reference to these co-ordinates we shall give a
definition of a vector, and subsequently a definition of a tensor as
some object that is not altered by a change of the co-ordinate system.

The advantage of tensor calculus in continuum mechanics is par-
ticularly apparent when we deal with arbitrary co-ordinate systems.
In the following discussion we shall restrict our attention to a three-
dimensional Euclidean space in which the position of each point is
determined by three numbers, co-ordinates. Here we shall present
some basic data from tensor calculus. The presentation makes no
claim to be complete or rigorous; a summary of definitions and for-
mulas is given which will be referred to in what follows.

Denote the curvilinear co-ordinates of some _point by ', 2%, 2*

and introduce new co-ordinates of this point z!, z%, z* connected
with the old ones by the relations

=2, 2, ) (k=1, 2, 3), (1.1)

which are called the formulas of transformation of co-ordinates.
Suppose that all functions 2* in the given range of co-ordinates

2, 22, 2° are single valued, continuous and have continuous partial
derlvatlves of the first order and the Jacobian is different from zero.
From (1.1) we then find a transformation of co-ordinates which is
inverse to transformation (1.1)

=2, 2, 2% (k=1, 2 3), 1.2)
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If any two of the three co-ordinates are fixed and the third one is
varied continuously, we obtain a line which is called a co-ordinate
line. We assume that at each point of space there pass three co-ordi-
nate lines not lying in the same plane. It may be proved that this
requirement is always fulfilled if the Jacobian of transformation (1.1)
is not zero.

In the particular case, when we transform from one rectilinear
rectangular co-ordinate system oz,z,r; to another system ozxjz;z;,
instead of (1.1) we have

3
Iy = ngi a’hnx;l (k = 11 27 3)’ (1.3)

where a;, are the cosines of the angles between the axes of the co-or-
dinate systems oz,r,r; and oziz,z;.

Here and henceforth, we agree, for shortness in writing, to omit
the summation sign in (1.3) assuming that the repeated index must
be summed from » = 1 to » = 3. We shall no longer mention that
we have three formulas (¢ = 1, 2, 3). Relations (1.3) are then writ-
ten as

Ty = aknx;,. (1 .4)

A transformation of the form (1.4) is said to be affine orthogonal.

1. SCALARS, VECTORS, AND TENSORS

Suppose we have a quantity f (z', 22, z°) in some coordinate system
2" (n =1, 2, 3), and a quantity f (z!, z%, %) in the system z*; if
under transformation (1.1) the values of these quantities at the same
points are equal, the quantity f is called an invariant, or a scalar.
Examples of scalar quantities are density, temperature.

Suppose we have a set of three quantities A™ in some co-ordinate

system z" (n = 1, 2, 3), and a set A* in the system z* (k = 1, 2, 3);

if under the transformation of co-ordinates (1.2) the quantities A*
are determined by the formulas
o7k

A=A — (1.5)
the set of three quantities A™ is called a contravariant vector, and
the quantities A™ are called its components. As in formula (1.4),
the summation in formula (1.5) is carried out with respect to the
index n, which appears twice. It is easy to see that the set of three
differentials of the co-ordinates forms a contravariant vector.

Indeed, from formulas (1. 2) we have

— k
dz* = 3 —dan 22 (1.6)
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Comparison of formulas (1.6) and (1.5) shows that dz" are the com-
ponents of a contravariant vector.

Suppose we have a set of three quantities A, in some co-ordinate
system z", and a set A, in the system z"; if under the transformation
of co-ordinates (1.1) the quantities 4, are determined by the for-
mulas
ozn

dzk ?

A=A, 1.7)
the set of three quantities 4, is called a covariant vector, and the
quantities A, are called its components. It can easily be verified that
in the case of the affine orthogonal transformation the definitions of a
contravariant and a covariant vector are identical. Indeed, by sol-
ving Eqs. (1.4) for

Tpn = QpnZy, (1.8)

from (1.4) and (1.8) we find
oz 22 :
For = oy = an- (1.9)

The last relations show that the transformation formulas (1.5) and
(1.7) coincide, i.e., we have

ar = ApQgp.

The set of quantities a, (n = 1, 2, 3) is called an affine orthogonal
vector.
Suppose we have a set of nine quantities A™" in some co-ordinate

system z*, and a set A" in the system zi; if under the transformation

“of co-ordinates (1.2) the quantities A%* are determined by the for-

i mulas ,

ik 4mn 0zt 0zh
A% =4 dzm grn ?

(1.10)

the set of nine quantities A™" is called a contravariant tensor of
rank two, and the quantities A™" are called its components.

In formulas (1.10) a double summation must be performed for all
values of the repeated indices » and m (m, n =1, 2, 3). If

—_— n
A= Ay, 22 02 (1.11)
the set of nine quantities 4 ,,, is called a covariant tensor of rank two.
If

dzm ozk
Agi O0x™ ?

A=A} (1.12)

2—-0884
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the set of nine quantities 47, is called a mixed tensor of rank two.
In the case of the affine orthogonal transformation the definitions of
a contravariant, a covariant, and a mixed tensor are identical by
virtue of (1.9), i.e.,

p%k:pmnamianh' (113)

The set of nine quantities p,,, is called an affine orthogonal tensor of

rank two.
Suppose that in any co-ordinate system we have a set of the fol-

lowing nine numbers:

(1.14)

1 when m=n,
o =1

0 when ms4n.
We shall show that 8%, called the Kronecker symbols, are the com-

ponents of a mixed tensor of rank two; to do this, we must show that
the 67, satisfy formulas (1.12)

%k on OzR 9zm
6i=6m-h—n—-07i_ (1.15)
By (1.14), we have
& ozk gzm _ gzk  §an (1.16)

™oz gpi | 0z i °

Substituting (1.1) in (1.2), we obtain
T =2" (21 (2!, 22, 1°), 22 (z!, 2%, D), 2* (!, 22, 2°). (1.17)
By differentiating both sides of (1.17), we find

dzk  9zk  gan
gzt 0z Gzi

On the other hand,
ozt _ (1.18)

P
On comparing (1.18) with (1.16) we obtain (1.15), which was to be
proved.
Tensors of higher rank are defined in an analogous way. Thus, if

- dzm 9zn Oz

Airr = Amns _t?;_l_ﬁ;_k-_ﬁ?"—’
the set of 27 quantities 4,,,, is called a covariant tensor of rank
three (the number of components of a tensor is determined by the
number of dimensions of the space to a power equal to the rank of
the tensor).



2. Addition, Multiplication, and Contraction 19

Consider a contravariant and a covariant tensor of rank two, 4™",
Apn. If, when the indices of A™", A,,, are interchanged, the fol-
lowing relations are valid:

A" = Amn’ Anm = Amn, (119)

the tensors are said to be, respectively, symmetric contravariant
and symmetric covariant. If, when the indices are interchanged, the
following relations are valid:

A" = —A™, Apm = —Apn, (1.20)

the tensors are said to be, respectively, antisymmetric contravariant
and antisymmetric covariant.

2. ADDITION, MULTIPLICATION, AND CONTRACTION
OF TENSORS. THE QUOTIENT LAW OF TENSORS

(a) Addition. The operation of addition applies only to tensors
having the same number of lower and upper indices (i.e., to tensors
of the same rank and type). If we are given two tensors of the same
rank and type, and if we sum algebraically each component of the
first tensor and the corresponding component of the second tensor,
we obviously obtain a tensor of the same rank and type as the origi-
nal tensors. This operation is called addition, and the resulting ten-
sor is called the sum of the two tensors.

(b) Multiplication. Let us define the product of two tensors of
any rank and type. By multiplying each component of the first ten-
sor by each component of the second tensor, we obtain a tensor whose
rank equals the sum of the ranks of the two original tensors. This
operation is called multiplication, and the resulting tensor is called
the product of the two tensors. For definiteness, we assume that the
multiplication in question is that of a contravariant tensor of rank
two A™ by a tensor of rank three Bi; (B%; is once contravariant and
twice covariant). We then obtain a tensor C5i"" whose components
are determined by the formulas

st =A""Bg. (1.21)
This )is a tensor of rank five (three times contravariant, twice cova-
riant).
The operations of addition and multiplication can be extended to
any number of tensors.

(c) Contraction (reduction of indices). The operation of contrac-
tion applies only to mixed tensors; we shall illustrate this by a se-
ries of examples. Let us take, for example, a tensor of rank four
A%, which has one contravariant index and three covariant indices.
Putting now m = n, we obtain the tensor B, = A%,, in which n
1s a repeated index; in accordance with our convention it must be
2*
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summed from 1 to 3. As a result we obtain a covariant tensor of rank
two, i.e., a tensor whose rank is two less than that of the original
tensor. The operation of contraction, obviously, cannot be repeated
any more in this example.

Let us now take a tensor of rank five A7 and contract with respect
to any pair of indices, one of which is a superscript and the other a
subscript. If, for example, we put s = m, we obtain a tensor of rank
three B}, = AR77.. We can contract once more with respect to r
and n, obtaining the covariant vector C, = A™%,. From a tensor of
rank five AR"", after double reduction of indices, we obtain the
contravariant vector D» = A7»". If in a tensor of rank four AT®
the contraction is carried out twice, we obtain the scalar (invariant)
f = Amx or f, = A%%. In the case of affine orthogonal tensors the
operation of contraction can be carried out with respect to any two
indices since there is no difference whatsoever between contravariant
and covariant affine orthogonal tensors.

By contracting an affine orthogonal tensor p,,, with respect to
the indices m and n, we obtain the invariant

C = Pmm = Pu + P2z + P3s- (1.22)

A combination of the operations of multiplication and contrac-
tion is called scalar (inner) multiplication. The operation of scalar
multiplication of two tensors reduces first to their multiplication,
and then to the contraction of the resulting tensor with respect to a
superscript of one tensor and a subscript of the other. Suppose we
have two tensors, A™ and B§;; by contracting their tensor product
in four ways, we obtain a scalar product, viz. A™" B, A™ B,
A™BS,, A™B$%. A scalar product of a contravariant vector A™
and a covariant vector B, is the invariant A™B,, which can obvious-
ly be termed the scalar product of the vectors A™ and B,. In the
case of affine orthogonal vectors a, and b,, we obtain the scalar pro-
duct of these vectors, a-0 = a,b,.

(d) The quotient law of fensors. Suppose some tensor is given, say
A% . We set into correspondence with the covariant indices of this
tensor arbitrary contravariant vectors u* and v, and with the con-
travariant index a covariant vector w,. If the product A% u*vfw,
representing a tensor of rank six is contracted with respect to the
indices m and «, » and B, & and v, we obtain the invariant

f =A™ wy, (.23

Further, suppose we are given two tensors, 4% and B®. If the pro-
duct A%, BB, which represents a tensor of rank five, is contracted
with respect to the indices m and @, n and f, we have the contrava-
riant vector

Abp Bt = C*, (1.24)
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Thus, the operation of multiplication of tensors gives again a ten-
sor. We may now inquire whether a certain system of quantities is
a tensor if its product with a tensor gives a tensor. There is a theo-
rem on that score which provides a means for easily establishing the
tensor character of a given system of quantities. This theorem may
be formulated as follows:

(1) if for an arbitrary choice of the vectors u™, v", w; the product
(1.23) represents an invariant, then A%, is a tensor;

(2) if for an arbitrary choice of the tensor B*B the product (1.24)
represents a contravariant vector, then A% is a tensor;

.+ (3) if the quantltles A mn possess the symmetry property and the
. product Au™u" is an invariant for an arbitrary vector u*, then
A, is a tensor.

To prove the theorem of the form (1), it is necessary to verify that
the components A% satisfy the definition of a tensor.

According to the condition of the theorem, for two co-ordinate

systems, z" and z", we have f = £, or on the basis of (1.23)

AYgu™vPw, = A Ygusrbw,.

By interchanging the co-ordinates z" and z” in formulas (1.5) and
(1.7), in the system z" we obtain
—m 0z% axf‘ —  gzk

ud=ym—= vb =y 22 Wy=uw
ozm ’ ? v P

Substituting these relations in the last formula, we have

=V =ag— 0z% 92P ok —p— —
Al uovbw, = A¥s —— = mpn
B v oB dzm dzn  JxV

Hence,

r ozm 9zn 9zY \ — —g—
(AaB_Amn = ﬁ azh)u“v wsz.

9z* oz

Since, by condition, the contravariant vectors u*, vB and the cova-

riant vector w, are arbitrary, we have

0zm axn aﬂ
AYe— A"
“B = EmnTTw B ogh

Consequently, A% is a tensor.
To prove the theorem of the form (2), relation (1.24) is multiplied
scalarly by an arbitrary covariant vector D;; then

A4pB**Dy=C*D, =,
where f is an invariant. Consequently,
A4gB** D, = ALgB™*D,,.
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By interchanging the co-ordinates z" and z" in formulas (1.10)
and (1.7), in the system 2™ we obtain

af _ pmn ar% 9zP B oxY
BY=B" o m De=Dvgr
Thus,
‘ -y r dzm dzn 0zY \ Smas .
( 44 aff — fimn'a;—a a;ﬁ ozk B D-\, == O.

From this, since the tensors B™" and D, are arbitrary, we have

dzm gzn dzV

Ay
* 0z* 0zB ozh ’

kR
B — Amn
which was to be proved.

To prove the theorem of the form (3), the contravariant vector is
represented as u® = v* + w”. Then

Apat"u = A 0" A ™" - A 0w - A o™ w™.

Since, by the condition of the theorem, A,,u™u™ A, v™",
and 4,,w™w" are invariants and since, by virtue of the symmetry
of the quantities A4,,, we have A4,,v"w" = 4,,0™w", it fol-
lows that 4,,,0"w" is an invariant. Then, noting that v™ and w"
are arbitrary vectors, we conclude from the theorem of the form (1)
that 4,,, is a covariant tensor of rank two.

3. THE METRIC TENSOR

Consider two infinitely close points A4 (z!, 2%, 2°) and A4, (z' + dz!,
2% + dz?, 2® + dz®) in space. These points define an infinitesimal
vector dr, which is independent of the choice of co-ordinate system.
Let the length of the vector dr be denoted by ds. If e defines, by con-
dition, the unit vector directed along the straight line A4A4,, then

dr = dse. (1.25)
From the point 4 (z!, 22, 2°) we draw co-ordinate lines which do not
lie in the same plane and are not, in general, orthogonal. Denote

by e, a system of vectors, not of unit length, directed along the tan-
gents to the co-ordinate lines; then

dr, = da'e,, dr, = dz’e,, drz = dz’e,,
where dry, dr,, drg are infinitesimal vectors defining a parallelepiped
whose diagonal is the vector dr, i.e., ,
dr = dse = dz"e,. (1.26)
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From this, according to the rules for the scalar multiplication of
vectors, we find

ds? = (dz"e, -dz"ey) = g dz™ d2*, (1.27
where

gnn=_(€n-€r) (n, k=1, 2, 3). (1.28)
The system of vectors e, is called the covariant base of a co-ordinate
system.

The coefficients g, in the quadratic form of the differentials dz™,
as seen from (1.28), form a symmetric matrix (g,» = grn)- Thus, by
the quotient theorem, g, are the components of a covariant tensor,
called the covariant metric tensor.

When using curvilinear co-ordinates, it is advisable to introduce,
along with the fundamental base e,, the reciprocal contravariant
base e*, i.e., a triplet of vectors e® connected with the fundamental
vectors e, by the formulas

en-e" =0, (1.29)
where 6% are the Kronecker symbols.

To do this, it is sufficient to put

eiz_%x_es’ ez=e3><e1’ €3 — elxe2’
g g g (1.30)
g=e;-(e3X €3).
From (1.29) it also follows that

e X ed e3 X el el X e?
ey=—"—0  ey=—"— e3=—"——
! g ¢ g ' ® g’ (1.31)
g1=e!. (e x ed).

Thus, e, is perpendicular to the (e*, e™) plane.

If the co-ordinate system is orthogonal, it is obvious [see (1.30)
and (1.31)] that the base vectors e, and e* coincide in direction, but
their magnitudes are in general different.

We represent the vector e, as a linear combination of the vectors e”:

en=Cppe* (k, n=1, 2, 3).

Taking into account relations (1.28) and (1.29), we obtain C,, =
= g.»; consequently, e, = g,.e".
From this, by Crammer’s rule, we find
Gnh

2 en = gte, (g5<0). (1.32)

Here G, is the cofactor of the element g, in the determinant g.
From (1.32), on the basis of (1.29), we have

=g, (1.33)

et =

k _ Gnh

g

et.e”
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The g™ are symmetric. Substituting (1.32) in (1.29), we have
(en- e]) ng = gnjg]k = 6k

From this we conclude that g’* are the components of a contrava-
riant tensor. The tensor g”h is called the contravariant metric tensor.
The components g’* of this tensor can be calculated by means of
1.33).
( We now multiply the contravariant vector A™ by the metric ten-
sor g, and contract; we then obtain the covariant vector g,A4%,
which will be denoted by 4,. Consequently,

A, =g A" (1.34)

Likewise,
= g"" 4y, (1.35)
gk =grng" - (1.36)

The vectors 4, and A" related by formulas (1.34) and (1.35) are
called associated vectors. As seen from formulas (1.34) and (1.35),
we can easily calculate the components of either of the vectors 4,
or A™ from the components of the other. Hence, 4, and A™ may con-
veniently be considered as different, respectively covariant and
contravariant, components of the same vector A.

The tensor g, is called the mixed metric tensor. It is easy to prove
that gk is identical with the Kronecker tensor. Indeed, on the basis
of formulas (1.34), (1.35), and (1.36) we have

Ap=gn A" = gkrgmrAm =
whence
Ak = g;znAm°
For these relations to be fulfilled for all values of 4}, the components
of the mixed metric tensor gi’ must be chosen as follows:
" 1 when k=m,
g ——{ 0 when ks£m,

Consider now the covariant tensor 4,;. If the first index r is to be
raised, the tensor 4,; must be multiplied by g™ and then contracted
with respect to the first index, i.e.,

A’:k = grmAmk.

In order that one may know which index has been raised, a dot is
inserted in its place. For example, in the equality

= ghnArn
the second index % has been raised. Both indices can be raised by the
formula

(1.37)

A= g™ g " A,
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These operations can obviously be completely extended to tensors
of any rank. All tensors obtained from each other in this way are
called associated tensors; their components may also be regarded as

the components of the same tensor.
In a rectilinear rectangular system of co-ordinates the square of

the distance between a point A of co-ordinates z,, and a point 4,
of co-ordinates z,, + dz, is given by
ds? = dz3,. (1.38)
Since
Ty =T (2, 2%, 2%),
it follows that
dr O2m gy,

m = Gzn

Formula (1.38) may now be put into the form

ox ox
2 __ m m n R
ds = yon dz"dz".

By introducing the notation

0. 04
gnk=721nl a‘z’: =gkn (1.39)

the last formula may be represented as
ds? = g,y dz" d2*. (1.40)

We conclude from the quotient law of tensors that g, is a covariant

tensor.
We now determine the values of the contravariant and covariant

components of a vector @ given at a point P of space. Draw through
this point three co-ordinate surfaces

z* = constant. (1.41)

The intersections of these co-ordinate surfaces determine three
co-ordinate lines.

We calculate the angles that the directions e, and e* make with
the axes of the rectangular Cartesian system of co-ordinates z,,.
Take an elementary vector dr, along ey; its length is determined by
the formula

dSk=|d7'h|=Vm.

Here the index m is summed from 1 to 3. Taking into account that
the co-ordinates z,, along the co-ordinate line z* depend only on
the co-ordinate 2*, the last formula is put into the form

d8h=l/-(’2j:7:)2dxk
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or, by formulas (1.39),
ds, =1V gur da®.

The expression for the cosine of the angle between the direction e,
and the z, axis then becomes

dr 1 0
COS (e, Lpy)= ds:: = Ven az’: ) (1.42)

As is known, the formula for the cosine of the angle between the
direction e* (or between the vector grad z*) and the z,, axis is of the
form

1 dzk 1 dzh
R — = . 1.43
cos (€%, Tp)= | grad zk | 07m l/( ok )2 0z, ( )

(71]'

Taking into account that the components of the tensor g, in a
rectangular Cartesian co-ordinate system are equal to 6%, we have,
by (1.10),
nk__ 2’[71" ozk .
g =05 dz; oxj ’

from this
kh _ [ xR \2
g = (75) :
On the basis of this formula we find from (1.43)

1 oxh
V}‘; orm *

Denote the contravariant and covariant components of the vector
a by A* and 4, and its components in the rectangular Cartesian
co-ordinate system by a,,. Further, let a,, and a.* denote the pro-
jections of the vector a@, respectively, on e, and e*. Noting that
a = ina, (i, are the unit vectors of the rectangular Cartesian co-or-
dinate system), according to the basic formula for the projection of
.a vector on a given direction we obtain

cos (e*, z,,) =

(1.44)

_ 1 0xm
aeh =a, CoS (eh, xm) = Wk_k—'—'azk A, (1.45)
1 dzk
Apr=0am coSs (ek, $m) = V_;h_k—;?—;_r-n— Am. (146)
On the other hand, on the basis of formulas (1.5) and (1.7) we have
h__ dzk o 0xm
A=l oy M= Om T
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Substituting these expressions in (1.45) and (1.46), respectively, we
obtain, finally,
1

. = 4,, 1.47
a R ngk k ( )
1
=_—— Ak, 1.48
ta= (1.48)

We note once more that the index % is not to be summed in (1.47)
and (1.48). If the curvilinear system of co-ordinates is orthogonal,
the directions e, and e* coincide, and Qe = k3 denote these
by a.k.

If the curvilinear system of co-ordinates is orthogonal, then, as
is known,

1
ghsziy gkh: H?z )

where H, are scale factors.
In this case we obtain from (1.47) and (1.48)

1
axk=Tk' Ak=HkAk. (149)

The a,» are called the physical projections of the vector a.

We now denote a tensor of rank two in rectilinear rectangular
co-ordinates z; by p;,, the physical projections of this tensor in
curvilinear orthogonal co-ordinates z* by D,ick, and its contrava-

riant components by 4*; by the formulas (1.10) for the transforma-
tion of the components of a tensor we then have

ozt oxk
6xa 0$‘3 :

At — pog
Taking into account (1.44) and noting that g** = H32, we can write
At = ﬁ;—paﬁ cos (ef, zq)cos (e*, zp).
On the basis of (1.13)
Paxich = Pap €08 (€%, z4)cos (e*, zp);
then
pxixh = HinAih.

Noting that A* —giight4,, = Hi2H3%A,,, we have
: 1
P ik =HinA1h = Tf;l{_h Aik' (150)

Let us determine the angle & between two arbitrary vectors A4
and B given at the same point. The vectors 4 and B can be deter-
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mined by a linear combination of the form
A= Ate, = Aze®,
B=B"e,=B,e".
The scalar product of the vectors A and B is
A.B=(ey-e,;) A"B" = (e*-e™) A,B, = (ey-e") A*B, = (e"-e,) A B"
or
A-B=g,,A"B" = g" A, B, = A*B, = A,B*. (1.51)
On the other hand,
A+B=|A||B]|cos Y, (1.52)
where

|A|=V A A=V g AP 2" =V g A, 4, =V 4, 4%,
|B|=V gp.B*B"=V ¢"B,B, =V B,B".
Substituting (1.51) and (1.53) in (1.52), we find
rBn
12 gknAi;:AVthanB" . (159

From this we obtain a condition for the orthogonality of two vec-
tors 4 and B:
gunAFB™ = g"" 4, B, = A*B, = A,B*=0. (1.55)

(1.53)

cos ¥ =

4, DIFFERENTIATION OF BASE VECTORS.
THE CHRISTOFFEL SYMBOLS
It follows from (1.26) that
or _e, (1.56)

dzn

The base vectors are, in general, functions of position of the point
at which they define the co-ordinate trihedral. The variations of the

base vectors are characterized by the values of the derivatives g—z{.

In an Euclidean space the derivative of a vector with respect to a
scalar argument is obviously also a vector.

The values of g%‘ are represented as the sum of three vectors paral-
lel to the base vectors e,, i.e.,

Z‘i’; = Tine; (1.57)

The quantities I‘f,k are called the Christo ffel symbols, or they are
sometimes referred to as the three-index sy mbols. If the co-ordinates
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are Cartesian, then e, are constant vectors, hence I'Vx = 0, while

for a curvilinear co-ordinate system I}, £ 0.
It follows from (1.56) that

den _ dep

dzk ozn *
On the basis of (1.58) we have from formulas (1.57):

i j
Fnkej = Fknejy

(1.58)

from which it follows that
T =T%n. (1.59)

The Christoffel symbols are expressed in terms of the derivatives
of the metric tensor. By multiplying equality (1.57) scalarly by e,
and taking into account (1.28) we obtain

d ad j
S0 — en g =Tmagm (1.60)

ozh
By interchanging the indices r» and % in equality (1.60), and using
(1.59), we find

7 dem j
B — oo = Thngm (1.61)

By adding (1.60) and (1.61), we have

98nm O8rm dem dem i
F“’"ax—n"(e"' o2k +e"'W)=2F""gf’"‘ (1.62)

Calculate the parenthetical expression in this formula. Taking into
account relation (1.58), we find

Ogpn __ 0 _ dep den dem dem
dzm ~ ozm (€n-€x) = €n- 5zm T €k Gpm = €n ozk ten Gon-
Consequently, formula (1.62) becomes
j __ g ogn g
Tnrgym=—2+ 5 — - (1.63)

On multiplying (1.63) by g*m, and summing the index m, we obtain,
with (1.36) and (1.37),

1’ anm m n
=g gom (om y J8m _ O ). (1.64)

ozk dzn azm

?‘rom this it is also seen that the Christoffel symbols are symmetric
in the indices n and k.
It can easily be shown that the following equality holds:

2 = —The’. (1.65)
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By differentiating the equality e™-e,, = 8%, we obtain

oen n O0énm
e e —2 =0,
oxk " + oxk
Taking into account (1.57), we find
den 1 ,
ey = .—-(e".ej) anhz N (165 )
ozk
n
We now represent as
x
den n i
= Bjre’.
ozk ik

Multiplying both sides of this equality scalarly by e,, gives

den n gj
Py ly= Bjké;’n = B;nnk.

On comparing this relation with expression (1.65’), we find
Brr= —Tmp.

From this we arrive at’ formula (1.65).

5. A PARALLEL FIELD OF VECTORS

As we have seen above, the algebraic operations on tensors again
lead to tensors, which cannot be said, as we shall see below, about
their differentiation. The partial derivatives of the components of a
tensor constitute a tensor only in a Cartesian co-ordinate system.
In curvilinear co-ordinate systems the situation is more complicated.
Here we have to introduce so-called covariant differentiation whose
action on a tensor again gives a tensor. The covariant derivative is
identical with the ordinary derivative when the tensor is referred to
a Cartesian co-ordinate system.

If f (s) is a scalar function (s is the parameter), then f = f in the
new co-ordinates, and hence

(A9 —F() _ qjp 1A= (s)

}:R As As—0 As
or
df _ df
as - ds

from which it is seen that the derivative of a scalar function with
respect to the parameter is again a scalar.

The definition of the covariant derivative of a vector and a tensor
will be given in Sec. 6. We first turn our attention to the investiga-
tion of a parallel field of vectors.
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Let the co-ordinates of an arbitrary point P on the curve under con-
sideration be functions of the parameter s. At each point of this
curve construct a vector equal to the vector given at the point P.
Thus, we have a parallel field of vectors along the curve. We shall
derive equations which this field must satisfy.

Denote the components of the vector field under consideration in
the system of co-ordinates z* by A*, in the Cartesian system of co-
ordinates z,, by a,,. In the Cartesian co-ordinate system the com-
ponents of parallel vectors are constant along the curve, and hence

dam
ds 0.
By the definition of a vector,
4k Oz
a,=A4 k-

By differentiating the last equality with respect to the parameter s,
we have

day, __ dAR dzp (h OPzym dz™ ‘
ds — ds xR +4 9z Ak F_O' (1.66)
On multiplying Egs. (1.66) by g*B ng , and summing the index m
xr
from 1 to 3, we find, from (1.39) and (1.37),
dAB 0%z, Oz p dam
& T 0::"6:;11 6::; A" =0 (1.67)

By differentiating equalities (1.39) with respect to z%, we further
have
Ognr 0%z Ozpy 0xy 0%z, 1.68
9% 9z%9zn  ozk 0z 9% gzh ° (1.68)

In equalities (1.68) we make twice a cyclic permutation of the
indices n, k, o, and subtract (1.68) from the sum of the equalities,
thus obtained. We find

0%z, Oz _ Ogna 08an __ Ogrn
ozk gzn 9z  ozk T an oz* (1.69
Substituting (1.69) in (1.67), we have
d4b dzn
S T S 0. (1.70y

Thus, the parallel vector field along the given curve must satisfy
the differential equations (1.70).

Take any vector at a given point of space and construct vectors
parallel to it at all points of space. The components 48 of this paral-
lel vector field are functions of the co-ordinates z8. If a curve is
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drawn through any point of this field, the vectors on that curve
obviously satisfy Eqgs. (1.70). But we now have
daP  94B qin
ds ~ oz" ds °*
and Egs. (1.70) become
B
(‘9“1 +Thar) £ —o, (1.71)

oxm

Taking into account that condition (1.71) must be true for all
curves issuing from the point P, we find that the parallel vector
field satisfies a system of differential equations of the form

B
o T =0 (1.72)

6. THE RIEMANN-CHRISTOFFEL TENSOR. DERIVATIVE
OF A VECTOR. THE GAUSS-OSTROGRADSKY FORMULA.
THE e-TENSOR

We now pass on to the determination of new tensors by differen-
tiating given vectors and tensors. Let f be a given scalar function of
the co-ordinates of a point z*. In the new co-ordinates 2™ related to
#* by formulas (1.1) we then have f = f. Taking into account the
last equality, and using (1.1), we have

of _ of ok
gzm  gzk gzm

(1.73)

Thus, the derivative of a scalar function with respect to the co-ordi-

. . af
nates gives a covariant vector T2F

Consider the parallel vector field of an arbitrary contravariant
vector AP along some curve and a covariant vector By defined on
the same curve. At any point of the given curve the product BgAB

is a scalar function of the parameter s, and hence E (BgAB) is also

a scalar. On the right hand side of the equality

B
2 (Bpah) = —B Aﬁ + By 22—

we substitute —I‘nkAk dg: for —ds— from (1.70); then

d dBg dzm
— (BpAP) =——= AP —Tf.Bp A" =

or
dBg

d dzn B
< (Bpd®) = (- —TiaBr ) 4°. (1.74)
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Taking into account that 4P is an arbitrary contravariant vector
of the parallel vector field and that the product of such a vector
with the expression inside the parentheses on the right-hand side of
(1.74) is a scalar, we conclude from the quotient law of tensors that

dBg B dzn
a5 —TenBa—;

(1.75)

is a covariant vector.
The covariant vector (1.75) is called the absolute derivative of the
covariant vector Bg with respect to the parameter s and is denoted

by % ; consequently,

dBg dBg dzn

Suppose that in any one co-ordinate system the following equation
is satisfied:

dB n
— = ThBy S =0; (1.77)

it is then satisfied in every other system. In the case of a Cartesian
co-ordinate system (I'j, = 0) Eq. (1.77) becomes

dBg

ds

=0.

It follows that the vector Bg is also a parallel vector field along the
curve under consideration. Thus, (1.77) are the equations that the
covariant parallel vector field Bg along the given curve must satisfy.
Consider the parallel vector field of an arbitrary covariant vector
Ap along a given curve and a contravariant vector BP defined on the
same curve. Proceeding in the same way as in the derivation of for-
mula (1.76), and taking into account that the parallel vector field
A must satisfy (1.77), we obtain the absolute derivative of the
contravariant vector with respect to the parameter s

688 4pb

o= - Th.B* L. (1.78)

ds

Let B? be a field of contravariant vectors defined in some space.
Take an arbitrary curve passing through any fixed point of this
space; from (1.78) and

dBP _ 9BP dan
ds ~ 9z" ds

we find

8BP oBB B pr\ dam
85 \dzn +rhnB) ds

3-0884
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. dzn . , . 888
Since 5 1san arbitrary contravariant vector and 5 1sa contra-

variant vector, it follows from the quotient law that the expression
in the parentheses is a mixed tensor of rank two. This tensot is called
the covariant derivative of the vector B® and is denoted by BB;
here the comma before the index n indicates differentiation with

respect to z". Consequently,

oB®
B, =~ +Ti.B" (1.79)
In a similar way we obtain a covariant tensor of rank two
0Bg ’
Bpy n = —inBse (1.80)

This tensor is called the covariant derivative of the vector Bg.

We shall now extend these results to:the differentiation of a ten-
sor. Consider arbitrary parallel vector fields B™ and C" defined
along some curve. Let 4,,, be a tensor of rank two defined along the
same curve. At each point 6f this cufve 4,,B™C" gives a scalar;
hence, its derivative with respect to s is also a scalar

d dA, . dBm dcn
4 (AmnB™C") = 2520 BoC™ Ay, LB Ot 4, B L

By eliminating the derivatives of the vectors by means of (1.70),
we obtain
d dA dxt dat
S (A B"C") = (488 T g o —Tidpe o) BC™.
Consequently, we conclude from the quotient law that the expression
in the parentheses on the right-hand side is a tensor of the same type
and rank as 4,,,. It is called the absolute derivative of the tensor

A .., and is denoted by 8Amn « Then

Os
64 d4a dxt dxt
—(sr:—n='_dr':l—rgmtAan - ntAma wat (1.81)

Consider a tensor field in some space. If a curve is taken passing
through any point of this space, expression (1.81) along this curve
is a tensor.

Noting that

dAmn _ 0Amp deP
ds  gzP ds ?

formula (1.81) may be put into the form
dzP

8Amn 04, o 13
s = (I —TipAan —TipAna ) G . (1.82)
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B
Taking into account that (1.82) is a tensor and %ﬁ— is an arbitrary

contravariant vector, we conclude from the quotient law that the
expression in the parentheses is a tensor with one covariant index
more than 4,,,; this tensor is called the covariant derivative of the
tensor A, and is denoted by A;,,, 5. Here the comma indicates
differentiation with respect to zP; consequently,

2 — TgAan— T Ame. (1.83)
oz

Amn.ﬁ=

The foregoing method can be used to evaluate the absolute and
covariant derivatives of a temsor of any type and of arbitrarily
high rank. Thus, if a tensor is specified by contravariant components
A™", then

- azP

Let us evaluate the second covariant derivative of the covariant
vector B,, i.e., with the aid of formula (1.83). we determine the cova--
riant derivative of the temsor B, ,:

B m m 2B, m 0B
Bry= 208 TB,  —T%B, =-22r__pm9%m _
r.st ozt rtOm,s stPr,m ozt 0z rs at

4 Topd*" - Tppd™. (1.8%)

8By, m OBy ]
— % ot —Ta g — Bar (5 TR —IpI5 —TI2,)

Let us permute the indices s and ¢ in this formula and subtract one
expression from the other. By using the symmetry property of the
Christoffel symbols, we have

B:, st— B, 1s=RbuB,, (1.85)
where
a P m m
Ry = E}"I‘?t_ajrfs"l"rrtrgzs_rrsrgzt- (1.86)

The left-hand side of (1.85) is a tensor and By is an arbitrary cova-
riant vector; we conclude from the quotient law that RZ. is also a
tensor. The tensor R%.;, which is called the Riemann-Christoffel ten-
sor, consists only of the components of the covariant metric tensor
&mn and their derivatives up to the second order.

Let us lower the index p in (1.85), i.e.,
’ Rprst = gme?;st =8&pm ‘6—23— ;";!—gpm 6_.:1- F;na + I‘;‘r%rlp. ms I‘;";Pp, mtr

where

1 ( %mp 98 ps 08ms )
- )

Pp' ms =\ "oz azm ozP
1

7

r =_( %mp 08ms __ 98ps
e S e e axm)
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from this

08mp
9z =Pp. ms +'m, ps*

Noting that

: 0 rm__ 0 magpm__
gpma'._rrt—_a?'(gpmrn — ==

a m
l =—_Pp,rt—rrt (Pp. ms +Fm, ]»s)y

ox®
we find
R Ay .y =T o
Pt =gz ip Tt T o pors T 1rslm, pt —'rtlm, pse

Inserting the expressions for I'p, ,,, under the derivative signs in the
last equality, and using formula (1.64), this becomes

R __1.( P8t Pgrs ___T8ps  Pgn ) n
Pt T \ 0z 02T ' it ozp oxt gzt 0% 0zP

+gm" (Pm, rsPn. pt _Pm. rtPn. ps)' (1'87)
The properties given below follow directly from the last formulas:

Rprst = —Rrpsh Rppst=09
Rprst = - RthS’ Rprtt =0. (188)
Rprst = Rstpr°

The equalities in the first two lines express the antisymmetry of the
tensor Rp,s; With respect to each pair of indices p, r and s, ¢. Taking
into account properties (1.88), after calculation we find that, of 81
components of the Riemann-Christoffel tensor, there are only six
independent components, namely Ryss, Rigs, Rasesy Risizy Roaness

3132;

It is known that a Cartesian co-ordinate system can be introduced
into the whole Euclidean space. Since the components of the metric
tensor are constant in the Cartesian co-ordinate system, and hence
the Christoffel symbols are zero, from formulas (1.87) we have

Ryt = 0. (1.89)

Thus, conditions (1.89) are necessary conditions for a space to be
Euclidean.

The converse may also be proved. If the Riemann-Christoffel ten-
sor vanishes at all points of space, co-ordinates z!, 2%, z° may be
chosen in this space such that the quadratic form will become ds? =
gwdziz®, with constant coefficients. The constancy of these coef-
ficients indicates that the space is Euclidean. Consequently, the
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condition that the Riemann-Christoffel tensor is zero provides a
sufficient condition for a space to be Euclidean.

It has been shown above that in a three-dimensional space the
Riemann-Christoffel tensor has only six independent components.
Consequently, conditions (1.89) may be replaced by six independent
conditions of the form

Rpss =0 (prst = 1212, 1313, 2323, 1213, 2123, 3132). (1.90)

Thus, conditions (1.90) are necessary and sufficient conditions for a
space to be Euclidean.

Let us derive the Gauss-Ostrogradsky formula in a curvilinear
co-ordinate system.

As is well known, the formula for the transformation of a volume
integral into a surface integral in a rectangular co-ordinate system,
i.e., the Gauss-Ostrogradsky formula, is of the form

dap, _
5 2% dv= 50 aly do, (1.91)

where o is a closed surface bounding the volume T, [, are the direc-
tion cosines of the outward normal to the surfacé .

Take now a curvilinear system of co-ordinates z* and let A* deno-
te a contravariant vector defining the vector a; in the z* co-ordinate
system. Remembering that A} is a scalar, we have

da
| 1.92
= (1.92)

Denote by n, the covariant components of the unit outward nor-
mal vector whose components in the z; co-ordinate system are I.
On the other hand,

Ahnh = aklk. (1.93)
Consequently from (1.91), with (1.92) and (1.93), we obtain
S Al di= S Arny, do. (1.94)
T o

In conclusion we consider the e-tensor. Let the components of an
object e,,; be altered in sign, but not in absolute value when any two
indices are interchanged. Consequently, the components of the sym-
bol e,;; can obviously have only the following values: 0, when any
two of the indices are equal; +1, when rst is an even permutation of
the numbers 1, 2, 3; —1, when rst is an odd permutation of the num-
bers 1, 2, 3.

Consider the determinant |af |. Here the upper index denotes the
row and the lower index the column. If the determinant is expanded
in full by columns, it reads

|a}| = =+ alalal.
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Here the summation is carried out with respect to the indices i, j, &,
which form permutations of the numbers 1, 2, 3, and the plus or
minus sign is given accordingly as the permutation of these numbers
is even or odd. By the definition of the e-symbols, the determinant
equals

|a}| = einaiaiar.
Consider the sum
i i R ..
eijkazxa]ﬂav (lv 75 ka a, ﬁ’ Y= 1, 2: 3)'

Taking into account that the indices Z, j, £ are summation indices,
we have

i j R i j R i iR
€ijrAadpdy = — €;ilqdBly = — €;jRAyapQo.
Thus, the interchange of the indices o and y alters the sign. The same

result holds for any other two of the indices. Consequently, the sum
under consideration is antisymmetric in the indices a«, B, ¥, i.e.,

_
ei.ika:lajﬂav = (a: |€apy- (1 95)

; i
By putting a}:% in formula (1.95), and noting that the Jacobian
'z
art

oz

+# 0, we obtain

_18 0z% 9zP 92V
By o7 ozi ok

Cijp=

oz’

0xs

(1.96)

Introduce a new co-ordinate system y* = y* (21, 22, 7°) and set up
r
an expression for e;;y ’Ziysl . On the basis of formula (1.96) we obtain

o | 22| | = |7t 0z 0zP azY | gar || dar
ijR ays - ays aBy 6y1 ay] 6yh a':zs ys
. oxT
or, after cancelling out a_:s =0, we have
e | 227 | g | 8aT | 92 0aP oz
ijk ENg afy 528 oyt oyi oyk .

From this and from the definition of a tensor the quantities
T
represent a tensor; it is denoted by &;j.

—_—

€ijn

Introduce now three non-coplanar vectors, A*, B’, C*. From the
definition of the triple scalar product it follows that

A. (B X C) = Aiei (Bjej X Ckek) = l g—% ’ eijhAiBjCh= SijkAiBjCk.
(1.97)



CHAPTER 1l

Theory of stress

Initially Cauchy and Navier regarded a solid as a system of mate-
rial particles. Each pair of particles were assumed to be intercon-
nected by forces of interaction directed along a straight line joining
them and linearly dependent on the distance between the particles.
With the level at which physics was at the beginning of the nine-
teenth century, it was impossible to describe the elastic properties
of real bodies in this way. At present there are rigorous physical
theories which enable one to determine the elastic properties of crys-
tals of different structure proceeding from the consideration of the
forces of interaction between the atoms in a crystal lattice. An
easier way followed by the modern theory of elasticity is to consider
the distribution of the substance of a body to be continuous through-
out its volume; this allows the displacements of particles to be as-
sumed as continuous functions of co-ordinates.

To calculate the force of interaction between particles situated
on one side of an arbitrary element, imagined to be isolated inside
the body, and particles situated on the other side of this element, it
was found advantageous to introduce the concept of the averaged
force of interaction between them.

The error resulting from the above abstraction may be appreci-
able in the case of determining the relative displacements of points
that are originally spaced apart at distances comparable with the
distances between particles, and in determining the force acting on
an element of comparable size with the square of the distance be-
tween particles.

In solving practical problems of the deformation of a solid this
abstraction introduces no serious errors, a fact which justifies the
replacement of a solid by a continuous medium.

7, TYPES OF EXTERNAL FORCES

Two types of external forces acting on a body are distinguished.
¢ 1. Surface forces are those which arise at points of the body sur-
ace.
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Let an element dw of the body surface be acted on by a force dP,

then the vector
ipP

4 _r, (2.1)

represents the force per unit surface area at the point M (Fig. 1).
It is called the intensity of surface force and its dimension is for-
ce/length2.

Tn
F'
dar
dw [
M
r
0 0

Fig. 1 Fig. 2

The resultant vector and the resultant moment of the surface
forces applied to the entire surface ® are, by definition,

V= S T, do, (2.2)
L= (rxT,) do. (2.3)

Here S is the surface integral, r is the radius vector of the point of

()
application of the force with reference to an arbitrarily chosen ori-
gin of co-ordinates.

Examples of surface forces are the pressure of liquids or solids
that are in contact with a given body, the pressure of light, etc.

2. Mass forces are those which act on an element of mass of a body
(Fig. 2). Let the mass dm = pdt enclosed in an element of volume
dt of the body be acted on by a force dQ. The vector F = % then
represents the force per unit mass at the given point.

Volume forces F* are also considered, which are defined by the
formula

a0 a0
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The resultant vector and the resultant moment of the volume
forces applied to the entire volume T are

V= 5 Fpdr, (2.5)
L= S (r X F) p dr. (2.6)

Here S is the volume integral.

.

A typical example of mass forces is provided by gravitational for-
ces. If the z; axis is directed vertically downward, the gravity force
per unit volume is}

F*=1i30g. 2.7

8. THE METHOD OF SECTIONS. THE STRESS VECTOR

The positions of particles in an undeformed body correspond to
its state of thermal equilibrium. If a certain volume is isolated from
this body, all forces exerted on it by other parts are balanced. Under

Py on
Tn
Ty dw

aw

Fig. 3 Fig. 4

the action of external forces, however, the positions of particles in
the body change, i.e., the body deforms, with the result that internal
forces arise. To determine the latter, use is made of the well-known
method of sections. Suppose we have a deformable body which is
in equilibrium under the action of external forces. Imagine it to be
cut by a surface mm into two parts. By removing one part, we replace
its action on the remaining part by internal forces distributed over
the surface of the section; these are the bonding forces between par-
ticles of the body situated on both sides of the section (Fig. 3). The
forces acting at the points of the surface of the section may now be
classified as external surface forces. For equilibrium of the remain-
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ing part, these forces must be chosen so that, together with the
prescribed forces acting on the part of the body under consideration,
they will constitute a balanced system of forces. Denote by AV and
AL, respectively, the resultant vector and the resultant moment of
the forces distributed over a surface element Aw of the section mm
with normal n at the point /. The direction of the normal n to the
surface element Aw is considered positive if it is directed from the
remaining to the removed part.

Assuming that in the model of a continuous medium considered
by us there is only central action between its particles, we have

. AL . AV
Alo?j]o to =0 Alatl»no sa = Tn

The vector T, is called the stress vector on the surface element
with normal n» at the point M.

In considering the model of a medium introduced by W. Voigt in
1887 it is assumed that, in addition to the ordinary central action,
there is also rotational action between its particles. Then, besides
the stress vector T,, there is also a couple-
stress vector M, equal to

. AL
Mo Aloi-r.l}) 5o 70
The latter model will not be discussed here.

The dimension of the stress vector, as
follows from its definition, is force/length2.

The stress vector T, can be resolved into
two components:

(1) The normal component directed along
the normal » is called the normal stress
and denoted by o,.

(2) The tangential component directed
along the tangent to the curve of intersec-
tion of the plane passing through T, and r and the surface of the
section is called the shearing stress and denoted by <, (Fig. 4).

The normal stress is commonly considered positive if its sense
coincides with the sense of the outward normal to the surface of the
section at a given point. Otherwise negative.

If the direction of the stress vector T, coincides with the normal
to the surface of the section at a given point, then

Fig. 5

T, =06, and 7, = 0.

In this case the normal stress is called the principal normal stress,
and the area on which this stress is acting is called the principal
area at a given point.
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The stress referred to the surface element dw with normal »n in
the undeformed state is called the engineering stress, and the stress
referred to the surface element dw’ with normal r’ in the deformed
state is called the true stress.

Suppose that the stress vector T, characterizes the action of a body
A on a body B transmitted through a surface element of the section
with normal n, and the stress T_, characterizes the action of the
body B on the body A transmitted through the same surface element
(Fig. 5). .

On the basis of Newton’s third law we have the equality

T_,=—T,. (2.8)

9. THE STRESS TENSOR

We choose some point P in a body and draw, through it, the co-
ordinate lines of an arbitrary curvilinear system of co-ordinates z*.

Consider, at the point P, a tetrahedron imagined to be isolated
from the undeformed body by three
co-ordinate surfaces defined by the cova-
riant base vectors e, and a surface the
outward normal to which is a certain
direction n (r is the unit vector) passing
through the same point P (Fig. 6).

Consider the motion of the tetrahed-
ron. Denote by dw,, dw,, dw;, and do,
respectively, the surface areas CPB,
APC, APB, and ABC. These surfaces,
whose normals are, respectively, the
vectors of the reciprocal base e* and the
unit normal r, are acted on by the for-
ces —Tpdoy (k=1,2,3)and T, do, Fig. 6
where T, and T, are the stress vectors
on the co-ordinate areas with normals e* and #. Besides, the volume
force of the isolated element is p (F — W) dt (here W is the
acceleration, p is the density of the material of the undeformed
medium).

On the basis of D’Alembert’s principle the equation of motion of
the tetrahedron as a rigid body is of the form ‘

Tpdo—=T,do,—p(F—W)dt=0. (2.9)

Here the index % in the second term is summed from 1 to 3. Since the
sum of the vectors of the areas for the tetrahedron is zero, we have

ndo—= l‘i“;hl e, (2.10)
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Noting that e*.e* = g** and n = n,e* (n, are the covariant com-
ponents of the unit vector), instead of (2.10) we have
1y doet = 9%k _ gk
V gkt

from which
d(l)h=ngk ng do.
Substituting this in (2.9), we obtain

T, —T3V g% ny—p (F — W) 4= =0
Let the distance from the point P to the surface ABC tend to zero
while the direction n is kept constant. Taking into account that

i —0, from the last equation we find

do
Tn=Vghthnkv (2.11)

The stress vector T, may be represented by three components
referred to the vectors of the covariant base e, i.e.,

Vg™ T, =c*me,. (2.12)
Substituting (2.12) in (2.11), we obtain
T,=0c""n,e,,. (2.13)

Noting that T, = T7e,,, where T™ are the contravariant compo-
nents of the stress vector, we find

" =c"™n,. (2.14)

In (2.13) a double summation is carried out with respect to the
indices k& and m, and in (2.14) a single summation is carried out with
respect to the index k.

Formula (2.14) determines the contravariant components of the
stress vector on the area specified by the normal n; hence, we con-
clude from the quotient law of tensors that the ¢*™ constitute the
contravariant components of a tensor of rank two. The tensor o*™
is called the contravariant stress tensor.

10. EQUATIONS OF MOTION AND EQUILIBRIUM IN TERMS
OF THE COMPONENTS OF THE STRESS TENSOR

It is known that in order to set up the equations of motion of an
absolutely rigid body it is necessary and sufficient to equate to zero
the resultant vector and the resultant moment of the external
forces acting on it and the inertia forces.
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In order to set up the equations of motion of a deformable body
it is necessary and sufficient to equate to zero the resultant vector
and the resultant moment of the external and inertia forces applied
to each part of the body that can be imagined to be isolated from it.

Equating the resultant vector and the resultant moment of the
forces mentioned above to zero imposes certain conditions (which
we proceed to derive) on the variation of the components of the
stress tensor in passing from one to another point of the body In the
following discussion it will be assumed that the components of the
stress tensor are continuous and have continuous partial derivatives
at all points of the body. Imagine that an arbitrary volume t bound-
ed by a reasonably smooth surface @ is cut out inside the body.
The resultant vector and the resultant moment of the volume forces
oF dt acting on a volume element dt isolated from the volume T,
the inertia forces — pWd~t applied to this volume in the case of dy-
namic loading, and the surface forces T, dw acting on the element
do must be equal to zero, i.e.,

SP(F’-W)dT+STndw=-0. (2.15)

T

S(rXp(F—W))dT—i—S (r X T,)do=0, (2.16)

Since the component of the force p (F — W) dt in the direction of
the unit vector v is equal to vp (F — W) dt and the component of the
force T, dw in the same direction is equal to v T, do, instead of (2.15)
we may write
S p (F™"—W™) v, dv -+ S T™v,, do = 0, 2.17)
T

[0]

Taking into account (2.14) and the Gauss-Ostrogradsky formula
(1.94), the surface integral in (2.17) may be put into the form

S ™y, do = S (0*™) 1y doo = 5 (0*™v,,) 5 dt = S Ay, de*. (2.18)
o [0] T T

Substituting this in (2.17), we obtain
[ 0@ —wm o) vpar=o.
T

From this, because of the continuity of the integrand and the arbi-
trariness of the vector v,, and the volume 7, it follows that the inte-

* For a parallel vector field in the region vy,

Vi

o —1B,vg=0.

Vm, h=
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grand must vanish at each point of the body
o+ pF™=pW™, (2.19)

If the body is in equilibrium, the acceleration of the element d=
is zero and the equation takes the form

o 4 pFm =0, (2.20)

Heré- cr?;:" is tlre covariant derivative of the stress tensor ¢*™; the
index % is summed from 1 to 3.

Equations (2.19) and (2.20) connecting the variation-of the com-
ponents of the stress tensor with the mass forces at any point inside
the body are termed, respectively, the equations of motion and the
equations of equilibrium of a deformable body in contravariant
form. These equations, which involve nine components of the stress
tensor, are non-homogeneous partial differential equations of the
first order. In the absence of body forces these equations become
homogeneous.

Since the component of the moment r X p (F — W) dt in the
direction of the unit vector v is equal to v.» xp (F— W)dnx,
the component. of the moment r X T, do in the same direction is
equal to v-r X T, do, and the radius vector r of the point may be
represented as r = le;, instead of (2.16) we write, using formu-

la (1.97), .
5 einp (F'— W) vk dv - _Y e1jpTnl’v* do =0. (2.20")
T (0]

Taking into account formula (2.13) and the Gauss-Ostrogradsky for-
mula (1.94), the surface integral in Eq. (2.20') may be put into the
form

S gijplivio™in,, do = ) (elvR0™) ,, dr.
® T

Since €;jn, m = 0* and v?m = 0, Eq. (2.20") is written as

5 eVt [p (Fi— Wi V 4 (6™ ,] dT=0.
T
Since 0™+ pF*=pW?*, it follows that
5 Sijkvko'mil?m dt = O.
T

* Since e&;j;, is a constant in a Cartesian system of co-ordinates, it follows
that €;j; ,, = 0 in this co-ordinate system, and this is also true for every other

co-ordinate system.
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By virtue of the formula I% = 8%", the arbitrariness of the volume 7,.
and the continuity of the’ 1ntegrand we have

S,jkﬁhv _O.,
Noting that &;;, = —ej;x, the last relation may be represented as-

1 i3 ij
5 €ijn (th— O'T]) vE =0,

By expanding this expression, we have
(023 032) vl + (03_1' _ 013) v? + (o1% — o) v3 = (.
Since the dlrectlon v is arbitrary, we conclude that -
0" == g™ (2.21)-

The symmetry of the stress tensor is. thus proved Consequently,‘
the stress tensor defining the state of stress at a glven pomt is deter-
mined by six independent components.

11. SURFACE CONDITIONS

In the preceding section it has been stated that the necessary and
sufficient condition for the equilibrium of a deformable body is that.
of zero resultant vector and zero resultant moment of the forces ap-
plied to each part of the body that can be imagined to be isolated from:
it. This must also be true for parts of the body having a surface-
coinciding with the body surface. Assume that the components of"
the stress tensor are continuous up to the boundary.

The conditions for the equilibrium of an infinitesimal tetrahedron-
(see Fig. 6), when the surface ABC coincides with the surface of the-
body, give a relationship between the stress tensor and the external
forces. This relationship is of the form of (2.13) or (2.14), with the-
difference that z» in these formulas is the outward normal to the
surface of the body at a given point. These conditions are called the-
surface or boundary conditions.

Thus, from the necessary and sufficient condition of zero resultant
vector and zero resultant moment of the forces applied to each part
of the body, including parts of the body having a surface coinciding-
with the body surface, it follows that six components of the stress
tensor must satisfy, inside the body, three differential equations-
(2.19) in the case of dynamic loading or (2.20) in the case of static-
loading, and three surface conditions (2.14).

* This formula follows from the relation

or ] a* de
=— (%)= *

dri 9zl oxi ozl

ej=



48 Ch. II. Theory of Stress

It should be noted that six components of the stress tensor are
not determined uniquely from the system of three differential equa-
tions. Each solution of the infinite number of solutions of this
system that satisfies three boundary conditions corresponds to some
statically possible state of stress.

Consequently, under the action of applied external forces there
may be an infinite number of statically possible states of stress.
Thus, the problem of finding the state of stress in a body is statical-
ly indeterminate.

Below (Chap. V) it will be shown how the actual state of stress
can be determined from the infinite number of statically possible
states of stress.

12. EQUATIONS OF MOTION AND EQUILIBRIUM REFERRED
TO A CARTESIAN CO-ORDINATE SYSTEM

Let z), be the axes of a rectangular Cartesian co-ordinate system
drawn through some point of a stressed body. The covariant and
contravariant components of the stress vector and the stress tensor

are then identical and, by formulas

X5 (1.55) and (1.56), equal to the physical

i3 components. Formulas (2.14) assume
the form

T Tk = Omplim. (2.22)

x, Here Ty, are the components of the

7 stress vector T, acting on a plane

passing through the given point of the

sz body, the outward normal to which

makes angles (r, x,) with the co-ordi-

nate axes; 0, are the components of

Fig. 7 the affine orthogonal stress tensor,

Onr (not to be summed) being the

stresses normal to the co-ordinate planes; o,,, (m 5= k) are the
shearing stresses.

The symmetry of the stress tensor expresses the law of paired
shearing stresses: at every point of a body the shearing stresses on
two planes at right angles to each other are perpendicular to the
line of intersection of the planes, equal in magnitude and directed
either both towards the line of intersection or both away from it
Fig. 7.

( I%otate the axes ozr, about the origin; we then have, by (1.13),

Ori = OmpOrm@in (223)

{a,m is the cosine of the angle between the z, and z,, axes).
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Noting that a? = 1, a,0;; = 0 (r %= i), where the index s is
summed, from (2.23) we obtain

O = O ppe

Consequently, the sum of the normal stress components acting on
three mutually perpendicular planes is independent of their orien-
tation at the given point

In a rectangular Cartesian co-ordinate system, owing to the fact
that the Christoffel symbols vanish and the covariant components of
the stress vector and the stress tensor are identical with the physical
components, the equations of motion (2.19) and the equations of
equilibrium (2.20) become, respectively,

T 4 pF = pW, (2.24)
Pmh | pFy=0. (2.25)
Tm
These equations may also be written as follows: in the case of motion
div Ty + pFy = pWy, (2.26)
and in the case of equilibrium
div Ty + pF, = 0. (2.27)

Here T, = i,04, is the stress vector on the co-ordinate plane z, =
= constant.

13. EQUATIONS OF MOTION AND EQUILIBRIUM REFERRED
TO CYLINDRICAL AND SPHERICAL CO-ORDINATES

It is often found convenient to use the equations of motion and
equilibrium in a cylindrical and a spherical co-ordinate system.

&

The physical projections of the force pF and the acceleration W
in a cylindtical co-ordinate system are denoted, respectively, by
oF,., oF ¢, pF3 and W,, W, W,, and the physical projections of
the stress tensor in the same co-ordinate system are denoted by
Orry quq:a 033, Grtm Or3s 0't‘p3 (Flg 8)'
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By using formulas (1.49) and (1.50), and taking into account that
the components of the covariant metric tensor in a cylindrical co-or-
dinate system are

gn=Hi=1, goa=Hy =71% gys=Hy =1, g3 = gass = &5 =0,
we have

1 1
pFt=pF,, PFZ=T pFo, pF3=pF;, o''=o,,, 0'12=‘To'r(p,
1 1
013 =0p3, 0¥ =—0Og3, 0% =—3Opq, 0% =03 (2.28)

By (1.84),
o™ — IO | pm ik Tk g™, (2.29)

6.7:"‘

from which, when & = 1, and from (2.28) we have

o=y L e 4 ooy (Th 4 Th+TH) o't
+Tji0Y + Thpo? 4 Tho¥.
By using (1.64), we find
I,=T%h="05="I}=5=T5=T%=0,
M=a, Th=-—r.

Then

1 a0, 1 00 aa. Orr—0Ogo
R

Substituting this equality in (2.19), we obtain the first equation of

motion
ao,, 1 90rg
—5—t5 30

The other two equations of motion are derived in a similar way

r

Opp—0,
Dy T L oF, = W, (2.30)

901 1 90gy aaq,s 2o,q,

60rs + + 0038 +-—0-;T$’—+PF3=PW3.

The physical pro;ectlons of the volume force and the acceleration
in a spherical co-ordinate system are denoted, respectively, by
oF,, pF o, pFy and W,, W,, Wy, and the physical projections of the
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oress tensor in the same coordinate system are denoted by o,,, G¢q,
Oy Orgs Oqus Oy (Fig. 9). In this co-ordinate system gy, = H} =1,

.
ey
@
r
6
Z2
4

Fig. 9

gas—H’—" gay = Hy = r¥sin® P, gy, = gy3 = g5 =0. Tak-
ing into account these relations, from formulas (1.49) and (1.50)
we find

pFt=pF,;, pF?= Tfng pFy, pF= % pFy,
Wi=W,, W2=-r:’+¢, wi=Lw,,
oit =0, 022:7281%1; Opp, 0%3= ',-1T°'\W’
o2 = 'rsiiTwp Orpy 0B= ﬂiin—\p— Ogp, OM= -:—0.4,,.

From (2.19), (1.64), and (1.84) we obtain the equations of motion

ao 90rp , 4 0ry
" + rsin 'llJ a9 +—r- op +
+ (2Grr =+ 0py cOt Y— Uw"c‘w) + pF = per.

_r'
90y 1 00gy 1 O0py
ry +

- or rsiny 09 oy
+ 2 [30p -+ (Gye — Tgg) 00t B+ pFy =pWe,  (2.31)

ao,q, 1 0049 1 00y

T rsiny 09 E) +
+ - (307 + 20y ot Y) + pFy = pWe.

&»
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Setting W, =W, =Wy=0 and W,=W,=W,=0 in
Egs. (2.30) and (2.31), we obtain the equations of equilibrium in terms
of the components of the stress tensor, respectively, in a cylindrical
and a spherical co-ordinate system.

14. DETERMINATION OF THE PRINCIPAL NORMAL STRESSES

Take a rectangular Cartesian co-ordinate system ox,. The direc-
tion defined by the unit vector » with components n, = cos (n, ;)
is called the principal direction of the symmetric stress tensor o, if
the vector o,n; is parallel to the vector n, i.e.,

Oy = ON,,;
where o is a scalar.
The last relation is written as
(Grk — Gsrk) np = 0. (2.32)

Equalities (2.32) in n, represent a linear homogeneous system of
three equations. The condition for the existence of non-zero solutions
is that the determinant of the coefficients of this system should be

Zero:
| 6pr — 08g, | = 0. (2.33)

Let us now prove that all of its roots are real; denote them by
o; (I =1, 2, 3). Suppose the contrary: let ; = a; 4+ if; and the
corresponding values n, = p, -+ igy; substitute this in (2.32). On
comparing the real and imaginary parts, we obtain

(0rr — adrx) pr + Bdrrge =0,
(0rr — adrz) gn — Bidwpr = 0.
Multiply the first equality by ¢, and the second by p,, and sum r

from 1 to 3. By subtracting one result from the other, and taking
into account the symmetry of 0,4, §,,, we obtain

Bi1 Bruprpr + 8:0q-qx) = 0. (2.34)

Noting that pj, g, are not all zero and each term within the paren-
theses in (2.34) is positive, we come to the conclusion that §, = 0.
Consequently, the roots of Eq. (2.33) are always real and the corres-
ponding values n}, being the solutions of the system of linear equa-
tions with real coefficients (2.32), are also real. The quantities o, are
called the principal components of the stress tensor, and r} are their
direction cosines.

Suppose that g;, 0, are two distinct roots, and nt, n? are the cor-
responding values of n,; from (2.32) we then find

(O'h,. —_ 0'16;”) n£ = O, (2.35)
(Onr — 0p0y,) n2 = 0. (2.36)
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Here the indices I and p are not summed. If (2.35) is multiplied by
rk and (2.36) by nt, then, by subtracting one result from the other,
and taking into account the symmetry of oy, and 8,,, we obtain

(Gl — Up) Gk,nﬁnﬁ = 0.

Since o; % 0p, it follows that
nknp =0,

Thus, in this case the principal directions of the stress tensor are
orthogonal and are uniquely determined. If Eq. (2.33) has two equal
roots, say 0; = Oy, the direction n® corresponding to the third prin-
cipal direction is perpendicular to the plane n', n®.

Consequently, any two mutually orthogonal directions lying in a
plane perpendicular to n® may be taken as the corresponding prin-
cipal directions. If, finally, all three principal stresses are equal,
then any orthogonal directions may be taken as the principal dire-
ctions.

The cubic equation (2.33) is now written as

03—1102+126—I3 =Oo (2.37)

According to the property of the roots of a cubic equation, the
relations between the roots and the coefficients are as follows:

I, =0, 4+ 0, + 03,

oy 0 o; 0 o; 0
2=| 0 g + 0 oy 0 o = 040, + 0403 - 0303,
opb 0 O
I,=| 0 o0, 0|=o0,0,0,.
0 0 o3
Take a matrix C in the form
C = ic}ll =io8; — .

The determinant of this matrix represents the left-hand side o
Eq. (2.33) written in an arbitrary curvilinear co-ordinate system z*,
_ Consider continuous one-to-one transformations of co-ordinates
z* = 2* (21, 22, 23). According to the transformation of mixed ten-
sors (1.12) we have

i -p 079 ozl

C;i=Cqg—mm——— .
J g 0zl 9zP
Introduce the notation
674 oxi ;
= aqv :f == b;J;
ozJ J o0zP
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then
C=|lcill=IIchbhad =125 111 by || || af || = BCB-1.

From_this we conclude that the determinants of the matrices C
and C are equal. Thus, the equation

|68 —0}] =0 (2.38)

is invariant with respect to the choice of co-ordinate system and its
roots always determine the principal components of the stress ten-
sor. Consequently, the coefficients of Eq. (2.37) are invariants under
a transformation of co-ordinates since they are completely deter-
mined by the roots, i.e., by the principal values of the stress tensor.
By expanding (2.38), we obtain formulas for the invariants

Iy=0,+0,+03=0g,
I 1 Q9 o B
2 = 0103 + 0303 + 0304 = - [(0a)? —0p0c],
I3=010203= lo'g'.

If the co-ordinate axes are taken coincident with the principal
directions of the stress tensor, the components oy, (k¥ 5= r) vanish
in this co-ordinate system; the only non-zero stresses are the normal
stresses Op, acting on these planes.



CHAPTER 1l

Theory of strain

15. THE FINITE STRAIN TENSOR

Consider a continuous medium S in which a curvilinear co-ordi-
nate system 27 (r = 1, 2, 3) is chosen. If a set of some functions of
position determines the extension of any infinitesimal straight mate-
rial segment passing through a given point, it is said that these
functions determine the deformation of the neighbourhood of this
point.

Let the co-ordinate lines chosen in the medium in its initial con-
figuration be composed of material particles of the same medium.
Suppose that during the deformation the co-ordinate lines continue
to be made up of the same material particles. As a result of the de-
formation, the given co-ordinate system Pz!2%2® with covariant
base vectors e, being continually distorted together with the medi-

um, assumes a certain position in one of the subsequent configura-
tions S. The configuration S may be taken as a new co-ordinate sy-

stem Pz'z%3 with base vectors e,. The reference system in which

the displacement is determined is taken to be a co-ordinate system
oxyrary with base vectors ef (Fig. 10). The system oxizizi may be

chosen at will, and of the co-ordinate systems 2" and z" only one
may be chosen arbitrarily, i.e., if the system a7 is chosen, the system

2" is determined by the deformation, and vice versa.
According to formula (1.27), for the squares of line elements of

the configurations S and § we have, respectively,
ds? =g, d2"dz*, ds?=g,, dz" dz". (3.1)

Here Enhs é,,h are the covariant metric tensors in § and S, respec-
tively; dz" are the components of the infinitesimal vector PQ defining

the position of the point Q relative to the point P, and dz" are the

components of the vector PQ (see Fig. 10) which, by virtue of con-
tinuity, is infinitesimal.
The state of strain in a body is determined by the difference

dst — ds? = g, dz" dz* — g, da™ da*.
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On the basis of (1.6) this difference may be put into the form

ds2— ds? = 2e,, dz™ dz*, (3.2)
where
1 Ju—
Enp =5 (Enh—&na) 3.3)
with
—_ ~ ozt gzm
Gnh=Bim g - (3.4)

It is seen from (3.2) that &,; are the components of a symmetric cova-
riant tensor of rank two, which is called the strain tensor. If all e,

Fig. 10

are zero for all points, then ds = ds and the body undergoes no, de-
formation. The extension of a line element ds, along the co-ordinate
line z™ is, by definition,

dsp, —ds
€n =—1;$‘n—n' (3.5)

According to formulas (1.40)
ds, =V gnndz™  dsp=V gnmdz"™ (3.6)
Substituting (3.6) in (3.5), we obtain

¢, = dsp—dsy, ___]/E,m 1

dsp 8nn
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From this, using (3.3), we find
2enn
en= ]/1 —l———gnn —1. (3.7

Here the index n is not summed; the root is taken with the plus
sign since the extension is zero when &,, = 0. _
The cosine of the angle 8,; between two line elements ds, and ds,
which were directed along the co-ordinate lines z™ and z* before
deformation, is determined, according to formulas (1.54), (1.6),
and (3.6), by the formula
Py ozt 9zi
— > . gon gok UTozn gk
cos B, — EnhdTdrt I___az_
dsp dsp, V gnngrk dz™ dzh

dz™ dzh

.

By (3.4), this formula may be put into the form
gnk

COSgnh= —
V &nn8kk

After determining g, from (3.3) and substituting in the last for-
mula, we find

gnk+28nk (3 8
V (@nn+2€nn) rr+ 2€rR) ° )

Formulas (3.7) and (3.8) show that the six components of the strain
tensor defined by formulas (3.3) enable one to calculate completely
the extensions along the co-ordinate lines, issuing from some point
of a body, and the angle between two line elements after deformation,
which were directed along the co-ordinate lines z* before deforma-
tion. Since the angle between the co-ordinate lines before deforma-
tion is known, the change in this angle can thus be determined.

Let us now express the components of the strain tensor e, in
terms of the components of the displacement vector . It is seen
from Fig. 10 that

c0s 0, =

r=r-+tu. (3.9)
Let e,, e, be the respective base vectors; hence, by (1.26),
or - or
eh:ah_’ €n =E; . (3.10)

It follows from the vector equation (3.9) that

or _ or , ou
ozk azh | ozh °
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Substituting (3.10) in the last relations, we have

E dzm
™ ozh

—ep + _Z:T (3.11)

Since for the configurations S and S, respectively,
nr=2©€n-€ry Egnr=E€n-€Cp,

on the basis of the rules for scalar multiplication and formulas (3.4),
(3.11) we find

gnn= (en‘l-%;) (eh+%)=

ou ou ou ou
= gnnt€n- —6.1:" +ep- dzm + 02" gk (312)

Substituting (3.12) in (3.3), we obtain

ou ou ou ou
ozh +en: oz™ + ozn azk )' (3-13)

1
= 5 ( €ne
Referred to the 2% co-ordinate system, the vector u is represented as
u=u%ey, U=1Uge®. (3.14)

Here the index o is summed. Taking into account (1.57), (1.79),
(1.65), and (1.80), we find

ou ou
g~ Winar o= la, k€% (3.15)

where u%, uy, , are the covariant derivatives, respectively, of the
contravariant and covariant vectors, equal to

@ ou® o . m Oug m 1
= 3 nm% g o, kR — — L akWme .
U =——+ Tamt Ug, p = ook Taru (3.16)

It should be noted that here the Christoffel symbols must be calcu-
lated from the metric tensors for the configuration S.
Substituting (3.15) in (3.13), we have, finally,

Enp = -% (Uni n+ Unj n + Uai 1U®,)- (3.17)

By formulas (3.17), the components of the strain tensor are calculat-
ed through the covariant derivatives of the covariant and contra-
variant components of the displacement vector z in the system of
the directions of the base vectors e* and e,.
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16. THE SMALL STRAIN TENSOR

If the strains (extensions and shears) and the angles of rotation
are small compared with unity and have the same order of smallness
(as is the case in considering the deformation of bodies whose all
dimensions are comparable in magnitude), the non-linear terms in
the general formula (3.17) can be rejected as small quantities. In
this case the strain tensor is called the small strain tensor and deno-
ted by e,;. Consequently,

enn =g (tn, n -+ Us, ). (3.18)

The materials used in engineering, with the exception of rubber,
some plastics and others, retain elasticity only at very small exten-
sions and shears. This points clearly to the practical importance of
the small strain tensor.

Let Q be a point close to the point P, and Q its position after dis-
placement. In Fig. 10 PP = u and QQ = u, represent the displace-
ments of the points P and Q, respectively.

By expanding u, at the point P, and neglecting small quantities
of higher order in dz™ (d2™ are the contravariant components of the
vector PQ), we have

s (Q) = u (P)+ 2iB)

From the last relation we find the displacement du of the point Q
relative to the point P:

— (uhep) da™.

du = u’f .erdr®

Substituting du = du,e®, and multiplying scalarly both sides of
the above equality by e, we obtain

duh = Up, ,,dx”, (3.19)

where u,, , is the covariant derivative at the point P
Introducing the notation

€r =_;‘ (uk, n+Un, k):
) (3.20)
2

Wpp = (YR, n—Un, B)s
instead of (3.19) we have
duh = (ehn + mhn) dz"

We conclude from formula (3.20) that w,, is an antisymmetric ten-
sor called the rotation tensor. The displacement of the type e,,dz"
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results from the deformation of the neighbourhood of the point P,
while the displacement of the type w;,dz" results from the rotation
of the neighbourhood of the point P as an absolutely rigid body
about this point.

17. STRAIN COMPATIBILITY EQUATIONS

As is clear from (3.17) or (3.18), the components of the strain ten-
sor are not independent, they must satisfy some conditions. These
conditions can be obtained on the assumption that the body in the
undeformed configuration is in Euclidean space and continues to
remain in it during deformation. As is known, the necessary and
sufficient condition for this is that the Riemann-Christoffel tensor
should be equal to zero for both the undeformed state S and the

deformed state S, i.e.,
Rmnpg =0, Bmnpg =0 (3.21)

or
Rmnpq —_— Rmnpq - O.

Substituting the expressions for the components of the Riemann-
Christoffel tensor (1.87) in (3.21), we obtain

1 ( azgmq 62§np az-é-mp 62Enq

— — 7T, T -
2\ 9770z T ozm ozl 07029 0™ 9z ) 87 (Ui, npls ma

T; f 1 ( 0’gmq azgnp {')ngp 62gnq
T hiing f'mp)“? e 020 | 5am ozl 0znoad a7 0aP )"

—87 (Ci.nplima—Tinalsmp) =0.  (3.22)
By using (3.3), and taking into account the fact that the Riemann-
Christoffel tensor has only six independent components, Rj,,,

Ryg13, Ry393, Rysias Ra1ssy Rsyse, from (3.22) we obtain six indepen-
dent equations

9emq 9enp %€nq emp r s r s
oz oxP | xzm 9zl ox™mdxzP  ozn ozd 2ers (TgmI'pn—I'mplan) +
+ 2T p8mar + 2T gmen pr — 2T g8 mpr — 2l mpErgr = 0, (3.23)
where

1 ¢ Oepr dern Otnp
Snpr—?( dzm + 9zP 9T )’

mnpq: 1212, 1313, 2323, 1213, 2123, 3132.

These equations indicate that the components of the strain tensor
e, are dependent. The equations that must be satisfied by the com-
ponents of the strain tensor ¢, are the necessary and sufficient con-
ditions for the configurations S and S to belong to the Euclidean
space.
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18. THE STRAIN TENSOR REFERRED TO A CARTESIAN
CO-ORDINATE SYSTEM

In a Cartesian co-ordinate system the covariant and contravariant
vectors are identical; the covariant derivatives are also identical
with the ordinary derivatives since in this case the metric tensor is
constant and the Christoffel symbols are therefore equal to zero.

Thus, according to (3.17), the components of the finite strain ten-
sor in a Cartesian co-ordinate system z, are determined by the for-
mulas

_ 1 (ou dup duy du
Snk—f( 6:1:: + dzn + Z')z: 0.1:: ) . (3.24)

Remembering that in the case of an orthogonal Cartesian co-ordi-
nate system g,, = 1 and g,, = 0, formulas (3.7) and (3.8) become

T 5 ey 2epn
en=V1-F2e,,—1, cos0,, e T e (3.25)
These formulas are used to calculate the extensions of line ele-
ments issuing from some point of a medium parallel to the axes of a
rectangular Cartesian co-ordinate system, and the angles between
these line elements after deformation.
According to (3.17) or (3.24), the small strain components in a
rectangular Cartesian co-ordinate system z, are

1 ( du dup,
=7 (Gt ) (3.26)

If small strains are considered, from (3.25) we have

en=1+%(28nn)+”- -1 ep,

oS By, = 284y { 1— % 2 (&nn +&rr +28nn80) + - . } 2 2epn.

Thus, it follows from e, = e,, that ¢,, are the extensions of line
elements which were parallel to the corresponding axes of the rec-
tangular Cartesian co-ordinate system before deformation. The
quantities 2¢;, are the cosines of the angles formed after deformation
between two line elements which were parallel to the co-ordinate
axes before deformation.

We have

cos e-—hn = cos [90° — (Ykn + 'Vnk)] = sin (Yor + 'Ykn) & Yen + Vnke

Here yu, is the angle of rotation towards the axis oz, of a line ele-
ment parallel to the axis oz, and equal to gx—‘:‘; Ynr is the angle of
rotation towards the axis oz, of a line element parallel to the axis
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oz, and equal to -g:—h (Fig. 11). Hence, 2¢;, is the change in the angle
n

between two line elements parallel to the axes oz, and oz, (k % n).

In a Cartesian co-ordinate system the components of the rotation

tensor are

1/ duy dun
(ﬂhn=-2— ('517\'— th ) . (3.27)
Rotate the axes oz, of a rectangular Cartesian co-ordinate system;
the new axes are denoted by ox;. Noting that e, is a tensor, on the
basis of (1.13) we have e, = epnr@mr®m, from which ey = ey,
i.e., the sum of the extensions in
three mutually orthogonal directions
Xk issuing from the same point of a body
Dxyin is independent of their orientation at
the given point.

kn
» 19. COMPONENTS OF THE SMALL

STRAIN AND ROTATION TENSORS
Prk Ay g REFERRED TO CYLINDRICAL
Xn AND SPHERICAL CO-ORDINATES

dy The physical projections of the

. displacement vector « in a cylindrical

Fig. 11 co-ordinate system (r, @, z,) are denot-

ed by u,, ug us and the physical

components of the strain tensor by e, €44, €33, €rqy €3, €3
By |jusing [formulas (1.49) and (1.50), we find .

dxy

ul = u,., u’ = ruq” u$ = us,

_ — 2 -
€11 = €rpy €3 = TCoo €33 = €33, (3.28)
€13 = Teroy €33 = T'g3y €33 = €3y

According to (3.20) and (3.28), for the six independent components
of the small strain tensor and the rotation tensor we have

au 1 Oup  u, dug
err ="y =TT Gm=T",
1 ({1 ou, , Oug uUg
bre=7% (’r" ap T ar ""‘r‘)’ (3.29)
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1 8 du
mq,,-—-(o,.:-i;(—gl(-;}’-—r—a%) N (330)
_ _ 1 6u,- _ 6us
(03,-—0)@—7( Ozg ar )‘

In formulas (3.30) use has been made of the following abbreviated
notation: w,, = @3, We3 = ®,, W3, = O

Suppose that ug = 0, and u, and u, are independent of the z,
co-ordinate; from formulas (3.29) and (3.30) we find

__ Oup _ 1 Oug u,
err=": Cw=7T g T3

1 (1 du, , Oug "w)’ (3.31)

eo=3\v 29 TF T

1 u
Org = 03 =5 57 (rie) = 37).

These formulas define the three components of the strain tensor in
the case of so-called plane strain with respect to the r¢ plane in
polar co-ordinates.

The physical components of the displacement vector » in a sphe-
rical co-ordinate system (r, @, y) are denoted by u,, uy, uy, and the
physical components of the strain tensor in the same co-ordinate

system by e,., €upr €pyps €ror €qus Gy According to formulas (1.49)
and (1.50) we have '

Uy =1Up, Ug =TUg, Ug =T Sin Puy,
eyy=6rr,  Cag=T3q0s es3 =r? sin® Peyy, (3.32)
€13 =Te€ry, a3 =T28in Pegy, €31 =T SinPey,.

Substituting (3.32) in (3.20), we find

ou,
err =
1 Oup 14 1
€oo=Tsmy o9 +7u"+rtanxp Uis
1 Oup 1
¢ov =7 5 T 7 Un
1 1 ou, , Oup 1 (3.33)
o=t (o 2 g 1)
72 \Ursiny a9 ar r ®)
1 (1 Oug 1 )
ew_?(T o9  rtany u“’+rsin1p a9 )
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_ 1 Ww 1 0ur\ ,
e"’"?( ar ‘1’+r 7P )
1 duy d .
w®¢=mr=m(——‘—%(uw51n¢))’
1 ou a
Wypr = 0 =5~ (—aj— 5 () s (3.34)
_ 1 our
Ory =00 = 35y (ar (ruey sin ) — 50 )

20. PRINCIPAL EXTENSIONS

By analogy with the theory of stress, the principal directions of
the strain tensor in a rectangular Cartesian co-ordinate system are
defined as the directions for which the following conditions are
fulfilled:

Epnln = €0 (3.395)
. . . . . © [ ——
Here ¢ is a scalar, a, are the direction cosines of the unit vector v.

By using the Kronecker symbols, the system of equations (3.35)
is written as

(epn — Opne) a, = 0. (3.36)
Since the cosines cannot all be zero simultaneously, we have
| €n — dpne | = 0. (337)

The principal values of the strain tensor, which are called the prin-
cipal extensions, are the roots of the cubic equation (3.37). The di-
rections corresponding to the principal extensions &,, &,, &; are
mutually perpendicular. When two of the roots are equal, the direc-
tions corresponding to these roots lie in a plane perpendicular to
the direction corresponding to the simple root; in this case any mu-
tually orthogonal directions lying in this plane may be taken as
principal. If all three roots are equal, then any perpendicu-
lar directions may be taken as principal.
The cubic equation (3.37) is written in the form

83—.[182—"'[28—]3:0.

According to the property of the roots of a cubic equation, the rela-
tions between the roots and the coefficients are as follows:

I, =& + & + &3
I, = &8, + &85 + €38y,
I, = g¢e,83.



21. Strain Compatibility Equations 65

By analogy with the theory of stress, I,, I,, I;are invariants. Thus,
I=g +e,1-e3=¢7,
Iy = &4, + et +ea8g = - [(e2)2 —ebeg],
I;=¢ge0es—=|eb|.

The first invariant of the strain tensor in the case of small strains
represents the unit change of volume. Indeed, take the principal axes
of the strain tensor at a point P of the medium. Construct on these
axes a parallelepiped having edges equal to dx, before deformation.
After deformation the parallelepiped under consideration, remain-
ing rectangular, will have edges (1 + e;) dzy. The volume of the
parallelepiped before deformation is dt = dr,dz,dz;, after defor-
mation

=1+ e) (1 + e) (1 + e5) drydadr; =
=1+ e)1 + &) (1 + e5) dr.
Rejecting small quantities of higher order, we have
dvy, =1 + e, + e, + ¢€3) dt.
Denoting the unit change of volume at the point P, or the volume
strain, by 6, we obtain
e——ai—et-}-ez'{-ea

Remembering that I, = e, + e, + e; = e;; + €55 + €35, for the
volume strain we obtain
Ou,

0
O=I1=ey+epnten= ul+ax2+

i.e., 6 = I, is the volume strain at the point P.

If the co-ordinate axes are taken coincident with the principal
directions of the strain tensor, the components e, (k¥ %= r) vanish
in this co-ordinate system, and only extensions e, acting on these
planes will remain.

dug

=divu, (3.38)

21. STRAIN COMPATIBILITY EQUATIONS IN SOME
CO-ORDINATE SYSTEMS (SAINT VENANT’S CONDITIONS)

In view of the fact that in the case of a Cartesian co-ordinate sys-
tem the Christoffel symbols are identically zero, the compatibility
equations (3.23) in this system assume the form

Pemq Penp 9%, em
— TP z P —0, (3.39)
dxp Ozp Oxm dzq 0xm dzp Oy 0zq

where mnpg: 1212, 1313, 2323, 1213, 2123, 3132.
5—-0884
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The compatibility equations in a Cartesian co-ordinate system
were obtained by Saint Venant for small strains directly by elimi-
nating the displacement components from formulas (3.26).

If Saint Venant’s conditions are fulfilled for an arbitrary tensor
eyy, a displacement field can be found for which e;; is the strain ten-
sor. In the case of a simply connected body the displacement is de-
termined to within a rigid-body displacement, in the case of a mul-
tiply connected body some additional conditions must be fulfilled.

To obtain the strain compatibility equations in a cylindrical co-
ordinate system, we take account of formulas (3.28) and (1.64) in
Eqgs. (3.23); after some computations we obtain

i 0%epp i a ( degg ) _ derr ____3 0% (reqr) —0
F e T P o T arap
0%err 0%ess 0%erg —
o3 Tt 2y ozg 0,
Pego 1 s | 4 ae,,3 2 9§ [ Oegs
A2 + op? T Tor T oz ( +e’3) 3 40
1 8%, ( 1 0( "em) ) 02 (rzercv) likd (ers =0 (340
T 99 oy r2 or Oxs T orop \'r ) -
. F (e 7] ’rew ) 92 ers 92 (regs) 0% (regr) _0
dzg \7TT Q2 ar 0g dzg 09 ~
92 (ﬁl)_*_ae;q,_r 92 (ews)_i_?zers _0.
o or r 0x% ar 0zg r r 09 drg

22, DETERMINATION OF DISPLACEMENTS
FROM THE COMPONENTS OF THE SMALL STRAIN TENSOR

Formulas (3.26) are used to calculate the components of the small
strain tensor when displacements u; (z,, z,, z35) are given in a rec-
tangular Cartesian co-ordinate system. To calculate the latter when
the components of the strain tensor e, are given, it is necessary to
solve the system of six first-order linear partial differential equations
(3.26). For the system to be consistent, the given components ey,
must satisfy the so-called compatibility conditions, or the conditions
for the integrability of this system. Assume that e, are given single-
valued functions of z, having continuous second-order partial deri-
vatives.

If displacements u; are found from the given components of the
strain tensor, by adding to them an arbitrary infinitesimal rigid-
body dlsplacement of the body as a whole, we obtain new displace-
ments obviously also corresponding to the given components of
the strain tensor since the rigid-body displacement has no effect on
pure strain. Hence, for definiteness we may, for example, assign, in
addition, the projections of the displacement vector of some point
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of the body and the components of the rotation tensor at this point.
The region of assignment of the components of the strain tensor,
which are used to find the projections of the displacement vector in
the same region (occupied by the body before deformation), is de-
noted by 7. Assume, for the present, that this region is simply con-
nected. From (3.26) and (3.27) we have
du
61: =ekn+0~)hn' (341)
Let the components of displacement u, and the components of the
rotation tensor w;, be given at a point M° (zj, z3, x;). The compo-
nents of displacement at a point M’ (zj, z;, z;) are, from (3.41),
M'
up = uj + S (€nn + Onn) 2. (3.42)
Mo
Here the integration is carried out along an arbitrary curve joining
the points M° and M’ and lying entirely within the region 7, z,
are the current co-ordinates of a point of this curve; consequently,

dz, = — d (zn — z,)
Substituting the last relation in (3.42) gives
M’ M’
un =15+ | enn dzn— | onnd (21— 22).
ie e

By integrating the last integral by parts, we obtain
MI M Ml

up =up+ S €hn ATn — Opy (Tn—25) e T S (zn—z,)
Me Mo

i)
o A, (3.43)

Here the index m is also summed. By (3.27),
0Wpn 1 ( dup, _ dun ) a 1 ( dup, oup, ) _

0xm 2 0xm \ dzq, oxp = 0xy 2 0xm, dzp,
__9 _1_( dun dum
oxp 2 \ dzp 6xn)
By wusing (3.26), we find
[i[0)8% _ 9 e
dxy ~ Oz hm ™ oxy €nm-

Substituting this in the last integral of (3.43), we obtain, finally,

Ml
=15+ 0k (25— 23) + | [[enm -+ (22— z,) (Jeim_ Zeom )] dzm.
ire ozq dxp

(3.44)
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By their physical meaning, u, must be independent of the path of
integration M°M’; for this, in the case of a simply connected region
it,is necessary and sufficient that the integrand be the total diffe-
rential at all points (z;, z,, z3) and for all values (z], z;, ;) in the
region t. These conditions lead to the following relations:

0%emn 0%epr 0%ern PZemr

Oz 0xp 0z 02p oz, oz,  Ozp, Ozp =0’ (3'45)

where mkrn: 1212, 1313, 2323, 1213, 2123, 3132.

Thus, relations (3.45) ensure the consistency of six differential
equations (3.26) for the determination of three functions u,. These
equations are identical with Saint Venant’s compatibility condi-
tions; hence, Saint Venant’s conditions also ensure the integrability
of six differential equations (3.26). With Saint Venant’s conditions,
formulas (3.44) determine u, whatever the shape of the curve of
integration lying entirely within the region .

If the body is multiply connected, the integral in formula (3.44)
can, in general, receive finite increments, in which case the
uniqueness of displacements is not ensured, whereas they must be
unique. By means of suitable imaginary cuts a multiply connected
body can be transformed into a simply connected body; if Saint
Venant’s strain compatibility conditions are fulfilled, the displace-
ments u, determined by (3.44) will then be single-valued functions
provided that the curve of integration nowhere crosses the lines of
.cuts. As the point M approaches some point of the line of a cut from
the left or right, u; will, in general, assume different values. It
appears from the above that in the case of a multiply connected
region the additional conditions for the compatibility of strains
are (up)iert = (Up)rignt along all lines of cuts.

The most general tensor presentation of the theory of stress and
-strain for an arbitrary co-ordinate system is of particular value for
finite deformations. The general equations and formulas derived
above will enable us to develop them subsequently in appropriate
co-ordinate system.

In the following discussion we shall mostly use a rectangular
QCartesian co-ordinate system.




CHAPTER IV

Stress-strain relations

23, GENERALIZED HOOKE'S LAW

The equations obtained in Chaps. II and III are not sufficient to
determine the states of stress and strain produced in a body by ap-
plied forces. These equations must therefore be supplemented by cer-
tain relations connecting the states of stress and strain. These rela-
tions are determined from the physical properties of a solid under-
going deformation. The establishment of the stress-strain relation
is an important problem of continuum mechanics requiring the
carrying-out of preliminary experiments. This relation is usually
idealized by simple mathematical formulas.

During deformation, the removal of the external forces leads in
some cases to complete recovery of a body to the natural state, i.e.,
the strain is recoverable, while in other cases the body, on remov-
ing the load, retains the strains, called permanent or plastic strains,
i.e., the strain is irrecoverable. The following discussion will be
concerned with fully recoverable small strains.

Assume that at each point of the body under consideration there
is a one-to-one correspondence between the states of stress and strain.

By expressing this analytically, we obtain six relations of the form

ot =1 (en), (4-1)
which are uniquely solvable for the components of the strain tensor
e’ = ¢V (ony). (4.2)

The undeformed state of an elastic body is taken to be a state
in which there are no stresses. This state will be further used as the
origin of stress and strain. Hence, the functions f*’ and also ¢* vanish
when their arguments become zero:

¥ (0) = ¢¥ (0) = 0.
For many materials, relations (4.1) and (4.2) are linear if the magni-
tudes of the stresses are confined to a certain range.

The linear law for the relation between stress and strain is called
the generalized Hooke’s law. The general form of writing Hooke’s
law is as follows: ' .

ot — Ci]klehl. (43)
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Interchange in turn the superscripts ijkl in (4.3) to jikl, ijlk,
jilk; from the symmetry of the stress tensor and the strain tensor
we reveal the symmetry of the quantities

Ciik — CFikl _ Cintk _ Clilk (4.4)

which form a tensor of rank four. The quantities C*’*" are called the
elastic coefficients of a body. The total number of different coeffi-
cients C¥*, as may be ascertained from (4.4), is 36. The elastic
coefficients depend on the metric tensor g;; of the undeformed body
and on its physical properties. Noting that

1 when a=m,

o — :To A
Em = ErmE" =10 when @ == m,

(4.3) is written as
ot = CM ey gumg " ging"™
According to the rule for scalar multiplication, Cithlg, g is a
mixed tensor Cii,, and e,,g"™g'™ are the contravariant components
of the small strain tensor.
Thus, instead of (4.3) we have

o = CH, e™, (4.5)
We write Hooke’s law (4.3) as o;; = C,-,-k,ek’ (Cijny = C{'ikl =
= Cij;n = Cyp by virtue of the symmetry of o;; and ¢*') and
make transformations similar to those applied above. We then
obtain

01y = Cli . (4.6)

For the case of a prismatic rod loaded axially in tension Hooke’s
law is written as
e=Co, e =~Clo,

where e and e’ are, respectively, the longitudinal and lateral strains,
C and C' are constants equal to

1 r_ v
C=45, C'=—F.

Here E is the longitudinal modulus of elasticity, v is Poisson’s ratio.

24. WORK DONE BY EXTERNAL FORCES

Let an elastic body be acted on by surface forces T, and volume
forces p F. Suppose these forces are given increments d7'y, and pdF,
respectively. In consequence the displacement vector u changes to
du. The work dV done by the forces 7', and p F during the additional
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deformation of the body is

av = { pFy du, dr—}-S T du, do,
T ®
where T is the volume of the body and w its surface.

Noting that T, = 0Oy.n, and transforming the surface integral
into a volume integral, for dV we obtain

dV= S th duk dt + S —a% (Ukr duh) dt
L 1 T
or

dV = S (ka + 00"’ ) duy, dt +S Opr -a—-(duk) dr.

T

In view of the fact that
a""’ +pFy=0, —(duk)— a”"
we have

v = S onrd S d. (4.7)

T

In the integrand of (4.7) the indices k and r are to be summed. Be-
cause of the symmetry of the stress tensor o,, we have

du

B dup Jur \ __
Oprd oz, =0prd ( 7z, + P ) = Opr depr.

On the basis of the last relation we finally obtain for dV:
dv — S Oy depr dT. (4.8)

T

In statics this formula determines the work done by the external forces
pF and T, during the increments of the components of the strain

tensor produced by the change in the above forces; the work per unit
volume is

d4 = oy,dey,. (4.9)

25. STRESS TENSOR POTENTIAL

According to W. Thomson’s idea, the first and second laws of
thermodynamics are applicable to the study of the deformation proc-
ess in a body. Suppose that the deformation process in a body is
thermodynamically reversible; the state of the body is then uniquely
determined by the thermodynamic variables.
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If U, Q, A, S are, respectively, the internal energy, the quantity
of heat, the work done by external forces, and the entropy per unit
volume of the body, in the case of small strains we have, by the first
and second laws of thermodynamics,

dU = dQ + dA, dQ = T dS. (4.10)

Here dU and dS are, respectively, the increments of internal energy
and entropy representing the total differentials of the independent
thermodynamic variables defining the state of the body, T is the
absolute temperature.

Eliminating the increment of heat dQ from (4.10), and using (4.9),
we obtain the fundamental thermodynamic relation for the deforma-

tion process in a body:
dU = T dS + op,dey,. (4.11)

We define an elastic body so that the specification of the strain
tensor e,, and of one thermodynamic variable (temperature T or
entropy S) will completely determine its state, i.e., the stress tensor
Oxr and the thermodynamic potentials U and F = U — TS (the lat-
ter is termed the Helmholtz free energy).

The independent variables determining the state of an elastic body
are chosen as ¢, and the temperature 7. The Helmholtz free energy

is then a function of e,, and T only, i.e.,

F =F (ey,, 7). (4.12)
After determining U from
F=U-TS, (4.13)
and substituting it in (4.11), we find
dF = oy, de,, — SdT. (4.14)
On the other hand, from (4.12) we have
dF =2 dey, + 51 dT. (4.15)

On comparing the coefficients of like differentials in (4.14) and
(4.15), we obtain

oF oF
Orr = ez~ §=—%r- (4.16)
Here
ehn=Crn, Chr=12epn (k=~T).

The first relation of (4.16) shows that for the given choice of the inde-
pendent thermodynamic variable the Helmholtz free energy is the
stress tensor potential for an elastic body. If the independent thermo-
dynamic variable is chosen to be the entropy, i.e., if we suppose that
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the state of an elastic body is completely determined by specifying
the strain tensor e, and the entropy S, then U=U (ey,, S) and the-

refore

v =22 deh,+%ds. (4.17)
On comparing (4.11) and (4.17), we obtain
oUu oU
O'hr=ae—zr, T = ﬁ- (4.18)'

The first relation of (4.18) proves that the internal energy is the stress

tensor potential.
In the case of an adiabatic process, i.e., when dQ = 0, it follows
from the first relation of (4.10) that d4 is the total differential of

the independent variables ey,, ie ,
dA_ d
denr €hr-

On the other hand, by (4.9), we have

dA = Ukrdekr’
from which

A
Orr = Be%, - (4.19)
If an isothermal process (I' = constant) takes place, by virtue of

the second relation of (4.10) the increment of heat dQ, as well as dU,
is the total differential. Consequently, we conclude from the first
relation of (4.10) that dA is the total differential. Then

A
Onr = g~ (4.20)

As seen from (4.19) and (4.20), in the case of adiabatic and isother-
mal quasi-static processes the work done by external forces is the
stress tensor potential and it can be determined from the equality

dA = ay, depr = aa dey,. (4.21)

If the body is linearly elastic, the quantities % are, according to

(4.6), linear and homogeneous in the components of the strain tensor
er,. Hence, A is a second-degree homogeneous polynomial in ey,.
Consequently, by Euler’s theorem on homogeneous functions,we have
0A
-am Cpr = 24.

This relation is known as Clapeyron’s formula.

The independent variables determining the state of an elastic body
are now taken to be the stress tensor oy, and the temperature .
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Introduce a new function

J=U—TS — opseprs : (4.22)
which depends only on oy, and T; then
oJ aJ
aJ = '56_;;- do’kr—'— —ﬁ'dT. (4.23)
On the other hand, from (4.9), (4.11), and (4.22), we have
dJ = — S dT — ey, doy,. (4.24)
Comparison of (4.23) and (4.24) leads to the expressions
J .
= —go—, S=—ar. (4.25)

Thus, in the case when the independent variables are chosen as
oy, and T, function (4.22) is the potential for the strain tensor of an
elastic body. It can easily be shown that, in the independent variab-
les oy, and T, the function

Orr€rr — A (4.26)

is the strain tensor potential for adiabatic and isothermal deforma-
tion processes in a body.
Formula (4.9) can be rearranged in the form

dA = oy, dep, = d (Gkrekr) — €pd0p1e

From this, remembering that for adiabatic and isothermal defor-
mation processes dA is the total differential, we have

d (A —Oyrepr) = — €pr dOgy.

Consequently,

ety = 0 (Orrenr—4)
T aok,.
Thus, the function oy,ex, — 4 is the strain tensor potential for adia-
batic and isothermal processes.

If the body is linearly elastic, by Clapeyron’s formula og,es, =
= 24, and by (4.26) the strain tensor potential, called the elastic
potential, is 4. Consequently,

04
o0py *

(4.27)

*
Cry =

These relations are known as Castigliano’s formulas and are valid
for adiabatic and isothermal processes in linearly elastic bodies.
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26. POTENTIAL IN THE CASE OF A LINEARLY
ELASTIC BODY

Suppose that the deformation process in a solid takes place adiaba-
tically or isothermally; then relation (4.19) holds. With this relation,
dA is the total differential of a continuous single-valued function
A depending only on the strain tensor e,. Assume the body to be
linearly elastic. Substitute the expressions of the generalized Hooke’s
law (4.6) in (4.9):

dA=Cij"epn de;;.

For the right-hand side of this equality to be also the total differen-
tial, the condition C#, = C7* must be fulfilled. Taking this into ac-
count, upon integration we find

A= Cllepner. (4.28)

27. VARIOUS CASES OF ELASTIC SYMMETRY OF A BODY

The theory of elasticity deals with homogeneous and non-homo-
geneous, isotropic and anisotropic bodies. A homogeneous body is
one whose elastic properties are the same at all of its points; an iso-
tropic body is one whose elastic properties are the same in all direc-
tions. Otherwise the body is said to be non-homogeneous and ani-
sotropic. An example of anisotropic bodies is provided by crystals.

Metals and their alloys used in engineering have polycrystalline
structure in the form of randomly oriented crystal grains. A poly-
crystal whose size is of the same order of magnitude as the size
of crystal grains is by its nature non-homogeneous and anisotropic.
In comparing specimens whose dimensions considerably exceed the
size of individual grains, in view of the arbitrariness of the orienta-
tion of grains and the smallness of their size in comparison with
the specimen dimensions (from fractions of a micron to tens of mic-
rons), a polycrystal behaves as a homogeneous and isotropic conti-
nuous medium. )

It should be noted that the manufacturing processes and various
kinds of mechanical treatment introduce more or less significant
anisotropy and inhomogeneity into a metal; hence, there is always
only approximate homogeneity and isotropy of materials.

i -{The symmetry of the structure of anisotropic bodies leads to rela-
tions among the elastic coefficients. We shall consider some special
cases of elastic symmetry.

For anisotropic linearly elastic bodies when the deformation
process takes place isothermally or adiabatically, in view of the fact
that C[}* = Ci, the number of elastic coefficients is 21.
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Let the body have one plane of elastic symmetry, which is taken
as the ox,z, plane. If the direction of the ox; axis is reversed, the
signs of x5 and u; must be reversed, and hence the signs of the strain
components ez, e,; are also changed.

_The reversal of the direction of the oz; axis must not change the
magnitude of the elastic potential 4 since it is an invariant. In for-
mula (4.28) the first degree terms in e,;, e;; must therefore vanish,
i.e.,

cli=cii=cii=cli=cii=cii=cti=c3i=0. (4.29)

Thus, in the case when the body has one plane of symmetry of elas-
tic properties, the number of elastic constants reduces to 13.

Let the body have two mutually perpendicular planes of symmetry
of elastic properties. These planes are taken as the co-ordinate planes
0z,x, and ox,zs. 1f the magnitude of the elastic potential is to remain
unaltered when the direction of the oz, axis is reversed, in which
case the sign of the component e;, is changed, in addition to condi-
tions (4.29) we must set

Cli=Ch=cCii=cCi=o0. (4.30)
Consequently, if the body has two mutually perpendicular planes

of symmetry of elastic properties at each point, there are only nine
non-zero elastic constants; they can be represented as the matrix

citeceib o 0o o0
cih e3¢ 0 0 0
Cit C35C33 0 0 O
0 0 0 C% 0 0
0 0 0 0 cCi¥ o
0 0 0 0 0 Ci3

It follows from inspection of this matrix that if there are two ortho-
gonal planes of elastic symmetry in a body, the third orthogonal
plane is also a plane of elastic symmetry. Such a body is said to be
orthotropic.

If the body possesses the same elastic properties with respect to
each of the three planes of symmetry, and if the magnitude of the
elastic potential is to remain unaltered when the axes oz, ox,, oxg
are permuted cyclically, i.e., when e;;, e,,, €33 OT €1,, €53, €5, are per-
muted cyclically, in addition to conditions (4.29) and (4.30) the
following conditions must be fulfilled:

cli=ci=c3, cii=cii=c3, cii=ci}=C3.  (4.31)
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Consequently, when the body possesses the same elastic properties
for each of the three planes, the elastic potential is of the form

Cit
4 =3 (€7, +ei, +-e2;) +C72 (enses3 1 e3zers + ey4e55) +

012
+ 52 (3, +e3, +e?) (4.32)

and only three independent elastic constants will remain.

Finally, if the body is isotropic, the elastic potential must be cons-
tant when any rotation of the co-ordinate axes is made. On the
other hand, the stress tensor or the strain tensor has three indepen-
dent invariants of the first, second, and third degree in the compo-
nents of the stress and strain tensors. The elastic potential must
therefore be expressed in terms of the invariants of the stress tensor
if the elastic potential is represented by the components of the stress
tensor, or in terms of the invariants of the strain tensor if the elastic
potential is represented by the components of the strain tensor
(4.28). Since the elastic potential is a homogeneous function of the
second degree, it can contain only the first invariant to the second
power and the second invariant to the first power, i.e.,

A = P (&1 + g + €33)2 + Q (e11650 + €50833 + €338, — €]y —
— e — €5,). (4.33)

Thus, an isotropic body is characterized by only two elastic cons-
tants, P and Q. By applying formulas (4.20), and remembering that
ek, (k= r) are the shearing strains in (4.20), whereas in (4.33) they
denote half the shearing strains, from formula (4.33) we obtain

Opr = (2P + Q) eakr + (_ Q) €hrry

where 0 is the volume strain, 8, are the Kronecker symbols.
Taking into consideration the notation introduced by G. Lamé

we obtain formulas for the components of the stress tensor for a li-
nearly elastic isotropic body in terms of the components of the small
strain tensor

Op, = kGSk, + 2p,ek,. (4.35)

The constants A and p are called Lamé’s elastic constants.
These formulas express the generalized Hooke’s law for an isotro-
pic body.
Note that, by virtue of formulas (4.34), formula (4.33) can now be
represented as
24 = A% + 2pe, ey, (4.36)

Here both indices, ¥ and r, are to be summed.
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Since the strain energy is always positive, we conclude from for-
mula (4.36) that p > 0. Indeed, if the tensor ey, is chosen so that
epp, = 0, formula (4.36) takes the form

24 = 4p (el + €35 + €3)),

from which p > 0.

Let us prove that the principal directions of the strain tensor at
each point of an isotropic body coincide with the principal direction
of the stress tensor. By taking the principal directions of the strain
tensor at some point of the body as the co-ordinate axes, we have
61 = g3 = €3; = 0; by formulas (4.35), 0,5 = 043 = 03, =0,
which was to be proved. For isotropic bodies no distinction is there-
fore made between the principal directions of the strain tensor and
those of the stress tensor; both are referred to as the principal direc-
tions.

Let an isotropic body be subjected to axial tensile loading; the
state of stress at each of its points is given by

013 5 0, Ogp = Oyp = Oy3 = O3y = 033 = 0;
formulas (4.35) then become
A + 2pey; = 045, AB + 2pey,, = 0, AB 4 2pey; = 0. (4.37)
By adding these formulas together, we obtain

1
9:—%—_{_—2”—0“. (4.38)

Inserting (4.38) in the first formula of (4.37), we have

3ALF2
gﬂﬁﬁeu, (4.39)

On comparing (4.39) with the formula of Hooke’s law for a prismatic
rod in axial tension, we find

044

__ B(3At2p)
E—= e (4.40)
From the last two formulas of (4.37), with (4.38), we have
— — _Le — _..____}\'—0'
€op=E€33= — 21 - 2u (3}v+2”) 11-

Substitute the value of 0,; from (4.39) in this formula and introduce
the notation

L
M=t (4.4
then

€gg = €33 = — V1. (4.42)

Equalities (4.42) express the law of lateral contraction in axial ten-
sion; v is called Poisson’s ratio.
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Suppose that an isotropic body is subjected to a uniform hydro-
static pressure; then

011 = Ogp = 033 = — D,
(4.43)
013 = Op3 = Oy = 0.
By using (4.43), from (4.35) we obtain
A + 2pe,, = —p (r=1, 2, 3). (4.44)
Adding formulas (4.44) together gives
3\ 4+ 2p) 8 = —3p. (4.45)
By introducing the notation
E=h+2p, (4.46)

where K is known as the bulk modulus, from (4.45) we obtain
p = —KB6. (4.47)

According to the law of conservation of energy, when p > 0O there is
a decrease in volume; taking this into account, from formula (4.47)
we have K > 0. On the basis of formulas (4.40), (4.41), and (4.46)
the quantities A, p, and K are expressed in terms of £ and v as

Ev K E

L R —— U UG-
= va—2zv* HT3a3v =3—2v) °

(4.48)
From the last two formulas of (4.48), remembering that £ >0,

p >0, and K > 0, we obtain 1 — 2v >0, 1 4+ v > 0, from which
the range of possible values of Poisson’s ratio is

—1 <wv<0.5. (4.49)

As seen, Poisson’s ratio can also take some negative values. Expe-
riments show, however, that Poisson’s ratio for known materials
takes positive values; instead of inequality (4.49) we therefore have

0 <<wv<<O0.5.

For most materials v has approximately the same value, close to
1/3. Consequently, from the first formula of (4.48) we have A > 0.

Thus, it follows from (4.36) that the strain energy A4 is a positive
definite quadratic form in the components of the strain tensor vanish-
ing only when the components of the strain tensor are all zero simul-
taneously.

By solving (4.35) for the components of the strain tensor ey,, and
taking into account the first two formulas of (4.48), we obtain the
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generalized Hooke’s law for an isotropic body:

Cpr= 1-E’—V Uk,.—%V—USk,, (4.50)
where
0= %th' (4.51)

28. THERMAL STRESSES

Let T be a temperature change at some point of a body; the volu-
me of a sufficiently small neighbourhood of this point will vary in
proportion to 7. In consequence, the extension of all fibres issuing
from the given point is equal to aT. The components of the strain
tensor are then
e, = €p = ¢y = al, e,=¢€;=¢e,=0. (4.52)
Here o is the coefficient of linear thermal expansion. Actually, the
deformation of the neighbourhood of the point resulting from the
temperature difference encounters environmental resistance. In this
case the total strain ey, is found by superimposing the above thermal
expansion ez, and the elastic strain e, i.e.,

€hr = €xrp — Chra (4.53)

In an isotropic linearly elastic body, provided the proportional limit
is not exceeded, the components of the strain tensor e, are, by virtue
of Neumann’s hypothesis, related to the components of the stress
tensor by the formulas of the generalized Hooke’s law

Onr = AO"0pr + 2peék,. (4.54)
According to formulas (4.52) and (4.53),
8" =0 — 3al. (4.55)
Substituting (4.53) and (4.55) in formulas (4.54), we obtain
Okr = MO0y, + 2pien, — BTOpye (4.56)

Formula (4.56), where f = (3A + 2p) o, expresses the generalized
Hooke’s law for an isotropic body. On the basis of Neumann’s hypo-
thesis the components of the total strain tensor appearing in formulas
(4.56) are determined in terms of the displacements up by formulas
(3.26).

29, ENERGY INTEGRAL FOR THE EQUATIONS OF MOTION
OF AN ELASTIC BODY

Suppose that a body is acted on by a surface force T, and a vol-
ume force p F. Let us determine the work done by these forces from the
initial moment # = 0 corresponding to the natural state of rest
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to the moment under consideration ¢. The displacement of the points
of the body during the time df is %—’: dt. Denote the work done by’
the external forces during the time df by dR. Then
_ duy, dup
dR_S (oFr S dt)dt+S (T B-dt) do
(0)

T

Substituting Tpx = O.n,, and transforming the surface integral
into a volume one, we obtain

.Ze _ S‘ [( 9% 4 oF )%}+0kr%(%&)]dr'

T

From the equations of motion we find

dR 02 Oup 6uh ( duy,
at ‘“S i dH’S Orr 57 \ %z, )d"'

T
Here the first term represents the derivative of the kinetic energy
of the body with respect to time. Indeed,
‘ Spaukaukd_r dS'}-p(auk)sz——dK

a? ot dt 2 ot dt
T T

Because of the symmetry of the stress tensor oy,

17 oup, _ depr
S Onr E—( oz, ) dt= S Opr e dt.
T T

If the process of elastic deformation takes place adiabatically or
isothermally, we have, by (4.19),

depr _ 0A  depr
Sok,. = dr—-S Genr i dt_—S Adr,
T T T
Consequently,
dR

d—t=—;t—(K+iAd1:).

By integrating the last relation between the limits O and Z, and re-
membering that at the initial moment the body was in the natural
state of rest, we find

R=—K+ S Adr, (4.57)

T

where SAd'r is the work that must be expended by the external for-

T .
ces to produce deformation. This work is equal to the elastic strain
6—0884
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energys; A is the elastic strain energy per unit volume. Formula
(4. 57) is true not only for isothermal and adiabatic processes, but
4 is then not a potential.

If the body is linearly elastic and isotropic, 4 is determined by
formula (4.36). Thus, the work done by the external forces is expend-
ed in producing the kinetic energy of the body and the strain energy.
Formula (4.57) expresses the law of conservation of mechanical

energy:

If, under the action of the external forces, the body passes from
the natural state of rest to a new, deformed, state of rest, the kinetic
energy is.zero and formula (4. 57) takes the form

R={ 4dr. ‘ (4.58)

T

30. BETTI’S IDENTITY
Let a linearly elastic body be in two different states of stress,
(035, €i;) and (0fj, €;). Then
o‘f =Ci}"emn, (4.59)
Cl] €mn. (4.60)

By forming o ef;, with (4.59), and grouping together the coefficients
of ej;, with the use of (4.60), we obtain Betti’s identity

0ij€i; = 03j€ij (4.61)

Betti’s identity shows that for a linearly elastic body the work done
by the first state of stress in the strain of the second state of stress
is equal to the work done by the second state of stress in the strain
of the first state of stress.

31. CLAPEYRON’S THEOREM

Let a linearly elastic body be in a state of rest under the action
of a surface force T, and a volume force p F. The work done by the
above forces during the displacements u, is equal to

R= S oF yuy dt 4 S T oruy do,
T ®
Inserting T, = Oy,n,, and transforming the surface integral into
a volume one, we obtain

R= 5[ aok’ +th uk+0k,. l;’:]d‘r.
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By the equilibrium equations (2.25) and the symmetry of the stress
tensor Og,, we have

R= S OrrCrr dr.
k4

If the deformation process takes place adiabatically or isothermally
we have, by Clapeyron’s formula,

S Adi=—R. (4.62)

It follows from equality (4.62) that the elastic work of deformation
is equal to half the work done by the statically applied external
forces during the displacements. This proposition is known as Cla-
peyron’s theorem.

6



CHAPTER V

Complete system of fundamental
equations in the theory
of elasticity

32. EQUATIONS OF ELASTIC EQUILIBRIUM AND MOTION
IN TERMS OF DISPLACEMENTS

Equations (4.1) relating the stress and strain tensors complete
the system of fundamental equations (2.24), (3.26) of the theory of
elasticity, i.e., the resulting system of nine equations is

90ij u;

o TOFi=0 55 ®-1)
Uij=fij (ern) (52

Here the unknowns are six components of the stress tensor oy
and three displacements u,. The components of the small strain
tensor e, are calculated in terms of u; by means of formulas (3.26).

The system of equations (5.1) and (5.2) contains both the com-
ponents of the displacement vector and the components of the stress
tensor. In order to obtain the equations of equilibrium and motion
in terms of displacements, from (5.2) we determine

doij 1 dfi; o%u, ?up,
dr; 2 e ( oz Oy, oz 0z, )

Here the coefficients of the second derivatives of the unknown func-
tions u, are functions of the first derivatives of these functions.

As a result, we have a system of three second-order non-linear
partial differential equations in three functions u; of three independ-
ent variables z, in the case of equilibrium and four independent
variables, z, and the time ¢, in the case of dynamic application of
forces. These equations are too complicated to be worth giving; it
is more convenient to set them up directly in each particular prob-
lem.

0fij

In the case of a law of the form (4.6) the coefficients Doy ATC the
rh

elastic constants C;;, and the differential equations constitute a sys-
tem of three linear equations with variable coefficients when the
body is non-homogeneous and with constant coefficients when the
body is homogeneous.
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For an isotropic homogeneous linearly elastic body we have

00; j a0 a ou; ouj
az; =A i3z, +w ox; (ax, dx; ) (5'3)

Substituting the expressions for these partial derivatives in Egs.
(5.1), we find
03uj

(A+u):7i+uAu:+p(Ff—W)=O. (5.4)

The resulting equations of motion in terms of displacements involv-
ing three functions u; are called Lamé’s differential equations.
The system of equations (5.4) is equivalent to the differential equa-
tion in vector form

(A+p) V dive +pdu+p (F—Z2-) =0, (5.5)

which is obtained from Eqs. (5.4) if each of them is multiplied by
i; and then summed with respect to the index j, remembering that
0 = div u. For elastic equilibrium, instead of the system of equa-
tions (5.4) and Eq. (5.5) we then have

(4 1) o=+ By +pFy =0, (5.6)
(A + p) V div & + pAu + pF = 0. (5.7)

In the case when the body is acted on by surface forces only, i.e.,
when the volume force pF is zero, Eqs. (5.6) take the form

(h+1) -+ phuy = 0, (5.8)

Differentiating (5.8) with respect to z;, and summing the index j,
gives
(A + 2p) A6 =0,

from which
AO = 0.

Thus, in the absence of body forcés the volume strain is a harmonic
function.
By applying the operator A to both sides of (5.8), we obtain

(x+p)a% A8 + pAAu,=0.
Noting that A8 = 0, we have

AAu, = 0,
i.e., the displacement vector is a biharmonic function.
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Adding the formulas of the generalized Hooke’s law (4.50) (when

r =kF) gives

0=3122, 6.9)
where 30 is the sum of the normal stresses acting on three mutually
perpendicular planes. Since 0 is a harmonic function, so also is
¢ by (5.9).

By applying the operator AA to both sides of each of the formulas
of the generalized Hooke's law for an isotropic and homogeneous
body, and remembering that the volume strain is a harmonic func-
tion and u; are biharmonic functions, we come to the conclusion
that the stress components are also biharmonic functions.

Substituting the expression given by formula (4.56) in the differ-
ential equations (5.1), we obtain

0%u;
(1) - +pbuy+p (Fr——5-) —B7-=0.  (5.10)

These differential equations are called the Duhamel- Neumann ther-
moelastic equations.

It should be noted that the elastic constants A and p are functions
of temperature T and, as established by experiments, they usually
decrease with increasing temperature. In the case when temperature
gradients in a body are not too great, A and p may be considered
constant.

- The system of differential equations (5. 10) involves three unknown
functions up since the temperature change is assumed to be known;
the latter is determined as follows: let a body be subjected to a change
in temperature depending on the co-ordinates of a point and the time
. Assume that the body is thermally isotropic and homogeneous;
in addition, the thermal conductivity A* and the specific heat ¢
are temperature independent. This assumption is fully justified when
the temperature differences are not too great. In this case the function
T (zy, x4, z3; t) must satisfy, throughout the body, the Fourier heat
conduction equation

a?AT 42 Q (5.11)

Ot '
where A is the Laplacian operator y is the speclﬁc welght ais the
thermal diffusivity, a? = A*c-'y~!, Q is the quantity of heat per
unit volume generated or absorbed per unit time by a heat source
situated at the given point of the body.

In the case of a steady temperature state of a body Eq (5.11)
reduces to Poisson’s equation

AT = ——. , (5.12)
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If the body contains no heat sources, we obtain Laplace’s equation
AT =0, (5.13)

i.e., the temperature is a harmonic function.

To determine the function T completely, it is necessary to specify
the appropriate boundary conditions and also the initial conditions
in the case of a transient temperature state. It is assumed that the
unknown function and its partial derivatives are continuous up to
the surface of the body. The initial value of 7 may be given by any,
continuous or discontinuous, preassigned function f (z,, z,, z3), i.e.,

T ("{u Ty g 0) = f (21, 25, z4). (5.14)

In the simplest case the boundary condition specifies the temperature
over the surface o of the body under consideration as a function of
position and time

T |, = T° (21, 5, x3; 1) (5.15)

at any time ¢ > 0.
~ On the boundary one can also prescribe the heat flow through the
surface of the body .
aT
on
where ¢° is the heat flux entering or leaving the body across unit
area of the body surface per unit time.
Finally, according to Newton’s law of cooling, the condition on
the surface of the body may also be given as
or =~)—j—°,—(T*—T°). | (5.17)

“on

o= "¢ (Z1s T2y 255 1), (5.16)

(0}

Here T* is the temperature of the surrounding medium, k/A* is the
relative heat transfer coefficient, % is-the surface heat transfer coef-
ficient.

In the case.of a simultaneous consideration of the heat conduction
problem and the thermoelastic problem we have to deal with the gen-
eralized heat conduction equation

S+ 122 divau=a?AT. (5.18)
Here u is the elastic displacement vector,

c —
b2=p Co (Cp>cv),,

acy

¢ps €, are the specific heats at constant pressure and constant vol-
ume, respectively; a is the coefficient of linear expansion.

The generalized heat conduction equation (5.18)-differs from the
usual equation (5.11) with'Q = 0 by the presencé ‘of the additional
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term b d1v u and can be obtained from the first law of thermo-

dynamlcs The idea of such a formulation of the problem is due to
the well-known Russian physicist N. A. Umov who stated it in 1871
in Theory of Thermomechanical Phenomena in Elastic Solids. In this
approach the solution of the thermoelastic problem is reduced to a
simultaneous solution of the generalized heat conduction equa-
tion and the equations of motion and strain compatibility with
the appropriate initial and boundary conditions for tempera-
ture and stresses. In this formulation the problem is realized
when, in addition to temperature fields, the body is acted on by
rapidly varying external forces, which may give rise to a rather
significant redistribution of the temperature fields in the body, and
this in turn may entail a redistribution of stresses. In cases where
the thermal stresses in the body result only from external heating,

the term bz-‘% div u can be neglected in the generalized heat conduc-

tion equation.
The heat conduction problem then becomes the first, and independ-

ent, step of the thermoelastic problem. Clearly, the term b2 le 73

vanishes in all static problems, and hence here the thermoelastlc
problem and the heat conduction problem are solved separately.

By the foregoing method, from (2.30) and Hooke's law (4.35),
using formulas (3.29) and (3.30), it is easy to obtain the differential
equations of motion in terms of displacements in a cylindrical co-
ordinate system. These are as follows:

-+ 200r 2 (g 9) o (7= 5) =0

108 o, 9*uq
(?~+2u), = —2 (g —G2) +e (Fom35") =0, (5:19)
a o0, &
(207 2”( 5 (o) — 5 )+p (73— 55) =0,
where
1 9 1 Ou ou
e=err+ew+€sa=7w(rur)+7a—;+5:-. (5-20)

From (2.31) and (4.35), with the use of formulas (3.33) and (3.34),
the differential equations of motion in terms of displacements in a
spherical co-ordinate system are obtained as

(A +2p) rsin q:%‘:-—

—Zp(%—}%(mwsin q:)) +prsiny (F,—%) =0,
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1 a0 dw, ] ug
20 5y 5 — 20 (G o0 Hor (Fo—57) =0,
S ' _ (5.21)
. 0 ] . 00, '
(A +2p) smxp-glp-—2p(—67-(rmq,sm\p)—-—(%)+
2u
’ +prsin1p(F¢——at-23)=0,
where
1 0 1 a . ou
G=err+ew+ew=.r_2%7(r2u,)+m (W (u-pSln'lP)-l-a—q:p').
(5.22)
For an axially symmetric problem Egs. (5.19) become
90 90 Ru, \ .
(2w 5 42 - pr (Fr— 555 ) =0, Fo=0, (5.23)

a0 02
(A+2p) r 5 — a5 (rog) +pr (Fs— S ) =0

since u, = 0, and u, and u; are independent of the ¢ co-ordinate.
Due to the last circumstance ©, = w; = 0 and

0=—2 (ru,) s, (5.24)

r or ‘0zy
In the case of equilibrium and when F, = F; = 0, Egs. (5.23)
reduce to

a_e+__2p %9 _
or " htp oz (5.25)
Gy T AEon T o (T9e) =
From this
o (1 o oy
o (73 (rae)) + 57 =0.

After determining the solution o4, of this equation, we find 6 by using
either of Egs. (5.25). To determine u, and u,, from (3.30) and (5.24)
we obtain differential equations of the form
Oup, dug
79?3_ or
L2 ru)+2 o,
T3

r or

(5.25")

From this

a (1 @ 2
o (7o u)) + FF=2 5o+
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After finding the solution u, of the last equation, we also find ug
by using either of Egs. (5.25).

For an axially symmetric problem the equations of motion in a
spherical co-ordinate system assume the form

(h+20) S+ 2 i 5 (@ sin ) +or (F,— 50 ) =0, Fy=0,

S %u
(A+2p) W_QHWW (rogsin ) +pr (F.,,-—Ww—) =0,
where

ou [7}
%=5‘(—rf—g; (fuw)), Lo, =0y=0

since ue=0, uy=uy(r, Y) and u, =u, (r, P).

33. EQUATIONS IN TERMS OF STRESS COMPONENTS

Consider the basic equations of the statics of a linearly elastic
isotropic body

90,
99 oy =0, (5.26)
enr =12 0, — 2 8,,. (5.27)

Nine equations (5.26) and (5.27), contain nine unknown functions
Up,y

In Chap ITI it has been stated that the six components of the strain
tensor e, are not arbitrary functions of the co-ordinates of a point
in a body, but must satisfy six Saint Venant’s strain compatibility
conditions. Remembering this, we substitute formulas (5.27) in
Saint Venant’s strain compatibility conditions; after some manipula-
tion, we find six relations :interconnecting the components of the
stress tensor. Consequently, there are then in all three differential
equations (5.26) and six relations among the components of the stress
tensor, which we proceed to derive. Suppose-that the body is homo-
geneous, i.e., A and p aré independent of position. The resulting
system of equations will apply only to isotropic homogeneous and
linearly elastic bodies.

Substituting (5.27) in Saint Venant’s conditions (3.45), after some
rearrangement, we obtain

9%04, 020, 3v a%o a%c 9%0,,

oz} + oz 1+v ( 0z2 STy 013 )—2 9z, 9z, * (5.28)
9%04; 3v d%c [ 0023 d03, 00'12
0z, Ox4 14-v 0zy0z3 -0z, ( + az,y + ) (5-29)
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and four more similar relations also corresponding to conditions
(3.45). By differentiating the first equation of (5.26) with respect
to z;, the second with respect to z,, the third with respect to — z3,
and adding, there results

020'12 _ 620'11 + 020'22 _ 62033 + ( aFl + aFZ aps ) (5.30)

Oz, dzy, 0z} oz} 0z% oz, ' 0z,  Oxg
Inserting (5.30) in (5.28), we have
0% (05, +032) + 0% (0y,+40,5)  0%034 3v ( o%c |, d% ) _

oz3 93 o Ty e T o
_ (an __aF_Z_fL)
- 01’3 01'2 a"‘:1
or
52 1 oF. oF oF
Bo— (1+v) Mow—Tg =5 (L +v)p (G2 52— 5)
P 1 oF. oF oF
Ao_-<1+v>Aon—aT‘Z=§<1+V>P(aTﬁ‘aTI—Tax—f')' 531
oF oF oF.
Ao’—-—(1+\’)A0'u az’ =3 (1+v)p(—1_‘77:—%f-).

The last two relations, are obtained in a similar way from the re-
maining two equations of the type (5.28).
By adding the last equalities, we find the formula

. 1+v oF, .
Ao= — pm;;r—. (5.32)
Substituting (5.32) in (5. 31), we obtain
14 96 aF v(14+v) oF,
T3 AO'M‘F‘@- (1+V) L—p 3(—v) 9z, '
1 ik oF 1 aF,
+V AO'22 +-672'= 3 p(1+v) —2 3§1i:; oz, (5.33)
1+v aF v(14v) oF,
3 Aoy + 5 oz g pU+Y) =0 3=

These equalities constltute‘the first group of the Beltrami-Michell
relations.

To obtain the second group of the Beltrami-Michell relations, we
transform (5.29). For this purpose we differentiate the second equa-
tion of (5.26) with respect to z;, the third with respect to z,, and add
them together; by adding the result to (5.29), we have

1+v 920 ' 14w (a_F's aF’z).

3 Aoy + e, 00, P T3 oz, | Ozg

The remaining two equatlons of this type are obtained in a similar
way. .
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Thus, the second group of relations takes the form
1 1 oF oF
+VAW+3;¢ axz __pi(_1+__2)'

3 oz, 0z
— o1tV (oF oF,

Y AGgy +—22 ax axa p—% (-5;5+-6$—2) (5.34)
1+v 020 14-v [ oF oF

Consequently, the Beltraml-Mlchell relations represent six linear
differential equations containing six functions o,,.

It is important to note that the system of equations (5.33) and
(5.34) is suitable only for a linearly elastic isotropic homogeneous
body in the case of isothermal or adiabatic deformation processes
in the body, whereas six Saint Venant’s compatibility equations are
suitable for any body.

In the case when the body forces are absent or constant the Belt-
rami-Michell relations become

14-v liklog
3 AO'h,. +‘51.k—ax— =0. (5.35)

Similarly, with the use of (4.50) and (2.30), when F, = Fo, = F53 =
=W,= W, =W,; =0, the compatibility equatlons (3 40) in
a cylmdrlcal co- ordmate system are rearranged in the form

4 00,.¢ 1 4%
AG"—F (Orr—Oge) — 73 9 TV ot 5 =0,

2 4 00qr 1 1(4 ,1 8
Ay +—5 (O —Ooe) + 50~ + 175 7 (5 +7 597) 0=0,

1 0%
Aogs +47 T+v 028 =0,
Ao a(ioe +__2___(U . 44 _o (5.36)
"’+1+v or \'r aqa) r2 og T w)— 72 ore =
'1 626 2 603,- O(PS
Aogs + 1+v T 09 oz, += op 2 —==0
9%0 2 803 Osr
Aoy, + 1+v oy T g T =0
where - ,
a l 1 [7}
O=0’,;-+UW+033, A—--r—gr—(r-a—r)—{—rz 6¢2+w
For an axially symmetric problem Egs. (5.36) assume the form
Ac,,—-%- (Grr —Opo) ++— 1_ 00 =0
rr— rz rr— Yoo, 1+v =l ’

199
AGge + 2;(0'" Oge) + 175 1—}-'v T or =0,
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1 9%
A0'33+1—_{_-1—"3E‘=0, (5.37)

1 3%0 1

A%y + 1% Fram, o =0

where
32 1 0 92
A=gmtrota

since 0, = O3 = 0, and the remaining components of the stress
tensor are independent of the @ co-ordinate.

34. FUNDAMENTAL BOUNDARY VALUE PROBLEMS
IN ELASTOSTATICS. UNIQUENESS OF SOLUTION

In practice the most common types of loading and fixing of bodies
are the following: (1) the forces applied to the surface of a body are
given; (2) the displacements are given at all points of the surface;
(3) the displacements are given over a part of the surface, and the
external forces over the remainder. In this connection three types
of fundamental boundary value problems are distinguished in
elastostatics.

The first fundamental boundary value problem cansists in finding,
in the region occupied by the body, three projections of the displace-
ment vector and six components of the stress tensor, which must be
continuous functions of position up to the surface of the body and
satisfy Eqs. (5.1) and (5.2), and, in addition, the following condi-
tions on its surface:

Oslty = Ty (23, Ty x5), (5.38)

where T, are the projections of the given forces acting on the surface
of the body.

The second fundamental boundary value problem consists in find-
ing a solution of Egs. (5.1) and (5.2) satisfying the following boun-
dary conditions on the surface of the body:

U, = Uy (21, s, z3), (5-39)

where u; are the projections of the given displacement vector of the
points of the body surface.

The third fundamental boundary value problem consists in deter-
mining a solution of Eqs. (5.1) and (5.2) satisfying conditions (5.38)
over a part of the surface, and conditions (5.39) over the remainder.
Besides these problems, other problems are encountered which also

have applied significance. Some of these will subsequently come
under consideration.
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For thermoelastic problems involving surface forces as well as tem-

peratures, the boundary conditions (2.22) take the form

Tni = (7»9 + 2”6“ —_ ﬁT) n +2|,temn2 +2M613n3,

Tnz = 2“321"1 + (Ae + 2“622 —-ﬁT) n, + 2“,323723, (5.40)

T o3 =2pesiny + 2pesons + (A0 4 2pess — BT) ns.
Equations (5.10) and (5.40) show that the elastic displacement vec-
tor u in the body is the same as that arising when the body is acted
on by the forces BV T applied at each of its points and calculated per
unit volume, and the pressure »f T on the surface, as well as the body
and surface forees.

The proof of the existence of a solution of the above problems in-
volves great mathematical difficulties. At present, however, the
solvability of all boundary value problems of the theory of elasti-
city is established under rather general conditions. Assuming the
existence of solutions of the foregoing boundary value problems, we
proceed to the proof of their uniqueness.

Suppose that one of the above fundamental boundary value prob-
lems has two solutions, uk, o7z and ug, o7z Obviously, the difference
of these solutions

’ » 'l ”»
Up = Up — Up, Orr = Orgp — Ozhy

in the absence of body forces, must satisfy the basic elastostatic equa-
tions (5.1) and (5.2). Hence, formula (4.62) holds for u; and o,:

S T, u, do=2 5 Adr. (5.41)

© T

In the case of the first fundamental boundary value problem 7, =
=0 on the surface of the body for the solution made up of the differ-
ence of two solutions of the given problem since both solutions must
satisfy conditions (5.38) for the same forces prescribed on the surface
of this body.

In the case of the second fundamental boundary value problem,
for the solution made up of the difference of two solutions of the
given problem, we have u, = 0 on the surface of the body, similarly
to the preceding case.

Finally, in the case of the mixed problem T,, = 0 over a part of
the surface, and u, = 0 over the remainder.

Thus, in all three fundamental boundary value problems the
integrand is zero on the surface of the body, i.e.,

Tou,. =0
hence, in all three cases
S Adr=0. (5.42)

T



35. Fundamental Problems in Elastodynamics 95

Remembering that 4 is a positive quadratic form, from (5.42)
we obtain
A =0.

As follows from (4.36), this in turn is possible when e, = 0. We
conclude from this that e;, = e/ or, on the basis of the generalized
Hooke’s law (4.35), o7z = o7,. Consequently, both solutions give
the same state of stress and strain.

Thus, the theorems of uniqueness of solution for the above problems
are proved. It should be noted that it does not follow from the zero
strain compenents, as may be inferred from formula (3.26), that
u, = 0. In the solution of the first fundamental boundary value
problem we can therefore obtain, for the projection of the displace-
ment u,, various values differing from one another only by a rigid-
body displacement of the whole body, which has no effect on the
state of stress or strain in the body. In the second and third fundamen-
tal boundary value problems there is no such difference because the
displacements are given over the entire surface in the second problem
or over a part of the surface in the third problem.

In this section we have proved that the system (5.1), (5.2) with
given external forces uniquely determines the state of stress
or strain in the body. In the foregoing proof of the uniqueness of
solutions of the above-mentioned boundary value problems, which
is given by G. Kirchhoff, the body may be assumed both simply
connected and multiply connected.

35. FUNDAMENTAL PROBLEMS IN ELASTODYNAMICS

In the case of elastodynamics, as in statics, three fundamental
problems may be formulated for Egs. (5.4). In contrast to the funda-
mental boundary value problems in elastostatics, in the case of dyna-
mic loading to the boundary conditions must be added the initial
conditions specifying the projection of the displacement vector
uy, and the projection of the velocity vector v; of a point of the body
at a certain time f, from which the study of the problem begins,
ie.,

Up (T4, T, T3; 1) Ji=1, = Uk (T4, Zg, Zs), (5.43)
% up (T4, Ta, 233 t)|t=t, = Uk (21, Zg, Zs3). (5.44)

Thus, the integrals of the system of equations (5.4) must satisfy not
?5nly the boundary conditions, but also the initial conditions (5.43),
.44).
As in the preceding section, let us prove the uniqueness of solutions
of the problems considered here, without taking up the proof of the
existence theorems.
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Assuming that these problems have two solutions, we consider
their difference, which is the solution of the system of equations
(5.4) with Fj, = 0. For this solution, in the case of the first problem
the stress vector on the surface of the body T, = O for ¢ = t,; in
the case of the second problem the displacement vector of a point

of the surface of the body u = Ofor¢ > {,, and hence%—t- 0 on the

surface ©; in the case of the third problem T, = 0 for t = £, over
a part of the surface, and w = 0 for # > ¢, over the remainder;

hence, at = 0 over this part of the surface of the body

Since both solutions of the problem must satisfy the' same initial
conditions, it follows that the initial conditions for the difference
of these solutions are homogeneous, i.e., at the initial moment
t, we have v

__0u E
u = Tt-— . (5.45)

It appears from the above that the work R calculated for the differ-
ence of the solutions u for ¢ == ¢, is zero. On this account, from for-
mula (4.57) we have

K+5Am=a (5.46)

Since the kinetic energy of the body K and the strain energy are
positive quantities, from (5.46) we obtain

K=0  A4=0,

and hence
%’;—:0 ern=0 for t=>t,.
1t follows from the condltlona— 0 that the displacement vector u

ot
is time independent; it follows from the condition e,, = 0 that
the strain is zero. Consequently, the solution u can represent only a
rigid-body displacement of the body. According to the condition of
the problem, » = 0 at the initial moment; hence, this rigid-body
displacement must be zero at all points of the body and at all times.
Thus, the two solutions are completely coincident.

36. SAINT VENANT’S PRINCIPLE (PRINCIPLE OF SOFTENING
OF BOUNDARY CONDITIONS)

Referring to the problems of bending and torsion of long prismat-
ic bars, in 1855 B. de Saint Venant published his famous principle:
The mode of application and distribution of forces over the ends of a
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prism is immaterial for the effects produced over the remaining length,
8o that it is always possible, to a sufficient degree of approzimation, to
replace the applied forces by statically equivalent forces having the same
resultant moment and the same resultant vector.

Thirty years later, in 1885 the first general formulation of this prin-
ciple was given by J. Boussinesq: A balanced system of external for-
ces applied to an elastic body when all points of application of the

) ¥
a— Y
p /ﬁ
A
! 4 %
i
% W@W % ﬁ"
Fig. 12 Fig. 13

forces of this system lie inside a given sphere produces negligibly small
deformations at distances from the sphere sufficiently greater than its
radius.

To prove Saint Venant’s principle, Boussinesq considered a semi-
infinite body subjected to concentrated forces perpendicular to its
plane boundary. It is rather interesting to note that up to now there
has been no rigorously general proof of Saint Venant’s principle. The
existing attempts in this direction are primarily devoted to the esti-
mation of the error of Saint Venant’s principle as applied to prisma-
tic bodies and also to bodies whose dimensions are all of the same
order of magnitude. The problem of estimating the error of this
principle in relation to thin-walled bars and shells is only slightly
worked out on account of its great complexity.

When solving problems of the theory of elasticity reference is often
made to Saint Venant’s principle. If, in solving the problem, the
boundary conditions are prescribed in full accord with the actual
distribution of forces, the solution may be very complicated. Based
on Saint Venant’s principle, it is possible, by softening the boundary
conditions, to obtain a solution which will give, for a major portion
of the body, a field of the stress tensor very close to the actual one.
The determination of the stress tensor in the region of load applica”
tion presents special problems of the theory of elasticity called con-
tact problems or problems of analysis of local stresses. Figure 12
shows two statically equivalent force systems: one in the form of
a concentrated force P perpendicular to the plane boundary of a
semi-infinite plate, and the other in the form of uniformly distributed
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forces over a semicylindrical surface whose resultant is equal to the
force P and perpendicular to the boundary of the plate. At points
sufficiently far removed from the region of application of the above
forces the stress tensors in both cases are practically the same. The
regions of a cantilever beam in which the stress tensor is essentially
dependent on the mode of application of the force are dashed in
Fig. 13.

The efficient solution of the boundary value problems of elastic
equilibrium mentioned in Sec. 34 involves great difficulties in the
general case. In this respect Saint Venant’s principle holds a special
place in the theory of elasticity. Owing to this principle, we have at
present solutions of numerous problems of the theory of elasticity for
Saint Venant’s principle allows the boundary conditions-to be sof-
tened;ithe given force system applied to a small part of an elastic
body is replaced by any convenient (in simplifying the problem)
statically equivalent force system applied to the same part of the
surface of the body.

37. DIRECT AND INVERSE SOLUTIONS OF ELASTICITY
PROBLEMS. SAINT VENANT’S SEMI-INVERSE METHOD

In direct solutions of problems dealing with elastic bodies we seek
the stress and strain tensors and the displacement vector produced
by the external forces acting on them. For this it is necessary to
integrate Lamé’s differential equations (5.4) if the fundamental un-
knowns are taken to be displacements u;, or the differential equations
(5.26) and the Beltrami-Michell relations (5.33), (5.34) if the funda-
mental unknowns are taken to be the components of the stress tensor
with given boundary and initial conditions. In the first case it is said
that the problem is solved in terms of displacements, and in the
second .case in terms of stresses.

In solutions of inverse problems we assign either displacements or
the components of the strain tensor in the body under consideration
and determine all the other quantities, including the external forces.
The solutions of inverse problems present no great difficulties, but
it is not always possible to arrive at solutions of any practical in-
terest. Based on this, Saint Venant proposed a semi-inverse method
consisting in partially specifying displacements and stresses simulta-
neously and then using the equations of the theory of elasticity to
determine the equations that must be satisfied by the remaining
displacements and stresses. The resulting equations are rather easily
integrated. Thus, this method provides a complete and accurate solu-
tion for a large number of special problem most commonly encoun-
tered in practice. Saint Venant applied his method to the problems of
unconstrained torsion and bending of prismatic bodies.



38. Simple Problems 99

38. SIMPLE PROBLEMS OF THE THEORY OF ELASTICITY

The simple problems of the theory of elasticity will be defined
as those in which the components of stress, and hence of strain, at
any point of a body are constant or depend linearly on the co-ordi-
nates.Obviously,in the simple problems the Beltrami-Michell relations
or the strain continuity equations are satisfied identically. These
problems are solved by the semi-inverse method.

1. All-round uniform pressure.

Let a body be subjected to an all-round uniform external pres-
sure—np (nis the unit normal vector to the surface of the body). Bedy
forces are neglected. Assign a stress tensor in the form

011 = Opy = Og3 = —P, 013 = Og3 = O3 = 0, (5.47)

which satisfies the differential equations of equilibrium (2.25) and
the Beltrami-Michell relations.

Determine the external forces producing a stress tensor of the form
of (5.47) in the body under consideration; on the basis of formulas
(2.22) we have

Tpr = —pn
or
T,= —np,

i.e., the stress vector applied on the surface of the body must repre-
sent the pressure —np, which is actually the case. Thus any three
mutually perpendicular sections are prlnclpal planes at all points
of the body. By the generalized Hooke’s law (4. 50), the components
of the strain tensor are

= —— 2Py ey =0 (k7). (5.48)

Suppose that the given body is fixed at some point, which is taken
as the origin of co-ordinate axes, and an elementary fibre situated on
the 4 axis is fixed at that point; moreover, the rotation of an eleme-
tary fibre situated on the z, axis is constrained in the z,z, plane.
Analytically these fixing conditions are written respectively for all
zp = 0 as follows:
— 0u1 _ 6u2 _ 0u1 _

uh—-O, —E'—Tzz—a—zz—o. (5.49)
Substituting solution (5.48) in formulas (3.44), and taking into ac-
count the fixing conditions (5.49), we determine, after simple compu-
tations, the projections of the elastic displacement vector

up=—~Z oy (5.50)
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Consequently, the displacements of points of the body are radial;
they increase directly with the distance from the origin and are
symmetrical about it.

2. Axial extension of a prismatic rod.

Let a prismatic body with straight axis and bases of arbitrary
shape at right angles to it be subjected to axial tension. Body forces
are neglected. A stress tensor chosen in the form

Oy = Ogy = Oyp = O3 =03 =0, 033 =p (5.51)

satisfies the differential equations of equilibrium (2.25) and the Belt-
rami-Michell relations. Determine the external forces producing
a stress tensor of the form of (5.51) in the given prismatic body. By
formulas (2.22) we have: on the lateral surface of the rod (rng = 0)

Thy =Tne =Tns =0, (5.52)

on the bases of the rod [cos (x5, z;) = cos (x5, z,) = 0, cos (z3,
z3) = + 11
Ty, =T3, =0, T33=+p. - (5.53)

Equalities (5.52) show that the lateral surface of the body must be
free from external forces, which is exactly true since the body is
acted on by axial forces only. Equalities (5.53) show that uniformly
distributed tensile forces of intensity p must be applied to the bases
of the rod. Actually the transmission of a tensile force to the rod
under consideration may differ greatly from uniformly distributed
tensile forces. According to Saint Venant’s principle, however, solu-
tion (5.51) may be considered as exact over a part of the rod suffi-
ciently far removed from its bases.

By the generalized Hooke’s law (4.50), the components of the
strain tensor are

1= ey3=e€31=0,

. v . _ v 6 (5.54)
ey = — 5 033, €= — 5033 En=-3%".

As in the first problem, at the centroid of the upper base of the rod,
where the origin is placed, we assume the boundary conditions

a a a
up =0, TZ§=3§:'=75§=0 for z,=0. (5.55)

Substituting solution (5.44) in formulas (3.44), with (5.55), we ob-
tain

v v,
U= —--Ep- X, U= — fp-xz, Uzg= %13. (5.56)

The first two formulas of (5.56) show that the displacements u, and
u, at all cross sections are the same and proportional to the distance
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of a given point of a cross section to the axis of the rod. The third
formula of (5.56) shows that plane sections remain plane after defor-
mation. In a course in strength of materials the last result istaken
as the starting assumption known as the hypothesis of plane sections.

3. Extension of a prismatic rod under its own weight.

(a) Let a prismatic rod of length ! fixed at its upper end be
subjected to tensile deformation under its own weight. Denote the
density of the material by p. We choose the axes of a co-ordinate
system so that the origin is at the centroid of the upper base perpen-
dicular to the axis of the rod, and one of the axes of the system, say
x4, directed vertically downwards, eoincides with the axis of the rod.
The projections of the mass force are then

F,=F,=0, Fyg=g.

By using Saint Venant’s semi-inverse method, we choose the compo-
nents of the stress tensor in the form

0y1 = Oy = Oy = Op3 = 05 = 0,
033 = axs + b- (5.57)

Here the constants a, b are not yet known. The Beltrami-Michell
relations are satisfied identically by these components of the stress
tensor; the first two equations of equilibrium are also satisfied iden-
tically, and from the third equation we obtain

a = —pg.
Now we have
O33 = — pgzs + b.

Taking into account formulas (5.57), and remembering that n; = 0,
where n is the outward normal to the surface of the rod, for the
projection of the force acting on the lateral surface of the rod we
have, by (2.22),

Try = Tpy = Tps = 0.

As seen from the last equalities, the lateral surface of the rod must
be free from forces, which is actually the case since the rod is under
its own weight only. On the lower base of the rod (x; = I) we have

ng=mn,=0, ng=1,
where n is the outward normal to the lower base. According to for-

mulas (2.22)
T7,=0, T17,=0, Tn,= —pgl+b.

Ey the conditions of the problem, the lower base is free from forces,
ence

Ths = — pgl + b =0,
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from which
b = pgl.

‘We have, finally,
Oss = pg (—z5 + 0). (5.58)

Proceeding in a similar way, on the upper base of the rod (z; = 0)
we have
Tht=Tr3=0, Tn3=—pgl

This corresponds to fixing conditions of the upper base such that
there are only normal stresses uniformly distributed throughout the
base. No such fixing is practicable, but by virtue of Saint Venant’s
principle solution (5.57) may be considered to be exact for every
other mode of fixing.

By the generalized Hooke’s law, the components of the strain
tensor are

1
€14 = Lo = —'% Pg(_$3+l)’ e33=—E—pg(—x3+l)’ (5.59)
612=323=331=0°

For the boundary conditions (5.55) of the second problem, with
(5.99), from formulas (3.44) we have

ep
E

uy= — 50 (a3 +v (2} +2}) — 2as.

vep

Uy = zy (x3—1), Ug=—TF— zg (x3—1),

(5.60)

As the third formula of (5.60) shows, the points lying on the axis of
the rod are displaced only along this axis.

Since there are no shearing stresses, and hence no shears, at the
cross sections of the rod, these sections remain normal to all fibres
after deformation of the rod and, as the third formula of (5.60)
shows, are distorted into paraboloids of revolution which are convex
downwards.

(b) A prismatic rod of length [ fixed at its upper end is under the
action of its own weight and a force P applied to the free end in
the direction of the axis of the rod. We place the origin of co-ordi-
nates at the centroid of the upper section and choose one of the axes,
z3, along the axis of the rod in the downward direction. Based on
Saint Venant’s principle, we replace the force P by a statically equiv-
alent load of intensity p = P/® uniformly distributed over the
lower base of the rod (® is the area of the lower base perpendicular
to the axis of the rod); by reason of the linearity of the problem, the
solution is represented as the sum of the solutions of the second
and third problems.
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4. Torsion of a circular prismatic bar.

Let the extreme cross sections of a circular prismatic bar with
axis oxg be acted on by couples whose moments are equal in magni-
tude but opposite in sense; in this case the bar is subjected to torsion
(Fig. 14); the lateral surface of the bar is free from surface forces,
and there are no body forces (F, = 0).

The elementary solution of the problem in the theory of strength
of materials is based on the assumption that the cross sections of

X2
. Xz
M T /\— M izu
f ™" AN
- R . R X1
/ )
X//

Fig. 14

the bar, remaining plane and at constant distances apart, rotate
with respect to one another and their radii do not distort. If this
assumption is taken into consideration, the projections of the dis-
placement vector of some point in a certain cross section of the bar are

Uy = — TTyTg, Uy = TZT3, Uz =0, (5.61)

where T is the constant angle of twist per unit length of the bar.

Let us examine whether these displacements are compatible with
all the basic equations of the theory of elasticity. Substituting (5.61)
in formulas (3.18), the components of the strain tensor are obtained
as

€11 =eyp =e33 =645 =10,

Deas= ’;:: + =Ty, (5.62)
2e9=—1 6”‘ +=2 Z:f —TZy.

The volume strain is
e = eu + 322 + 333 == 0. (5.63)

As seen from formulas (5.62), Saint Venant’s compatibility equations
are satisfied identically.

Noting that the mass forces are zero and relation (5.63) holds,
we verify that displacements (5.61) satisfy Lame’s equations of elas-
tic equilibrium (5.8).
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By the generalized Hooke’s law, the stress components are equal to
Oyy = Oy = O3 = 03y = 0, (5.64)
O23 = PWTTyy, Oy = — UTZy.

Thus, there are only two components of shearing stress acting at
any cross section of the bar. Substituting (5.64) in formulas (2.22),
we have T, = 0 on the lateral surface, where n; = 0. Consequently,
the lateral surface of the bar must be free from stresses, which is
actually the case. Further, substituting (5.64) in formulas (2.22)

for the extreme cross sections (n; = n, = 0, ny = + 1), the surface
forces corresponding to solution (5.61) are obtained as

Thi = F pizy, Tpy =4+ ptr,, Tps=0.
Thus, solution (5.61) leads to the conclusion that the extreme cross
sections of the bar must be acted on by only tangential forces distri-

buted according to law (5.64). The resultant vector and the resultant
moment of these forces with respect to the centre of the circle are

Vi= S Tpido=—pt S 2, do,
o o

Vo= S T podo=pt S z; do,

(0] (0]

L= S (T poxi— T paty) do= p;cS (x2—|—.2‘:) do.
@ o

Owing to the fact that the ox, and oz, axes pass through the centroid
of the circle, the static moments of its area are

S xzdwzs.z'id(o:o

(0] ©

We have, finally,
Vi=V,=0, L =p1l,

where I, is the polar moment of inertia of the area of the circle, i.e.,

4
L= @+ do="F;
[0}
here R is the radius of the circumference.

The realization of the transmission of external forces at the ends
of the bar according to law (5.64) is impracticable, but on the basis
of Saint Venant’s principle solution (5.64) may be considered exact
for any law of transmission of external forces if the conditions of
static equivalence are fulfilled, i.e., the constant T is chosen so (this



38. Simple Problems 105

is possible) that the moment A of the applied couple at either of
the extreme sections is equal to the resultant moment L,:
Lo = p.TIo = M,

from which we obtain
M
pl,’
giving Hooke’s law for a circular prismatic bar in torsion.

5. Pure bending of a prismatic bar.

Let the oz, axis be taken coincident with the axis of the bar, and
the or, and oz, axes coincident with the principal centroidal axes

T=

Xz

fa—

X1

Fig. 15

of inertia of a cross section, the ox; axis being directed towards the
stretched fibres (Fig. 15).

Suppose that the lateral surface of the bar is free from external
forces, and that body forces are absent. Moreover, let the extreme
sections of the bar under consideration be acted on by two couples
whose planes of action coincide with one of its principal planes, the
moments of the couples being equal in magnitude and opposite in
sense. In this case the bar is subjected to pure bending and, as is
known from the theory of strength of materials, the solution of this
problem is based on the assumption that each cross section, remain-
ing plane, rotates about a centroidal axis of this section perpen-
dicular to the plane of action of the couples (the neutral axis oz,)
through a certain angle.

Assume that the components of the stress tensor are

Oy = Ogp = 01y = Oy3 = O3, = 0, 033 = az,, (5.65)

where a is a constant, x, is the distance of the point of the cross sec-
tion at which the normal stress ogy is calculated to the neutral axis
of this section.

Let us examine whether the stress components are compatible with
the basic equations of the theory of elasticity. Since the problem un-
der consideration is also a simple elasticity problem, the components
of the stress tensor (5.65) identically satisfy the Beltrami-Michell
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relations. The components of the stress tensor (5.65) also satisfy
the equations of elastic equilibrium.

On the lateral surface of the bar, where ny = 0, from formulas
(2.22), with (5.65), we have

Tn1=Tn2= n3=0-

Thus, the lateral surface must be free from external forces, which
is actually the case.

At the extreme sections, where cos (z3, z;) = cos (z5, z,) =0,
cos (zg, z3) = 4= 1, from formulas (2.22), with (5.65), we have

Th =T =0, T3 =+ az,. (5.66)

Formulas (5.66) show that there must be only normal stresses distri-
buted according to law (5.66) at the extreme sections of the bar.
The resultant vector and the resultant moment of these forces are

V= S Oysdo=a S z,do,

©

L= S O3z, do=a S z1xg dw,
(0] (0]

L,= S O33%; do=a S z} do.

(O] (0]

Taking into account that the oz, and oz, axes are directed along the
principal centroidal axes of inertia of the cross section, the static
moment with respect to the oz, axis and the product of inertia of the
cross-sectional area with respect to the oz, and oz, axes are zero, we
have, finally,

L, = al,

where I is the moment of inertia of the cross-sectional area with
respect to the neutral axis oz,.

The transmission of external forces according tolaw (5.66) is
impracticable; hence, based on Saint Venant’s principle, instead of
these forces one can take a load in the form of bending moments
so that the equivalence condition is fulfilled, i.e.,

al = M,
from which

~=

and hence,

M
Og3 = —I" x4.
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By the generalized Hooke's law, the components of the strain
tensor are equal to

v vM
€44 = €99 = "7033= =&l *v

M
€33 =7 Tt (5.67)
€19 =63 =3y =0.

We place the origin at the centroid of the left extreme section and
fix the bar at it so as to satisfy the conditions
A ) S L S L W
Uy = Uy = Uy = o= o= 5 -=0.
From (3.44), using the fixing conditions and formulas (5.67), we ob-
tain, after some manipulation, formulas for the determination of
displacements:

M
us=5pr (23— (21— 7)),
M
Ug= — %I— Z4Zay (5.68)

M
Us EI T1Z3e
As formulas (5.68) show, the axis of the bar z; = z, = 0 before de
formation, remaining in the ox,z; plane called the plane of bending,
is distorted into a parabola after deformation:

U= — 2EI xs’ Ug=Uz=U,

The curvature of the elastic line is, neglecting small quantities of
higher order,

1 d*u
K=Ll_3
R dx:
Substituting the expression for u,, we obtain the formula
1__M
R~ EI?

which determines the curvature of the axis of the bar proportional
to the magnitude of the bending moment. Since the curvature is
constant, the elastic line, parabola, may be replaced by a circle,
neglecting small quantities of higher order.

As follows from the formula for the displacement u,, any cross
section zz=constant transforms into a plane section after defor-
mation.



CHAPTER VI

The plane problem
in the theory of elasticity

The solution of elasticity problems for the general case of three-
dimensional bodies involves great mathematical difficulties; we are
compelled by this circumstance to turn to the solution of more or
less wide classes of special problems, one of which is the plane prob-
lem of elasticity. The latter comprises three cases of elastic equilib-
rium of a body having great practical significance, viz. plane strain,
plane stress, and generalized plane stress.

39. PLANE STRAIN

The deformation of bodies is described as plane strain if the dis-
placement vector of any point is parallel to a certain plane called
the plane of deformation and is independent of the distance of the
point under consideration to this plane.

Suppose that a body is subjected to plane strain parallel to the
ozyr, plane; then

Uy = Uy (Ty, Zg)y, Uy = Uy (Ty, Ty), uz =0 (6.1)

Inserting (6.1) in formulas (3.26), the components of the strain tensor
are obtained as

_ Oy _ Ouy _‘1_(& duy )
eu—-éz—l', ezz—E, €12 =5 oz, + oz, )? (6.2)

the latter are in general different from zero and independent of zg,
and the remaining components are

€3 = €5 = €33 = 0.
The volume strain is then equal to

0y 3u2
oz +

and is also a function only of the co-ordmates z, and z,.
In this case the formulas of the generalized Hooke’s law take the
form
Oy = AB; + 2uey;, 03, = AB; + 2pey,,

O1a = 2Hey5, Og3 = 05 =0, 033 = A8y, (6.3)
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Consequently, in plane strain the stress tensor consists, in general,
of four non-zero components depending on two arguments, x; and
z,. Because of the presence of the component og3 a state of plane
strain is achieved. It can easily be shown that for a body in plane
strain the number of independent components of the stress tensor
is three. Indeed, by adding the first two formulas of (6.3), and using
the fifth formula of (6.3), we obtain

A
O3 =30 O T Oa9)
from which, with (4.41), we have
033 = v (03 + 039). (6.4)
In the case considered the differential equations of equilibrium
(2.25) become
7l 0 0 0
T4 G pF =0, G4 TRL =0, F=0. (85

These equations show that the mass force applied to any point
of the body must be parallel to the plane of deformation and inde-
‘pendent of the x3 co-ordinate.

Lamé’s equations (5.6) are also accordingly simplified and take the
form

(h+1) 5ot +pAus +pF, =0.

(7»+u)—z—:-;—+uAua+sz=0;

here A is the two-dimensional Laplacian operator.
Of Saint Venant’s strain compatibility conditions, as is easily seen,
there remains

(6.6)

0 eu 2 €12 __ 9 0eys 6.7
ozy + oz} 0z, 0z,’ 6.7

the other five conditions are satisfied identically.
For an isotropic homogeneous body the compatibility equation
(6.7) in the absence of body forces becomes, by virtue of (6.3) and

(6.5),
A (03, + 050) = 0. (6.8)
Indeed, from the formulas of Hooke's law (6.3), with (6.4), we have

1 A
eu =5 loxt—m (014 4 0g0)],

1 A 3
e = g =3 (O + 0] &9
1
e1g = Py 0133
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on the other hand, from the differential equations (6.5) with F, =
= — 0 we have

62011 ik 022 9%0,,

p= + px; —2 92,05, (6.10»
Substituting (6.9) in (6.7), and using (6.10), we arrive at Eq. (6.8),
which is called Lévy’s equation.

Taking into account Hooke’s law in the form of (6.9), the strain

compatibility condition (6.7) may be given a new representation

[ : [041—v (011 1+ 03)] + —[022—'\’ (011 +0g2)] =2 5?: (6.11)

From the definition of plane strain it follows that it is exactly
realized in a prismatic body of infinite length with straight axis
when the surface and body forces lie in the planes of cross sections
and are independent of the co-ordinate along the axis of the body.
When a prismatic body is of finite length, plane strain is not exactly
realized in it. The longer the body, the more nearly does the defor-
mation approach plane strain provided that the ends of the body
are acted on by forces distributed according to the law o33 = A0,.

Since, by definition, the conditions on the lateral surface of a pris-
matic body are independent of the x5 co-ordinate, the boundary
conditions are prescribed on the contour of one of the cross sections
or on several contours if the section is multiply connected. Thus,
the system of differential equations of equilibrium (6.5) and rela-
tions (6.3), together with contour conditions, describe simpler elas-
tostatic problems (Sec. 34); here again, three fundamental two-
dimensional boundary value problems may be distinguished. ", -’

According to (2.22), the contour conditions for the first funda-
mental boundary value problem are written as

Only + Opafty = Ty, (6.12)
G1afy + Ogontg = Ty '

The differential equations of equilibrium and Lévy’s equation as
well as the contour conditions (6.12) in the absence of body forces
contain no elastic constants of material. Consequently, in the case
of plane strain in the absence of body forces the state of stress in
the body at any simply connected section parallel to the plane
of deformation is determined by the forces prescribed on the
contour of this section, its shape, and is independent of the mate-
rial properties.

If the section is a multiply connected region, the independence
of the state of stress of the ~material properties is ensured by the
additional condition that the external forces applied to each of the
boundaries of the region should be balanced. (The proof of this pro-
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position will be given somewhat later.) This statement constitutes
the theorem of Maurice Lévy, which underlies the determination
of the stress tensor on models from a material of different elastic
properties.

In plane strain we obviously have

ou ou
2(012:5%_%_21-’ 2(023=0, 2(013=0.

For convenience, ,, will be further denoted by ws. From the formulas

ou, dou, _ 0y ou,
T 0z, | 9z,

after determining the expressions

06, 003 __ 06, 0wg
Auy = oz, © 0zy ' Auy= oz, +2 z,

and substituting them in Lamé’s equations of equilibrium (6.6),
we obtain a system of differential equations for 6, and wg in the form

(h+ 20) Tk — 2 52 4 0F, = 0,

(A +2p) 2 . Lt op 528 4 F, = 0.

Assuming F, = F, =0, the last equatlons become

Sy by dor
0z, ~ 0z, oz, 0z, !
where o* = T _'_gp »3. These equations constitute the Cauchy-Rie-

mann differential relations, and hence the functions 8,, w* are

conjugate harmonic functions. p
) J

40, PLANE STRESS

A state of stress in a plate is
said to be plane if the stress %
vector on planes parallel to the
bases is zero throughout its -

volume. : X,
Let the middle plane- of the Fig. 16
plate of thickness 2 be taken '8
as' the co-ordinate plane Oz,z, (Fig. 16). By definition,
‘ 013—023—033—0

hfen(<é95§he system of differential equatlons (2.25) assumes the form
o :
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Since 033 = 0, for an isotropic body we have

083::x(6u1+6u2+6u3)+2 Oug —0.

O0zy ' Oxg

Inserting, from this, the value of %—3 in terms of ! and au’ in the

3
remaining formulas of Hooke’s law, we obtain relatlons between
the components of the stress and strain tensors in the form

Jdu Ju, du
Y 1 _z ouy
Oy =>A (a ) +2u e

6.13)
sk (Ouy | Ouy dugy (
Ogg=A (ﬁx1+ )‘{ B 5z,
ou; , Ou,
012— ( azz +6$1) .
Oug WA (0uy | Ouy
ozy At 2p (611+032) (6.14
OQuy | Oug __ 0u1+6u, -14)
Ozy V 0z, 0, oz,
where
P
e

As seen, formulas (6.13) are obtained from the first three formulas
of (6.3) by replacing Lamé’s coefficient A by the coefficient A*,
Substituting (6.14) in Eqgs. (5.6), we obtain

(> +1) 5= +pAuy +pF1 =0,
(7~*+P«)a +P«Auz+PFz—0 F3=0,

Here A =E‘§'+%§'

These equations differ from Egs. (6.6) only in that the coefficient
A is replaced by the coefficient A*, and are three-dimensional.

Thus, in spite of a considerable simplification in the basic equa-
tions for the plane stress problem, the problem remains three-dimen-
sional since the z; co-ordinate is not eliminated from the foregoing
equations. For the case when the plate thickness is sufficiently small,
however, L. N. G. Filon propounded an idea permitting the reduc-
tion of the problem to a two-dimensional one. The idea is that the
calculation of the means of the displacement vector and the stress
tensor in a thin plate gives a reasonably accurate solution of the
problem of! plane stress; the latter, following A. E. H. Love, is
termed ‘generalized plane stress’.
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41. GENERALIZED PLANE STRESS

Suppose now that a plate of height 2k is loaded on the lateral
surface by external forces parallel to the bases and symmetrically
distributed with respect to the middle plane; the bases of the plate
are supposed to be free from external forces. Assume further that
the component of the mass force perpendicular to the middle plane
of the plate is zero, and that the other two components are disposed
~ symmetrically with respect to the middle plane of the plate. The
state of stress set up in such a plate is called generalized plane stress;
it is often encountered in applications and is a practically important
case.

By condition, on the bases 23 = = &

Tnl = 013 = 0, Tnz = Oy3 = 0, Thy = 033 = 0, (6-15)

and on the lateral surface of the plate T,; = 0; also, F; = 0.
From the third differential equation of equilibrium

9043 004, 0033 _
dzy + oz, dzg +pF3=0,

using conditions (6.15), for z; = &+ h we have

0033 __
=0,

Consequently, the derivative of o33 with respect to the z; co-ordi-
nate, as well as 055, vanishes when z; = -+ h; hence, if the plate
thickness is sufficiently small, o044 is very small, and we may as-
sume 033 = 0 throughout the plate.

It is obvious, by symmetry, that the projection of the displacement
vector of any point of the middle plane on the oz, axis is zero and is
an odd function in z3; hence, its mean value is u¥ = 0. We also as-
sume that the variations of the projections u, (z;, z,, z3),
Uy (24, Zs, x3) across the thickness of the plate are small; instead of
u,, U, we may therefore consider their mean values across the thick-
ness, which are determined by the formulas

h h
¢
u’i‘=ﬁ j u, dzs, u§=E%S Uy Age (6.16)
Zh

Zh
Now multiply both sides of the system of differential equations of

equilibrium (2.25) by (2k)-'dz;, and integrate with respect to the
z3 co-ordinate between the limits —~ and -}-h; then, by conditions
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(6.15),

h

1 ao 1 h

‘275 zy 4= 55 [013]-n =0,
Zh
h

1 g 00,3 1 B

'5;;%—‘9;‘&3—%[023]—1;——0

We finally obtain (remembering that o;3 = 0, F; = 0)

Tho Bhyopr—o, SRR Lop—0,  (6.47)
60’13 - 208 60'23 =0, (6.18)
where ‘ -
+h +h
of —Lfa dx *—J_SFda:
“——Zh 11 3y ey 2= 9 2 3
‘h —h

are the mean values of 0,4, . . . , F, across the thickness of the plate.

It follows from the definition of plane stress that u,, ©,, 0y, 055, 04
are even functions of x3, and 0,3, 0,3 are odd functions. Consequently,
the mean values of;, o}, are zero, and Eq. (6.18) is an identity.

By averaging the values of the given external forces on the lateral
surface of the plate across its thickness on the contour of any section
parallel to the bases (or on the contours if the section is multiply
connected), we have

* * *
o11ny +0olon, =Th1,

01any + 03an, = T2, (6.19)
where
» +h +h
=g | Tmdes D=y | Tnada.
—h —-h

Transforming to the mean values, and noting that o33 = 0, from
the formulas of Hooke's law (6.13) we obtain :

ou¥

Ot =WOf+2u S5, ofp—A%t+2u L,
1 2
(6.20)

. ou¥ ou¥
* 1 2
012 l"l' ( 6$2 N 61‘1 ) ’
where -use has been made of the notation

aul oud
= oz, +5z, oy *
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Relations (6.20) between the mean values of the components of the
stress tensor of,, o%,, o, and the derivatives of the mean values of
the displacements u}, uj in generalized plane stress differ from
relations (6.3) in plane strain only in that the constant A* takes the
place of Lamé’s elastic constant A. The differential equations of
equilibrium (6.17) and the contour conditions (6.19), which must
be satisfied by o%,, 0%, o},, completely coincide with the differential
equations of equilibrium (6.5) and the contour conditions (6.12)
in plane strain. Consequently, for generalized plane stress Lamé’s
equilibrium equations and the Beltrami-Michell relations for the
averaged values are written as in plane strain, (6.6) and (6.11),
the only difference being that A* stands for A.

Thus, we come to a very important conclusion that plane strain
and generalized plane stress, being essentially different problems
of plane elasticity, are mathematically identical.

42, AIRY’S STRESS FUNCTION

The solution of problems of plane elasticity is considerably simpli-
fied if body forces are disregarded either because of their smallness
or remembering that a problem involving body forces can always
be reduced to a problem with no body forces by finding some par-
ticular solution of the corresponding non-homogeneous differential
equations of equilibrium. In the following discussion it will be as-
sumed that there aré no body forces.

In the plane problem of elasticity an auxiliary function first intro-
duced by G. B. Airy plays an important part. It should be noted
that owing to the introduction of this function an efficient method
has been developed for the solution of problems of plane elasticity.

In the absence of body forces Eqs. (6.5) become

0014 001y 0015 , 00y
(9:1:1 —I— 012 =O, -%-1—-—}-%::0. (6.21)
The first equation of (6.21) shows that the expression o, dr, —

— 0, dz, is the total differential of a certain function Q (z,, x,);
hence,

] oP
O = — 9_9501 y  Ogg= 0—12' (6.22)
Similarly, from the second equation we have
oP d
O1p = 2, 022=5;QT, (6.23)

where P (r;, z,) is some function. Comparison of these formulas for
the same quantity gives the relation '
29 _ op
dx; ~ Oz
8*
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which shows that the expression P dz,+Q dz, is the total differential
of a certain function @ (z,, z,), so that

Pdx, + Q dz, = dD,
whence
oD
P=—- Q= 0.1:2 .

oz, ?
Substituting the values of P and Q in formulas (6.22) and (6.23),
we obtain
220 220 22D
Uu=—a¥, 012= — 37,0z, » %22~ 52 - (6.24)
These formulas were first obtained by G. B. Airy. The function
@ (z,, z,) is called Airy’s stress function.

Obviously, if it is assumed that relations (6.24) hold, Egs. (6.21)
are satisfied identically. Besides, as is known, for o,;, 04,5, and o,,
to correspond to the actual state of stress, they must satisfy the
compatibility conditions (6.8), i.e.,

A (04, + 0,,) = 0. (6.25)

On the other hand, from relations (6.24) we have

%D
011"‘022— 922 + 973 = AD.,

Taking into account the last equality, from (6.25) we obtain, finally,
AAD =0, (6.26)

where
04 04 04
AA= ozt +2 6.1:%012-*_@'

In the following discussion it will be assumed that the stress funce
tion has continuous derivatives up to the fourth order in the region.

Thus, for the stress function to determine an actual state of stress,
it is necessary and sufficient that it should be biharmonic.

Let us now derive contour conditions that must be satisfied by
Airy’s function. Assuming that the external forces T, T,, are
given on the boundary of the region under consideration, we trans-
form the contour conditions (6.12). It will be assumed in what fol-
lows that the contours are simple, i.e., not self-intersecting, and rea-
sonably smooth.

We express n, and n,in terms of the derivatives of the co-ordinates
z, and xz, with respect to the arc length / measured in the positive
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sense along the contour under consideration. Referring to Fig. 17,
we have

dr dz
ni-':‘-TiTz, n2= —Til_l. (6‘27)

Inserting (6.24) and (6.27 ) in the contour conditions (6.12), we obtain,

on L, (r=0, 1, 2, , m), .

o0 dz, 02D dxl _7 z N

z% dl | 9z, 0z, dl ntr
FO_ds,  00dn _p

n2

9z 0z, Al Oz} dl

% D d (00 L@ g Xt

2 (5r)=Tn g (5 )= —Tna-

(6.28) zz@ /
)

For an arbitrary point N of the con-
tour L, we introduce the notation

o0 | =B, (6.29) Fig. 17

0z 0z, |N

N"‘ T

By integrating equalities (6.28), we then obtain

M M

oD a0

= A — ST,ﬂdl, -B-—_B,+1§ 7,.dl. (6.30)
N

D . .
72, ° 5z, b passing from N

to M (these points lie on the same contour) are, respectively, equal
to the projections on the oz, and oz, axes of the resultant vector of
the external forces applied to the contour between these two points.
With formulas (6.30), it is easy to find the derivatives

Thus, the increments of the functions

o0 0D dz; , 0D dz,
ol ~ 0z, dl " oz, dl°’ (6.31)
oD _ 0D dz,

oD dzx,
“on 0.1:1 dn %, oz, dn ° (6.32)
Inserting the values of g—fi ) g:'_@ from (6.30) in (6.31), and inte-
2
grating the result thus obtained with respect to /, we have
M M M

<D=C,+A,x1+B,:c2+J§ [ d"lS T, dz+id’2]§ Tpidl]dL.
(6.33)
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Formula (6.33) shows that if we are given the values of the external
forces on any contour, the value of @ can be calculated at any point
of the same contour, apart from an additive linear expression of the
form

C; + 4,2 + Bz,

It should be noted that this expression drops out for the components
of the stress tensor calculated by formulas (6.24).

If the given region is simply connected, C,, 4,, and B, may be
taken equal to zero on the contour L,. If the region is multiply con-
nected, taking the constants C,, B,, and A4, to be zero on any one of
the contours, we cannot choose the others arbitrarily.

Substituting the values of —g—:i, % from (6.30) in (6.32), we
1 2
determine the value of the normal derivative

B (| Tt B2t (5 [ Tat) 22 030
N N

from the given external forces applied on the contours.

Thus, the solution of the plane problem of elasticity is reduced to
the determination of a biharmonic function from the known contour
values of this function and its normal derivative.

On passing once round any closed contour, we have, by formulas
(6.30) and (6.33),

oD
You _§Tn2dl= —V,,

6.35)
oD (
o= § T, dl=V,

M

M
o= [—ddi;é Ths dl+%1§ T, dl]dl, (6.36)

where V; and V, are, respectively, the projections on the ox; and
oz, axes of the resultant vector of the external forces applied to the
contour under consideration. By integrating (6.36) by parts, we ob-
tain

O = —2iyVst Vit § @ me—mladdl  (6.37)

where z;y and z,y are the co-ordinates of an arbitrary point NV of
the contour under consideration L, from which a complete circuit
is started. The third term in (6.37) determines the value of the re-
sultant moment of all external forces applied to the given contour
about an arbitrarily chosen origin of co-ordinates.
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Formulas (6.35) and (6.37) enable one to establish conditions for

single-valuedness of the function @ and its derivatives g_;l: . g;g.
2
The function @ and its derivatives g% , %)- are single valued if the
2
resultant vector and the resultant moment of the external forces
applied to every contour of the region are each zero; if the resultant

X2

B X
B

Fig. 18

vector is zero, the function is not, in general, single valued, and its

. . 0 . . .
derivatives 5:—-) , a%o are single-valued functions; if, however, the
1 2

resultant vector is not zero, both the function @ itself and its deri-
vatives are not single valued.

A number of interesting solutions of Eq. (6.26) can be obtained by
assigning Airy’s function in the form of polynomials of different
degrees. As the simplest example we choose Airy’s function in the

form of a second-degree polynomial, which obviously satisfies Eq.
(6.26),

1 1
(D = '—2— azx: + bzxixz + ‘2— 02xg.
In the absence of body forces the components of the stress tensor are,
from Airy’s formulas (6.24),
Oy = Cgy Ogp = Ay, Oyp = — by,

Thus, all three components are constant in the entire region. For
arectangular strip with sides parallel to the co-ordinate axes (Fig. 18),
the forces applied to the contour where a,; = 4+ 1, a,, = =4 1 are,
by formula (6.12),

Ty =0y =c¢y T3 =01=—0by Ty =0y =a,
Equation (6.26) is also satisfied by a third-degree polynomial
b a
®=%x§+-—21x:x2+c—;xix§+—ei z5.

On the basis of formula (6.24) the stress components are

01 = C3Zy + dgZy, Opy = agZy + bsZy,
015 = — bgr; — c3%,.

(6.38)



120 Ch. VI. Plane Problem

Assuming ¢; = a3 = by = 0, d; = 0, we obtain
Oy = dgly, Ty =0, 0y, =0. (6.39)

This system of components of the stress tensor corresponds to pure
bending of a rectangular strip by external forces applied at both its
ends, z; = 0, x; = I. These external forces must be equal, by for-
mulas (6.12), to —dgz, at the end 2, = 0 and to dsz, at theend 2, = L.
The resultant vector and the resultant moment of these forces are
obviously given by

V= 6 S 044 d:l:2 = 0, M= 6 S 044%o dxz = % d3c36.

—-C c

Here 8 is the thickness of the strip, 2¢ is its depth.

By Saint Venant’s principle, the solution found above is also
applicable well away from the ends of the strip when, instead of
the external forces applied at both ends of the strip and distributed
according to law (6.39), there are statically equivalent couples of
moment M, the state of stress differing from (6.39) near the region
of application of the couples. If the only non-zero coefficient is as,
the non-vanishing component of the stress tensor is the normal stress
0y, = agty. 1f, however, only one of the coefficients b3, ¢4 is different
from zero, say c; = 0, there is a shearing stress o,, in addition to
the normal stress ¢;;. When use is made of polynomials of higher
degree than the third, the biharmonic equation is satisfied for certain
relations between their coefficients.

43. AIRY’S FUNCTION IN POLAR CO-ORDINATES,
LAME’S PROBLEM

The equilibrium equations for the plane problem of elasticity in
a polar co-ordinate system become, on the basis of Eq. (2.30) in
the absence of body forces,

ao; Opr—O
a;,"‘*'% arw rr W:O,
() r
(6.40)
1 00qg 60”9—[——2-0 —0
T oy or oo
The solution of this system may be taken in the form
" 100, 130 20
T T TR G ? 0 = Gr2 o
? (6.41)

1 00 1 020

where @ (r, @) is Airy’s stress function in a polar co-ordinate system.
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The first two relations of (6.41) must satisfy condition (6.25), i.e.,
A (o, + 0'cp(p) =0, (6.42)

where A is the two-dimensional Laplacian operator in a polar co-
ordinate system
o 1 0 1 4
A=gmtratmag
Substituting the expressions for o,,, 04, from (6.41) in (6.42), we
obtain a biharmonic equation for the determination of Airy’s func-
tion:
0% 1 9 1 o 7?0 1 00 1 920
(5 + 3 T ag) (5w T3+ agr) =0 (6:43)
In the case of a symmetrical distribution of stress about the origin
Eq. (6.43) takes the form
ds®d 2 a3 1 4?0 1 do
T T E e T %

and the general solution is
O®=Alnr -+ Br2lnr+ Cr2 4 D. (6.44)
Substituting (6.44) in formulas (6.41), we obtain the components of

the stress tensor in the case of a symmetrical distribution of stress
about the origin:

0pr=A—¢ +B(1421nr)+2C,

Ogo= —A—r+ B(3421nr)4-2C, (6.45)
0, =0.

If the point r = 0 belongs to the region, A and B must be taken equal
to zero to make the components of the stress tensor bounded; then
O = Ogq = C.

The problem of the deformation of a hollow circular cylinder sub-
jected to a uniform pressure on the inner and outer surfaces was

first solved by G. Lamé. The solution of this problem can easily be
obtained from relations (6.45) subject to the boundary conditions

O, = — p; on the cylinder r = ry, (6.46)
O, = — py on the cylinder r = r,, .

where ry, r, are, respectively, the inner and outer radii of the cylinder.

The determination of the coefficients 4, B, C requires a third con-
dition in addition to two boundary conditions (6.46). The third con-
dition is the independence of the projections of the displaceiment
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vector u,, u, of the polar angle ¢ since the independence of the com-
ponents of the stress tensor of the angle ¢ does not necessarily lead
to the independence of the displacement vector of the polar angle .
In the case of plane strain u, and u,, are determined from the formulas
of Hooke’s law:

% 1+v [(1—%) 0rr —VOpe) =

:1_’5.‘.’{?-—[—3[(1—4\;)—[-2(1-—%) Inr]+2C (1 —2)},

1 Oug 1
St s = [ VO (1= V) O] =

=1;v{_7T+BH&—@W+QH—QWMH+QCU—QW}
From these relations we find
ur=%\—’{—é-—B[1—2(1-—2v) Inrjr4-2C(1 —2V)r}+f(q)),

d (6.47)
4 (1—nw2
ug=1 Bro— [ 1 (@) do+¢ ().
Here the functions f (¢) and g (r) are to be determined.

Since the projections of the displacement vector u,, u, must be
independent of ¢, we have to put

f(9) =0, B=0. (6.48)

On putting B = 0 in relations (6.45), from the boundary conditions
(6.46) we find

A+ 2=—p, H420=—
1 2

By solving this system of equations, we obtain

(Po—p1) i3 _ ripL — rpy
="0=r (= (6-49)

Inserting (6.49) in (6.45), the stress components are, finally,
_ i3 (po—p1) riz + rip1—rips

R s | ri—ri
o = — rir3 (ps—py) 1 ripy—rip, (6.50)
e ri—rt + r§g—ri
Substituting (6.49) in (6.47), we have
1
uFﬁ)—[ 273 (p1— pa) ++ (1— 2v) (rip1—73py) ] (6.51)

Up=g ()e
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Since 0,, = 0, it follows that

du, u
uer =203 (37 —57) =0
and then
dg(r) __
g(r)y  r°
from which
g(r) =gr,

where ¢ is an integration constant.

Thus, the tangential projection of the displacement vector u,
represents a rotation of an absolutely rigid body.

Let us now consider the problem of determining the state of stress
in a thin concentric circular disk rotating with a constant angular
velocity . The disk is acted on by the volume force pF, = pw?r.

Noting that here the deformation is symmetrical about the pole O,

we have u, =0, %‘:P’ = 0. Hence, from formulas (3.29) and (2.30),
d T T

=_dur‘, ew=u7. (6.52)

L 4% 4 owtr=0. (6.53)

Taking into account (6.52), from (3.40) we obtain the strain com-
patibility equation in the form

1 d ( ;%0\ dey
+ (") == =0

d dege
vl R +(e®(v—err)] 0.

The last relation is satisfied if

or

degg

1
dr = T‘(err—eqw). (6.54)

By using the formulas of Hooke's law (5.27), and noting that
033 =0, 0., = 0., (1), Opp = Oy (r), we rearrange relation (6.54)
in the form

d0qq dor, 1 + v
T V& =7 (OO

Substituting in this equation the expression for o, — 0,, from
(6.53), we have

dOgp dc,.,
dr -

— (1 +v) pw?r. (6.55)
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Differentiating (6.53) with respect to r gives

d dorr d9rr d0gq %
E(’ ar )+ o — g T 2p0'r=0.

Substituting (6.55) in the last equation, we find

d
r s (rzcrr)] + (3 +v) po?r =
Integrate this equation:
R (6.56)

From (6.53) and (6.56) we have

B 1+43v
Opp = A——ﬁ--— g PWrE.

To find the constants 4 and B we have the following boundary
conditions:
0, = 0 on the cylinder r = r,,

0, = 0 on the cylinder r = r,.

From this
A+%—3§va2r§=0,
2
A+E Y peri—o.

The solutions of this system of equations are

A=3—_-g2pm2 (r{+r3), B= ——éﬂ pw2rirs:

Consequently,
3+'V (rf—l—r’—-rz—%:—g),
ow— 3 [(3—{—\’) 2+r2—{—r‘r2)—(1+3v)r2J

On the basis of these formulas it is easy to verify that the stress
o, is tensile and attains a maximum value at r = }/ryr,. The stress
0,9 is also tensile and its maximum value occurs at r = r;. When
the hole is very small (r; € r,), the stress o,, changes abruptly at
its edge, i.e., stress concentration occurs. It follows from the second
formula of (6.57) that

Opr =

(6.57)

max 3—[—’\’
Ogp =

pwra.
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If the disk is solid (r; = 0), we must take B = 0 to obtain a bound-
ed solution; then

0 =LY p0? (1= 19),  Ogp=Eo—[(3+v) i — (1 +3v) ],
In this case we have, at the centre,

Opp = Ogg = ?%’ pPWr3.
Thus, in a disk with a very small hole the stress o, at its edge is
twice that at the centre of a solid disk. If the wall of the disk is very
thin, it is permissible to put r, = ry; it follows from the second for-
mula of (6.57) that

— A2
Opp = POTy.

As a sample problem let us investigate the distribution of stress
and displacement in a circular bar under pure bending (Fig. 19).
Since the stress tensor is inde-
pendent of the ¢ co-ordinate,
the stress function is taken in
the form of (6.44). We formu-
late the boundary conditions

of the probl
( orr=0 when r=R,,

|
0,,=0 when r=R;, |

R,
g O dr=M when ¢=0. Fig. 19

R,

On the basis of formulas (6.45) these conditions may be put into the
form

7;—A—|-(1—{—2lnRz)B+2C=0,

Ar A+(1+21aR) B4+2C =0,
1

—-Aln—z—;—{—B[R}ln R—R:nR, - R*—RY - (R*—R%C—M.

The solutions of this system of equations are as follows:

4M R

2M
B = — =~ (R{—R)),

C=2_[R\—Ri+2(RInR,—Rlln Ry,
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where )
= —(RI—R+4RR I 2o
2
Thus,
o,,=_4_lﬂ)f_( RiR} ln%+331n—;-l_+ﬁg 1n%),
o= — 20 (— BB 1 By ptin £ B3l B2y B2 ).

We now determine the displacements u, and u,. For the given prob-
lem the formulas of Hooke’s law, with (4. 50) and (3.31), become

(Z_z;,=T[(1+V)Ar-z+2(1_v)Blnr+(1—3v)B+2(1—-V)C],

9 u
%al(: T’:%[—a+v)Ar‘2—|—2(1—v)Blnr—l—
+@B—v)B+2(1—v) C], (6.58)
1 ou,  Oug Up
racp+__7__0'

On integrating successively the first and second equations of this
system, there results

= [—(+v) Ar ' 4-2(1—v) Brlnr— (1 +v) Br+
+2(1—v) Crl+1i (),
o =21 —f,(9) +fa (7).

Taking into account these relations in the third equation of system
(6.58), we obtain

L 1@+ F2 )+~ 11 (9) = f2 (1) =O.
From this
fi@+fil@=C, rfz(r)—f:(r)=—C.
The general solutions of these two equations are, respectively,
fi(9) = Pysing + Pycos @ + C, [y (r) = Pyr + C.
We thus have

U, =2 [— (14v) Art 4-2(1—~) BrInr — (1 4-+) Br+
+2(1—v)Cr]+ Pycosp— Pysin g,
.uq,=4TBrcp—P, sin ¢ — Py cos ¢ + Pyr.
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To determine the constants P;, P,, and P3; we must take some point,
say O, and fix the bar so as to eliminate its motion as a rigid body,
i.e., we must put, at this point,

du
u,=uq,=a—;p=0.
Then
1 R 2 R,+R R,+R
Pi=— [~ A+ 20— BIET I Sf

—t 4w BBt 91—y c Bt
P2=P3=O.
The displacements become, finally,
Uy = [— (L) A+ 2(1—) Brlnr— (1 +v) Br +
+2(1—v)Cr]+P,cos o,
4B .
Uy =%~ ro — P, sin g.

It is seen from the formula for the displacement u, that the cross
sections remain plane in pure bending.

44. COMPLEX REPRESENTATION OF A BIHARMONIC FUNCTION,
OF THE COMPONENTS OF THE DISPLACEMENT VECTOR
AND THE STRESS TENSOR

In the preceding section the solution of the equations of plane
elasticity was reduced to the boundary problem for the biharmonic
equation, which is satisfied by Airy’s function. The methods of
complex function theory may also be used to advantage in the solu-
tion of the equations of plane elasticity. The application of these
methods was first given in fundamental investigations of G. V. Kolo-
sov and N. I. Muskhelishvili. The complex representation of the
general solution of the equations of plane elasticity was very fruitful
for the effective solution of the basic problems in plane elasticity.

In Sec. 32 it was shown that the volume strain for an isotropic
homogeneous body in the absence of body forces is a harmonic func-
tion; in the case of plane strain we have

S (6.59)

2
o} org

The complex representation of solutions of this equation is most
easily obtained by writing it in complex form

920,
920z

=0’ (6.60)
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which is directly obtained from (6.59) by introducing new independ-
ent complex variables z = z; + iz, and z = z; — iz, instead of the
variables z; and z,, where

17 1 7} . d a 1 7 . 0
E—-‘z—(———l,——), -j-=='?(,—+l—).

0z, 0xy 0z 0z, 0z,

We find from Eq. (6.60) that in a certain region of the plane of the
complex variable z the harmonic function may be represented as

) 1 ’ TN

eizm[fp (2)+9' (2)], (6.61)
where ¢ (z) is an analytic function of the variable z.

By multiplying the second equation of (6.6) by the imaginary

unity i, and adding to the first, with /;, = F, = 0, we obtain

. a . 0

A (u,—{—zug)—!—(?»—{—p)(a—xl—l—zgx—?) 0,=0.

Noting that

02 7] i} a
A=4—— —ti—=2—=
820z’ 0z, T Oy 9z’

the preceding equation is written in complex form

9% (uq 4 iu,) 26,
y ———— 2 — =
K 0z 0z ™ (}\' + Pl) 0z

By integrating this equality with respect to the argument Z, We
obtain

on ZEUERS) 14 1) 6, = g4 (2), (6.62)

where @, (z) is also an analytic function of the variable z.
Transforming in (6.62) to conjugate expressions, we have

=) 4 (4 ) 01— 91 ). (6.63)

By adding together equalities (6.62) and (6.63), and using, along
with the relation

d(u -{—zu 0(u —iuy) Ouy | dug\
2;;[ 11l = 2}—2p( 4 042 ) 2ub,, (6.64)

0z, ' Oz,
expression (6.61), we find

204208, =200 o )+ T D= @D+ 7@, (6.69)
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from which

01(9) =20EM o () +ics (6.66)

here ¢ is a real constant.
Substituting the last formula and also formula (6.61) in equality
(6.62), and integrating the result obtained, we have

21 (w1 + ug) = %@ (2) — 29" (2) — ¥ (2) + icz,

A3u
Atp
argument z.

Rejecting the term icz, which gives only a rigid-body displace-
ment, we obtain an important formula for the complex representa-
tion of the displacement in a state of plane strain

20 (us +uy) = %0 (2) — 29" (2) — ¥ (2). (6.67)

This formula also expresses the displacement in the case of generaliz-
ed plane stress in a thin plate if % is replaced by »* defined by the
relation

where %= =3—4v; Y (2) is an analytic function of the

¥ — AM+43p  3—vw
M 1+v

Since v << 0.5, it follows that ¥ > 1 and »* > 1.

We now proceed to the derivation of formulas for the complex re-
presentation of stress components by means of the same pair of ana-
lytic functions ¢ (z), P (2). For this purpose we write down the for-
mulas of the generalized Hooke’s law (6.3) in complex form as follows:

1y +0g =2 (u+A4) 04,

. . 9 . 6.68
022——0'“—}—2;012=2p,(e22—-e“+2w,2)=—-2—6;[2p,(u1——tu2)]. ( )
Taking into account (6.61) in the first formula of (6.68) and equality
(6.67) in the second formula of (6.68), we obtain very important
relations giving the complex representation of the components of
the stress tensor in a state of plane strain:

011 +02a=2[9’ (2)+ @' (3)]| =4 Re [¢’ (2)]
O — 01y + 2001, = 220" (2) + }’ (2)]

Formulas (6.67) and (6.69) have found wide application in plane
elasticity; they are useful for the reason that the properties of the
analytic functions involved in them are well studied.

Let us now express the stress function @ (z,, z,) in terms of the
same analytic functions ¢ (z), P (2).

9—0884

(6.69)
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From formulas (6.24) we have

220 . 920
011+ 05 =AD =4 ——, 0p—0y1+42i0 =14 222
0z 0z

From these formulas, with (6.69), we obtain
02(D 7 T 62CD 7~ _,—_
2=’ @+ @), 25 =i @4V @
z 02 0z

By integrating the first equation with respect to z, and the second
with respect to z, we find

2 i;— =@ (2) + 29" (2) +g4(2),
D TN | oo
2 %E_ =29’ (2) +V (2) + g2 (2).
On comparing these equalities we have
P (2) — g2 (2) =V (2) — g4 (2).

From this
g1 (Z):‘P_(Z_)—l-cu g2 (2) =@ (2) +cys
and hence
oD — T
22 =9 @) +50 @ +¥ @ +en
from which

20-29() +2 9 @D+ | VD dz+x@+ed.  (6.70)

Noting that the second derivatives of the stress function (6.24)
are real quantities, the function itself must be real, apart from cz +
~+ ¢4. On this account, in expression (6.70) it is necessary to put

1@ = | $@Ddztezte,

where ¢, ¢, are arbitrary complex constants. If we take ¢; = O,
¢ =0, ¢, = 0, without influence on the state of stress, the formula
for the complex representation of Airy’s stress function becomes,

finally,

20 =z (2) +2¢ (2) + X (3) +x (2) (6.71)
or
® =Re (z¢ (2) + (2))- (6.72)

Here the symbol Re indicates that it is necessary to take the real
part of the expression which follows it.
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Let us derive an expression in complex form for the resultant
vector of the forces acting on the side with positive normal on some
curve AB (Fig. 20) taken inside the medium in the plane of defor-
mation oz,z,. Substituting in relations (6.12) formulas (6.24), which
express the components of the stress tensor in terms of the deriva-
tives of Airy’s function, and noting that

_dxy . dx;
. ny = dal n2_ — dl
we obtain
[ PO dry 20  dr, _i(_@_\
T o2 T dl dx 0z dl  dl \ 9z, /° (6.73)
T *0  dxy, PO dry _i( oD )
n2T T or, oz, dl or2 ~dl dl \ oz,

By using these formulas, we set up an expression of the form

. . d oD . 00
Tas+iTs= —igr (G +ige)

If the components of the resultant vector in question are denoted
by (V,, V,), from the preceding formula
we find |

VitiVy= S (T'n1 - iTng) dl =

AB

. ( 00 . 00 \B
_—L(0x1+l012 )A’

where the symbol () £ denotes the
increment of the bracketed expression Xy
along the curve AB. 0

With (6.71) and the relation ¥’ (z) = Fig. 20
= ¢ (2), from the preceding formula
we obtain the complex representation of the resultant vector of the
forces acting on the curve AB

VitiVo= —i(9(s)+2¢" (2) -V (2)a. (6.74)

The resultant moment L, of the forces applied to the curve 4B on
the side with positive normal about the origin is

L= | @Te—al)d.
_ AB ‘
9*
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From the last equality, using (6.73) and performing the integration
by parts, we obtain

oD o0 \B
Ly= —(xia—zl“f‘xzaTz)A‘{‘((D)z- (6.75)
It is obvious that
a0 a0 oo . 0D
:ci—az-—l—xgaTz::Re [Z (aTl—l E)].

On the other hand, we have, by formula (6.71),

g_j;_i(;i;fmﬁqf @)+ ¥ (2).

This equality together with (6.72) enables us to give formula (6.75)
the required complex representation of the resultant moment

— B
Ly = Re (y (2) — 29 (2) — 229’ (2))a. (6.76)
45. DEGREE OF DETERMINANCY OF THE INTRODUCED
FUNCTIONS AND RESTRICTIONS IMPOSED ON THEM

It is easy to show that if the stress tensor oy, 044, 0y, is given, the
function @’ (z) is determined except for an additive imaginary con-

stant ci, and the function ¢’ (z) is found exactly.
Let ¢’ (z), ¢’ (z) be a pair of analytic functions related to the given

components 0y;, 0,y 0;, by formulas (6.69); then
Ou + O = 4Re ¢’ (2), (6.77)
Ogp — Oy + 2i0y, = 2 [20" (2) + ¢ (2)]. (6.78)

Let also ¢; (2), P; (z) be another pair of functions related to the same
O3y Ugs, 01, Dby the formulas

011 + 022 = 4Re ¢ (2), (6.79)
Oge — Ony + 2icy, = 2 1295 (2) + ¥; ()] (6.80)
On comparing equalities (6.77) and (6.79), we obtain
9; (2) = ¢’ (2) + ci.
It appears from formulas (6.78) and (6.80) that
Py (2) =¥’ (2).

It follows from the 'last two equalities that

@ (2) = @ (3) + ciz + v, (6.81)

Py (2) =¥ (2) + 7', (6.82)

where vy, 7' are, in general, complex constants,
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The converse statement is also true. If @ (z) is réeplaced by the func-
tion @ (z) + ciz + y, and VP () by the function ¥ (z) + ¥, the state
of stress remains unchanged. The validity of this proposition follows
from direct substitution of these functions in formulas (6.77) and
(6.78).; —

It is easy to see that if the projections of the displacement vector
are given, the constants ¢, y, and ¢’ cannot be prescribed arbitrarily.
Let @ (z), P () be a pair of functions related to the given components
of the displacement vector by formula (6.67); then

000 (g 4 Tus) = %0 () — 39 () — ¥ (2)- (6.83)

By replacing ¢ (z) and v (z) according to |(6.81) and (6.82), from the
preceding formula we obtain

% (uy + iug) = 2 (uy + iug) + (% + 1) ciz + xy —y'.

It is seen from this that the projections of the displacement vector
remain unchanged if

c=0, xp—7"=0. (6.84)

Thus, in this case only one of the constants v, v’ may be presqribed
arbitrarily. When the stresses are given, it is possible, by a suitable
choice of the constants v, ¢, y’, to fulfil the conditions

Gy =0, Img (%) =0, G =0, (6.85)
where z, is some fixed point of the region. These conditions completely
specify a pair of analytic functions ¢ (z) and ¥ (2)-

When the projections of the displacement vector are given, it is
possible, by choosing one of the constants, y or v, to set

@ (z0) = 0 or ¥ (z0) = 0. (6.86)

One of these conditions completely specifies a pair of analytic func-
tions @ (z) and ¥ (z). If the deformable medium occupies a simply con-
nected region, the functions @ (z), ¥ (z), % (z) are single valued in
this region. If a closed curve AA is considered in a simply connected
region, where the functions @ (z), ¥ (2), % (z) are single valued, it
ollows from (6.74) and (6.76) that

V1+iV2=O, Lo=0,

i.e., the resultant vector and the resultant moment of the forces ap-
plied to this curve are zero. For a multiply connected region, as, for
example, in the case of a plate with holes, the functions ¢ (z) and
¥ (z) may be multiple valued.

We now turn to the investigation of the nature of multiple-valued-
ness of these functions, first for the case of a finite multiply connect-
ed region and then for an infinite multiply connected region. It is
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clear that physically the components of the stress tensor must be
single valued in the region; the same condition is imposed on the
displacement vector. Hence, according to formulas (6.69), along an
arbitrary closed curve AA drawn in the multiply connected region
occupied by the body, we have

(@ @)+ (@)a=0, (6.87)
(29" (2) + ¢’ (2))a=0. (6.88)

From (6.87) it is apparent that Re ¢’ (z) is a single-valued harmonic
function. It is known, however, that the analytic function ¢’ (z)
may be multiple valued in a multiply connected region for, on pass-
ing round a closed curve situated in the region and enclosing any one
of the interior contours, the imaginary part of ¢’ (z), in general,
changes by a certain constant amount, and hence the function ¢’ (z)
itself receives an increment equal to a purely imaginary constant.
We shall see later that in this case no such increment takes place.
It appears from the above that the function ¢” (z) is holomorphic,
i.e., a single-valued analytic function. Noting that

(¢" (4= (¢ @)a=0, (6.89)
from (6.88) we have
(%" ()4 = (¥’ (2))a =0, (6.90)
i.e., ¢’ (z) is a holomorphic function in a multiply connected region.
By differentiating expression (6.67) with respect to the z; co-ordi-
nate, we have

ou A s ()@ B T -

Because of the single-valuedness of the quantities z¢” (z) + ¢’ (2)
[the second formula of (6.69)]anda—‘;—1 (v + iuy), from the last equal-
ity we have ‘

(9’ () — ¢ (2)4=0.

Compérison of this equality with (6.87) gives

(¢" @)a= (@ (@)a=0, (6.91)
i.e., @' (2) is also a holomorphic function.
On the basis of (6.91) formulas (6.74) and (6.76) for a closed curve
become

Vit Vo= —i (9@ +¥ (2)4,

N (6.92)
Lo=Re (X (3) — 2} (2))a-
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Let z, (k =1, 2, ..., m) denote the affixes of arbitrarily chosen
points inside the corresponding contours L, having no points in
common and enclosed by the outer contour L,. The function ¢ (z)
is written as

o= | o @d+e, (6.93)

where z, is an arbitrarily fixed point in the multiply connected region
under consideration. The integral

z

S ¢’ (2) dz

Zq

is, as a rule, a multiple-valued function, and, on passing round any
inner contour L;, it generally receives an increment 2mid;, where
A, is, in general, a complex constant (the factor 2ni has been intro-
duced for convenience).

It is easy to notice that the function

¢* (2) = S Q' (2) dz—z Apln (z2—2z) +¢ (6.94)
P r=1

is holomorphic in the region under consideration. Indeed, on passing
once round the contour Lj the function Ay In (z —-z;) receives the
same increment 2wi4,, while the remaining terms in the sum receive
no increments, so that the function ¢* (z) reverts to its former value.

Taking into account formula (6.94), from equality (6.93) we obtain

9@=3 41n(z—2)+¢* (), (6.95)
h=1

where @* (z) is a holomorphic function. Further, starting from the
formula

Y@= | ¥ (@) dzte,

and reasoning in a similar manner, we have ,
Y (2)= Y Bxln(z—2z0) +¥* (2), (6.96)
K=1

where B, are, in general, complex constants and {* (z) is a holomor-
phic function.

We substitute the expressions for the functions ¢ (z) and v (z) in
formula (6.67); on passing once round a closed curve L; situated in
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the given region and enclosing only the contour L, the displacement
vector u, -+ iu, receives the increment

(4 +1ug) g =7 1 (xdn+ B).

It is seen from this formula that for displacements to be single valued,
the following condition must be fulfilled:

%Ay + By = 0. (6.97)

We now determine the coefficients A, and By; for this, from the
first formula of (6.74) we calculate the resultant vector of the forces
applied on the proper side to the same curve Lj; its magnitude is
given by _

Vlh + ink = — 2n (Ah - Bk). (6.98)

It follows that the resultant vector (Vy, V) is independent of the
choice of the curve L;.
By solving Eqs. (6.97) and (6.98) simultaneously, we obtain
. Vin+iVa _ % (Vyp—iVap)
A= — '2;& (1+u2_)-' v Bu=- 2:11(1+n)2 . (6.99)
Inserting these values of 4 and Bj in formulas (6.95) and (6.96),
we have, finally,

® ()= — 3 ,§, (Vin+iVar) In (z—23) +* (2), (6.100)

m

P (2) ="2'n(1sz) gi (Vir—iVa) In (z—2z) +9* (2).  (6.101)

Consider the case of an iffinite multiply connected region (for
example, the region occupied by an infinite plate weakened by a
finite number of curvilinear holes); it can be obtained from the re-
gion considered above by taking the outer contour L, at infinity.
For every point situated outside the circumference L enclosing all
boundaries of the holes- we have

. Zp
In(z—z)=Inz+1In ( - T) .
The function In (1 — 2,2"?) is holomorphic outside the circumference
L, including the point at infinity; hence, from formulas (6.100)
and (6.101) we find
_ Vi+iV, * .
() (Z)— ——QRI-(—'I——}-—E)_IHZ—{_(P* (Z), (6.102)

% (Vi—iVy)

Y ()= n it 1R2t v** (2), (6.103)
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where (V,, V,) is the resultant vector of the forces applied on all con-
tours of the region; @** (z), Y** (z) are functions holomorphic every-
where outside the circumference L, except possibly at the point.
at infinity.

Substituting expressions (6.102) and (6.103) in (6.69), and impos-
ing conditions for boundedness of the components of the stress ten-
sor in the whole infinite region under consideration, we arrive at the
relations

V.+iV,

¢ ()= — T Inz+4Tz+4 @,y (2)s (6.104)
q;(z):%.%_) In 24Tz 4, (2), (6.105)

where T', T’ are, in general, complex constants; @, (z), P, (z) are
functions holomorphic outside the circumference L, including the-
point at infinity, so that the following expansions are valid in its
neighbourhood:

(po(z)=ao+% -:—:-{— coey

b b (6.106)
Yo (2)=bo+—+2+....

(]

By virtue of formulas (6.85), without changing the state of stress im:

a medium, we can always assume
a,=0b,=0, ImT =0.

The quantity Im I'" has a mechanical meaning. To show this, we

proceed as follows. Differentiate relation (6.67) with respect to z,
and iz,, and add the resulting expressions. Then

du, , "ou ou au s —_
P«[(g;l“l'-gé)-!—i(-ng——a;i)]—m (2)—9¢' (2)= 4
= (x—1)Re ¢’ (2) + i (x+ 1) Imlg’ (2)..
From this the value of the rotation o is determined by the'formula.
_ 1 (ouy  Guy, | 14x 0’ (2)—¢ (2)
o=7(F2—gl)=— TR
From this formula, with (6.104), we find, as z — oo,
1

_ A+
Woo = o ImT.

Hence,

2po

(6.106")
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Let 0, 0, be the values of the principal stresses at infinity, and
o the angle between the g, direction and the oz, axis; we have

g g 0,—0C
Oy= 1'2{' % +—5—* cos 2a,

g o} gy—0C.
Ogp= 1-5 z 12 2 cos 2a,

0,—O0. .
O1p= ——1——2——1 sin 2a.

On the basis of these formulas
Oy + Opp = 0y + Oy,
Ogy — Oy + 2i01, = — (03 — 0,) e~2e,

By comparing the last expressions with formulas (6.69), and using
{6.104), (6.105), and (6.106), we obtain, as z — oo,

Re I‘=% (014 0y),
" . (6.107)
I' = —5 (0y—0p)e ~ 2.,
Hence, the distribution of the stress tensor in parts of the plane at
infinity differs infinitesimally from a uniform distribution.
Substituting formulas (6.104) and (6.105) in (6.67), we have, for
large |z |,
2 (4 +- iug) = —12%%’%2) In(z7) +(«[—T)z2—T"z+ ..., (6.108)
where the dots indicate terms remaining bounded as | z | increases.
Thus, the displacement at infinity is not bounded; it is bounded
if the resultant vector (V,, V,) of the forces acting on all contours of
the region and the stresses at infinity are zero and if, further, Im I’ =
= 0, i.e., the part of the plane at infinity undergoes no rotation.
If the stresses at infinity are zero and the resultant vector of the

external forces is not zero, the displacement still increases as In (zz—) =
=21In r.

46, FUNDAMENTAL BOUNDARY VALUE PROBLEMS AND THEIR
REDUCTION ‘'TO PROBLEMS OF COMPLEX FUNCTION
THEORY

By the fundamental boundary value problems of plane elasticity,
as for a three-dimensional body (Sec. 34), we shall understand the
following problems:

First fundamental problem. The determination of elastic equilib-
rium when the external forces applied to the boundary L of a region
S are given.
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Second fundamental problem. The determination of elastic equilib-
rium when the displacements of the points of the boundary L are
given.

Fundamental mized problem. The determination of elastic equilib-
rium when the forces applied on a part of the boundary are given,
and the displacements of points on the remainder.

If the region S is infinite, the stresses at infinity must be given in
the case of the first fundamental problem, i.e., Re I' and T, and the
quantities V;, V,, I', I'" in the case of the second fundamental prob-
lem and the fundamental mixed problem. Assuming that the solu-
tion of the above problems exists, its uniqueness for a finite region
can be proved as in the case of the corresponding three-dimensional
problems; we shall not consider the proof of the uniqueness theorem
for an infinite region; if need be, the reader can find it in the mono-
graph by N. I. Muskhelishvili Some Basic Problems of the Mathemai-
ical Theory of Elasticity.

It is seen from formulas (6.67), (6.69) that the solution of the plane
problem of elasticity reduces to finding a pair of complex functions
@ (z) and P (z), analytic in the given region S, which must satisfy,
on its boundary L, certain conditions corresponding to any one of the
problems formulated above.

Suppose that the boundary L of the region S is not self-intersecting,
is closed, and has a tangent at each point. Besides, we assume that
the components of the displacement vector and of the stress tensor are
continuous up to the boundary L. :

1. For the first fundamental problem, in the case of a finite simply
connected region S bounded by a contour L the functions ¢ (z) and
P (z) must, by (6.74), satisfy the boundary condition

Q)+ 19" ) +v (@) =f1+ifs+e. (6.109)

Here t = x; + iz, is the affix of a point of L, and z, and z, are its
Cartesian co-ordinates; then

l
fitify=i | (Tn 41700 dl, (6.110)
0

where T,,, T,, are given values of the projections of the external
forces acting on L.

The expression on the left-hand side in (6.109) gives the boundary
value of the function ¢ (z) 4+ z¢' (z2) + ¢ (z) when 2z, remaining
inside the region S, tends to a point ¢ of the contour L. This boundary
condition exists on account of the above assumption regarding the
continuity of the components of the stress tensor up to the contour
L. (It should be noted that in formula (6.74) the arc denoted by AB
lies entirely within the region S. However, by virtue of the assump-
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tion of continuity of the components of the stress tensor up to the
contour, we have legitimately applied this formula in the case when
the arc A B belongs to the contour L.)

2. For the second fundamental problem, in the case of the same
finite simply connected region S the functions ¢ (z) and ¥ (z) must,
by (6.67), satisfy on the contour L the relation

% (1) — 19" (1) — ¥ () = 2 (ul + iuf), (6.111)

where uf and uj are given values of the displacement of a point of L.

Here, as above, the left-hand side of equality (6.111) represents
the boundary value of the expression

%9 () — 29’ () — ¥ (2) as z—1.
This boundary value exists since

%xQ (2) — 29" (2) — P (2) =2 (v + iu,),
and, according to the condition adopted above, u; and u, are con-
tinuous up to the contour L.

3. For the first fundamental problem, in the case of an infinite
region S bounded by a closed contour L the regular functions g, (z)
and ¥, (z) in it, on the basis of condition (6. 109), with (6.104) and
(6.105), must satisfy the boundary relation

®o (£) + t@o (2) + Yo (£) = fi +ifs +c. (6.112)
Here use has been made of the notation

fitifs=fi+ zf2+2‘;’ﬂ";(1nt—x1nt)+

+2n Vi—iV, t (I‘-}-f)t—f’z (6.113)

—%) 7 i

When the point ¢ describes the contour L in the positive sense, the
expressions f, + if,, In £, and In ¢ receive, respectively, increments
i (Vy + iV,), —2mi, and +2mni, so that the increment of the express-
ion f] 4 if, is, as can easily be verified, zero. The function f; 4 if;
is therefore single valued and continuous on L.

4. For the second fundamental problem, in the case of an infinite
region S bounded by a contour L the functions ¢, (z) and ¥, (z),
on the basis of formula (6.111), with (6.104) and (6.105), must sa-
tisfy the boundary condition

%o () — 106 () — o (1) = 2 (u -+ u3), (6.114)
where
° T ) * . 1 V "
O (U - iuy) = 2 (u¥ - iuf) +- ’%% In (%) —
Vi—iV, t

T on(1+%) ?_(”F“F)t-l-l"t. (6.115)
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As seen from (6.115), the right-hand side of equality (6.114) repre-
sents a single-valued and continuous function on L since such are
all the terms in it.

5. In the fundamental mixed problem we have conditions of the
form of (6.109) on those parts of the boundary where the projections
of the stress vector are given, and conditions of the form of (6.111)
on the remainder, where the projections of the displacement vector
are given.

As we saw earlier, the condition of continuity of the components
of the stress tensor up to the boundary L of the region S leads to the
continuity up to the boundary of the expression

¢ (2) +29" (2) + ¥ (2).

and the condition of continuity of the projection of the displacement
vector leads to the continuity up to the boundary of the expression

% (2) — 29" (2) = (2).

It is obvious that the expression ¢ (z) 4+ z¢'(z) + ¥ (z) may be
continuous up to the boundary without necessarily fulfilling the con-
dition of continuity (up to the boundary L) of the components of the
stress tensor. Hence, the latter condition may be replaced by a
weaker condition of continuity up to the boundary of the above ex-
pression. In the following discussion it is assumed that for the first
two fundamental problems the functions ¢ (z), @' (z), and  (z) are
continuously extendible to all points of the boundary L of the region
S; this imposes a strong condition on the unknown functions, but
considerably simplifies the arguments used in applying efficient
methods for solving the fundamental problems.

The condition of continuity of ¢ (z), ¢’ (z), and ¥ (z) in the case
of the first fundamental problem rules out discontinuous external
loads, such as concentrated forces; for the mixed problem the func-
tions ¢ (z), ¢’ (z), and P (z) will not be separately continuous at the
points of junction.

47. MAURICE LEVY’S THEOREM

Consider the first fundamental problem for a finite simply connect-
ed region. Since the unknown analytic functions ¢ (z) and { (z) are
single valued in the given region S and the elastic constants A and
p do not enter into the boundary condition (6.109), it follows that
the solution of this problem given by the functions ¢ (z), ¥ (z) is
independent of the elastic constants A and p, or, in other words, when
the external forces are given on the boundary of a finite simply con-
nected region, the state of stress in the body filling it is independent
of the elastic properties of the material. For a finite multiply con-
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nected region, the solution determined by the functions ¢ (z), ¢ (z)
depends on the material of the medium. For the solution determined
by the functions ¢ (z), P (z) to be independent of the elastic constant
%, the resultant vectors of the forces applied to each of the contours
Ly, as follows from formulas (6.100) and (6.101), must separately
be zero. It is in this case that the state of stress is independent of
the elastic constants of the body. This result constitutes the theorem
of Maurice Lévy, which underlies the method of finding the state of
stress at each point of an isotropic homogeneous medium on models
of different material. In particular, this theorem makes it possible
to replace the determination of the state of stress in homogeneous
and isotropic materials by the determination of the state of stress
in transparent bodies, optically sensitive to the state of stress set up
in them.

The basic methods that furnish the means of solving problems of
plane elasticity for a sufficiently wide class of regions are the confor-
mal mapping method and the Cauchy-type integral method. A simul-
taneous application of these methods proves most effective for simply
connected regions.

The investigation of multiply connected regions is much more
complicated and will not be considered here.

48. CONFORMAL MAPPING METHOD

Let a finite or an infinite simply connected region in the plane of
the variable z, bounded by a simple contour L, be mapped in a one-
to-one manner onto the unit circle | { | << 1 in the { plane by means
of the analytic function

z2 = o (), (6.116)

assuming that o (0) = 0 for the finite region and o (0) = oo for
the infinite region.

For the infinite region, we consider the case when the displacements
Uy, U, at infinity are bounded; V,, V,, T', I'" in condition (6.108)
must then be equal to zero; the components of the stress tensor at
infinity are also zero. The unknown functions ¢ (z) and v (z) are
holomorphic (regular) in the region S, including the point z = oo.

In order to use the conformal mapping (6.116) in the solution of
the fundamental problems and, in general, problems of plane elastic-
ity, we transform the boundary conditions (6.109) and (6.111) to
the variable g.

Introducing the new notation

() =9 wW() =9 (5 V)=V (o(F)=1v(5), (6.117)

we find that the functions ¢, (), ¥, (&) are holomorphic in the region
of the unit circle | { | << 1; its boundary is denoted by y.
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We introduce polar co-ordinates (r, 0) in the { plane; they may be
regarded as the curvilinear co-ordinates of a point (z;, z,) of the z
plane; since the mapping is conformal, the co-ordinate lines corres-
ponding to r = constant and 6 = constant are mutually orthogonal.
Take a point (z;, z,) in the z plane, and through this point draw co-
ordinate lines r = constant and 8 = constant (Fig. 21). Denote the
projections of the vector @, applied at
the point z, in the x;, r, co-ordinate
system by a,, a,, and in the e,, eg system
by a,, ag. It is obvious from Fig. 21 that

a, -+ iag = (a; cosa + a, sin a) 4
+i (—ay sin & + a, cos a)

or

a, + iag = e7i* (a; + ia,), (6.118)
where o is the angle made by the e, Xy
direction with the z; axis and measured o
from this axis in the positive direction.
To calculate ¢i*, we transfer the point z in
the e, direction to the position z+{dz; the
corresponding point { = re®® in the { plane moves in the radial di~
rection to the position { 4+ dg; hence, we have

dz=ei*|dz|, dl=¢¥|dl]|,
from which, with (6.116),
eit — ﬁ _ 0’ (¢) dg — ¢i0 o’ ()
ldz] o’ (D) ]]dL] [o" @]

From the last relation we find

Fig. 21

o’ (€

~

in_ L
e T (6.119)
Substituting (6.119) in (6.118), we obtain
a,+me— £ " o ((é) (a1 +iay). (6.120).

The projections of the displacement vector on the e, and ey di-
rections are then determined from the equality

i =5y

On the basis of formulas (1.13), for plane stress and plane strain
(k, 1, r,s = 1, 2) the following relations hold between the components
of the stress tensor o,,, 0gg, 0,9 in polar co-ordinates and the compo-
nents of the stress tensor oy, 0,5, 0y, in rectangular Cartesian co-

(w1 + iug). (6.121)
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ordinates:
Orr .+ Ogp = 011 + 022’ . . (6.122)
Oge — Orr + 2i0,0 = (053 — Oy + 2i0y,) €39

the validity of these relations is checked directly. After determining,
by (6.119),

etia — & (@ Q)P 2 o' (@)
rrle'@F P o@’

from formulas (6.122), with (6.69), (6.116), and (6.117), we find
Orr 000 =2 [@, (C) + D@4 (O)],

[0 ©) D1 (§) +o’ ©) Y1 )],

where @, (§) = ¢’ (2) = @ (2), ¥, () =9’ (2) =¥ (2).

In this case instead of the boundary conditions (6.109) and (6.111)
we have, respectively,

“” P10+ 1) =11 (0) +ift (0) +e, (6.124)

(6.123)

. 202
O9o—0,r+2i0,0= 2o O

®1(0) +

(

() q>1(o) Py (0) = 2u [ut* (0) + iul* (0)l, (6.125)

%Q1(0) —
where

fle=75@#), 2O)=/f()

ut* (o)=ut (¢), u¥*(0)=ul(?)

and o is the affix of a point of the circumference y.

It should be noted that since the conformal mapping is a one-to-one
mapping, it is necessary that ©’ () 5= 0. The new unknown analytic
functions ¢, (§) and y, (§) corresponding to the old functions ¢ (z)
and P (z) may be sought in the form of power serie

oo

n®=Nad, wE=3n

where the coefficients a, and b, are, in general, complex quantities.

The boundary conditions (6.124) or (6.125) enable one to construct
an infinite system of linear equations for the determination of these
coefficients.

In cases where the mapping function o (§) is a polynomial the
problem is reduced to a finite system of linear algebraic equations
{this result was obtained by N. I. Muskhelishvili). We restrict our-
selves to the foregoing general considerations and proceed to the
presentation of the theory of the Cauchy-type integral, Harnack’s
theorem, and the Riemann problem.
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49, CAUCHY-TYPE INTEGRAL

As is known, the Dirichlet and Neumann problems for Laplace’s
equation are solved by means of potentials for a simple and a double
layer, and in the solution of boundary value problems for other
differential equations use is made of various kinds of generalized
potentials. The boundary value problems of the theory of analytic
functions of a complex variable, to which problems of plane elastic-
ity are reduced, are solved with the help of the Cauchy-type integral
and its various generalizations. Based on this, we present, without
proof, some results from the theory of the Cauchy integral, the Cau-
chy-type integral, and the limiting values of the latter.

1. Cauchy integral. Let f (z) be a function, analytic in a simply
connected region S bounded by a simple sectionally smooth closed
line L, and continuous in S + L. The value of the function f (z) at
any point z € S is then determined by the boundary value of this
function on the line L as

1 f(t)dt
f@ =57 | B2 (6.126)

L

Here the integration is carried out along the line L in the positive
sense. The integral appearing on the right-hand side of (6.126) is
called a Cauchy integral. If the point z is outside L, by Cauchy’s
theorem,

1 S fwd _ g

omi t—z (6.127)
L

because the integrand f (f)/(! — z) is analytic in S and continuous
in § + L.

In the case of a multiply connected finite region Cauchy’s formula
is of the form

1 fa
f(z)—mi Tz (6.128)
where L = L} + L{ + ... + Lp; each of L, is a simple sectionally
smooth closed line, all L, (v =1, 2, ..., m) being within L,. If
z is a point outside L, by Cauchy’s theorem,

1 @) 5. _
wrT 5 Gz 4t=0. (6.129)
L
L'et f (z) be a function, analytic in a simply connected infinite re-
gion S~ bounded by a simple sectionally smooth closed line L, in-
cluding the point at infinity, i.e., f (c0) = ¢,, and continuous on
10—0884%
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S- 4 L. Then
7 | B2 = 1@+ () (6.130)
for points z lying outsidl;e L;
oo | LR =1 () (6.131)

for points z lying within L. Formula (6.130) is called Cauchy’s for-
mula for an infinite region.

2. Cauchy-type integral. Let f (t) be a given continuous function
on a simple sectionally smooth closed line L; then

1 f(t)at
P S =z (6.132)

expresses a single-valued analytic function in any simply connected
region not containing points of the line L. Integral (6.132) is called
a Cauchy-type integral, the function f () is called its density func-

tion, and t—_i_—z its kernel; for the derivatives of all orders of the
Cauchy-type integral the following formula holds:

(), n__ n! f(t)de
F (z)—ﬁ'i (t—z)n+t - (6.133)

Before proceeding to the study of the behaviour of the Cauchy-
type integral on the line of integration, we shall consider the ques-
tion of classes of functions. Let f (f) be some function, the argument
t and the function f (£) being either real or complex. If f (¢) is a func-
tion of the class of continuous functions, then, by definition, the in-
crements of the argument | ¢, — ; | and of .the function | f (£,) —
— f (¢t;) | simultaneously tend to zero. The question of the order of
smallness of the increment of the function in relation to the increment
of the argument is not examined. However, many properties of the
function, such as its expansion in series and the rapidity of their con-
vergence, the representation by integrals, etc., are closely related to
the order of the modulus of continuity of the function, i.e., » () =
= sup | f (£,) — f (¢,) |, where t; and £, belong to the curve L and
| £, — t; .

We shall consider the most interesting class of functions for which
the modulus of continuity is representable as a power-law function
of the increment of the argument, i.e.,

[f(ta) — @) I<<AlE— 1 ™ (6.134)

Here f (t) is a function of .the point ¢ on a smooth curve L; ¢,, f, are
any two points of the curve L; A and o are positive numbers. A
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is called Holder's constant, and a Holder’s exponent; 0 < a < 1.
Condition (6.134) is called a Holder condition (H condition), and
a function f (¢) satisfying the H condition is called a function of the
class H. Obviously, if @ > 1, it would appear from condition (6.134)
that /' (f) = 0 everywhere, and hence f () = constant. Whena = 1,
the Holder condition is identical with the Lipschitz condition. If
for sufficiently close #; and #, the H condition is fulfilled for a cer-
tain exponent a,, it is obviously fulfilled for any exponent a << a;.
Thus, to a smaller e corresponds a wider class of functions. The nar-
rowest class is the class of functions satisfying the Lipschitz condi-
tion.

3. The principal value of the Cauchy-type integral. Let f (z) be
a given real function becoming infinite at a certain point c of a finite
interval of integration a < ¢ < b. If we cut out an entirely arbitrary
neighbourhood of the point ¢, the function f (z) is bounded in a <
<z <c—¢g andc+ & < z < b, and is unbounded in ¢ — & <
< z < ¢ + &, The point ¢ is called a singular point.

The limit

c-¢8 b

lim S f () dz + S f (@) dz}, (6.135)
3210 a c+e,

if it exists, is called the improper integral of the function f (x) be-
tween the limits ¢ and b. If this limit is finite, it is said that the in-
tegral converges, and the function f (z) is termed integrable on the
interval [a, b]. If, however, the integral is infinite or does not exist
at all, it is said that the integral diverges. It is known that the im-
proper integral exists if the order of infinity of the function is less
than unity, i.e.,

' M
|z—c¢] B

[f@)|< B<1). (6.136)
If the function f (z) becomes infinite of order one or higher, the im-
proper integral does not exist.

If a point ¢, of the contour L is substituted for the point z in the
curvilinear integral (6.132), we obtain a singular curvilinear integral

f(t)
{ KL ar. (6.137)

We represent it as

( f@) 5. (1()—1 (k) dt
| vy = Q e | 7
L
Since by the Ho6lder condition
[F@)—F @) <<Alt—1o]*
10%
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or
A

[t—t|P’

f(t)—1 (%)
t—1t,

where f = 1 — a << 1, it follows that the first integral, on the basis
of (6.136), exists as improper.

In the second term the integrand admits the primitive In (¢ — %),
which is multiple valued. Assume that ln (£ — #,) is the contour
value of the analytic function In (z — ¢,), single-valued in the plane

(%)

Ty

arglt;-z,)

Fig. 22 Fig. 23

cut along a curve joining the points #, and co. We agree, for definite-
ness, that the cut is made to the right of the line L. Draw a circum-
ference of radius & from the point ¢, of the line L as a centre, and let
t, and ¢, be the points of intersection of this circumference and the
line L (Fig. 22). Following (6 135), we have

a
to
t"to 11311?)1[5 t—1t, S t—‘to —-liI(l)l lnt_to
L iy
or
dt
S =lim ln‘ — to) —arg (t3—to)].
t—ty 50 ta—
Since |2, —to | = |t; — £, |, it follows that lnl | = 0.

The expression in the square brackets is equal to the angle between
the vectors tot,, fof, (Fig. 23), and for the above choice of the cut this
angle must be measured to the left of the curve; hence,

. ty—1 .
lim In 22— =in,
e~0 2_t0

Y #__ in
g t—t )
L

and consequently,
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Thus, the Cauchy principal value of the singular integral (6.137)
for the function f (¢) satisfying the Holder condition is

S 1O g — g’Lt)t'_'Lt(_tO_)dt+iuf(to). (6.138)
. ]
L L

4. The limiting values of the Cauchy-type integral. Let L be a simple
smooth closed line, and f (f) a given function on it satisfying the
Holder condition; the Cauchy-type integral (6.132) then has the
limiting values

1
F(t) =57 | L —3 1 (t) (6.139)
as z -, from the outside of L, and
1
F(t)) = ﬁ' S it(i—)t%t' + = 1 (to) (6.140)

as z — t, from the inside of L.

Here the singular integral % S f?(i_)% is understood as a Cauchy
0
L
principal value and is evaluated by formula (6.138). By adding
formulas (6.139) and (6.140) together, we find the value of the Cauchy-
type integral at a point lying on
the line L X

1 S f(t)dt _ F*(t)+F~(t) .

2mi

t—t, 2
(6.141)

Consider, now, the Cauchy-type -
integral for the case when the r r
line of integration is a straight P
line extending to infinity. Without
loss of generality, we take this Fig. 24
straight line coincident with the
real z, axis and denote it by L (Fig. 24). The upper half-plane is
denoted by S*, and the lower half-plane by §-; the points of the z,
axis are not included in either S* or S-.

Let f (t) be, in general, a complex function of the real variable ¢
satisfying the H condition for all finite values of ¢ and tending to
a definite limit f (co0) as £ — 3= co. Moreover, the function f () for
large values of f satisfies the condition

B

lf(t)—f(oo)l<m, A>0, B>0. (6.142)
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Assume also that the function f (f) tends to the same finite limit
f(o0) as £ 400 and f - —oo. If f(o0) %40, the Cauchy-type
integral

LS 1O g, (6.143)

27 t—z
L

assuming the point z to lie off the z; axis, is divergent. Indeed, we
have

Tima T 10—1() T _a
S t—z :S t—z dt+f(oo)5 t
N’ N’ N’

In the first integral on the right-hand side the integrand is, by (6.142),
of order |t |- for large values of | £ |; hence, by the well-known
criterion for convergence of integrals with infinite limits, the integ-
ral in question is convergent. We evaluate the second integral

N

S (V' —)—In (V' —2)= xiatInLl,

A
where o is the angle included between the straight lines joining
the point z to the points N, N”, and r’, r” are the distances of the
point z, respectively, to N and N” (Fig. 24). In the last equality the
sign of the first term is to be taken positive if z lies in the upper half-
plane, and negative for the lower half-plane. If ¥’ and N” independ-
ently tend, respectively, to —oo and + oo, then a tends to m, while

In i— does not tend to any limit; it follows that the integral in ques-
tion does not tend to any limit. We now assume that during the whole
process ON' = —ON" = ON. Then

lim In 2= 1n1=0,

N-—oo r

and we have

lim S“‘)dt ﬁ TOZI®) gy 4 mf (c0).  (6.144)

N-»co__

If f (c0) = 0 integral (6.143), as the analysis shows, subject to con-
dition (6.142), is convergent.
Thus, the Cauchy singular integral

}S: 1@ dt__%rlﬂ YST t_z
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is called a principal value and is determined by formula (6.144).
Under the above conditions imposed on the function f (), the func-
tion F (z) defined by the formula

F@&) == | f()at (6.145)
L

t—z

is obviously holomorphic in S* and S-. For this case the Sokhotskii-
Plemelj formulas for an infinite straight line are of the form

F* (to) =+ f (to) + 57 5 L ar,

— 00

(6.146)

F~(to) = — 5 f (to) + s tffzo dt.

8L,;8

Here F* (t,) and F- (f,) are the limits of F (z) as z — £,, respectively,
from the upper and lower half-planes.

50. HARNACK’S THEOREM

Let L be a simple closed line. Denote the finite part of the plane
bounded by the line L by S*, and the infinite part of the plane out-
side this curve by S-. The line L is not included in either S* or S-.
Take a real continuous function of the point on the line L. If

f(t) 4 _ 9 for all z€ S,

Zm \

then f () =0 everywhere on L. If, however,

L S f® dt_-O for all z€S-

27 t—z
L
then f (f) = constant on L.

By applying Harnack’s theorem to the difference of two real con-
tinuous functions f; () and f, (¢) given on L, we have f; (£) = f, ()
on L for all z¢ S*, and f, () = f,(f) +con L for all z¢ S-.

Harnack’s theorem is formulated in a similar way when L is an
infinite straight line.

51. RIEMANN BOUNDARY VALUE PROBLEM

Let L denote a set of a finite number » of simple non-intersecting
arcs and closed lines in the plane of the complex variable z. Assume,
further, that a definite positive direction is chosen on each of the
arcs and lines comprising L. Unclosed arcs are denoted by a;by choos-
ing the notation so as to have the positive direction from a; to by.
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A function F (z) is said to be sectionally holomorphic in the whole
plane if it is holomorphic in the plane of the complex variable z cut
along L, is continuously extendible to all points of L from the left
and from the right, with the exception of the ends a;, b, and if the
following inequality holds near the ends ay, by:

IF@) < —2— (O0<i<1),

|z—c|?
where ¢ is the affix of any one of the ends ay, bx; A and B are positive
constants.

Let G (t) and f (¢) be given functions on L satisfying the H condi-
tion, with G ()40 on L. It is required to find a sectionally holomor-
phic function F (z) whose boundary values on L from the left and
from the right, except at the ends ay, by (the concept of the boundary
values from the left and from the right is indeterminate), satisfy the

condition
F () — G (1) F- (0) = f (1), (6.147)

where G (¢) is known as the coefficient of the Riemann problem, and
f (¢) its free term. In the case when the function f () = O on L, the
problem is said to be homogeneous.

When G () = 1, we obtain the Riemann problem of the particular

kind .
Fr (@) — F-(t) =1 () on L. (6.148)

In this case the problem is reduced to the determination of a section-
ally holomorphic function F (z) from the given jump f () on L.
The solution of this problem can be obtained from the Cauchy-type
integral

Fo(z) = — S f(tar (6.149)

T 2mi t—z

Similarly, the function F, (z) is a sectionally holomorphic function
vanishing at infinity and, in addition, it satisfies in the neighbourhood
of any end ¢ of the line L the condition

|Fo ()| < |z—Bc > (6.150)
and also
Fi () —F; () =1 (6.151)
except at the ends ay, b,. Consequently, (6.149) is a solution of prob-
lem (6.148).

Let us consider the difference F (z) — F, (z2) = F, (z), where
F (z) is the required solution of problem (6.148). On the basis of
(6.148) and (6.149) we have, on L,

Fi(t) — F; (t) = 0. (6.152)



51. Riemann Boundary Value Problem 153

According to the well-known theorem, the values of the function
F, (z) from the left and from the right of L analytically continue
each other. Hence, if the function F, (z) is assigned appropriate val-
ues on L and if it is remembered that by virtue of condition (6.150)
any end c¢ is a removable singularity, we may consider F, (z) to
be bounded and holomorphic in the whole plane. According to Liou-
ville’s theorem, F, (z) = constant in the whole plane; consequently,
F (2 =Fy(z) + Kor
1 f(?)

F(2) =5 i 1@ 4 1 K, (6.153)
whereK is an arbitrary constant. If it is assumed that the solution
F (z) vanishes at the infinitely remote point, we must put K = 0.

If the solution of problem (6.148)is to be a sectionally holomorphic
function everywhere except at the point at infinity where it may
have a pole of order not higher than m, then, by the generalized
Liouville theorem,

F(2) =—— S—I—(_i)z-dt—\-Co—\-Ciz—{—...-{-Cm_izm“‘-i—sz’", (6.154)
L

2mi

where Cy, Cy, ..., C,, are arbitrary constants.
Of particular interest is the case when G (f) =g, where g is a giv-
en, in general complex, constant different from unity. Then on L

F+(t) —gF-(t) =1 (@), (6.155)

except at the ends. Assuming a pole of order not higher than m at
infinity, the general solution of problem (6.155) is of the form

X d '
F () =220 i ng ((tt))(tt_z)-|—Xo ) P (2), (6.156)

where P(2) =Cy+ Ciz+ ... +Cpriiz™t + Cp2™; Cy, Cy, . ..
.., C,, are arbitrary constants, X, (2) is a particular solution of
the homogeneous problem

Xy (2)= H1 (z—an)~Y (2—bp)V~ 1. (6.157)
R=
Here
v= h;,lj, , O0<Cargg<<2m. (6.158)

The foregoing results are easily extended to the case when the line
L is an infinite straight line. In the following discussion these results
will be used to solve the fundamental boundary value problems for
a half-plane.
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52. REDUCTION OF THE FUNDAMENTAL BOUNDARY VALUE
PROBLEMS TO FUNCTIONAL EQUATIONS

By using the arbitrariness in regard to the function ¢ (z), we
can set P (0) = O for a finite region, and ¢y (c0) = O for an infinite
region. Since in the case of a finite region to the point { = O corres-
ponds the point z = 0, and for an infinite region to the same point

= 0 corresponds z = oo, we can take ¥, (0) = 0 in both cases.

For an infinite region we assume that the stresses are zero at infini-
1y, the resultant vector of the external forces applied to the boundary
is zero, and so is the rotation at infinity. The functions ¢ (§), ¥ ()
are then holomorphic inside the circle | | << 1.

We further assume that the functions ¢ (%), ¢’ (%), ¥ (L) are con-
tinuous up to the circumference y of the circle under consideration.

(a) We write down the boundary condition (6.124) and its conjugate
for the first fundamental problem:

@1 (0) +

© (0 070) +¥1 (©) = f1+ ifer

0 (0) '
910 + g @ )+ b1 (@) = fr— i

By multiplying both sides of equalities (6.159) by Cauchy’s kernel

1 do
2ni 0—¢(°?

(6.159)

where { is a point lying inside the unit circle | { | << 1, and integrat-
ing them along the circumference y, we obtain

7 1 b. (G)
P - AN PR
Y Y

2mi 2ni . m o—_ o—{
(6.160)
1 91 (0) 1 0 (0) (o) 1 P (0) ,
2m S OI—E do -+ 2mi 5 o’ (0) ol—g do +- S g o'l_g do=B (0)-
Y Y Y

Here use has been made of the notation

1 f] + lf2 1 fl — Lf2
A@:EHS7TFW,B®=—f£?ij.
¥
According to Harnack’s theorem, relations (6.159) and (6.160) are
equivalent. Taking into account that the functions g, (¢) and ¥, (0)
are the boundary values of the functions ¢, ({) and ¢, (), regular
inside the circle | { | << 1, and ¢, (0), P, (0) are the boundary values
of the functions regular outside the circle | { | << 1 and vanishing
at infinity, we ultimately find, using the properties of Cauchy’s
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integral,
1
%O +27 | (‘j,((c’o)) B (° dt=A (), (6.161)
Y
O+ 5er | =D L go— ). (6.162)
Y

The first equation, which is a functional equation, together with
the condition ¢, (0) = O (in the case of a finite region the quantity
Im @; (0) may be fixed arbitrarily), completely determines ¢, (%),
and then the function vy, ({) can be found from the second relation.

(b) Proceeding as in the case of the first fundamental problem, for
the second fundamental problem we obtain

201 O~ | o D do= 4,0,

0’ (0) 6—L
¥

0@+ oo | o2 E@ g5 s, (0)= B ),

o' (0) 0—{

where
u;+iu 2 u;—iu
A1 (0= 2m§ —o—t 40, B(§>=—m5 ~—¢_do.
v v

In an exactly similar way it is possible to obtain a functional equa-
tionfor the mixed boundary value problem, which is of somewhat more
complicated form; we shall not elaborate upon it.

The foregoing functional equations can be reduced by a simple
transformation to a Fredholm integral equation of the second kind;
we leave detailed discussion at this point.

53. EQUILIBRIUM OF A HOLLOW CIRCULAR CYLINDER

Consider the equilibrium of a hollow circular cylinder subjected
to (a) uniformly distributed tangential forces applied on the boundar-
ies; (b) a constant pressure on the boundaries. Both cases come under
the first boundary value problem.

In the case (a) the resultant vectors of the forces applied on either
of the boundaries r = r; and r = r, are separately equal to zero;
hence, from formulas (6.100) and (6.101) it follows that the functions
¢ (2) and ¢ (2) are holomorphic inside the ring (Fig. 25). The functions

¢ (2) and 1 (z) are determined from the boundary conditions

@ (t) + 119" (21) + ¥ (£1) = (¢1) +¢4 on circumference r=ry,
(6.163)
@ (t2) + 129" (L3) (¢ )+1p(t2) f (ts) +c5 on circumference r=r,,
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where
o

1
f(t,):iS (Ty+iT ) dl = ir T, S (— sin @i cos &) du=iTy (t1—T4),
0 0

f(ts) =iTy (ta—rs).

Because of equality of moments, the relation between the tangential
forces T, and T, is of the form

2 2
T1r1=T2r2.

In the circular ring the functions ¢ (z) and v (z) are taken in the form
" 0(@)=0, Y(z)=->. (B.164)

Inserting (6.164) in the boundary
conditions, we find

— . 2 .
b= ilyry, cy=iT,ry,

whence
b= —iTr}.
Thus,
Fig. 25 0(@)=0, $(&)=—iTyi—.

Substituting these functions in formulas (6.1.23), we obtain

. . 1
UTT+099=O! Orp— 099—210';-9= —ZITirf‘z—z:.
From this we find that

Ty}
orr=060=0, Oro=—5-.

Further, from formula (6.121), with (6.67), we find
. , T,r?
2u(u, + iue) = z——‘rfl—,

whence
T,r3 1

u,=0, Ug = o T

The problem (b) was solved above by the stress function method,
here the same problem is solved by the complex function method.
In the problem (b) the resultant vectors and the resultant moments
of the forces applied on either of the boundaries r = r, and r = r,
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are separately equal to zero. On the basis of formulas (6.100) and
(6.101), for this problem, too, the functions ¢ (z) and ¢ (z) are ho-
lomorphic inside the ring, and are determined from conditions (6.163);
here f (t,), f (£,) assume the form

a

f(t9=—ipir, | (cosa+isina)da— —p (ty—ry),
5 (6.165)

f(ts) = —p2(ta—rs).
The functions ¢ (z) and 1 (z) are taken in the form

o@)=az, b=, (6.166)

where the coefficients a and b are supposed to be real. For these, sub-
stituting (6.164) and (6.166) in the boundary conditions (6.163),
we obtain a system of two linear equations

1 1
2a+b 72 = P, 2a4b 2 Da-
1 2

The roots of this system are

4= — Per3—pyri b— _r%r% (P1— D2)
2031 ri—ri
Then
_ __ Dpri—pyrf _ _rri(pi—p) 1
PEA= =S4 > YO="THmm

Substituting these functions in formulas (6.123) and (6.121), we ob-
tain relations (6.50) and (6.51) with ¢ = O for the determination of
the components of the stress tensor and of the displacement vector.

Consider, now, the following problem.

Let given stresses T, and T,¢ be applied on the circumference L
of a hole of radius R in an infinite plate. The plate is under uniform
stress at infinity. Determine the state of stress in the plate.

On the basis of formulas (6.69) and (6.122) we have

0r— i0,0 =" (2) +¢” (2)—[29" (2) + V' (2)]e%=.  (6.167)

Substituting (6.104) and (6.105) in (6.167), and using (6.106), we
have, on the circumference L,

—Z"‘l (k2 (E)™ -I-k%;l— ()" =

by (_li)k-l]_ Vit+iV, R Vl—in_t_l_
RR+1 t n(14+%)R ¢ 2nR R

+2Rel—T" (%)2 =T, —iTme.  (6.168)
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We expand T,, — iT,¢ on the circumference r = R in a Fourier
complex series:

oo

Top—iTno= ) [ah (sz‘)h“L“' (i;) J+a°, (6.169)

k=1

=g | (Tur—iTne) () 40 (k=0, £1,2, ...). (6.170)
0

Substituting (6.169) in (6.168), and comparing the coefficients of
like powers of% , 1; on both sides of the resulting relation, we obtain

b b 14 iV V,—iV
Frt2Rel—a, 2 -l ean, ——hpt=o,
—%‘;—I":az, —k R‘;‘il = i1, (6.171)
—k(k+2)— 2) Bhs2 g o k=2, 3, ...).

RkR+3

After determlmng ay, and by from these recursion relations, the com-
ponents of the stress tensor are found from formulas (6.123). Consider
the case when T,4 = T, = constant, I',, = 0, and when there is
no stress at infinity, i.e., I' =TI = 0; from (6.170) and (6.171),
using the fact that V; = V, = 0, we have

ay = —iTy, ap =0 (k=F1, F2,...),
an =0 (k=1,2 ...), b =—iT,R?, by=0 (k=

=2,3,...).
Consequently,
0(@)=0, p@=—il,"—
and
0,=0g=0, 0,9= Tff2 .

The solution obtained coincides with the earlier solution, assuming
rp=o00, T, =0, r,=R. '
For the case Tpo =0, T, = —p, and ' =T’ = 0 we have

oy =—p, ar=0 (k=12 ...),
a, =0 (*k=1,2,3,...), b =—pR:, b,=0
k=23, ...).
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Consequently,

9()=0, ¥(z)=—pR—
and

1 1
oro=0, 0r=—pR?—, 0oo=pRi—.

The last formulas coincide with formulas (6.50), assuming r, = oo,
ps =0, pp=p, and-r, = R.

54. INFINITE PLATE WITH AN ELLIPTIC HOLE

Let us use the conformal mapping method to solve the problem
of an unloaded elliptic hole in an infinite plate subjected to equal
principal normal stresses p at infinity.

Since the quantity Im I' does not affect the state of stress, it is
taken to be zero; from formulas (6.107) we find

r=—4p, I'=0. (6.172)

With the use of the formula
z=0)=4@C*"+my), 4>0 O0g<m<1
(6.173)

the outside of the ellipse with centre at the point z = 0 and semi-
axes A (1 +m), A (1 — m) is conformally mapped onto the unit
circle | | <<1.

Remembering that the hole is not loaded, from relations (6.104)
and (6.105), with (6.172), we find

@=L+, V@)= () (6.174)

From this, by virtue of (6.117) and formula (6.173), we have equal-
ities corresponding to (6.174):

o1 Q="+l @, %) =v. O,

or
P Q=L 40 © v Q=1 ©,
9. (0 =52 L+ 43 O,
where @, ({) and , (L) are functions holomorphic inside the circle.

Substituting the functions ¢, () and y, (&) in (6.124), we see that
the functions ¢, ({) and ¢, ({) must satisfy the same equation that
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is satisfied by the functions ¢, ({) and ¢, (§), if the right-hand side
is replaced by

f(0)=f’f(0)+if§(o)+_f121(_ ot 00 )+C

o’ (0) o2

Taking into account that ff (¢) = f¥ (6) = O for the given problem,
and assuming C = 0, we have, after some manipulation,

Fo)— — 4 [t 20t

In the functional equation (6.161) and in relation (6.162), instead
of the functions @, (), ¥, (§), /1 (0) + if, (o) (provided ¢, (0) = 0)
we introduce the functions ¢, (&), P, (8), f (o), i.e.,

Pu (O + 5z S ©(0) % () do=rr | L% a5, (6.475)

" (0) (0—0) 2mi o 0=t
_ 1 f@ ® (0) @& (0)
b Q= | T do—ug | Soreg de (6176
Y Y

Substituting (6.173) in Eq. (6.175), we find

(1+4mo?) @4 (0)do __
P 6) + 57 Zm S o (m—o?) (TT'—Q)
Y

=_%%S Gic [,F "(“F”“’)]d (6.177)
Y

The functions
1+mo2 ——— 1
o (m—o?) ¢ (0), il
are the boundary values of the regular functions outside the circum-
ference ¥y

t4ml2 1 1
;(m_cz) cP:l:( c): T9
which vanish at infinity. The function -G—(:Ttﬁmoz—) G—ig has poles

{ = +Vm, { = o inside y. Taking into account everything that
was said above, and noting that the point { lies inside the circle
| £ 1 <1, from (6.177), using the properties of the Cauchy integral
and the residue theorem, we obtain

s ()= —— pAmL. (6.178)

Then
o (@) =4E (%'—mﬁ) . (6.179)
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Substituting (6.174), (6.175), and the derivative of function (6.179)
in (6.176) we find

w*(g):_%ﬂl‘\ [0’—’— 0%24-m J do

2ni oc(1—mo?) | o—C

;
_pam 1 S C@EEm g5 (6.180)

2 2ni (1—mo?) (6—10)
v
Since
o2-+m ___"i.+ (1+m?)o
o(l—mo?) ~— ¢ 1— ma?

(1+4m2) o o (02+m)

and m <C1, the functions 0, ——-5—, ——-=

are the boun-

dary values of the functions

¢ (1+m?) L E(E+m
’ 1—m(% 1—m(2

regular inside | { | << 1 and m/o is the boundary value of the func-
tion %, regular outside | { | << 1.

Hence, noting that the point { lies inside the circle | { | << 1, and
using Cauchy’s formula, from (6.180) we find

YO = = —Ap(1+m) S

Relations (6.179) and (6.181) can easily be expressed in terms of
the basic variable z if for { we substitute the inverse function as deter-
mined from (6.173):

(6.181)

(= (o V F )

(the minus sign is taken before the radical as the point z corres-
ponding to | { | << 1 is outside the ellipse); the components of the
displacement vector and of the stress tensor 0,;, 0,,, 07, can easily
be found from formulas (6.121) and (6.123).

55. SOLUTION OF BOUNDARY VALUE PROBLEMS
FOR A HALF-PLANE

The following notation will be used below. Let @ (z) = u (zy,
z,) + i (z;, z,) be a function of the complex variable z defined in

some region of the z plane. Then @ (z) denotes a function assuming
values conjugate to @ (z) at points z conjugate to z, i.e.

D (z) =D (2) (6.182)
11—0884
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or
D (2) = uy (21, 23)+ i (21, 22,
where
Uy (xh Ty = u (xlv —Zy), vy (4, zy) = —v (15, —x,).
(6.183)

It is readily observed that if @ (z) is holomorphic in some region S,
then @ (z) is holomorphic in a region S representing a region sym-
metrical with respect to the region S about the real axis. Indeed, as-
sume that @ (z) is holomorphic in S; in the region S we then have

Ju av ou ov

Ta m om O (€5
Taking into account relations (6.183) in the conditions (C-R), in
the region S we have

Ouy  ov, duy _ on

: 0z, Az, ’ 0z, dzy *
The last relations show that the functions u, (z,, z,) and v, (z;, z,)
satisfy the conditions (C-R) in the region S.

Let a body occupy the lower half-plane bounded by a straight
line which will be taken as the axis of abscissas. Let the lower half-
plane Im (z) < 0 remaining on the right when moving along the oz,
axis in the positive direction be denoted by S~ and the upper half-
plane by S*.

Let the function @ (z) be defined in S-; the function @ (z) is then
defined in the region S*. Let there be a boundary value ®@- (f) where ¢
is the affix of some point of the oz, axis; from formula (6.182) it
directly follows that there is a boundary value ®@* (¢) such that

D () = D" (¢)
or
D (t) = D* (t). (6.184)

Let complex potentials @ (z), ¥ (z) be defined in the region S-,
and let there be unloaded parts of the boundary oz,.

Let us rearrange formulas (6.77), (6.78), and (6.83) in a convenient
form to use; for this purpose we construct the analytic continuation
of the function @ (z) into S* through the unloaded parts of the boun-
dary. From formulas (6.77) and (6.78) we have in the region S-:

Oap — 1015 = D (2) + @ (2) +-20" (2) + ¥ (2), (6.185)

where>

¢ (@)=D @), V@)=Y
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Take the function ]
®@G)=—(@)—2D (2)— 7 (2) (6.186)

defined by this equality in the region S*.

It appears from the above that the function @ (z) defined by equa-
lity (6.186) is holomorphic in the region S*.

We write z for z in (6.186), assuming that z is in S, and transform
to conjugate values, i.e.,

D(2) = —D(2)— 2D (2)— ¥ (2):

from this .
¥ (z) = — D (z) — D (2) — 2’ (2). (6.187)
Formula (6.187) determines the function ¥ (z) in the region S-
through the function @ (z) continued into the upper half-plane.

On the boundary Im z = 0 expression (6.186) (as z —¢ from the
region S*) becomes

O* () = — D* (1) — 1D (t) — ¥* (2). (6.188)
Expression (6.185) on the boundary Im z = 0 is of the form
Oag— i1s L0 = D~ () =D~ (1) + t®'~ () + ¥~ (¢);  (6.189)
hence, on parts of the boundary where 0,, = 0;, = 0 we find
O (t)= —D (1) —tD'~(t)— ¥ (2). (6.190)

Comparing (6.188) and (6.190), and using (6.184), by the definition
of @* (t) and ¥* (), we have

@* (1) = D (t). (6.191)

Consequently, the function @ (z) defined by means of (6.186) in
the upper half-plane is the analytic continuation of the function
@ (z), holomorphic in the lower half-plane, through the unloaded
parts of the boundary; in other words, the function @ (z) defined by
formula (6.186) is a sectionally holomorphic function in the whole
plane cut along the loaded parts of the boundary Im z = 0.

It follows from the equality conjugate to expression (6.189) that
the function ¥ (z) can be continued through the unloaded parts.
Relation (6.185) may be put into a different form. Substituting (6.187)
in (6.78) and (6.185), we obtain convenient formulas to use in prac-
tice

Ogs— 01y +2i01, =2[(z—2) D' (2) — D (2) — D (z)],  (6.192)
gy — 013 =D (2) — ® (2) + (z2—2) D’ (2). (6.193)

11*
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We now rearrange formula (6.83). For this purpose we continue the
function @ (z), holomorphic in the region S-, into the region S*
$0 that in this region

¢’ (2) =D (2),

where @ (z) is given by the right-hand side of (6.186). (As found, in
the presence of unloaded parts it analytically continues the unknown
function @ (z), regular in the lower half-plane, through these parts.)
By using formula (6.186), the last relation can be put into the form

¢ (2)=—[D (2)+ D' (&) + ¥ (2)| = — [29’ (2) + ¥ (2)]';
in the region S* we then have

¢ ()= —2¢" (5) — ¥ (2) +cy
It results from this equation that the following relation holds in
the region S-:
b (2) = — Q@) — 29’ (2)+¢s.
With the use of the last relation, formula (6.83) becomes
2 (s +iu) =40 () + ¢ () —(2—2) ¢" (I +c.  (6.194)

In the following discussion it is assumed that the function @ (2)
is continuous from the left and from the right on the contour Im z =
= 0 except possibly at a finite number of points #,, and that, in ad-
dition..

lim z,@' (z) =0 (6.195)

x>0
for any point of the contour, while the following inequality is valid
near the points #;:

A

K (z)|=!®(z)|<l—z'_t—hlx‘ O<A<<). (6.196)

These conditions ensure that the stress tensor and the displacement
vector are continuously extendible to all points of the boundary,
with the possible exception of the points %;.

Suppose that, for large | z |, the functions @D (z) and ¥ (z) may be
represented as

O@=Tto(+), ¥@=L+o(+),  (6.197)

where vy, ¥’ are constants; the symbolo (—i—) represents a quantity such
that Io (%)I < % (e depends on | z | and tends to zero as | z | — o).
To these conditions must be added further conditions: for example,
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that the following expressions hold for large |z |:
z)=+v In z +o0 (1) - constant,
cpﬁ( ) v, +o(1)+ (6.198)

Y.(2) =y’ Inz4-0 (1) 4- constant,
where

lo(1)|<<e (e—0 as |[z]|— o).
With these relations, the components of the stress tensor are zero at
infinity.

Let (V, V,) be the resultant vector of the forces applied to a seg-
ment AB of the boundary Im z = 0 on the side of the region S-.
Substituting (6.198) in formula (6.74), and letting the end A4 go to
the left and the end B to the right independently of each other, we find

VitiVi=i(+7v) In-+a (¥ —v) +ie.

Here ' and r” are, respectively, the distances of the points 4 and B
from the origin and e is a quantity tending to zero as r’ and r” — oo.
For the resultant vector (V;, V) to remain finite when r’ and r" — oo
independently of each other, we must assume

v+7v =0; (6.199)
then
Vit iVi=n(y —7).
On the other hand, the following relation must be true:
V; + iV; =Vi+ iV

where (V;, V,) is the resultant vector of the external forces applied
to the entire boundary (it will always be finite if the forces are ap-
plied over a finite part of the boundary); consequently,

Vit iVe=a (" —9). (6.200)
From two linear equations, (6.199) and (6.200), we have

y=—Yatie G TaoiVs (6.201)
1. Solution of the first fundamental problem. In this problem the

external forces on the contour L are prescribed as follows:
Tn,=05=—p(t), Ta=01=1(),

where p (¢) and 7 (¢) are, respectively, the pressure and the tangen-
tial force satisfying the Holder condition on the contour Im z = 0,
including the neighbourhood of the point at infinity. Moreover,
p (00) = 7 (00) = 0. According to (6.193) and (6.195), the boundary
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condition becomes
@* (1) — @ (t) = p (t) it (t). (6.202)

It is seen from (6.202) that the solution of the first fundamental prob-
lem is reduced to the determination of a sectionally holomorphic
function from a given jump. The solution of this problem, vanishing
at infinity, is, by (6.149),

D (2) = — S POLIE g, (6.203)

27 t—
L

Knowing the function @ (z), the components of the stress tensor (oy,,
Oy, Op3) and of the displacement vector (u,, u,) can be determined
by formulas (6.192), (6.193), and (6.194).

2. Solution of the second fundamental problem. Here the values
of the components of the displacement vector on the contour L are
prescribed as

up = g1 (8), uy =g, (), (6.204)

where g, (t) and g, (f) are given functions having derivatives which
satisfy the Holder condition, including the point at infinity, and
Uy (00) = u, (00) = 0.

On differentiating (6.194) with respect to £ the boundary condi-
tion (6.204) takes the form

D (2) %D () = 2 [(g; (1) +-i82 ()] (6.205)
We introduce a sectionally holomorphic function denoted by £ (z)
such that
D (2) in S
Q(Z)={ —'%(D(z) in S*. (6.206)

The boundary condition (6.205) then becomes
- 2 , L, .
Q' (1) —Q (1) = —=F (81 (1) +i8: (1)

It is seen from this equation that the second fundamental problem
is also reduced to the determination of a sectionally holomorphic
function from a given jump; its solution is of the form

Qz) = — & 5"”{ W1ig g (6.207)

RITL z

Thus, from (6.206) we have, finally,
_ Q (2) in 8§
® (z)={ —%Q(z) in S,
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3. Solution of the fundamental mixed problem. Let the projections
of the displacement vector g; (t) and g, (t) be given on a set of a
finite number 7 of segments a,b;, of the boundary Im z = 0, and the
projections of the external force p (¢) and v (¢) on the remaining part
of the boundary. The set of segments a,by, is denoted by L', and the
remaining part of the boundary by L”. Since we already know the
solution of the first fundamental problem, it is more convenient to
take account of the effect of the given forces on L” separately; on
this consideration we may always assume that the components
p@) =7({) =0 on L"

Thus, the boundary conditions for this somewhat modified mixed
problem take the form

Uy + iug =g (@) +¢c() on L', (6.208)

p#E =0, T =0 on L (6.209)
where g () = g, (t) + igs (t) is a function given on L’. The above
problem is related to the analysis of punches.

If the quantity ¢ (¢) in condition (6.208) is constant on L', it may
be taken equal to zero, without loss of generality, for in this case
the value of ¢ influences only the rigid-body translation of the whole
system. Here it is assumed that, in addition, the resultant vector
(V4, V,) of the forces applied to L' is given. The fundamental mixed
problem in this formulation corresponds to the case of n rigidly
connected punches.

When ¢ (t) = ¢, where ¢, are some constants, it is permissible to
fix arbitrarily only one of them on a,bj,, without loss of generality,
and the rest of the constants ¢, are to be determined. In this case, in
contrast to the preceding one, it is assumed that the resultant vec-
tors (Vyn, V,y) of the forces applied to each segment a,b, separately
are given. This formulation of the problem corresponds to the action
of n punches independently undergoing vertical displacements.
When n = 1, the above problems are identical. On the basis of (6.208)
;he boundary condition (6.205) on L’ for both problems takes the
orm

@O* (t) + D™ (¢) =2pug’ (2). (6.210)
By (6.193), with (6.195), the boundary condition (6.209) on L” is
equivalent to the relation @* (f) = ®- (¢), so that the function @ (z)
is holomorphic in the entire plane cut along L’. Consequently, the
solution of the fundamental mixed problem is reduced to a non-
homogeneous Riemann problem.

Suppose that g’ (¢) satisfies the Holder condition on Z’. The solu-

tion of problem (6.210), not vanishing at infinity, can then be repre-
sented as

X ' (t)d
® (z) = £22 ) 15 B0t X@PE,  (6.211)



168 Ch. VI. Plane Problem

where X, (z) is a particular solution of the homogeneous problem
corresponding to (6.210), holomorphic in the entire plane cut along L’;
it is given by

n -B Be=1
Xo@=1l ¢-a) " @—by

with
_In(—=x») 1 . Inx
P=—m =7t 2

Also, P (2) is some polynomial.
Since the holomorphic function @ (z) is to vanish at infinity, the
polynomial P (z) must be of degree not higher than n — 1; hence,

P(z)=Ppy(2)=Coz"™ 1+ Ciz" 2+ .00 +Cpy.

The coefficients Cy, Cy, ..., C,_; in the polynomial P, _; (z) are
determined from additional conditions of the problem. When ¢ () =
= ¢y on the segment a;b;, for such conditions we take the require-
ment that the resultant vector (V,,, V,) of the forces applied to
each segment a,b, must be equal to prescribed values.

According to (6.202) we have

p (to) + it (to) = D (¢)) — D@ (20),

where #, is the affix of a point of L’. Inserting (6.210) in this relation,
we have on L’

P (to) +it (o)) =

By applying the Sokhotskii-Plemel; formula to the right-hand side
of (6.211), we find

V" (t0) =g’ (to) + LT j T + X3 (to) Paet (t0)e (6.213)

_+_

(to) — &' (to) (6.212)

Inserting the value of @* (¢,) from this in condition (6.212), we ob-
tain
(1) pX§ (to)

P (to) - it (t) = 2= o (1) 4 1)
g’ (1) dt %1 o
X LS X(*,'(t)(t—to)_}_ % X* (to) Prn-1 (o). (6.214)

Substituting in the obvious relation!

S [p(t)+it ()] dlo= —Va+iV (k=1, 2, ..., n)

apby
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the value of the integrand from the preceding equality, we arrive at
a system of n linear equations for the constants C, ; (K =1, 2, . . .,
. .., n); its unique solvability follows from the uniqueness of solu-
tion for the original mixed problem.

To solve the problem when ¢ (f) = constant on L' (¢; = ¢, =
= ... =c,), we calculate the values of 2p (u; + u;) on the unload-
ed part L" of the boundary L. Taking into account that in this case
the function @ (z) is extendible to the unloaded segments of the
boundary L”, we obtain, by formulas (6.194) and (6.211),

2u(u,+zu2)—<x+1>®<t )= 1268 4
_ (xtt pX t1) 5 ng () —I—(%-H) X} (ty) Ppet (ty).  (6.215)
L/
Here t, is the affix of a point of L"; u; = 'Z%:» uy = ZZf

On the other hand, on the unloaded segments bra,y, we have the
obvious relation

G4y
[ wrmyan=g@)—g®) G=1,2 ..., n—1.
b

Inserting (6.2195) in this relatlon, we come to a system of » — 1 linear
equations for C, (¢ =0, 1, ..., n —1).

The additional equatlon is obtained by using a given value of
the resultant vector (V;, V,) of the forces applied to L’. On the basis
of the first formulas of (6.197) and (6.201) we have

VitiV, |
21 ?

lim z@ (2) = —

Z—>00

on the other hand, from formula (6.211) we find lim z® (z) = C,.

Z—>00
Consequently,
Vitiv,
Co=— 21
Thus, it remains to determine C,, C,, ..., C,_, from the above-

mentioned system of » — 1 equations whose unique solvability fol-
lows from the uniqueness of solution for the ori:inal problem.

In the case when g’ (¢) = 0, which corresponds to a straight base
of a punch parallel to the boundary Im z = 0, formulas (6.211),
(6.213), (6.214), and (6.215), on account of the vanishing integral
term in them. are considerably simplified.
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56. SOME INFORMATION ON FOURIER INTEGRAL
TRANSFORMATION
The Fourier integral transformation is an efficient method for
solving elasticity problems when a body is infinite or semi-infinite.
We state, without proof, some results pertaining to Fourier in-

tegral transformations.
1. The Fourier transform of a certain function f (z) given on the
interval (—oo, o) is the integral

f@®=

S f (2) eis* dz, (6.216)

— 00

i1
V2n
where § is an arbitrary real number, _

For the existence of the Fourier transform f(§) it is sufficient to
assume that the function f (z) is absolutely integrable on the inter-
val (—oo, o0).

For the function f (z) satisfying, in addition, the Dirichlet condi-
tions* on any finite interval, the following Fourier inversion formula
is valid at points of continuity:

f@)=—= | TO & (mo<a<too), (6217)
which expresses the function f (z) in terms of its Fourier integral
transform. At points of discontinuity the right-hand side of equality
(6.217) gives

1 ,
+Uf @=0)+f (z+0).
For functions satisfying the Dirichlet conditions on any open in-

terval 0 << z << 4 and absolutely integrable on the interval (0, oo)
we have

Ao -y

Is (E) sin (gx) dg, fs (E) =

o3

-y %5 f (@) sin (&2) dz,  (6.218)
0

1@ =) 2\ fe@cosEdz, 1=
0

_.]/ 2 §° ) cos (Ex) dz.

* If a function f (z) on an interval (0, A4) has no more than finite number
of finite discontinuities and a finite number of maxima and minima, this function
is said to satisfy the Dirichlet conditions on the given interval.
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The function

Vax

is called the comvolution of the functions f and g on the interval
{—o0, o0).

Theorem. If f (§) and g (&) are the Fourier transforms of functions
f (z) and g (), i.e.,

f®= | t@etds, F@=—= | g@e=da,

1
- Vo .
then the Fourier transform of the product7 (&) g () is the convolution

of the functions f (z) and g (z). Indeed, assuming that the inversion
of order of integration is permissible, we can write

= | e®ie—Ba

1
Von

Je@rEe—vd= | @ | Toeieva=

= _Sw F(t) eitxdy ———Viz_n _Sm g (B) eitt dg = _Sw F@) g(t)e-it=dt.

Hence,

oo

ffogweta= | s@te—pa G219

C o0 -0

Theorem. The Fourier transform of the function d'f/dz™ is equal

to the Fourier transform of the funetion f (z) times (—ig)"if d*f/d2* —
—0asz—>+o0(k=0,...,r—1), ie.,

S arf (x) i dx = (—iE)" S f (z) e¥s* dzx. (6.220)

~o00 )

According to the definition of the Fourier transform,

A U0 g, 2T®)
% S cdo =210, (6.221)

On integrating the left-hand side of (6.221) by parts, we find

— oo

I @) ™ e L LY@ e dTE)
vz e Lty | e a0,
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Since dr-'f (z)/dx"! —0 as x — 4-o00, we have

: A R P 1)
—iE vfzn _5 et dr =TS, (6.222)

oo

Integrating, now, the left-hand side of (6.222) by parts, we find

— T4 @) e gy 476
(—itr e [ St aem T
Repeating this operation, provided that d"f (z)/dz™ -0 (n =1,
2, ..., r—1) as £ - 400, we obtain, finally
(=8 = swf(x)e do =222

With (6.221), the last equality takes the form of (6.220).

2. Multiple Fourier transforms. The theory of the Fourier trans-
formation of functions of one variable can be extended to functions
of several variables. Suppose, for example, that f (z,, z,) is a fune-
tion of two independent variables, x, and z,; the function f, being
considered as a function of z;, has the Fourier transform

S f (z1, z2) %1% dzy, (6.223)

— 0o

FiE 20 ===

and the function f (§;, z,), being considered as a function of z,,

has the Fourier transform

oo

]/Zn R

We see from expressions (6.223) and (6.224) that the relation be-
tween the functions f (z;, z,) and I (&, &,) is of the form

F &, &)= f (&1, xp) €% da,. (6.224)

oo oo

FnB=a | | f@ 2) d@mitm do day. (6.225)

— 00 =00

The function F (§,, &,) is the two-dimensional Fourier transform
of the function f (z;, z,). On the basis of (6.217) the function f (z,, z,)

can be expressed in terms of f-(gl, z,) by the following formula:

f (@1, 29) = { (&1, 1,) et dE,, (6.226)



56. Fourier Integral Transformation 173

Similarly, from expression (6.224) we find that

oo

Few o=y [ Flntesnds @220

From relations (6.226) and (6.227) we derive a formula known as the
inversion formula for the two-dimensional Fourier transformation

fna) =5 |

S F (Ei’ EZ) e—i(§1x1+ng2) dgi dgz' (6.228)

— 00

The extension of this formula to functions of more variab.es is ob-
vious.

Let f =f(xy, ..., z,), then the r-dimensional Fourier trans-
form of this function is
FEy oo 8=
1
sn % o
= () S S F@ ..., @) @Gt 0 day L dz,.
- (6.229)

For this case the inversion formula is of the form

@, ... zp) =

oo

= (%)Zn g e Eo F(&i, e ey gn)e_i(glx“""""gnxn)d& N dgn.

v
- 00

We now show that if /' (§;, &,) and G (§,, &,) are the Fourier trans-
forms of functions f (z,, z,) and g (z;, z,), the Fourier transform
of the product F (§,, &,) G (§;, &,) is the convolution of the func-
tions f (z;, ,) and g (z;, z,). Indeed, we have, by formula (6.225),

% S § F (€1, &) G (&1, &) e~ 'GuvatEem) dE dEy =

—00 — 00

=2Ln } ( G (&, E) e~ it tmn) GE, dE, [% g \ f(ts, t2) X

—00 — o0

X eilEti it df, dty 2_2.1_ ( S f (t1, ta) dty diy X
l/

18
X{2n 5
— o0

g8

G (B4, &) e~ ittt bt dE, dE, |



174 Ch. VI. Plane Problem

Taking into account (6.228), we obtain the convolution formula

S g f th tz)g $1—t1, xz—'tz) dti dtz—-

= | [revwea weemamaa,.  (6.230)

— 00

As the n-dimensional analogue of formula (6.230) we obtain

S S Flo oo tn) g @i—ty, .o, 2y—t,)dly ... dt,=

— 00

- 5 S FE, .. E) GGy, ..., ) e-itemt 85 dE, ... dE,.
" (6.231)

57. INFINITE PLANE DEFORMED UNDER BODY FORCES

Let an infinite plane be acted on by given volume forces pF, (z,, z,),
oF 4 (z;, x,), and let the projections of the displacement vector and
the components of the stress tensor tend to zero as z;, £, — co. De-
termine the state of stress for the case of plane strain. By multiplying
the equilibrium equations (6.5) and the strain compatibility equation
(6.11) by the Fourier kernel exp i (§;z; + &sz,), and integrating
them with respect to each of the variables z; and z, between the
limits —oo and oo, we come to a system of linear algebraic equa-

tions
Ei-“_u + Ezaz = — iPF—'u Eiaz -+ Ezgzz = — ipﬁz, (6.232)
04y (1 —v) B2 — V] + Oup [(1 — V) 2 — vE2] — 28482042 =0,

where use has been made of the two-dimensional Fourier transforms
of the functions o,, Fi (r, £ = 1, 2) defined by (6.225):

6:hr (.Eiy EZ) = % 5 S Ogr (-7:1, xz) exp [l (Eixi -+ 522?2)] d.’l:i d.’l,'z,

Fy (24, ) exp [i (E11 + Eo)] dxy das.

g3

Pl 8= |
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By solving system (6.232), we find

_ _ &, F, it T,
Oy - Og9 == —12\, 2 §2ié§2F2 s (6233)

= = _ p(—2v & EiE, (5, Fy —iE,Fy)

014 — 09 = — T—w) (Ezl gz)z (L§1F1+lE2F2) 49 1=2 (§§+§§)2 2 s
(6.234)

- . 1—2 13 F F,

6= — S 8 F,— e F) —p 2 BEelh lg);gz J . (6.235)

On the basis of the inversion formula for the two-dimensional Fou-

rier transformation (6.228), from (6.233) we find

oo

[ & Fy+ 5T, .
ou+on= — gt | | PR exp—i G+ o) B .

— 00 — 00

Let us show that the function iE,/(&? + &}) is the Fourier trans-
form of the function z;/(z} + z3). Indeed

00 (e <]
1 x .
s y S 'm exp i (5121 + &) dxy dzy =
—o00 —o00
° X ix,8,
— 5 | et day | Sy do
Here
g Jc‘eixlﬁl
) Ty T
( 0
- siie~&*: when §2>
2mi res e = 1=
L (@ tizy) (2 —iny) |x,=ix, ! . . .Z2<O
— nie~%¥: when
B { g, <0
z 0
, — miet*: when 2>O
Q7 res. 7otk = <
(zy -+ iry) (21 —iZg) |uxy=—ix, C e z,<<0
Ties*: when £ ~0
1 .
Then
1 T oo o0
7 | j Ty oxp 1 (Bt + Eay) day dzy =
0 o
:-1? g iex2(§1+'i§z) dx2+—;_. ( iexz(_§1+i§2) dx?‘:-Ezl%é‘
- - . 1 =2
— o0 0
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Noting that the function ig,/(E? + E2) is the Fourier transform of

the23:function z/(x® + a3), we obtain, by the convolution formula
(6.230),

[ ] BpleBep—i @+ )l a2 d—

— 00 — 00
oo 0o

= [ [ Ao o) 532 dayday (k=1 2).

Ty —0g)2 | (g

— 00 — o0

From this formula and calculations similar to those given above
[the functions 2iE,E3/(E} + EI)°. i, (§] — E3)/2 (EF + E)? are the
Fourier transforms of the functions z, («} — z3)/(«} + 23)® and
x, 75/ (2F + x3)%] we obtain

Cyq+ Ogp=
—_ e (O (2 —an) Fy(ag, o) (ry—aty) Fy (0, )
= 2n(1—v) _.\w _300 (r,— 02 F (zy—0ty)? doci daz,
1—2
044 — 0y = _—S{('(T_—%))—X

% S‘ s' (27 —04) (Tg— ) [(Ty—%g) Fry (Ar, X)) =121 —) Fy (21, %p)] X

[(x7—0q)2 - (25— 0p)?]*

00 oo . ) . .
xdaidaz——g— g g i z’_gl))ur((%__sg;] [(z1—ay) Fy(ay, o) +

+ (g — ) Fy (g, ay)] day dai,

— 00 — 00

1—2 vor — — (& — 0y
T2 z?n(u—:),\ Suf-ofii)z x—o?)l?[( o) P (o, @) =

— (g —ay) Fy (a4, ay)] day dag, —

—L § r(t' — ) (B2 =) [(21 =) Fy (01, Gp)+(Zp—%p) Fp (U, %)
n 5 _.) (g —00)2 4 (24— 0tp)%]2 doy dot,.

As an example let us consider the problem of an infinite plane
acted on by a concentrated force F'. The solution of this problem
is useful in displaying the nature of stress singularities in the neigh-
bourhood of the point of application of the force. We choose the
origin at the point of application of the force, and take the direction
of the force coincident with the negative z; axis. The mass forces
may then be represented as

Fy(z, z5) = —§ 0 (zy) 8 (x2), Fa(xy, 25)=0.
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Here § (z;) is the Dirac function possessing the following properties:
8 (zp) =0 when z, =0,

oo

S 8 (2x) dzp = 1.

— 00

From the last formulas we obtain, finally,

Fz 2z2
o= gyt (1~ 2 )
Fz 2z2
00 = T (T—v) GIT7D {(H'Q”)_FJF—?%}’ (6.236)

Fz 222
o=y e (M ATl

Also, the component of the stress tensor 033 is determined by the well-
known formula

033 = Vv (013 + Og).

It is clear from formulas (6.236) that all components of the stress
tensor increase without limit as zp — 0.

58. SOLUTION OF THE BIHARMONIC EQUATION
FOR A WEIGHTLESS HALF-PLANE

To solve the plane problem of elasticity in the absence of body
forces, it is necessary, as was established in Sec. 42, to integrate
the two-dimensional biharmonic equation (6.26). The solution of
this equation will be given for a half-plane bounded by a straight
line. Let this half-plane occupy the region z; > 0 in a rectangular
co-ordinate system.

By multiplying (6.26) by exp iEz,, and integrating with respect
to the variable z, between the limits —oo and o0, we obtain

€ [ o 9D .
S ( 5ot T2 ey + 012 )elgx’ dzy=0. (6.237)

- 00

On the basis of formula (6.220) equality (6.237) can be put into the
form

@ L, AP
= S et day + 2 (— k) 5 | Qe day +

+(—it)* | et dz, =0

|
g — °8

12—-0884%
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or

%’% P e al F+80=0, (6.238)
where
0@, H= | © (@, 2) etinadz, (6.239)

The roots of the characteristic equation of the differential equation
(6.238) are

n=ry=18|, rs=n=—|%t]|
The general solution of (6.238) is then
Q=(A+ Bz e~8151 4 (C 4 Dzy) el 154,

To obtain a bounded solution, it is necessary to put C = D = 0,
giving
Q= (4 Bxy)e-181x, (6.240)

The coefficients 4 and B are determined by the boundary conditions

of the problem.
From the Fourier inversion formula (6.217), and (6.239), we find

O (21, 20) = 5 Jf 0 (21, B) e-i5% dE (6.241)

— 00

Thus, the stress function can be obtained by quadrature.

Now multiply Airy’s formulas (6.24) by exp i&xz,, and 1ntegrate
with respect to the argument z, between the limits —oo and oo
taking into account formulas (6.216), (6.220), and (6.239), we find

- 1 ¢ 20 1

Oyy= Vﬁ S 923 ei6%s dxz = — V:’J—f Ezo (.Zi, g), (6.242)
—~ R P YO

0’22 =——_l-/-—2;n— S axl e i 2 dx —l/-ﬁ —'E?— N (6.243)
- 1 0 o i dQ(sy, B

Su= 5 5 — oy O day = 7= S (6.249)
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From (6.242), (6.243), and (6.244) we obtain, by the Fourier inver-
sion formula,

041 (21, Zg) = 1/1% 5 Oy (21, B e e dE = — — S g20e-i%: dE,

- 00 -

(6.245)

27 d:t2

-—1 dQ e 5% —-L- .ﬂ’ixs
om=7 | o, ogm | 2L et
This method will be used to solve two problems.

1. Half-plane with a distributed force applied to the boundary.
Let the z, axis be taken along the boundary of the half-plane, with
the z; axis directed into the half-plane. Suppose that 7'y, = 0 and
T,, = p (z,) are given on the boundary z; = 0, and there are no
body forces acting on the half-plane. Assume that the components
of the stress tensor tend to zero as z; — oo. The integration constants
A and B in solution (6.240) are determined from the boundary con-
ditions

Ty, = —01 (0, 2) =p (25), Ty = —01, (0, z5) = 0.

By multiplying these conditions by exp i€x,, and integrating with
respect to the variable z,, we have, for z; = 0,

00

6'-“ = -V'I:ZTJ'I; —Soo 041 (0’ Zy) ettxs dz, =
1 ¢ ; -
f— ¥ iExy = e
Vir | pleetndn= 3@, ©.28)
az = 0.

Substituting (6.240) in (6.242) and (6.244), we find from the boundary
conditions (6.246) that

4a=YZ7m, B=YZE|15@. (6.247)

Inserting (6.247) in (6.240), and substltutmg the result obtained in
formulas (6.245), we find

o=~ | POU+E|z emltimmisnay,
o= — y PE(L—|E|z]eIslm-itndy,  (6.248)
o= —F [ Pt tinina,

12%
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If, in particular, the pressure on the boundary z; = 0 is uniformly
distributed over the section —a < z, < a (Fig. 26), we have, by
formula (6.246),

pE)= V”;_n S et dg, = IV/F?:_p" _SLg(‘@ (6.249)

Since function (6.249) is even in E, formulas (6.248) are rewritten
as

Opyy= — 2::0 S 1_-t§§_$1__e-gxl sin (Ea) cos (Ex,) dE,
0
Ogg = _2_110- S 1—5&1 e~ sin (Ea) cos (Ex,) dE,
0
Oig= — lfl- S e~ sin (Ea) sin (Ex,) dE.
0

By evaluating, now, these integrals, we find the components of
the stress tensor

011 =42 [2 (8, — 64) + sin 26, —sin 26,],
Oga = 5 [2 (8, — 61) — sin 26, + sin 26,], (6.250)

Orp= ;—T‘: (cos 20, —cos 26,),

where, referring to Fig. 26,

0, =arctan=2—2 @, =arc tan Zata
Zy Ea 1
2. Half-plane with a concentrated force applied to the boundary.
Consider the stress distribution in a half-plane (Fig. 27) with a con-
centrated force T applied to the boundary at the origin in the direc-
tion of the z; axis, when body forces are absent. The solution of
this problem can be obtained from solution (6.248) assuming that

Po = %T/?a and @ —0 in formula (6.249). Then

- T sin (a
PE=3 2| =T (6.251)

Inserting (6.251) in formulas (6.248), we find, after evaluating the
integrals,

2T z3 2T xz,z3 2T z2z
Ou=—"Fm, Om=———f, On=—-—-—5  (6.252)
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where
r=V 242

As z; -0, 2z, >0, the components of the stress tensor increase
without limit. We now calculate the normal and tangential stresses
on a plane perpendicular to the radius vector. Let the rotated co-

a a
T
STRRRRRNRD !
7 %2
8, rza r 7\ ; 7. b
Y r Crr
] X1 Xq
Fig. 26 Fig. 27

ordinate axes be taken to coincide with the normal and tangent to
the given plane (Fig. 27). From formulas (1.13)

0‘;.3 = Omalrm@er
and from the table given below we have

, 2T z; 2T cos @
nor2 T r °*

0,=0, 0;,=0.

Introducing the notation o}, = o,,, 0f, = G,q, 033 = Gga, Weobtain
the formulas

Grr=_%T"%='_‘2n—T corse, 0ro=0gg = 0.
z Ty z3
z Oy ==COS 9=% oy,=sin 9=-?- 0
z3 Oty = —sin 0=—f’;2— a22=cose=frl- 0
.1:§ 0 0 1




CHAPTER VII

Torsion and bending
of prismatic bodies

59. TORSION OF A PRISMATIC BODY OF ARBITRARY SIMPLY
CONNECTED CROSS SECTION

Let the bases of a homogeneous isotropic prismatic body be acted
on by forces that reduce to twisting couples. Moreover, body forces
are absent and the lateral surface of the body is free from external
forces.

Let the oz, axis be taken parallel to the generators of the lateral
surface, and the oz, and oz, axes at one of the bases of the bar (Fig. 28).

The problem of the elastic equilibrium of a prismatic body under
the above conditions is reduced to that of finding o}, satisfying, in

the region occupied by the body,

the differential equations of equi-
librium [(2.25) in the absence of
body forces and the formulas of

Hooke’s law (4.35), as well as the

boundary conditions on the lateral

surface -and at the bases of the
prismatic body.

The problem thus formulated

. presents great mathematical dif-

Fig. 28 ficulties. Hence, on the basis of Saint

Venant’s prmmple if the length

of the prismatic body is sufficiently great in relation to the dimen-

sions of its bases, we can relax the boundary conditions at the bases

so that the resultant vector and the resultant moment of the forces

applied to the bases will have prescribed values; the actual distribu-

tion of forces at the bases will have little, if any, effect on parts of

the body well away from the bases. Such an integral satisfaction of

the conditions at the bases permits a sufficient freedom for the choice

of solution.

Starting from the above assumptions, Saint Venant solved this
problem in terms of displacements by his semi-inverse method, The
solution of the formulated problem in terms of displacements is
sought by Saint Venant in the form

ul - —szxa, u2 = 171‘3.221, Usg = T(P (.1:1, xz), (7.1)
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where T is a constant called the degree of twist and ¢ (zy, z,) is a
function to be determined.
Displacements (7.1) show that the cross sections do not remain
plane but warp, and, moreover, all sections warp identically.
From the formulas of Hooke's law (4.35), with formulas (3.26),
the components of the stress tensor o}, corresponding to displacements
(7.1) are obtained as

7}
O34 = UT ( aaxqi _xz) , Ogg = UT (%—{—xi) (72)
and
Op = O3y = Og3 = 0y, = 0. (7.3)

Substituting (7.2) and (7.3) in the differential equations of equili-
brium (2.25), when body forces are absent, we see that the first two
of them are satisfied identically, and the third equation gives

g | ¢

The last relation shows that the function ¢ (2;, x,), known as Saint
Venant’s torsion function, must be a harmonic function of the va-
riables x; and z, in the region S occupied by the cross section of the
body. It follows from the third formula of (7.1) that the displacement
ug must also be a harmonic function.

Noting that the outward normal » to the contour of any cross
section is perpendicular to the or; axis, we have ny = 0. The first
two conditions of (2.22), in view of the absence of external forces
on the lateral surface and by condition (7.3), are then satisfied iden-
tically; the third condition of (2.22) on L, with (7.2), becomes

( o9 — o) mut ( Op +x1)n2=0, (1.5)

0z 0z,

where L denotes the boundary of the region S.
Taking into account that

9% 4 00, 0
dzy Mt G, =
instead of (7.5) on L we obtain
6—2) = oMy — T4 Ng, (7.6)

where 3—;'3 is the derivative of ¢ along the normal n.

The problem of determining the function ¢ (z;, z,) is thus the
’Neumann problem for Laplace’s equation. It is easy to show that
In our case the condition for the existence of the solution to the Neu-
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mann problem is fulfilled. Indeed,

[ 2ar= | @n—zm) di={ (e-%2 12 20) a1=
L i i
= [ a5 @+ap=0.
L

If this condition is fulfilled, the solution of the Neumann problem
is determined, apart from an arbitrary additive constant. This con-
stant is unimportant since the replacement of the function ¢ by
¢ -+ ¢ does not change the state of stress, a result which follows from
formulas (7.2), but produces, as the third formula of (7.1) shows,
only a rigid-body translation of the body along the oz, axis.

The following identity is valid for the harmonic function ¢.

0 o d ap _ o9 .
By Zy (a_xl—%)]—l’a—xz [331 (6724‘-731)]— o2, Zg;  (7.7)
on the basis of this identity, with the boundary condition (7.6), we

find that the resultant vector of the shearing stresses applied at the
cross section is zero. Indeed,

V1=Scr13d(o=pfcs (—;x—qz-—-xz)dw=

(0]
“MTS {5 [ (R =2a) | o [1 (1) ]} do.
From the Gauss-Ostrogradsky formula and the last equality we obtain
Vi=pt i Zy [(';—;ﬁ'—xz) ny+ (%"l‘xi) an dl.

In the last formula, using the boundary condition (7.6), we have
V, = 0; in a similar way it is proved that V, =0. Hence, the shear-
ing stresses applied at the cross section reduce to a couple of mo-
ment (Fig. 28)

M= 5 (%1035 — 23031 do. (7.8)

(0]

Inserting in this formula the values of 03, 03 from formulas(7.2),
we obtain, finally,
M = Dr.

In this formula

[/} 0
D=P’S (xf—{—xi—]—xi%q;——xza—z-)dco. (7.9)
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From the equilibrium condition we have, at the bases, M; = M =
= D, from which
=Mt
D k)
where M, is called the twisting moment or torque, and D is the tor-
sional rigidity.
From the Gauss-Ostrogradsky formula, with formula (7.6), we find

(;5 (xiﬂ_xz Yo )dw_i (a(_xch)'l_ag?:)))dw:—i (P-%dl

0z,

On the other hand, by Green’s first formula,

Jogra=T[(z) + (&) T

©

Consequently,
R e

By multiplying both sides of the last relation by p, and adding
to (7.9), we obtain

Den [[(22—a)"+ (42) o

It follows that D is always positive.
We introduce a harmonic functiony (z,;, z,) conjugate to the func-
tion ¢ (z,, z,); by the Cauchy-Riemann conditions we then have
_w. o
-6?1- bz ; dzy 0z " (7.10y
The boundary condition that is satisfied by the function ¢ (z;, z,)
is obtained from (7.6) by inserting conditions (7.10) in (7.6), and
using (6.27). The result is
oy dz, | oy dz, dz, doy | _
T @ T @ (g et ) =0
By integrating both sides of this equality along the contour of the
cross section, we have

pl=2F4 ¢ (7.11)

By (7.2), with conditions (7.10), the components of the stress tensor
are obtained as

031—11'5(:;13 1‘2) y  Ogg= —ut (—;%-—-xi). (7.12)
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1t is well seen from these formulas that the solution of the problem
will not change if a constant is added to the function ¢ (z;, x,).
Consequently, the determination of the function is reduced to the
Dirichlet problem for Laplace’s equation.

Instead of the function ¢ (z;, z,) another function, @ (z;, z,),
is often introduced, called the stress function in torsion or Prandtl’s
stress function. This function is defined by the formula

1
D (21, 23) = P (21, To) — 7 (2] + 7). (7.13)
In this case, from (7.12) we have
oD oD
‘731=P«T;;2—, Ogg = —NUT PP (7.14)
From (7.13), noting that
2y 0%
oz} + ox3 0,
we obtain
R 920
o+ =2 (7.15)

By (7.11), the boundary condition for the function @ becomes
D (z, z,) | =C. (7.16)

 Thus, the problem of determining @ (z;, z,) is the Dirichlet prob-
lem for Poisson’s equation (7.15) subject to the boundary condition
(7.16). From formula (7.8), with (7.14), the twisting moment is
determined as

M, = —WS (jf a}1+%" xz) do (7.17)

This formula shows that the magnitude of the moment M, does not
change if any constant is added to the function @. By writing (7.17) as

M;= —pt [a(xlm)-l—a(xz@ ]d +2W:5 Ddo,
(O]

and applying the Gauss—Ostrogradsky formula to the first integral,
we obtain

M= —pr®@ S (2171 - Tong) dl 4 2uv S @ do. (7.18)
L )

Assuming the constant C in (7.16) to be zero, which is permissible
since changing @ (z,, *,) by a constant leaves the solution of the
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problem unaltered, as seen from (7.14) and (7.17), instead of for-
mula (7.18) we have

M,=2p% 5 D do. (7.19)

@

This important formula is due to L. Prandtl.

60. SOME PROPERTIES OF SHEARING STRESSES

We now show that the shearing stress vector T3 = i;03; + i503,
at an arbitrary point M of the cross section of a prismatic body is
directed along the tangent to the curve @ (z,, z,) = constant pas-
sing through the point M. Indeed, along the curve @ (z, z,) =
= constant we have

oD oD dz; , 8D dz,

Bl " 9z, dl ' 9z, dI
Taking into account formulas (6.27) and (7.14), we find
Cgly + O3y = T5-n =0,

from which T3 | n.

Based on what has been proved above, the curves @ (z;, z,) =
= constant are called trajectories or lines of shearing stress. Since
@ (z;, x,) = constant on the contour of the cross section, it is a
shearing stress trajectory. :

It can easily be proved that both o3, and 03, are harmonic functions
in the cross section. Indeed, by applying the harmonic operator A
to both sides of formulas (7.14), and assuming the legitimacy of in-
terchanging the differential operators, we have, by (7.15),

=0.

oD
Aoy = p.TA m: Ut TA(D.: 0,

a
AO'32= —p,Ta—xl-A(D=Oo
It follows that ¢4, and o5, attain maximum values on the contour of
the cross section of a prismatic body.

We now prove that the shearing stress vector T, also attains its
maximum value on the contour; for this we start from the contrary:
suppose that the shearing stress vector attains a maximum value
inside the contour of the cross section at a point M. We choose a new
rectangular Cartesian co-ordinate system ox;z, at the cross section so
that one of its axes, say the oz} axis, is directed parallel to the vector
T'; applied at the point M. In this co-ordinate system, at the point M/
we have a stress tensor with components ¢;, = 0, 03, = 0, and these
are also harmonic with respect to the new co-ordinate system. In con-
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sequence, Og, attains its maximum value on the contour, and not
inside the contour, as was supposed at the beginning of the reasoning.

Hence, the shearing stress vector attains its maximum value on
the contour of the cross section of a prismatic body.

61, TORSION OF HOLLOW PRISMATIC BODIES

Let a prismatic body be bounded by several cylindrical surfaces
whose axes are parallel. Every cross section of such a bar represents
a multiply connected region. In this case the boundary conditions
(7.11) take the form

‘p=ﬁ:21_—x%+cv on L'v:

where C, are constants assuming definite values on each of the con-
tours L, the set of which forms the contour of the section.

The torsion function ¢ must be single valued; otherwise, the
displacement u; = 1@ would be multiple valued (we are interested
in single-valued displacements). The function v, conjugate to the
single-valued harmonic function and determined from the Cauchy-
Riemann conditions (7.10), may, in general, be multiple valued;
in our case this must not be so because the function ¢ reverts to its
original value on passing once round any of the contours L., as
seen from the boundary condition for it. Hence, the constants C,
cannot be fixed in an arbitrary way. Indeed, if they are fixed arbi-
trarily, and then the function ¢ is determined (for this it is necessary
to solve the Dirichlet problem, which, as is known, always has a
unique solution), the function ¢ found from the Cauchy-Riemann
conditions by means of the function ¢y may be multiple valued.

In the present case the function @ (z,, z,) must, by (7.16), be
constant on all contours bounding the section. Thus, the boundary
condition for the function @ (z;, z,) on the contour L, is of the form

@ (z;, z) = C,. (7.20)

As we have seen, the formulas for strains, stresses, and displacements
involve partial derivatives of the function ®. It is therefore suffi-
cient to determine the function @ (z;, z,) to within an arbitrary
constant. This circumstance allows one to set one of the constants C,,
equal to zero.

Let us show that the tangential stresses o3; and o3, at the ends of
a prismatic body satisfy the conditions

S 031 d® = S O3 do =0 (7.21)
(0] (0]

(otherwise, in addition to the applied torque there would be trans-
verse forces at the ends tending to bend the prismatic body).
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Inserting expressions (7.14) in the integrals of (7.21), and trans-
forming them into integrals round the contour L = Ly + L, + L, +
+ ...+ L,, we obtain

Vimpt§ Onydl, Vo= —pr | Onydl. (7.22)
L L
These integrals may be written as

V,_an CDnzdl-{—p:l:S DOnydi+ ... +pr 5 Dnydl,

Lo i, L,
—V2=p,1:SCDnidl—{—mSCDn1 dl4 ... +ps S Dn, dl.
L, L, m
With (7.20), we have
V= prC, 5 ng dl 4 piCy S ngdi+ ... +piCnm S nydl,

L, L, Lp,
—V2=MTCOSn1dl+pTC15n,dl—l—...—{—pfrcm 5 nldl;
L, L, L
since

it follows that V; = V, = 0, which was to be proved.
Referring to formulas (7.14) and Fig. 28, we have

M=—p,1:5( 1—|—ax )dw:

0z,

— —pr [ (H2R 20D o 4 opr | Dao. (7.23)

©

By transforming the first integral into a contour one, we have

M,= —,m§ (@171 - 2an9) @ dl -+ 2t S @ do, (1.24)
L )

or, noting that L=Ly+}-Ly+ ...+ L,,, we obtain, finally,

M= —u1C, S (@114 + 2gng) dl— i€y S (@17y -+ zn0) dl — . . .
L, L,
T S (@11y -+ Zan) dl+2m5 Ddo.  (7.25)

L, @
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We transform the contour integrals into surface ones and, remem-
bering that the outer contour of the section must be described in the
counter-clockwise direction, and all inner contours in the clockwise
direction, rearrange formula (7.25) in the form

M= 2ut ( i Cyoy—Co0y) + 27 5 D do, (7.26)

where o, is the area bounded by the contour L, (v =0, 1, 2,...).
In the case of a simply connected region we obtam formula (7 19)

62. SHEAR CIRCULATION THEOREM

The circulation of the stress vector i;04 -+ i,05, along a closed
line I lying entirely inside the section is

T= § (41031 + 45039) - . (7.27)
l
Inserting (7.2) and (7.1) in the integrand we have
I'= pT?(mdxz——xzda —|-p,<§(au3d )

- 2mm+p& %s 1. (7.28)

Since the displacement uz; must be a smgle-valued function in the
cross section, it follows that

{5 dug dl=0
By reason of the last circumstance, we find, from (7.28), that
[ = 2uto. (7.29)

Here o is the area bounded by the line of integration.

Formula (7.29) is valid for both simply connected and multiply
connected sections, and the line of integration may enclose one,
several or none of the inner contours of the section. This formula re-
presents the shear circulation theorem.

The shear circulation may be expressed in terms of the function
@ (z,, z,); for this purpose, we substitute (7.14) in the integrand
of (7.27), so that

r— —m& (o ;’f n+-2 - > ny) dl= —m&—-dl (7.30)

where n; is the cosine of the angle between the outward normal to the
line of integration and the oz; axis (j = 1, 2).
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On comparing formulas (7.29) and (7.30), we obtain
y 2 g (7.31)
1

If the line of integration is taken to be an inner contour L,, then

—-@————dl-Zwv wv=1,2, ..., m), (7.32)

where n, is the outward normal to the contour L,, o, is the area
bounded by the closed contour L,. Formulas (7.32) can be used to:
determine the unknown cons- X,

tants C, entering into the ¢

boundary conditions (7.20). S~ % ’

63. ANALOGIES IN TORSION X3 T

(a) Membrane analogy. By
a membrane is meant a thin Txs X
film offering no resistance to 2
bending, but acting only in Tdxz
tension.

Suppose that a homogeneous
membrane of constant thick-
ness is equally stretched in :
all directions by a force T Fig. 29
over a plane contour of the
same shape as the contour of the cross section of a twisted pris-
matic body, and loaded by a normal uniformly distribued load ¢
per unit area. Let the co-ordinate axes oz, and oz, lie in the plane
of the membrane, which sags under the load g by an amount u, (x4, z,).

Let us derive the differential equation of equilibrium; to do this
we cut out an element having the shape of a rectangle of sides dz,,
dz, (Fig. 29). Equating to zero the sum of the projections on the oxzs
axis of all forces acting on the element gives

I/ I/ I/ 7] 7]
— T3 dxg—}—[Tﬂdxz-{-;Z( u”)d@dazz] —T ”"d1+

+[T Juq dxi+—a?-( au°)dx2dx,]+qu1dx2 0

From this we obtain an equation for the deflection u, of a uniformly
loaded membrane

Ouy _ _ 9. (7.33)
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:Since the deflection u, on the contour of the membrane is zero, the
contour condition is

uy = 0. (7.34)

Thus, the contour condition (7.34) coincides identically with the
.contour condition for the function @.

On putting u, = k®, the differential equation (7.15) coincides
-with (7.33). Inserting u, = k® in Eq. (7.33), there results

(_02_‘1’ 20N _ 4
dz? oz} ) T
‘On the other hand, we have
o | PO _
0z2 oz "
From the last two equations, &k = -2%, . Then
q
Uyg= ﬁ . (7.35)

‘Consequently, the torsion problem for a prismatic body can be solved
by measuring the deflections of a uniformly loaded membrane.

If the membrane is cut by planes u, = constant, the resulting lines
of equal displacement in the torsion problem coincide with the tra-
jectories of shearing stress @ = constant. The slope of the membrane
%E‘nﬂ in the direction of the outward normal n to the line of equal
displacement at some point determines the shearing stress ¢ at the

_ bt 0y,

corresponding point of the section, i.e., = T Indeed,
duy _ Ok® _ , ( 9D o0\ _ k. . _ &
T am =k (—ax1 n‘+—ax2 nz)— T (03214 Usﬂz)-wh

from which

P L)
k on °

According to this formula, the maximum angle of inclination of
the membrane determines the maximum shearing stress.

The torsional rigidity of a prismatic body is determined by the
volume v enclosed by the surface of the deformed membrane and

the plane of the membrane before deformation, i.e., D = Z—E v. Indeed,
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noting that
2p,1:5 Odo=M,; and M;= Dr,
o

we find v=—4-g— D, from which
pT

D=Ly, (7.36)

The value of the membrane analogy resides not only in the fact
that it furnishes an experimental means of investigating the torsion
problem, but also in the fact that without any experiment the use
of this analogy in each specific problem of the torsion of a prismatic
body makes it possible to get a qualitative idea of the pattern of
shearing stress trajectories and of the maximum tangential stress.

The membrane analogy is easily extended to the case of hollow
prismatic bodies. In this case, as is apparent from the relation uy =
= k®, which has been derived by comparing Eqs. (7.15) and (7.33),
the following conditions must be fulfilled:

(1) the outer contour of the membrane must be similar to the outer
contour L, of the section of a prismatic body, and must be rigidly
fixed;

(2) all inner contours of the section of the prismatic body must be
simulated by absolutely rigid plane weightless disks parallel to each
other, and must receive translational displacements u, = kC, (C,
are the constants entering into the boundary conditions on the inner
contours of the section of the prismatic body);

(8) these disks must be stressed by the same uniformly distributed
normal pressure g as the membrane itself. The last consideration fol-
lows from the shear circulation theorem in the torsion problem;
the truth of the statement will presently be demonstrated.

Substituting C[)=%uo in (7.32), we obtain

7]
_d§ Tt dl = 2ko, = £ oy (7.37)

Here ;96‘“ is the slope of the membrane in the direction of the outward

normal n, to the inner contour L,, w, is the area bounded by the
inner contour L.

By multiplying both sides of (7.37) by the amount of uniform ten-
sion in the membrane T, we have

(7]
—§T-5Z—zdz=qmv. (7.38)

Obviously, the left-hand side of this equality is the sum of the pro-
jections of the forces of tension in the membrane at the section through
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the given contour L, on a direction perpendicular to the plane of the
contour L,.

Thus, (7 38) gives a condition for the equilibrium of each disk
under the uniformly distributed pressure and the tension in the
membrane at the section through the contour of this disk. If this
kind of membrane together with a disk is stressed by a uniform pres-
sure, we obtain the membrane analogy of the torsion problem for a
prismatic body of multiply connected section (Fig. 30), i.e., the

] 1 L

N

Fig. 30

displacement of the membrane is proportional to the function @ (z,
Z,), and the lines of equal displacement are similar to the shearing
stress trajectories.

The realization of the membrane analogy experiment in the case
of the torsion problem for a prismatic body of multiply connected
section presents great difficulties. However, for a qualitative study
of a specific problem of the torsion of a hollow prismatic body, as has
already been mentioned in the case of simply connected regions, the
membrane analogy is of great value.

As an example let us consider the problem of the torsion of thin-
walled tubes.

To investigate the torsion of thin-walled tubes using the membrane
analogy, it is necessary to fix the membrane along its contour, which
must be similar to the outer contour of the section, and superimpose
an absolutely rigid plane disk having the shape of the inner contour.
Next, the membrane and disk must be stressed by a uniformly dis-
tributed pressure giving the disk a translational motionin a direction
perpendicular to its plane (Fig. 30). Since we are considering the
case when the wall thickness of the tube is small, the deformation of
the membrane is determined mainly by the load exerted on the disk;
as regards the load acting directly on the membrane, it may be neglect-
ed. It appears from the above that the surface of the deformed mem-
brane coincides closely with a conic surface connecting both contours.
This conclusion allows an approximate analysis to be made in the
study of the torsion of thin-walled tubes of arbitrary cross section.

Inside-a ring section draw a line L equidistant from both its boun-
darles (Fig. 31) and take some point 4 on this line as the origin of
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arc length I. The ring section is specified if the line L and the thickness
8 = 8 (1) are known. The value of the shearing stress I' at a given
point can be approximately estimated from the mean slope of the
membrane at this point; hence, the approximate value of the tangen-
tial stress at the point B is deter-

mined by the formula Ay 8(1)
_ C,—Cy
T=pr— D

Assuming that C, = 0 on the outer
contour, we have

T— mﬁ%, (7.39)

As seen from this formula, K/ g - S;/
c, dAEEERE]
= : —]

T max =nt Sin * (740)
From formula (7.26) we have %HE

My=2p (Coou+ S ®do),

©

Fig. 31

where o, is the area bounded by the inner contour, C, is the constant
value of the function @ on the inner contour.

Noting that the mean value of the function @ on the line L is
approximately equal to 1/2 C,, the last formula is rearranged in the
form ' :

My=2p1Cy (04 S di) = 2pC, (0r+5 f s(dl). (1.41)
’ L

[0]

The expression within the parenthesés on the right-hand side of (7:41)
represents the area bounded by the mean contour L; hence, formu-
la (7.41) is rewritten as : |
M; = 2p1C; 0, (7.42)
where i
o=oi+ | 8@
9
On the other hand, we have, by (7.3?),

0—Cy y
— §L> S di =20 (7.43)
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By ‘eliminating C, from formulas (7.42) and (7.43), we obtain

M, =2 (7.44)
where
dl
- |55
L

Formula (7.44) is given by R. Bredt.
On comparing formulas (7.39) and (7.42), we find

My

208 ()"
This formula is also due to R. Bredt.

(b) Boussinesq’s hydrodynamic analogy. Consider the laminar
motion of a viscous fluid through a prismatic tube with a cross sec-
tion coinciding with the cross section of a prismatic body whose
torsion is under investigation. Let the axis of the tube be denoted
by ox,. The velocity v (z;, x,) of the fluid flowing through the tube
must satisfy Poisson’s equation

2 2
% 0%v 1 0p a. 45)

02} T 62 o 0zy°
where :—:3 is the drop of hydrodynamic pressure along the axis of the
tube, which is taken to be constant.
On the walls of the tube we have the Reynolds condition

v =0. (7.46)

Thus, the contour condition (7.46) coincides identically with the
contour condition for the function @.

" On putting v = kO, the differential equation (7.15) coincides with
(7.45). Inserting v = kD in Eq. (7.45), and comparing the resulting

gquation with Eq. (7.15), we obtain
T _a
_ 0z

k= 2u,

nd

64. COMPLEX TORSION FUNCTION

It is often convenient in the solution of the torsion problem to
introduce a function F (z) of the complex variable z = z, + iz,,
related to the torsion function ¢ (z,, z,) and its conjugate ¢ (z,, z,),
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in the form
iF (z) = @ + ip. (7.47)
The function F (z) is obviously holomorphic in the region occupied by
any cross section of the body.
By (7.11), for a multiply connected region the boundary conditions
that must be satisfied by the function F (z) become

F(@t)+F (t)=tt+C,, (7.48)

where £ is the affix of a point; C, are constants, one of which may be
fixed arbitrarily, and the others are to be determined.
In the case of a simply connected region we have

F(t)+F(t)=tt+C. (7.49)
On the basis of formulas (7.2),
031—1032_;11:( 5;91 —1i :—z—xg—ixi) ,
from which, remembering that -‘%z ——gj—l, we obtain, finally,
Oy — i035 = uti [F' (z) — zl. (7.50)

The torsional rigidity of a prismatic body is determined by for-
mula (7.9), which is rearranged in the form

_ 2 2 0 (z9) _ 9 (219)]
D_!J’S (x1+x2)d0)——p.5 [ 6;1 azlz Jd
(0] (0]
By applying the Gauss-Ostrogradsky formula to the second integral,
and introducing the notation 7, = j (23 + 2%) do, we obtain

©

DZH[Io“ S cp(xidx,+12dx2)].

L

Here I, is the polar moment of inertia of the cross-sectional area.
By using formula (7.47), and taking into account that z,dz, +

+ z,dz, = %d (f), the last formula may be put into the form:
D= u[l ——5 (F(O)—F (1) d () J

If the cross section of a prismatic body represents a multiply con-
nected region, the last formula becomes

D=p[I,— 2 X F@®)d )] (7.54)
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Here the integration is carried out along all contours Ly, L,, . . ., L,
the sense of description of which is such that the region remains on
the left.

65. SOLUTION OF SPECIAL TORSION PROBLEMS

Below are given several examples of the solution of special torsion

problems for prismatic bars.
(a) Prismatic bar of elliptical section. Prandtl’s stress function
@ (z,, z,) must be constant on

Xe the ellipse
T
T3h ate=1
-
o=~ Yo The function @ (z,, z,) satis-

fying the boundary condition
may be represented as

b/
ony 0 \ % q)(x,,xz)=A(Z_§ Z_f),(7.52)

=1
Cat /Z’u o where 4 is an unknown cons-
Fig. 32 tant. Moreover, the function
@ (z,, z,) must satisfy Poisson’s
equation inside the ellipse; hence, for the determination of the -
value of 4 we obtain the relation

24 () =2

3=V /2 uzh

from which we find
a2b?
= —aTm-
Then
2,2 2.2
D (21, 23) = —%, (7.53)
Substituting (7.53) in relations (7.14), the stresses o4, and o3, are
obtained as
__ 2ad%pT
a? b2
2%t
039 = m xz.

O34 = sy

(b) Prismatic bar whose section is an equilateral triangle (Fig. 32).
The equations of the sides of an equilateral triangle of height & are:

z, =b, z,=—V3z, +h, z,=1V32z +h.
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The function @ (z,, z,) must be constant on these sides. This, as in
the first problem, suggests that the function should be represented
in the form:

© (2, x5) = Az, [(zy — k) + V 3z, l(@, — k) — Vg-xl]‘
(7.54)
This function is zero on the sides of the triangle. Moreover, the func-

tion @ (z;, z,) must satisfy Poisson’s equation inside the triangle.
Xz 63,=‘lllTb (I-az/sz)

9 Grz=prb(1-a%/4b?)

Xy

4
G35 MTbadb)

G32="21Tb(1-0/25)

Fig. 33
From this we find that 4 = 2ih We obtain, finally,

© (21, 73) =5 22 [(—F)? — 32},
From formulas (7.14) we find

0'13'——-;_;[3 (x;—x?)"*"h (h—4x2)]’ 0-23=3_:zx1x2'

(¢) Circular prismatic bar with a semicircular longitudinal groove
(Fig. 33). The equation of the contour of the section is

(g — 02+ 23 —b2=0, z2}+2)—a®=0.

The stress function, whieh must be zero on the contour, is sought in
the form

L
O (a1, 23) = g (@ — b+ 23— bl &+ 22— ?)
or

Ly (1, x2)=A (x: +x:_a2_2bxi+2baza:1 ) .

Tz}
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In addition, the function @ (z,, z,) must satisfy Eq. (7.15) inside
the above contour. Hence, we find that 4 = —1/2. Consequently,

‘D(xl»r,xz)=—-%-[xf+x§—a2 2bx,( i 1)]
According to formulas (7.14), we have
2ba?
O = [1"@:-_2%?-]“2'

(d) Prismatic bar with a section in the form of a rectangle. In order
to find the solution of the torsion problem for the indicated bar, we
determine a harmonic function ¥ (z,, z,) that assumes the value

! (z} + 23) on the boundaries z; = +a, z, = +b of the rectangle.

2
The unknown function ¢ (z,, z,) is represented as the sum of two
harmonic functions]

a2+—12—(x§—xf) and g (zy, ),
ie.,

P (@1, ) = a2+ (@ —22) + ¢ (21, 7). (7.55)

The newly introduced harmonic function ¢ (x,, z,) must satisfy on
the boundary of the rectangle the conditions
q (e, z,) =0, ¢ (2, £b) =z — a® (7.56)

The harmonic function ¢ (z,, z,) is taken in the form of a series

q (x4, Zo) =720 a, cosh (B,xz;) cos (Bnz1)s (7.57)
By using (7.57) in the boundary conditions (7.56), we obtain
o= (n ) 7
2P —al= 120 a, cosh (B,0) cos (B,.z1).

From the second relation we find

a

. sin (Bna)
= ooy | @008 (Buay) dmy=— g £ La)
-a
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The result is
1
¥ @1, 22) = @ (e — ) —

. 7
3942 o H—1)n cosh.(Zn—{—i)—2 zy

— n’; D (én+)1)3 : = cos(2n—1—1)—;a zy.
n=g cosh (2n+1) -z—a b

The components of the stress tensor can now be calculated by for-
mulas (7.12).

(e) Prismatic body of circular section with a circular eccentric hole.
Denote by S the region occupied by any one cross section of the
body, bounded from the outside by
a circumference L, of radius R, and

from the inside by a circumference L, Xz

of radius r; the affix of the centre of \

the latter circumference is designated /

as e (Fig. 34). For the present case the P, | W

boundary conditions (7.48) become m X
Ft)+F({t)=tt+C, on L, (7.58) 0 W
F(t)+F @) =ti+C, on L. (7.59) S0,

Since & = R%on L, and the constant

C, can be chosen equal to —R?, con-
dition (7.58) is written as Fig. 34

F () + F(ty=0o0n L, (7.60)

the expression for #f on L, may be written as follows:

= (e rei®) (e - rem i) =or {04 T

r t—e

}+ et 412
hence, we have, on L,,

FO)+F@)=er {24+ V14, (7.61)
t—e

T

Here d, =¢€? 4 r* + C,.
The solution of the problem is sought in the form

F@)=>3 a, (%)h+§ b ()" (7.62)
h=1

k=0

where the first series represents a holomorphic function inside L,,
and the second series represents a holomorphic function outside L,.
The coefficients a, and b, are assumed to be real.
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Substituting the boundary values of the function F (z) in condi-

tions (7.58) and (7.59), we obtain

S o (L) 3 b () ¢
k=0 k=1
n 2 ar (%)H g bk(f)h=0, (7.63)
3 o () 2 () + 3w ()
k=0 r=1
1 Z bk(—L)"=er {tje+t_e}+d . (1.6%)
h=1
We now transform the second term in condition (7.63)
S, ()= Zbk( ) (F) =
et (1=%)
=2 0] (F) 2 e ()
S (=1t (£) (2)

where CYp=(—1)"Cyiv_1

Introducmg a new index n = k + v instead of the index v gives
Q r n-k n-hk n-k { R\n
> (i) Z ()" 2( "Het (=) ()"
Here the double summation is carried out over the whole-numbered

points of the angle ABC (Fig. 35)
By interchanging the order of summation in the last double sum,

we find
S (o) = 3 (2" a9
k=1 n=1
where
B,=3) (—1)r* (%)"‘(%)” Wity (7.66)
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Obviously,

th(t_e) th( ) ZB( )" (1.67)

Inserting expansion (7.65) in condition (7.63), we obtain a, = 0
and an infinite system of linear equations

a, + B, =0 (mn=1,2 ...). (7.68)

To obtain a second infinite system of linear equations, we transform
the first term in condition (7.64):

(=] (=]

3 o (7)' =3 o (F+q)'=

k=0 R=0
oo 3 .
r\n e -n [t— n
=2 a3 c(7) (%) (5)"
k=0 n=0
Here the double summation is carried out over the whole-numbered

P K

n 45°

Fig. 35 Fig. 36

points of the angle AOB (Fig. 36). By interchanging the order of
summation, we have

3o ()'=3 4 (59" o
where = '

A, = (Ti)" > c,’:(%)"‘“ah. (1.70)
Obviously, =0

W@ =S ey am
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Condition (7.64) then becomes

3 Ut o0 [+ () T2 {52
oo,
A=, rZ (& ) =5, (7.72)
n—}—bn=eren (n=1,2,3,...), (1.73)

where ¢, = 1 and &, = 0 for n = 2, 3, 4,

On the basis of the theorem of existence and uniqueness of solu-
tion of elasticity problems we may draw a conclusion that the set
of two infinite systems of linear equations (7.68) and (7.73) has a
solution, and, moreover, the solution is unique and bounded; its
approximate solution is the solution of two finite systems, and the
number of these equations must be fixed according to the parameter
defining the closeness of the contours of the section to one another and
the required accuracy of the analysis. After determining the roots of
Eqs. (7.68) and (7.73), the constant C, is found from relation (7.72).

As an illustration of the solution, consider a numerical example.
We take the first three equations of (7.68) and (7.73):

ai—{— L b, =0,
@+ g & b1+( ) by =0,
a3+%(%) bi+2 (% ) o+ (& 3b3=0, (7.74)

e T

a1+2 7 R 2+3 (‘ﬁ 203+b1=7;§32,
(=) 2+3 () & as+b:=0,
(%)3 az+b3=0,

From the first three equations of this system we have

b=—"a, b=—(2)(ea—Fa),

b= —(£) (o= () -2 (=)}
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the last three equations of system (7.74) then become
2
F et ot s () a—d g,
e R\2 riy\2 R\2 r\2 e .
= () at+[(7) = (F) ]er3(7) Fau=0
R\3 [ e \2 R\3 e r\3 R\3 .
—(F) (&) «+2(F) Fat[(x) —(5) Ju=0
For the relative dimensions r/R = 0.2, ¢/R = 0.6 the roots are:
a, = —0.262167 x 10-1R?, a, = —0.157831 X 10-1R?,
ag = —0.250176 x 10-2R%, b, = 0.131084R?,
b, = 0.125 X 10-2R?, b3 = 0.125 X 10™*R%,

In the example under consideration, from (7.72) we have
C, = — 0.446929R?.
The values of

X2

A=FEOFF® 1500

t4C, &
for the points ¢t =R, ¢ =iR, §
t = —R of the circumference L,, N X
and the values of 2

(" Wm R
1248uzR

A— FO+FFO—(E+C) 4000
tt4-C,

for the points ¢=-¢ -+ r and

t = e — r of the circumference L,

are, respectively, 1.490%, 1.012%, Fig. 37

—0.249%, 0.132%, —6.7%. It

appears from these figures that the boundary conditions are ful-

filled with reasonable accuracy; hence, the solution is quite efficient.
On the basis of formula (7.50) the values of shearing stresses are

calculated at points of the x; axis, and the shearing stress diagram is

constructed (Fig. 37). As seen from the diagram, the disturbance

introduced by the hole is of a local nature.

We now determine the rigidity. Taking into account that d (i) =
= dR? = 0, d (tt) = red (tie + t%e), respectively, on Ly and L,
from formula (7.51) we obtain

p—n (1= (5) 42 (3) ()]
g 3 [ - () e ) - (52) )

xd (7 +50) w7 B

0.957utR
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By using formula (7.69) and Cauchy’s theorem, we obtain, finally,
R4 r\4 e \2 r\2 r e
D=pi-[1=(7) +2 (%) +(F) o=t 7 R
In the example under consideration D = 1.559uR*; hence,

M,

M _ My
= p-=0.641 7t

Here M, is the given twisting moment,

66. BENDING OF A PRISMATIC BODY FIXED AT ONE END

Suppose that a prismatic body of length [ is fixed at one end and
carries at the free end a load statically equivalent to a force P per-
pendicular to the axis of the body. Body forces and forces on the late-
ral surface of the body are absent. Let the origin be placed at an arbi-
trary point of any one section, with the ox; axis directed parallel to

Z
9 :

7

X1

Fig. 38"

the axis of the body, and the oz, axis parallel to the force P (Fig. 38).
The section is assumed to be simply connected.

The solution of the problem is given in terms of stresses by Saint
Venant's semi-inverse method. From physical considerations we as-
sume

Ty = O3 = Oy, = 0, (7.75)
033 = P (azy + bz, + €) (I — 5); (7.76)

the components o3, and o3, of the stress tensor are to be determined.
It will be shown below that the coefficients a, b, e are uniquely de-
termined by the shape and dimensions of the cross section of the
body and by the choice of co-ordinate system.

The components of the stress tensor o3, 03, and o3, at any sec-
tion z5 in the present problem must satisfy the equilibr um condi-
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tions:
S 031 do— P =0, S 03.dw =0, S (%1032 — 2,031) do =0, (7.77)
[0} [0} o
5 O53de =0, 5 G32ad® =0, S Ost1do - P (I—z5) =0.  (7.78)

Substituting expression (7.76) in conditions (7.78), we obtain a system
of three linear equations for the coefficients a, b, and e:

aS, + bS; + eo = 0,
al,, + bl,; + &S, =0, (7.79)
al 3y + bl + €S, = —1,
where I, I,,, I1,, S1, and S, are the moments of inertia and the static
moments of the cross-sectional area of the body with respect to the z;

and z, axes, and o is the cross-sectional area.
The roots of system (7.79) are

_ 10— 5% b= I,0—8.S,

a=
B ’ B ’
e— I1S,— 14,8, (780)
. B ’
where
Iy, Iy, S,
B: 112 I“ Si .
Sz S1 ®

On the basis of the formulas §; = wz,., S, = wz;. the formula for
the coefficient e is transformed into

e = —ax,, — by, (7.81)

Here z,,, x,. are the co-ordinates of the centroid of the cross-sectional
area. ‘

Substituting (7.75) and (7.76) in the differential equations of equi-
librium, with F; = 0, we obtain

o . 00

0_:31 =07 ’ (9.113: =0» - (7'82)
0 21 6
:a(ll +—§£—P(am+bx2+e)=0. (183

It follows from (7.82) that o4, and o4, are independent of the z4 co-
ordinate; hence, they are distributed in the same manner at all cross
sections.
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Equation (7.83) is given a new representation
0 1 7} 1 -
- [031_7 P (az? +ex,)] + g [032— =P (bad + ex2)J =0. (1.84)

It follows from this equation that there exists a function y (x4, z,)
related to 03 and oy, by the equalities

p
O34 =5~ (;Ti‘l‘axf +3x1) )
(7.85)
4 7}
0'32=—2— ( —a—ai—l—bx:—{—exz) .

Indeed, on substituting (7.85) in equality (7.84) the latter is satis-
fied identically.

We now derive the conditions that must be satisfied by the func-
tion ¥ (2, x,). For this, let (7.75), (7.76), and (7.85) be subject to
the Beltrami-Michell relations and the boundary condition on the
lateral surface of the body.

Of the six Beltrami-Michell relations four relations are satisfied
identically, and two relations lead to the equations

2v
aT (Ax) = —m‘ e,
(A ) 1+v
from which
2 2
d (Ay) = ( —1—+”v- a) dzz—{—-H_—vv bdz,.
Then

AX,=

2
Ty (b1 —azg) —2C. (7.86)

Here C is an integration constant to be determined.
The conditions of zero load on the lateral surface of the body give,
in the present case,

Ogy + Oggny = 0 on L, (7.87)
Taking into account formulas (7.85), with (6.27), from (7.87) we have
the boundary condition for the function % (2, ) on L

= (ba? —{—exz) — (az} + exy) ‘Z . (7.88)

Next, we replace problem (7.86), (7.88) by two problems; for this,
the function y (z,, z,) is represented as follows:

y=Y 4 CO, (7.89)
where ¥ and @ are some new functions to be determined.
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Substituting the last relation in (7.86) and (7.88), problem (7.86),
(7.88) is broken down into the following two problems:

AD= —2,
o (7.90)
—=0 on L,
AY = —— H— (bxy—ax,),
o dz, (7.91)
- = (bz} + exs) —- dl — (azy +exq) —- on L.

Consequently, the function @ is Prandtl’s stress function.

Thus, problem (7.86), (7.88) of the transverse bending of a pris-
matic body is divided into the torsion problem (7.90) and problem
(7.91) of finding an auxiliary function ¥ called the flexure function.

For simply connected cross sections the boundary conditions on L
reduce to

O =0, (7.92)
!
2 2 dz,
Y= ! [:(ba:2 -}—ezﬁ%— (ax? + exy) —d-l—] dl, (7.93)

It can easily be verified that on passing once round the contour L
the value of integral (7.93) is zero. Indeed, by taking integral (7.93)
round the closed contour of the cross section, and applying the
Gauss-Ostrogradsky formula to it, with the first equation of system
(7.79) taken into account, we obtain

= | {1022 + ez da, +[— (a2 +e2))] day) =

L

= —2 (@2, +-bry+ o) do= —2 (@S, +bSs+ew) =0 (7.94)

(0]

In a similar way it can also be verified that on passing once round
the contour L the value of integral (7.88) is zero. This circumstance
and equality (7.94) will be used in what follows.

It is not difficult to check that the values found for the components
of the stress tensor 03 and o3, at the end z; = [ identically satisfy
the first two conditions of (7.77). Indeed,

‘:5031da)= é) —1;— (—g%z—-l-az? +ex,) dw=5 {g (%—[—azﬁ —l—ex,) +
+z4 [0681 + = 0032 —P (ax1+b$2‘|'e)]}d°)

14—0884
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or

fouto = [ (5 [ (et on) 4

+0x [,ﬂ(—--——-l—b:l:2 ezz)]}dw P (alyy+bl4;+-eS,).

By applying the Gauss-Ostrogradsky formula, and using condition
(7.88) and the third equation of (7.79), we obtain

5 051de = P.

Similarly, °
S Uszd(l) = 0.

[0]

The third condition of (7.77) enables one to determine the constant C
entering into (7.89). Substituting in this condition the values of
03 and 03, according to (7.85), we obtain

Ms—S (71035 — 7503) d@——S [ (11——- Z, az2 )-I—

+ (bzy— azy) .Zi.’l‘z = -—% S 2 (zIX) o SZX) ] do +

0z,

+ P S ¥dw —|—7 S (bzy — azy) z1z2do>
(0]

©

or
M;=— —2— S [z1dzy — zodzy) Ydl + P S ydo 4 % Y (bzy— azy) z1zdw.
L ® G

©

We introduce the notation

l

1

=3 S (zidxy — zody);
0

M= —PS dml dl—l—PJ 'xdw—f— S (bxy — azy) z1z,d0>.
L

On performing the integration by parts, we find
M3=PS o, %dl'{'P S xd(o—l—-%S (bzg— axy) T1zdw.  (7.95)
L ® o
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By using formulas (7.88) and (7.89) in (7.95), we have
My=P{C S Ddo + S Ydo 45 5 (b, — azy) 712500 +-
(0]

(O] ©
d
+ S [(bx§ + ex,) .%— (ax} + exy) —;li:] mldl} . (7.96)
L
It follows from the condition M3 = 0 that
§ o+ § (bz,—az,) 2,25d0 - § Qdl
L

C=_(.I) [0]

Toi , (7.97)

where :
0=[ (b2t +er) Tk —(azh +ez) St o (7.98)

If the co-ordinate axes are taken to be the principal centroidal axes,
then §; = S, = I;, = 0. Consequently, from formulas (7.80) we
obtain a = —1/I,,, b = e = 0. In this case the above formulas are
appreciably simplified.

67. THE CENTRE OF FLEXURE

By the formulas of Hooke’s law (4.50), the components of the

strain tensor corresponding to the components of the stress tensor
(7.75), (7.76), and (7.85) are

€1y = €y = —‘V—EP (axy+-bry+-e) (I—2zs), e12=0,
P 2
€33 = if (axy + bz, +e) (I —z3),
i (7.99)
' ( 1P 0"
e = a0 (gt ozt texy),
(1 pP 0
€3z = —IZ—EV) (—%—}—bxﬁ;-l—ezz),

On the basis of formulas (3.27) the angle of rotation of an element
of the body about the oz, axis is

e = 1 ( Ou,  du,

372\ 6z, oz, ) :

From this formula and formulas (3.26) we find
dwg - Gey,  Oeyq 0wy — deyy _ Deqs 0wg _ deyy Oegqy
0y~ 9zy Oz, ' Oz, 0z  Oxy ' 0z Oz,  Ozy "

Ip the same way we can derive similar formulas for partial deriva-
tives of the other angles of rotation, , and @,, with respect to
14
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the co-ordinates z. The quantlty represents the twist of fibres

of a prismatic body parallel to the o:cs ax1s.
The mean value of the twist for the whole cross section, denoted

by t, is determined by the formula
1 a 1 P
1=_S O3 g — AV [c— 1_VH (bx,c—azzc)], (7.100)

(O axs E
[0)

Thus, it appears that under the action of a transverse force applied
to a free end of a prismatic body the bending is accompanied by twist-
ing. As seen from formula (7.100), for the prismatic body to undergo
only bending, without any twisting, under the action of the indicated
force, the constant C must be determined by the formula

C=—— 1+v (bx 3. — azye). (7.101)
Substituting (7.101) in formula (7.96), the twisting moment M,
is found to be

M3=P{1—1—v— (bxye — azye) S CDdco—{—S Ydw +

© [0]

+% S (bzy — axy) z4x5dw + S le} ) (7.102)
® L

In order to avoid twisting during the bending of the body, it is
necessary, in addition to the force P acting at the point o of the
cross section, to apply to this section the twisting moment M,
calculated by formula (7.102). By adding the force P and the twist-
ing moment M3, we obtain a force P equal to the glven force, directed
parallel to it, and located at a distance z3, which is determined by
the formula
R oy (—boie+aza) S (Ddco—S Ydo—

© ©

_1 S (b, — azy) 2y2,d0> — S Qdl.  (7.103)

[0]

Suppose, now, that the transverse force P applied at the origin is

directed along the oz, axis. Reasoning in the same manner, we

obtain a force P equal to the given force, directed parallel to it,

and located at a distance z{, which is determined by the formula
v

2} = — s (@2 —by210) S Ddo +S ¥, do 4

«©

+‘;‘ S (bos— a4 T1) Z172d0 + S Qdi, (7.104)
L

(]



67. The Centre of Flexure 213

where
d d
Q= (bu22 +e,22) Gh— (0,25 +e,2) T ] o
In formula (7.104) the function ¥, satisfies the equation
2
AY, :ﬁv (byZ1 — a,25) (7.105)

and the boundary condition
1

v, — g [®uz +e.22) 20— (0l +eym) S| dl. (7.106)

In these formulas

— 1,,0—8,5, b — S§—oly,
* B ’ * B 1)
(7.107)
e. — I59S1—115Sy —a. T —b.z
*— B sVic *%2c

The point of intersection of the straight lines z, = z{, z, = 3 is
called the centre of flexure.

Any transverse force applied to the section at the free end and
passing through the centre of flexure produces bending without caus-
ing twisting. In order to determine the location of the centre of
flexure, it is not at all necessary to solve the problem of bending
of a prismatic body, it is sufficient to solve the torsion problem.
Following V. V. Novozhilov, let us show that the expressions enter-
ing into (7.104) and (7.103) can be calculated with the aid of the
function @ (z,, z,). To prove this, we apply the well-known Green
formula for the functions @ and ¥; the contour of integration is
taken to be the contour of the cross section of the body:

[ @av—wav)ydo=[ (0L —wS2)a.  (1.108)
] L

By using the first equations of (7.90) and (7.91), with condition
(7.92), instead of (7.108) we have

2 oD
P 5 (bzy — az;) Ddo 42 S Ydo — — S ¥ 22 4l (7.109)

0] 0] L
On the basis of relations (7.13) and (7.10) we have

— —_— —_——— Ty —
! ory °

x
oz, oz, ’ 0z,
Taking into account formulas (6 27), we find

ob 00 0P dw;
“on  9z; ‘+0x Rp= — o “Ta (7'111)
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Substituting (7.111) in the right-hand side of (7.109), and integrat-
ing by parts, with the use of the second relation of (7.91), we obtain

R _ d(D[ _
lep dl= 15( +220) a

= (¢+2wl)% dl=I+2 { Qdl,  (1.112)
L L
where

I= {162} +e2,) 9] dz, + [ — (as} + ez) 9] daz}
L

On the basis of the Gauss—Ostrogradsky formula we have

j{-éx—[axﬁex,) 9+ 70 (b2} +ez2) 91} do
or
I= —2S (azy + bzy +-e) pdw —

—S [(azj + exy) -g% + (bz + ex) -g—i-] do.

Substituting the values of :—Z and gx% from (7.110) in this for-

mula, we obtain

I= —25 (azy 4 bzy +-€) pdw 4- S (bxy —az,) zyx2dw +
[0)

(0]

3 [(bz} +ez,) @] _ ol [(azi+ex;) @]
+1{ } do.

0z, 0z,

(0]

On integtating the third term by parts, and remembering that ® = 0
on the contour L, we see that it vanishes. Consequently,

I=-2 S (az; + bz, + €) 9 do + 5 (bzy — az,) 737, dw. (7.113)

® (0]

Inserting (7.112) and (7.113) in (7.109), and then substituting the
result in (7.103), we finally obtain a formula for the coordinate of
the centre of flexure:

2 = — | @z +bay+ ) 9do+ - | b @—a1) —
[0}

(0]

— a (23— z9.)] Ddo. (7.114)
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In a similar way, from (7.104) we obtain a formula for the other co-
ordinate of the centre of flexure '

z)= S (a1 -+ b2y +€,) @ do—
[0)
— 7 | e @m—21) —a, (@ —22)] Do, (7.115)
[0)

As seen, the formulas for the determination of the centre of flexure
of a prismatic body with a simply connected section involve the
functions ¢ and @ related only to the solution of the torsion problem.
It should be noted that if either of the functions ¢, @ is known, the
other is determined by quadrature from (7.110).

In the work* of the author and Bubuteishvili formulas have been
derived for the determination of the co-ordinates of the centre of
flexure (z}, z3) in the case of a multiply connected region:

A== @ai+bz+e)ImF @) do—Zr { | 18 @ —210) —

[0]

—a, (22— 23)] Re F (2) — - (2 +2)) do—

—[b, (x?c —T4,) —ay (x‘z’c —Z5.)] oo + 2 [b* (x’fc — ) —

k=1

—a, (25, —x5)1 C h(‘)h} )

o) = g (azy + bz, +) Im F (2) dw+v__"q{g [b (24 — Z10) —

(0] (0]

—a@—2:0) (Re F (&) —5 (@} +1)) do—1b (2, — 210 —

—a (@, — )] Covo+ ) [b (2, — 1) — a (2, —230)] Crom },

k=1

where F (z) is the complex torsion] function; %, z%, are the co-ordi-
nates of the centroid of the area enclosed by the contour Ly; z;., T3¢
are the co-ordinates of the centroid of the cross-sectional area;
®p is the area enclosed by the contour L,; C, are some constants
introduced in (7.20). The constants (a, b, €), (ay, by, e,) are deter-
mined, respectively, by formulas (7.80) and (7.107).

* Yu. A. Amenzade, O. L. Bubuteishvili, The Centre of Flezure of a Canti-
lever with a Multiply Connected Cross Section, Doklady Akad, Nauk Azerb. SSR,
29 (10), 3-6 (1973) (in Russian).
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Consider the problem of determining the centre of flexure when
the section of a cantilever represents a region bounded externally
by a circumference L, of radius R, and internally by a circumference
L, of radius r (Fig. 34). The approximate expression for the complex
torsion function ¥ (z) in this problem is determined by formula (7.62).

For the adopted co-ordinate system, e = a = 0, b = 1.288 R
For the relative dimensions indicated in the problem (e), z} =
= —0.34789 R, =z} = 0.

68. BENDING OF A PRISMATIC BODY OF ELLIPTICAL
CROSS SECTION

Let the planes z,0z; and z,0z3 be planes of symmetry of a prismatic
body, and let the load acting on its end be statically equivalent to
a force P, which is directed along the z; axis and applied at the
centre of the end. In these conditions the body will obviously act
in bending, without any twisting.

On the basis of formulas (7.80) we have

a—= ___1_. . b == 0
22
Inserting these relations in (7.91), we have
2v
Aw=m$2, (7.116)

oY 1 ox
T=Ex%d_lz on L. (7.1.1.7)

Following the procedure of Timoshenko, we introduce, instead of
the flexure function ¥, a new function:

Q (21, z) =¥ (21, 25) + [ (z9), (7.118)

where f (z,) is an arbitrary function of z, only.
Substituting (7.118) in (7.117), we obtain the boundary conditions
on L .

60 . 1. ’ dzx

In a particular case the function f (z,) may be chosen so as to make
the bracketed expression zero; the boundary condition on L then
simplifies to

9Q _
S=0. (7.120)

Since the cross section is simply connected, (7.120) on L may be

written as
Q=0. (7.121)
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For example, in the case when the cross section is an ellipse equali-
ty (7.120) can be satisfied by setting

D)
r

a 12
f@) =T (5 5 b—g—i), (7.122)

Here a, and b, are the semiaxes of the ellipse.
Consider the problem of the bending of an elliptical cylinder. For
the given problem, with (7.122), the function Q becomes

2 22
a 1
Q (1, 2,) =¥ (x4, T2) + 1;2 ( 35 —1) (7.123)
Inserting (7.123) in (7.116), we obtain an equation of the form
AQ = nz,, (7.124)
where
2
2 (v M
n=1— (35 + % ). (7.125)
The solution of Eq. (7.124) is sought in the form
Q= K( . 422 2 )xg. (7.126)

This solution satisfies the boundary condition (7.121).
Substituting (7.126) in Eq. (7.124), we have

)

from which
2,2 5
1 albi v ay
j = o
Io b2 342 ( 14v + b ) (7.127)
Knowing the function Q, we can determine the function ¥ from (7.123):
2 2
ag 1 T3
Y= K( 2+ )xz—mxz(-g—b-%-_j)_ (7128)

By using formulas (7. 85), and noting that ¥ = ¥ for the given prob-
lem, we have

ow=t (e SEm1) =7t ()}, azm
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from formula (7.76),

O33 = —‘TP; x4 (l—$3). (7.'130)
22
The last formula for the normal stress is completely coincident
with the formula of the elementary theory of bending, but this can-
not be said about the formulas for the tangential stresses o;3 and
0,3. According to the elementary theory of bending, in the problem
considered 0,3 = 0 and 0,3 depends only on z,.
On the axis z; = 0 we have

2
O1s = 57— (1+i ;’tb%%af) Bi+2(d+v)af—zi(1—2v)}, (7.131)
Op3 = 07
whereas, by Zhuravskii’s formula, on this axis
Pa%
O1s =31, (7.132)

If the material is incompressible, i.e., v = 0.5, formulas (7.131)
and (7.132) are identical.

In the present chapter we have considered the theory of torsion
and bending of prismatic bodies, which is of great importance in
engineering. Here we leave detailed discussion of a large number
of special problems examined by many authors.



CHAPTER VI

General theorems
of the theory of elasticity.
Variational methods

In the present chapter we shall consider some well-known princip-
les of the theory of elasticity, which are of great importance in the
development of a variety of very effective methods for the numerical
solution of boundary value problems in elasticity. In Chap. IV we
have become acquainted with one of the general theorems of the
theory of elasticity, namely Clapeyron’s theorem.

69. BETTI’S RECIPROCAL THEOREM

Let Ok, Uk, €kr and Ok, ug, €;, denote, respectively, the compo-
nents of the stress tensor, the displacement vector, and the strain
tensor, which are produced in an elastic body by external forces
oF’, T,'L and pF", T,.

The work done by the forces pF’, T, including the inertia
2 ’
forces —p%, during the displacements uj is

A12=S [(Fm— TN )uh]pd'r—{-S (Tnrur)d

Inserting T, = O n, in the last expression, and remembering
that the stress tensor is symmetrical, after transforming the surface
integral into a volume one, we have

o5,

Am:S s +0 (Fi— ;;')Ju’;dr-{— Sc;,e;,dr.
By" (2.24), ) '

A= S el . 8.1)

T
The work done by the forces pF”, T3,
displacements uy, is

Ay= § [(Fim ) wt ] pdo | @ows) do
T (0]
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On carrying out transformations for 4,, similar to those for 4,,,
we obtain
Ay = S iy d. 8.%)
T
By Betti’s identity (4.61), from (8.1) and (8.2) we obtain
Ay = 4y, (8.3)

This is Betti’s reciprocal theorem. It states that the work done by
the first system of external forces during the displacements of an
elastic body produced by the second system of external forces is
equal to the work done by the second system of external forces during
the displacements of the same body produced by the first force system.

70. PRINCIPLE OF MINIMUM POTENTIAL ENERGY

Let the actual displacement vector be denoted by u, and the
corresponding stress tensor by o,. This stress tensor satisfies the
differential equations of equilibrium

Tk 4 pFp =0 (8.4)

and the surface conditions
Tom = Omnltp. (85)

If the displacement vector is given a variation Sz, then from the
equality u* = u + du and formulas (3.26) we have

emn+Oemp = (G2 + ) 45 (8 2 +5 22 ) . (8.6)

ozp orm oxp

From this we find the change in the strain tensor

Semn =5 (6 Oum__ g g;‘:) 8.7)

Denoting the deformation work per unit volume for the varied state
of equilibrium by A4 (ex + 8e,r), and expanding its expression in
a Taylor series, we obtain

A (emn + Oemn) = A (emn) + (ﬂ—(‘Se“ +... +'§' 6331) +
6e31) (8.8)

g (G0t 2 T Beden

Here 4 (emk) is the value of the deformation work per unit volume
in the actual state of equilibrium. Taking into account that
%A 90y, A 9 (20p;y) &
Genr Oerr — Oern ' g2 Oenr (e~ 1),
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and using Hooke’s law, the last term in (8.8) may be put into the
form

3 [1862 + 2pBe i Benn]. (8.9)

Expression (8.9), as is known from (4.36), represents the deformation
work per unit volume corresponding to the variation of the displa-
cement vector Su, and is always positive definite.

By using (4.20) and (8.7), the second term in (8.8) is transformed
into

d a ] a8
0'“6 0.:11 4+ ... —f—O’si(S (%—‘—-a—,-:-:-) =O0nr Wu’:n—. (8.'10)
Let the stress vectors on-the co-ordinate planes be denoted by T,;
instead of (8.10) we then have

G 02::' =T, .Vu,, 8.11)

where Vv is the Hamiltonian operator, V =
From (8.8), with (8.9) and (8.11), we find

i, —.
kaxh

8R = S T, -Vou,,dt+ 5 5 (AB02 - 2ube,,0,m) dv;  (8.12)
T T

this represents the increment of the work of deformation. It can
easily be found by direct checking that

’ div dup, T, = Sup, div T, +T ,, -VOup, (8.13)
(here the index m is not summed), from which
S T,, VU, dt= S div u, T, dt— S Sty div T mdr.  (8.14)
T T T
With the use of the Gauss-Ostrogradsky formula we obtain
S div Su, T, dt = g St Gty 40>, (8.15)
T (0]

The integrand on the right-hand side of the last equality is summed
with respect to the index k; n, are the cosines of the angles between
the normal 7 and the co-ordinate axes zj.

From (8.5) and (8.15) we find

S div SupT , dv— S T, St do>.
T (0]

Also, by the equilibrium equation (2.27),
S Sup divT , dv = S —pF0u,, dt.
T

A 4
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Consequently, from (8.12), with (8.14), we have
6R = 5 OF 1St dT -+ 5 T o Sthy do> + S & (4862 -+ 28e,mp8e1m) dr.
T

[0] T

(8.16)

Let o, be the sum of parts of the surface over which the displace-
ment vector assumes given values, and let @y be the remaining part
of the surface over which the forces T,,, are given. Taking into ac-
count that du,, = 0 over w,, where the surface forces are not known,
and that the surface forces T, over wr, as well as the body forces,
are not subject to the variation, from (8.16) we find

§(R— S OF sylhy AT — S T it do0 ) = < S [ABO2 - 2p8esdenm] dv
T (I)T T
(8.17)
or
6l =e,
where

I=R— 5 oF iy, dt —JST T pmlm do,

& = = [0 - 2uBemnbenn] dv.

Here R is the work of deformation corresponding to the actual

displacements; S pF nundt is the work done by the volume forces
T

during the actual displacements; S T,mumdo is the work done by
or
the given surface forces over wr during the displacements u,; II is the
potential energy of the body; ¢ is a positive definite quantity.
Equality (8.17) enables one to formulate the following theorem:
the potential energy of an elastic body, considered as a functional
of an arbitrary system of displacements satisfying the kinematic
boundary conditions, takes a minimum value for the system of
displacements actually realized in the elastic body.

71 PRINCIPLE OF MINIMUM COMPLEMENTARY
WORK—CASTIGLIANO’S PRINCIPLE

Consider, now, equilibrium in which the displacements u, and
the corresponding stress tensor ¢, are given. In passing from the
actual state of stress o, to a neighbouring state of stress o, +
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+ 80 mp, the change in the deformation work per unit volume is
84 = A (Omp + 80mp) — A (Omp)-

The varied stress tensor G,; + 80, just as the actual stress ten-
SOT O, must satisfy the differential equations of equilibrium, i.e.,

00mh 4 pF,—0, 5(Umh+50mk)+pph=0,

0z

from which it follows that

omr__ ¢, (8.18)

0y,

By expanding the expression for the deformation work per unit
volume A (6, + 60,,,) in a Taylor series, we obtain

84 =A(omp+80mp) — A (Omr) = (a—iiﬁcu-f- st :GA 5031) +

1 024
+-2-( 6ot 4+ ... 42 —F— ao ao 804460551 . . -f- 602)
(8.19)

The second term on the right-hand side of the second equality of
(8.19), as in the case of (8.9), represents the deformation work per
unit volume corresponding to the variation of the stress tensor
80 1, and is always positive definite.

By using formulas (4.27), we transform the first term on the right-
hand side of the second equality of (8.19) into

dum

dzp, Gcmh
or
0T, - Vu,.
Also, similarly to (8.13), we have
0T, Vuy, = div undTy) — uy, div 8 T,,. (8.20)

With (8.18) taken into account in (8.20), we obtain
0T, -Vu, = div (up,dT,).
Consequently, from (8.19) we have
SR— S div ©npdT ) dv +
T

1 ( PA g 4 924
- o i +2———— 80,60 —Goz)dt.
+ .E 2 6011 11 + + 0011 60'22 11 22+ + aogi 31
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If (4.27) and the formulas of Hooke’s law (4.50) are taken into ac-
count in the integrand of the second integral, we obtain the work
of deformation expressed in terms of the variations of the stress

tensor §0y;.
By applying the Gauss-Ostrogradsky formula to the first term,

and denoting the second integral by e, we have

OR = S UmO0nny do +e= “ UnOT ndo +¢ (8.21)
) o
‘We impose on the varied stress temsor o, + 60,,, the condition
that it should be balanced by the given surface forces. Then § T,=0
on parts of the surface where the forces are prescribed. Hence, (8.21)
becomes

OR = S U0,y do +&.

Oy

Here o, is the sum of parts of the surface over which the displacements
are prescribed. Noting that the displacements u, on ©, are not
subject to the variation, the last formula is rearranged in the form

6R*=z¢g, (8.22)
‘where
R*—R— S U Ty dde

Oy

Here ( UmTnm do is the work done by the surface forces during
mu
the given displacements on ®,; R* is called the complementary work.
Remembering that ¢ is always a positive definite quantity, we
come to the conclusion that R* assumes a minimum value.
Equality (8.22) enables one to formulate the following theorem:
the complementary work of an elastic body, considered as a func-
tional of an arbitrary stress system satisfying the equilibrium equa-
tions within the body and on its surface, takes a minimum value for
the stress system actually realized in the elastic body.

72. RAYLEIGH-RITZ METHOD

The solution of an elasticity problem often involves great mathe-
matical difficulties. In these cases recourse is made to the principles
of minimum potential or complementary energy. The application
of these principles consists in finding functions satisfying the boun-
dary conditions of the problem and in minimizing the potential
energy II or the complementary energy R¥*.



72. Rayleigh-Ritz Method 225

One of the most efficient variational methods is the Rayleigh-
Ritz method. In this method the solution is represented in the form
of an expression satisfying the boundary conditions and containing
unknown coefficients ¢, where £k =1, 2, 3, 4, ... . Next, the
value of the potential or complementary energy is calculated. The
expressions thus obtained are functions of the coefficients c¢,. These
coefficients for the actual equilibrium state can be determined from
the conditions for minimizing the potential or complementary ener-

gy, i.e.,

oIl OR*
?'—O W:O (k=1, 2, 3,4... OO).
Itk=1, 2, 3, ..., n, then %%I— or %— 0 lead to a system

of n linear equations in the coefﬁc1ents cp. Substituting the values
of these coefficients in the above expression, we obtain an approxi-
mate solution of the problem. It should be noted that the solution of
the problem obtained in this way is exact if the assumed expression
includes a complete sequence of functions, i.e., a sequence of measu-
rable functions of class C, where an arbitrary function from this
class can be approximated with the required accuracy by means
of a linear combination of a finite number of these functions. In most
cases, however, it is possible to take into account only a finite num-
ber of coefficients cy.

As an example let us consider the unconstrained torsion of pris-
matic bars. Noting that in torsion e;; = e,, = €33, =0 = ¢;, =0,
es1 = 03,/2pn, and ey, = 03/2, from formula (4.36) we obtain the
amount of strain energy stored in a bar of length a:

— 5 | 2, +03,) dzy da,
©

where o is the cross-sectional area of the bar.
By (7.14), the last formula becomes

Rt [[(22)' 4 (82)] b

The given surface forces on the lateral surface of the bar are zero;
hence, the work on this surface vanishes, and at both ends the work is

S [uyTry +u,T,] dzy dz, |x,=0 + S [usT g - usT o] dx, dx2 Ix.=a- (8-23)

(0] (0]

Here, by formulas (7.1), we have u, = u, = 0 when z3 = 0; when
z; = a, we have u; = —1tz,a, u, = tx,a, and by formulas (2 22),
with 0y, = 03, = 033 = 04,=0, we have T = 0y, Thy = 0

150884
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when z; = a. Instead of (8.23) we then have

oD oD
2 —_, 2
U aS ( Ty G 5z, ) dx,y dz,.
(0]

The last expression is rearranged in the form

2ut2a S D dzy dzy —pa S ( 2(2,0) + 6 (z,0) ) do,
o

0z, ox,
o

from which, with the aid of the Gauss-Ostrogradsky formula, we
obtain
2p;cza S O dzy dz, — pta S D (24 dzg + 5 dxy),
@ [

where [ is the contour of the region occupied by the cross section

of the bar.
Thus, the complementary energy is, by definition,

R*— ‘2" 5[ axl azz) _4cp] dz, dzy+

+put2a S D (r, dzg+ z, dz,),
1

By (7.16), @ = constant on the contour /; on the other hand, this
constant may be taken equal to zero; we then have, finally,

R =270 [[(22)°+ (4%) —40 ] dzdz,.  (8.26)

Take a bar of rectangular section of sides 2b and 2¢. Noting that
Prandtl’s stress function @ on the sides z; = +b and z, = +¢
must be zero and symmetrical in z, and z,, we include in its expres-
sion only terms with even powers of z, and «,, i.e.,

= (2} — %) (2 — ¢?) (cy + o2} + c373 + cuziry + . . ).
As a ﬁrst approximation we take the expression
D = ¢ (2} — 1% (25 — ?). (8.25)

Substituting (8.25) in formula (8.24), we find
b ¢
R = BT S S {4c? [} (2} — )2+ (z} — b2)2 23] —
-b-c
—4cy (2 — b (23 —c?)} dzy da,

from which

B p.';a 64 = [2e2b%c® (b2 -+ ¢?) — 5eyb3ed).
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Since the complementary energy for the actual equilibrium state
must assume a minimum value, it follows that

dR*
dey 0,

from which

5
Cy =—4—(F:{—C_2)' (8.26)

By means of formula (7.19) we determine the twisting moment
b ¢

M:=2px S @ dzy dz, = 2¢4pt S S (% -—?) (22 —c?) dzy dzy =
(0]

-b-c
=2 e, (8.27)

The maximum shearing stress T'max occurring at the middle of the
longer side (b > c¢) is

Tmax = Ut % e = 2b%ccypt. (8.28)
x,=0
Substituting the value of ¢, from (8.27) in formula (8.28), we find.

9 ¢ Mt
max =g j Tz

T

By formulas (8.26) and (8.27), the torsional rigidity of the bar is

poae_w, (5)

RO}

In the case of a bar of square section the approximate solution gives
the value of the rigidity D = 2.222ub* and T, = 0.563M,/b3,
whereas the exact values are D = 2.250pb* and Ty = 0.600M,/03;
the errors are —1.2 and —6.2 per cent, respectively.

We now take the stress function @ in the form

O = (22 — %) (2 — ) (c; + o2 + c52d).
Then

2
Rr 172 4‘7‘;‘5 B3 [210 (b2 ¢2) €3 + b (66c2 -+ 1062) ¢ -+
- ¢4 (6602 4- 10c?) 2 - b2 (84¢? + 6082) e4¢, -+ ¢ (8452 - 60¢c2) ¢4c, +-

+ 12622 (b2 - ¢?) cyc5 — 525¢, — 105b%¢, — 105e%c5]
15%



228 Ch. VIII. General Theorems

From the condition for minimizing the complementary energy
dR* dR* dR*
dcy ~ ' Ocy

we arrive at a linear system of three equations:

140 (1% + ¢?) ¢; + b% (28c® + 200%) ¢, + ¢ (28b% + 20c2) ¢c; = 175,
(84c? + 600%) c; + b (132¢® + 206%) ¢y + 12¢® (b2 4 c®) ¢ = 105,
(84b* 4 60c?) ¢; + 1202 (b% + ¢?) cp + c? (13202 + 20c®) ¢ = 105-
For the case ¢/b = 1 we find

or o 1295 oo g 25
1= 921602 * 27 %87 74305 ¢

Then
Mﬁqnﬁwmwﬁz%wm,
S2
oo
Tmf=mﬁaxﬁf=amsgh

Xo=

The errors are now —0.18 and +4.3 per cent, respectively.

It appears from the foregoing numerical examples that as the
number of unknown coefficients is increased, the accuracy of the
solution is improved. If the exact solution of the problem is not
known, the only way of getting an approximate idea of the ac-
curacy of the solution is to increase successively the number of
unknown coefficients and compare the final results. If the results
converge rapidly, the approximation may be regarded as good.

73. REISSNER’S VARIATIONAL PRINCIPLE

In Secs. 71 and 72 we have presented two well-known variational
principles in elasticity: the principle of minimum potential energy,
also called the principle of virtual displacements, and the principle
of minimum complementary work referred to as Castigliano’s prin-
ciple.

%3. Reissner proposed a variational principle that also furnishes
the means of finding approximate solutions of elasticity problems.
In this principle both the stress tensor and the displacements are
varied independently of each other.

Reissner’s variational principle is that the variational equation

81 = 0, (8.29)

where I is Reissner’s functional,
P {45 5 o] -

2 \ Oz, dry

T ruy do, (8.30)

g -

T
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is equivalent to a system of six relations” between the components
of the stress tensor and the strain tensor

7 (Gt ) = - (8.31)

2 \ oz, dxp doy,

(0%, = o, when k =r, o}, = 204, when k 5= 71),

to three equilibrium equations (for simplicity, body forces are dis-
regarded)

%:0, (8.32)

and the boundary conditions
Tow=Tps oOn Gr, (8.33)
Up=1Up OD O (8.34)

Here oy is the sum of parts of the surface over which the forces T4
are given, and ®, is the remaining part of the surface over which
the displacements @, are given.-

To prove this principle, we use the well-known relations

S[x (T +am) =7 (T +2r).
From (8.29) and (8.30) we then obtain
S [ 65::; 6;5;: )Ukr +

+4 (auh 4 dur oup ) 60;;,—%60“] dT—S T, x0uy do=0.

dzy,
Op
By using the Gauss-Ostrogradsky formula, we have

1 [ 86up abu Py
5 2 ( oz, + _"azkr ) Opr dT= S Onrn,0uy do — S a;:_’ Suy dr.
T

© T

Noting that oy.n,=T,; and © =w;4»,, we obtain

S % (6_6141_‘_ 6(96;;, ) Opr AT = S T kuy do + S T opbuy, do —
T

oz,
Op o,

— g 00’k,- Guk dw.
T

Here the index % is summed in the first and second integrands, and
the indices k¥ and r are summed in the third integrand.



230 Ch. VIII. General Theorems

By virtue of the last relation we have
0uh 6ur okr
S {[ 2 6.1:,. axk ) aohr ] 6 Opr — . Guh} d‘[ +

+S (T'on— T ns) Stz do)J,—S T w81y do = 0.

(OT (0]

u

The last integral is zero because, by condition, du;, = 0 on w,.

Since the variations of displacements and stresses are arbitrary
and independent, on the basis of the fundamental lemma of the
calculus of variations we infer from the foregoing condition that
the factors of the corresponding variations are zero both in the vol-
ume and surface integrals, giving Eqgs. (8.31), (8.32) and the boundary
conditions (8.33), (8.34).

74. EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS
FOR A GEOMETRICALLY NON-LINEAR BODY

In solving some problems of the theory of elasticity, such as sta-
bility problems, it is necessary to take into account the components
of the finite strain tensor defined by formulas (3.17). Here we shall
restrict ourselves to the derivation of the equilibrium equations
and boundary conditions for this case.

From the variational equation of equilibrium we derive the equilib-
rium equations and boundary conditions for the case when the
components of the strain tensor are given in the Cartesian co-ordinate
system (3.24):

thz_%_ ( Ooun + Ooup, + Oug Oug ). (8.35)

oy ozy oz, Ozg

Suppose that a body is in equilibrium under the action of a surface
force T, and a volume force pF. The variational equation is then
of the form

S G 08 np AT — S OF 01y, — S 7 xdus do =0, (8.36)
T T (0]

By varying expression (8.35), we obtain

1 ou ou; ou ou ou ou
68kn=-2—(6 —= ‘+‘6 k + 01,: ) aI: + %8 axZ)

By direct calculatlon it is easﬂy found that thls expression may
be put into the form:

Gskn—":’;'[( ak+aua) gza +( an+aua) ‘;Z:]. (8.37)

Here 8, are the Kronecker symbols.
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By (8.37), the variational equation becomes
1 dug \ 5 Oug dug dug
‘Esonk(ﬁak‘,‘ 8uh )6 z dt +- S nk( an+ = ) -y

O0zp ozp,
T T

— S pFpdu, — S Typbup do=0. (8.38)

T ©

We introduce a non-symmetrical tensor of the form

San =0np (Gah + Oug ) . (8.39)

oy

Taking this into account, the variational equation of equilibrium
is transformed into

-;—S Sand—% au“ d1:+ g sukﬁ d‘r—S thGuk—S Tyrbuy do =0.
T T (0]

The last equality is represented as

1 [/ 1 0 1 a
5 S rre (Sanue) dt — S —5;‘7" Sug d‘c—l——z- S e (Sordug) dt—
T T T

1 [ 05
_75 ;xh GuadT—S oF,bu; dr—S T x8uy, do=0.
T

[0}

By applying the Gauss-Ostrogradsky formula, we find
S (SanVn — Tve) Otbg dd — S ( ‘?;‘: +pFa) Oug dv=0.
T

(0]

On the basis of the fundamental lemma of the calculus of variations
we have

L 4 pFa=0, San¥p—Tva=0.

With (8.39), we obtaln the equilibrium equations

7o [on (Ban+522) ] +pFu=0 (8.40)
and the boundary conditions

SgnVn = Tyq. (8.41)




CHAPTER IX

Three-dimensional
static problems

For the solution of three-dimensional static problems of the
theory of elasticity we have no such efficient analytic techniques
as in the plane theory of elasticity. Here we shall consider certain
particular solutions of the equilibrium equation in the absence
of body forces, for which the displacement increases indefinitely near
specific points. These points must lie outside the body or must be
contained in special cavities within it. It should be noted that the
simplest type of isolated singular point is the point of application
of a concentrated force.

75. KELVIN’S AND BOUSSINESQ-PAPKOVICH SOLUTIONS

If a body is acted on by mass forces, the vector equilibrium equa-
tion is of the form of (5.7). Suppose that the region occupied by the
body extends to infinity in all directions and the mass force F is
different from zero in a region T, coinciding either with the whole
of the region T or with a part of it.

We present the general form of the particular solution given by
Kelvin (W. Thomson). The displacement vector is expressed in
terms of the scalar potential ¢ and the vector potential 9 by the

formula
u = Vo -+ rot . 9.1)

Here v is the Hamiltonian operator.
Suppose further that the mass forces may be represented as

F =v®D 4 rot V. (9.2)
By using the vector identity
rot rot © = v divu — Au
n the equilibrium equation (5.7), we come to the equation
(A 4 2p) vdivu — protrot w + pF = 0. (9.3)

From (9.1) we calculate
V div u = VA,
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rot rot w = rot rot (V¢ -+ rot ) = rot (rot rot ) =
= rot (V div{p — Ap) = —rot A,

Substituting these relations and (9.2) in the equilibrium equation
(9.3), we find

V(A + 2p) Ag + p®] + rot [pAY + p¥] = 0.
This equation is satisfied if We assume
Ap= — 7»+2u ———, A1p=——‘l’ (9.4)

Thus, a particular solution of Eq. (9.3) can be obtained from par-
ticular solutions of Poisson’s equations (9.4), which, as is known
from potential theory, are of the
form X3

_ e O (')
V) = Ty ) e
T

(9.5)
Y () = 7o S X0 ar,,  (9.6)

Ty

where I = [(z;, — x,) + (zy — )%+
+ (3 — )2]1/2 is the distance

from a point r' (27, z;, z) of the Fig. 39

region T, to the point r (z;, z,, z3)

for which the functions ¢ and ¢ are calculated; the integrals are

extended over the region T, outside whose boundary the mass forces

are zero (Fig. 39); the functions @ (r) and ¥ (r) are determined by

the formulas

D (r)= —21775 F-vi-tdr,, 9.7)

T

¥ (r)= —7 S F x vitdt,, 9.8)
Ty
which follow from the condition that the mass force F may be repre-
sented in the form of (9.2). Indeed, with div rot ¥ = 0, from (9.2)
we find
div F = div vO, rot F = rot rot ¥,

or with div ¥ = 0,

AD— 0F1 4 OFy | OF

Oy dzxg *
_ oF an _ oF,  oF,
A¥; = (01';_—635{,)’ A%—_(ax;—ax;)t

AqJ.s:_(an _oF, )

’ ’
0xy 0zg
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‘The particular solutions of these equations may be written as

0 )~ | (L Ly ) o,

3z, | ox;
T
1 OFy  oF, \ 1
()= | (G —5) T
Ty
V()= | (S—22) T do O
2\ ™% ) oz oz )T 0
Ty
1 oF,  oF, \ 1
¥s (r)“HS ( 9z, oz, )TdT"

By applying the Gauss-Ostrogradsky formula to the first equality
of (9.9), we find

1 (1 i
@(1’): —-EE S —l—thh d(!)“{‘z%s Fk %xllz dTi! (9'1‘0)

T

o
‘where ® is the surface of the region T,.
Assuming that the mass force is continuous in the region T up

-1
to its boundary (then on this boundary ¥, = 0 and also % =
7
al-1

= —aTh) , instead of (9.10) we obtain (9.7). Likewise, from the
three remaining equations of (9.9) we find
1 , ol1 ol-1
‘Fi(”')=4—n S (1'3'£—F2—0Z) dty,
T
1 al-1 al-1
¥, (1) =57 | (F1 5 —Fo 5o ) drn,

Ty

v, (r)=Z%S (F ot _p, 22 ) drs.

2 9z, dzy

T

‘These three scalar equalities are equivalent to one vector equali-
1y (9.8).

To obtain the Boussinesq-Papkovich solution, we represent the
.general solution of the equilibrium equation (9.3) as

u=AV (¢ +r-p) + By, (9.11)

where r is the radius vector of a point of the body, 4 and B are
unknown constants, ¢ and ¢ are unknown functions of position.

By applying the operator rot rot to both sides of equality (9.11),
.and taking intojaccount the vector identities rot rot = v div —A,
rot V = 0, we find
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rot rot w = B (V div{p — Ay).
Since

divvy =A, A@E) =r-Ay + 2divep, 9.12)
from (9.11) we have
diveu = AAg 4 Ar-Ay + (24 + B) div . (9.13)

Inserting (9.12), (9.13), and rotrotw = B (V divyp — Ay) in
Eq. (9.3), we have :

(A + 20) AV (Ap + r- M) + [(A + 2u) (B + 24) —
— pBl v divy 4+ pBAY + pF = 0.

This equation is satisfied if we assume

A(p + "'Alp = 01
(A + 2p) (B + 24) — pB =0, (9.14)
BAqJ—{—-ﬁ—F:O.

From the second equation of (9.14) we find

B= 20t 4 4(1—w)A.

Ap
On putting 4 = 1, from the third equation we have
P
Atp_é(i_v)uF. (9.15)
Substituting (9.15) in the first equation of (9.14), we obtain
_ P
A(p— —mroF. (9.'16)

Thus, the solution of the equilibrium equation (9.3) can be found
in the form of (9.11) if the vector function and the scalar function ¢
satisfy, respectively, Poisson’s equations (9.15) and (9.16). The
Boussinesq-Papkovich solution involves four scalar functions,
namely the scalar function ¢ and three projections of the vector 1.
The representation in which ¢ is not a harmonic, but a biharmonic
function was given by J. Boussinesq, and independently by B. G. Ga-
lerkin.

Some problems can be solved without using so many functions.
By taking, for example,$ = 0 in solution (9.11), we obtain a simple
solution of the form

u = AVeo. 9.17)

By the first equation of (9.14), the function ¢ is harmonic; moreover,
from the third equation of (9.14) it follows that solution (9.17) is
suitable for the case when body forces are absent.
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From (9.17) we find that
divu = A divve = AAgp = 0.

Thus, for the simple solution of the form of (9.17) the volume strain
is identically zero.

By formulas (4.35), for the solution of the form of (9.17) the for-
mulas of the stress tensor become

=24 (9.18)

.

6:ch 0.’1:

76. BOUSSINESQ’S ELEMENTARY SOLUTIONS
OF THE FIRST AND SECOND KIND

In this section Kelvin’s solution will be used to obtain a solution
for the case of a concentrated force Fj applied to a solid at the origin
of co-ordinates and acting in the x4 direction.

We take an arbitrarily small neighbourhood of the point of ap-
plication of the force (the simplest singular point) bounded by the
planes z; =+ ; e, and assume that F —%; from (9.7) and (9.8)
we then find

O(r)=L3% W(r)=

Zmp 73 ?

2(—uZriit). (019
Substituting (9 19) in (9 4), we obtain

A(p—l— 4ﬂ: 7»—|—2M) O ¢+4“P- ( "'ii +@2 ) 0°

2y

Since A(-%—) = r—s, the last equations may be written as

A (0 =g ar7) =0

A[b+ge (62— 2) ] —o.

These equations are satisfied if

Fszq

o Z . T
*(M=gmaroamr: P )~sﬂp(—“‘%+'271),
from which

_ F i 1%y ZoT z
Vo=girom | U~ s ("_r_ss)]'

mt‘l’—gnul-. xlxs_l_%xzzs_l_%( - +731)]
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Substituting these expressions in formula (9 1), we find
(AW F . I, ZoZ . At3p 1
= ooy |6 TR TR s (R T) . 0.20)

Formula (9.20), obtained from Kelvin's solution as a special exam-
ple, was first derived by J. Boussinesq and designated as an elemen-
tary solution of the first kind.

From (9.20) and the formulas of Hooke’s law we have the follow-
ing relations for six components of the stress tensor:

°“=B%[3 (%)2_;%_”], o,2=3Bﬂ:§ﬁ,

=8 2 [5(2) -], oa=B3 [8(2) +1y].
(9.21)

B3 [3(Z) L B B3 (Z) L BT
o33 =B rs [3( rs) + 7»-H‘«]’ ou =B r;’ [3 ( Ts) T 7v‘|‘l"-|’
_ _G4wF
where B = —-mj‘

By an elementary solution of the second kind is meant solution
(9.17) in which the harmonic function ¢ is equal to

¢=Aln (r+z;).

Then
m=At, w=Ao, u—AL. (9.9
On the basis of formulas (9.18) we find
on =24 (3 %ifr)“ r (1:3-7‘)2 )
wmmd (FEL ), e
0= —2uA L, o= —u4anfati)
Oy = —-—2p,A-z—, O3y = —2uA-£l—.

The components of the stress vector acting on a plane passing
through a given point perpendicular to the radius vector » are, by
formulas (9.22), with (9.23), and also with the use of the fact that

cos (r, &) = 22,

Tri= "2“‘4 AT

. (9.24)
T,.3 = —QHA 'r—2- .

Tra= —dmpis,
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From the singular point (the origin of co-ordlnates) describe a sphere
of radius ¢ > 0, and consider its part situated in the region z; > 0.
On the basis of formulas (9.24) it may be stated, without calculations,
that the resultant moment of all forces acting on the surface of the
hemisphere and the projections of the resultant vector of these forces
on the z; and z, axes are zero, and the prOJectlon of the resultant
vector on the x4 axis is

Rs=5 T,3do= —QMA-:TS do= —4napd.
(0]

(0]

Consequently, the resultant of all forces acting on the surface of
the hemlsphere is directed along the zg ax1s and is of magnitude

R; = —4npd. (9.25)

Thus, the origin represents a simple type of isolated singular
point at which is applied a concentrated force directed along the
ozg axis and of magnitude F3 = 2R; = —8np4d.

77. PRESSURE ON THE SURFACE
OF A SEMI-INFINITE BODY

In order to find the field of the stress tensor in a body occupying
the half-space x3 > 0 subjected to a concentrated force 7' applied
normally to the plane boundary z,z, of this body, we make use of
the results of the preceding sections. Transfer the origin to the
point of application of this force.

Take a solution of Eq. (9.3) as the sum of solutions (9.20) and
(9.22). Then

_ (A+wF 173
U1= 3 (k—|—2p,3)p, 3 +4 _|_r) ’
_ (At Fy x4
uz_Sn(A—l—Zp) B r3 +4 x3—|-r) !
(Atn) Fy A+3p 1
ws =g ptns L T e ) AT

These relations represent a solution of Eq. (9.3) everywhere, except
atthe point of application of the force T'."

We shall try to determine F; and A4 so as to fulfil the conditions
of zero external forces on the boundary zz = 0, i.e., T'g3 = Ty =
= T4, = 0; hence,

(9.26)

Og3 = Oy = O35 = 0; (9.27)
by the laws of statics, at the point of application of the force
'F
T=—2—3,+4npA. : (9.28)
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By using formulas (9.24) and (9.23), from (9.27) we obtain
2
031=—'ﬁ}1[m+4‘1] , 033=0,

2z
On=—T5" K ['Sn (A -F2m) "A] 0,
from which

1
—S—J'ImFs_I-A:O. (9.29)
Thus, for the determination of F3 and A we have obtained two
equations (9.28) and (9.29), from which we find
22w T __ T
Fy= Atp ? A=—z *A4w-
Substituting the values obtained for Fy and 4 in formulas (9.26),
we find Boussinesq’'s formulas

T x4 T z,;
Thup r? Adn(hfp) r(zatr)?
T z,z T z
Y2 = T 5T Im Ap) T (x:—l-r)’ (9:30)
T 2} (A2p) 1
Us="Tap 7 +4np(l—|—u) r-

Solutions (9.30) give the values for displacements at all points of
an elastic body sufficiently far from the point of application of the
force T'.

At points of the boundary oz,z,, where 3 = 0, the displacements
are determined by the formulas

— T Ty
ME T o e
T z
ha= —ig (l-l-p,)}r_g’ (©-31)
- T(A42n) 1

3_4nu (A+p) r

where r= fo—{—xz

Inserting the values of F g and 4 in formulas (9.21) and (9. 23),
the field of the stress tensor in the half-space under consideration is
determined by

Oy = ,_‘27:;; [3 (_J::—) 7»+P« :} 2x (7v+P«) l—r:(ii-l-zfa)— re (’::‘xa)z ]'
2
on=—5 [3 ()~ |~ st [ — i |
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— Tzg Z3
O33 = 2nr3[ ( ) + x+p]+2n(x+p) 7
3Tz zo24 z,z, (x3-+2r)

2qurs +2n x+p) s (r+z3)2 '

Ogp = —

L2

on= g [3 (3*) + i )+ i

Let g (§, m) be the intensity of a force distributed over some area
o of the boundary plane oz,z, of the hemisphere. The element of
area df dn is acted on by the force

dT = q (§, m) d€ dn;
on the basis of solution (9.30) the displacements are

1 z,Z n z
u’*ms ( B TR T e )Q(g’ m) dgdn,

(- ) 26 wdkdn, (9.39)

(B+5321) 06 magan,

where

r=V @+ @t

Here &, 1 are the co-ordinates of the pomt of application of the force
dT'; z;, 4, x5 are the co-ordinates of the point at which the dis-
placements u,, u,, ug are sought.

The displacement along the z; axis of any point of the boundary
ox,x, is, according to (9.32),

Uus—0 A dEdn, 9.33
’ §V(11—§)2+(12—n)2 s (5-33)

where
__At2p
T dap M)t

78. HERTZ’S PROBLEM OF THE PRESSURE BETWEEN
TWO BODIES IN CONTACT

Suppose that two homogeneous isotropic bodies, 7 and 2, with
different elastic constants are in contact at a point o, which is taken
to be the origin of a rectangular Cartesian co-ordinate system z,z,z;.
Let the axes oz;, oz, be placed in a plane tangential to both bodies
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at the point o, and let the axes 2§, 2§’ be taken coincident, respec-
tively, with the inward normals to the surfaces of these bodies
(Fig. 40). Referred to these co-ordinate systems, the equations of
the surfaces of the contacting bodies before deformation are

) =f1 (21 22), 2 =1s (@1, 7). (9.34)
Equations (9.34) of the surfaces of the bodies near their point of

X;ﬁ

N 2
f

X/ Xz
[Fig. 40

contact o (the point o is supposed to be regular) may be represented
with sufficient accuracy as

92z 02x(1) 92z
1) 1 3 2 1 2 3
T3 == B x1+ 2 xz+ ¥ Z1Z2,
2 ozf o 2 623 | 971,073
@ 1 021(32) + 1 02.7:(2) + 021'(2)
—_—— ZiZs.
3 Ty Zs 1Zs
2 o3 0.0 2 a 2 0.0 0z, 0z

The distance between two points, M; and M,, of the contacting
surfaces lying on the same normal to the tangential plane ox,x

is determined, according to the last relations, by the formula Y
P + 2P = (A1 + A4,) 2} + (By + By) 23 + (H, + H,) zz,.

, (9.35)
Here the following notation has been introduced:

1 02x<3” i 1 621:(32)
Ai =79 3 ’ A2 = D) 3 ’
9z3 o0 9z% 0,0
. 9221
Bi - % . Z ’
(7.2‘2 0,0
B _1 0%(32) _ a2z ; _ 02.1:%%)
2T T2 0,0 ! ! 0z, 0z, 0.0 27 gz, 0z, 0.0
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The quadratic form (4, + A4,) ¥ + (By + B,) 23 + (H, + H,) zx,
defining the distance between the indicated points AM; and M,
must be positive for any choice of the z; and z, axes, and we can
choose the axes so as to make the coefficient H; + H, zero. Introduc-
ing the notation A = 4, 4+ A,, B = B, + B,, we have

x(31) + 22 = Az’ + Bx%. (9.36)

Consequently, the coefficients 4 and B are positive.

Let the principal radii of curvature at the point of contact for
the first body be denoted by R and R}", and for the second body
by R® and R4Y®.If they are considered to be positive, then

1
24d = —— 4 —— 2B = —— -} ——.
R(li) R(Zi) ’ R(12) R(22)

From (9.36) we draw a conclusion that the curves of equal distance
between two points of the contacting surfaces lying on the same
normal to the tangential plane oz,z, are concentric ellipses.

Suppose that the two bodies are pressed to each other by a force T
directed along the normal to the tangential plane ox,z, at the point o;
near this point the bodies make contact over a small surface. This
surface is called the pressure surface, and its contour is called the
pressure contour. The projection of the pressure surface on the tan-
gential plane ox,z, is termed the region of contact. It may be assumed,
with sufficient accuracy, that in compression the bodies come into
contact at points lying before deformation on the same normal to
the oxyz, plane. It is seen from (9.36) that the pressure surface has
an elliptical shape.

As a result of the compression of two bodies any two points, lying
on the zi¥ and z{ axes sufficiently far from the point o for the
deformations at them to be neglected, come closer together by an
amount a equal to the sum of the displacements u$y and u$y of
the point o.

Let u{"’ and uy® denote, respectively, the displacements of points
of the two contactmg surfaces lying on the same normal to the oz;z,
plane in the directions of the ozi” and ox;” axes. The distance between
two such points decreases by an amount equal to a— (us’ + ul®).
Thus, for all points of the pressure surface the followmg relatlon
holds:

1 1 2 2
25 +uf +2 +uf’ =, (9.37)
and for the points outside the pressure surface we must have
(1)+u(1)+x(2)+u(2)

By using relation (9.36) in formula (9.37), we ﬁnd
ul + ulP = a — Az — B3, (9.38)
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To determine the elastic displacements and stresses in the region
of contact between the two bodies, we assume that the pressure sur-
face is very small and that the bodies may be replaced by half-
spaces. These half-spaces are acted on by a normal pressure ¢ (§, n)
over the region of contact ®; the frictional forces on the pressure
surface are neglected, i.e., we assume that there are no shearing stress-
es in the region of contact.
By using formula (9.33) in (9.38), we obtain

S & m (g*r n gg dn = (@ — Az} — Bz3) (0, + 0,)7. (9.39)
Here !

o _ P2 et
YT g, (M) 27 dmpy Ay tpy)

Ay, u; and A, p, are Lamé’s elastic constants of the first and second
bodies, respectively; A and B are known positive quantities deter-
mined from the shapes of the contacting surfaces.

Thus, the solution of the Hertz contact problem is reduced to the
determination of the pressure ¢ (§, 1), the approach of the bodies a,
and the size and shape of the region of contact w. In Eq. (9.39)
the value of the convergent improper integral represents the poten-
tial for a simple layer distributed with density ¢ (€, m) over the
region of contact. This potential at points of the regionof contact
represents, according to (9.39), a quadratic function of position.
On the other hand, it is known that the potential at interior points
of the homogeneous ellipsoid

2 2 2
z1 z3 Zs __
@ TE Tt

is a quadratic function of the co-ordinates of the point and is ef
the form

2 2

o f . S z2
(P=Mbcp5 (1—a2-;7t b2 czix)d)“
y @R (02 4+1) (@12

On comparing these facts, H. Hertz concludes that the right-hand
side of formula (9.39) may be taken as the potential for a homoge-
neous ellipsoid whose thickness in the oz, direction tends to zero
(c —0), and the density p increases in proportion, so that the mass
of the ellipsoid remains unchanged. The region of contact ® is then
an ellipse into which the ellipsoid degenerates as ¢ —0, and the
following relation holds:

2 3

N I B

A (a— Az — B — . S EY)
o, (@ — Az} &w—uwhm¢milw+mm+muwdx(&@)

16*
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The density of a simple layer g (§, 7) is equal to the mass enclosed
in a prism of unit base and of height

/ x2 ozl
2V i—a—5»

i.e., the contact pressure is obtained as

2

q &, n)=21im (cp) ]/1——’%—-27. (9.41)

Based on the laws of statics, the force T' maintaining the bodies in
contact can obviously be obtained as the resultant of all forces
q (§, 1) over the region of contact w. Consequently, it is equal in
magnitude to the mass of the whole ellipsoid, i.e.,

: A .
T' = nablim (cp). (9.42)

Eliminating, now, lim (cp) from formulas (9.41) and (9.42), we
obtain, finally,

‘ 3T — =
1& V=) 1= — L, (9.43)

From equality (9.40) we find

_3 dA
A=FTO0) | (9.44)
_3 dA
B=g T O+ | o (9.45)

d (9.46)

3
a=F 1O ) e

Ot—"8 oOt—ig ot—g

After determining the semiaxes a and b from the first two equations,
we find o from the third equation. In the general case the determina-
tion of a, b, and a involves the calculation of the elliptic integrals
of the first and second kind.

If the two bodies in contact are spheres, the calculations are simpli-

fied. In this case 4 = B = -;— (-}2—‘ + FE) , where R, and R, are

the radii of the spheres. Taking into account that A = B, and using
formulas (9.44) and (9.45), we have a = b (the pressure surface is
a circle); consequently, formula (9.44) becomes
37 (6,46, ( ___ dh
A= 4 § @®-++r)2at/2s
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Denoting A = a2 tan® ¢, we find

/2
A4=370:+6) S 9 cos? g dg
]

4as
or
D (g h) =20t
2 \R, "R, 8a® :
Hence,

s/ 3O +0)x
— 9.47
V (ata) oA

i.e., the radius of the pressure circle is proportional to the cubic root
of the force T'.
From formulas (9.43) and (9 46) we have, respectively,

a—=

4E W=y V@11, (9.48)
/2 3
a=5TO+0) 5 | dp=7-7(8+0)n
0
or
a= 1 Te 120,402 o+ ). (9.49)

In the case of two identical spheres the following equalities hold:
R, =R,=R, 0, =0,=06.
On the basis of formulas (9.47) and (9.49) we then have

3 3 SoemTE
_3/73 3 /omre
a= ]/TnGTR, o= —r -

If the second body is a half-space (R, = o), then

*/3 , /
o=V Fa® A0 TR, a= |/ 10,10,

When an absolutely rigid plane (0, = 0) is indented by an elastic
sphere with a force 7T, we have

ENTYTY I T
o=}/ 28R, a=} o 0T

The pressure g (&, m) is determined in all these cases by formu-
la (9.48).
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79. SYMMETRICAL DEFORMATION
OF A BODY OF REVOLUTION

Let a body, representing a body of revolution about the z; axis,
be deformed under the action of surface forces (body forces are ab-
sent) symmetrically with respect to this axis of revolution. The
displacement in a direction perpendicular to a plane passing through
the rg axis is zero, and the other two projections, u, and ug, are
independent of the polar angle . For the solution of this problem it
is convenient to use cylindrical co-ordinates r, ¢, 3. The compo-
nents of the symmetrical strain tensor in the cylindrical co-ordinate
system are, by formulas (3.29),

ou u du
err = —arr , e‘pq, = _rr ’ 333 = azs ,
? 9.50)
1 (ou ou ©.
Cprq=—— (——’—‘ + ——g) e = Crq = O
872 \ozg " or ) e o3 :

Substituting (9.50) in the formulas of Hooke’s law, and expressing
Lamé’s coefficients A and p in terms of E and v, we have

vE 1—vou, , ur , du
Orr = V) (1—2v) [ v F"‘T‘i'&i]’
vE ou, 1—v u, , du
S0 = TFwy (I—2v) Lor T v —+5{:]’ (9.51)

vE du, 1—vou
U33"(1+v)(1—-z«v)[ +-F = ﬁx3]

E ou, , du
9= 511w . ’af')
If we assume
b _14v 20
T T TE or (?za '
1 80 (9.52)
ug =2 [(1—2m) a0+ 22 + L2 ,
formulas (9.51) become
a 02D
Or =5 (VAO—35)
1 ad
O'W—a_(\ACD_TW)
Opg =5 [ 2-v)Aq>_—,], (9.53)

Ors =5 [(1—v)A(D— ]
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where

@ (r, zg) is the stress function.

Functions (9.53) identically satisfy the first two differential
equations of equilibrium of (2.30), and the third equation takes the
form

ik 1 9 % \2
AAQ):(E?—*'T?F—*“&E) O =0. (9.54)
Under this condition functions (9.53) identically satisfy the compa-
tibility equations (5.37). Thus, the problem of the symmetrical
deformation of a body of revolution is reduced to that of finding
a solution of the biharmonic equation satisfying the appropriate
boundary conditions.

We present the solution of the problem of the symmetrical defor-
mation of a solid circular cylinder produced by forces applied on
its lateral surface and symmetrically distributed with respect to
its axis. To solve this problem, we determine the stress function @
from Eq. (9.54). Obviously, a solution of the equation

2@ 1 od , 920
T T =0 (9:59)

r

is also a solution of Eq. (9.54). This solution may be taken in the
form

O* = @, (r) sin kz,. (9.56)

From Eq. (9.55) we then obtain an ordinary differential equation for
the function @, (r)

3O D
e +-1—%—k2®1=0. (9.57)

Noting that one of the fundamental solutions of Eq. (9.57) becomes
infinite whenr = 0, our interest will be concentrated on the bounded
solution, which is of the form

kars A%

k22
®1=Ci(1+-§;—+w+m+...). (9.58)

The series within the parentheses in expression (9.58) is called the
Bessel function of zero order with imaginary argument (ikr) and
represented by the symbol I, (ikr); instead of (9.56) we then have

®* = ¢, 1, (ikr) sin kz,. (9.59)

The derivative of the Bessel function with respect to the imaginary
argument (ikr) with a negative sign is called the Bessel function
of the first order and represented by the symbol I, (ikr). By direct
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checking it can easily be established that the following relation
holds: ,
d2 .
( = +Tjg—k2) @, (r) = 2?1, (‘ZC")
if
@, (r) =r— Io (Lkr) — ikrl, (ikr).

Noting that the function I0 (ikr) is a solution of Eq. (9.57), we
come to the conclusion that the function @, (r) is a solution of the
equation

d20 1 d®
(dr2+ rodr __kZ) ( dr22+—_—2*k2®2) 0.
Consequently, the solution of Eq. (9.54) may be represented as
O** = ¢, ikrl, (ikr) sin kzg. (9.60)

Thus, on the basis of (9. 59) and (9.60) the stress function may be
expressed as
= [ey 1, (ikr) + cyikrl, (ikr)] sin kz,. (9.61)

Substituting this stress function @ in formulas (9.52), we find the
components of the stress tensor; for example, for ¢,, and 0,3 we have

Orr = leyPy (1) +co, (r)] cos kzs,
9.62)

0,3 = leyPs (r) + coyy (r)] sin kzg,

where P, (1), ¥, (r), Y5 (), P, (r) are completely determined functions
expressed in terms of I, (ikr) and I, (ikr), which are not presented
here.

By (9.62), the boundary COIldlthIlS on the lateral surface of the
cylinder are

T, = legpy (R) + caps (R)] cos ks,

Tr5 = leyps (B) + ey (R)] sin kas.

By a suitable choice of the constants %, ¢, ¢, it is possible to study
different kinds of loads symmetrical with respect to the axis of the
cylinder and acting on its lateral surface. For example, in the case
when the lateral surface of the cylinder is acted on by normal pres-

"g” and tangential forces g, sin ﬁgis and when

k= ﬁ;i (L is the length of the cylinder), from formulas (9.63) we find
cPr (R) + ¢y Py (R) = —pn,

e Ps (R) =4 cq¥s (R) = ¢n.

(9.63)

sures p, COS

(9.64)
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From this we obtain the values of the constants ¢; and cg. If the
solution of Eq. (9.54) is taken in the form

“ @ = [ey], (ikr) + ciikrl, (ikr)] cos kzs, (9.65)

by a suitable choice of the constants ¢;, ¢;, £ we obtain the solution

of the problem when the lateral surface of the cylinder is acted on by
. nnzy . naz

normal pressures p, sin -5 and tangential forces ¢, cos T

Thus, on combining solutions (9.61) and (9.65), and using the
principle of superposition of the actions of forces, we can obtain
any distribution, symmetrical with respect to the axis of the cylin-
der, of normal and tangential forces on its lateral surface. At the
ends of the cylinder there may be some forces symmetrically distri-
buted with respect to the axis of the cylinder. By superimposing an
axial tensile or compressive force on these forces, it is always possib-
le to make the resultant of all forces zero. According to Saint Ve-
nant’s principle, the effect of these forces on the state of stress at
some distance from the ends may be neglected.

Consider, now, the problem of the bending of a circular plate of
uniform thickness.

It is known that in a spherical co-ordinate system in the case of
axial symmetry the biharmonic equation is of the form

02 2 9 1 a 1 0%2\2
We first consider Laplace’s equation
92 2 9 1 7} 1 92
(a—m+?7§+ﬁcot\pa—w+ﬁw)@=o (9.67)
and try its particular solutions in the form

ch (R’ "P) = Rnd‘jn (IIJ), (968)

where n is a positive integer.
Substituting (9.68) in (9.67) gives

axd,, dd,,
g ootV gy

The change of the independent variable 1 = cos{ reduces Eq.
(9.69) to a Legendre equation:

+n(m4+1)D,=0. (9.69)

a®, dd,
(11— anE 2n an

whose solution is sought in the form of a polynomial:
Bp () =as™ a2 e b . L a4

+nn+1)D,=0 (9.70)
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Substituting this expression in Eq. (9.70), we find
[n(n—1)a; +22n —1)a] "% +.
A {lr(r+1)—(n—2r+2) (n —2r+3)]a, +
+ (n—2r+44)(n —2r + 3) a, 4} "2 = 0.

From this
__ (n—2r44) (n—2r+3) B
G= TR =1 (en—2r13) 4 (r=2,3,...).
Consequently,
~ . n(n— - n(n—1) (n—2) (n—3) }
(Dn(lp)—ai[n 2(2n—1) 2+ 3.4 (2n—1) (2n—3) n- ..J.

We substitute this solution in (9.68). Noting that
n=cosp=2>, R=Vr+a,

forn =0, 1, 2, ... we obtain the following solutions of Eq. (9.67):
(Do = Ao,
(Di = Aix3’

D, = 4, [xg-——;-(rz—l—x;)],
D; =4, [xg———g—x3(r2+x§)],
®,—A [x4_ix=(r2+x=)+i(r2+x’)2]
& — <4 3 7 *3 3 35 3, .

Here A,, A;, . . . are unknown constant coefficients. These solutions
are obviously solutions also to Eq. (9.66).

If R”CT),,~(1|J) is a solution of Eq. (9.67), it can easily be established
that R™2®@, (¢) is a solution of Eq. (9.66). Indeed,

o n+2 3
(632"" ya 0R+R2 00t¢a¢+320¢2)3 O, ()=
— 2 (2n+3) R"®,, (y).

Substituting the last relation in Eq. (9.66), and remembering that
R™ @, () is a solution of Eq. (9 67), we have

92 2 9 n
(aR2+R aB"’R2 °°t‘l’aq>+ R axpz) R @, (p) =

9.71)

=2(2n+3)(032+3 RTR 32 co t¢61p TR aqﬁ) R*D, (p) =

Consequently, on multiplying solutions (9.71) by R? = r? 4 2}
we obtain solutions of Eq. (9.66), which are no longer solutions of
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Eq. (9.67),

(D: = BO (rz + xg)a
@ = Bz (r2+ z3),
(9.72)
©F = B, (22— 1) (-2 + =),
@3 = B, (225 — 3r2x;) (r2 +z3).

By using the preceding solutions, we shall consider different
cases of a symmetrically loaded circular plate (Fig. 41).

2h 0

X3
Fig. 41
(a) On the basis of (9.71) and (9.72) the stress function @ (r, z,)
is represented as a third-degree polynomial:
@ (r, z3) = as (223 — 3r2z;) + bs (2§ + r2z;). (9.73)
Substituting this function in formulas (9.53), we obtain
Orp = 625+ (10v—2) by,

Gop — 65+ (10v—2) by, (9.74)
O33 = — 12a3+ (14— 10’\’) b3,
07‘3: O-

Thus, for the stress function (9.73) the components of the stress
tensor are constant throughout the plate. The constants a; and by
can be determined if uniformly distributed o33 = 733 and o, =
= T,, are given, respectively, on the faces and lateral surface of
the plate.

(b) With the use of (9.71) and (9.72) the stress function is now
represented as

D (r, z3) = a, (82 — 24r2z} 4 3r) 1 b, (228 + r2ay —rY).
On the basis of formulas (9.53) we obtain
o, = 96a,z5 + 4b, (14v — 1) z,,
033 = —192a,z, + 8b, (8 — Tv) z,, (9.74a)
0,3 = 96a,r — 4b, (8 — Tv) r.
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If we assume 96a, — 4b,(8 — 7v) = 0, then
633 - 0',.3 - O, O, p = 28 (1 + ‘V) b4x3.

The constant b, can be determined if a constant value of the bending
moment M, is given on the lateral surface of the plate. Then

h .
2 S OrrZ3dag=M,.
0

This condition is integral, but according to Saint Venant’s principle
the state of stress so found will be sufficiently accurate at points
remote from the lateral surface of the plate.

From the last relation we find

b 3M,

ST B (1t v) kB -
Then

3M
Opr = 7}# Z3, O33==0p3= 0.

This solution represents the pure bending of the plate by moments
uniformly distributed over its lateral surface.

(c) Based on (9.71) and (9.72), the stress function is taken in the
form

D(r, z5) = —é— ag (1628 —12023r2 4 9023r* — 5r8) -
+ b (8a5 — 16x3r2 — 21234 + 3r%) 4~ a, (85— 24r223 - 3rY).
For this function the stresses are as follows:
0, = ag (32023 — 720r2z;3) -1 b [64 (2 + 11v) 23+
+ (504 — 48 x 22v) r2z3] + 96a,z3,
033 = ag (— 640z3 + 960r2z3) + bg {[ — 960 4320 X 22 (2—v)] x5 +
+[384 — 48 X 22 (2 —v)] rizs} — 192a,2,,
0,3 = ag (960rz — 240r3) 4 bg [(— 672 4-48 X 22v) 25r +
+ (432 —12 X 22v) r3] +-96a,r.
To the stresses 035 is added a uniform tension o, =05 in the oz,
direction, so that the components of the stress tensor contain four

constants, ag, bg, a,, and b.
Let the boundary conditions be

033 = 0 when z3 = A,
033 = —p when z3 = —h,
0,3 = 0 when z; = +h,
where p is the intensity of uniform load.
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Substituting the expressions for the stress tensor in these boun-
dary conditions, we determine the constants ag, bg, a., and b. Conse-
quenlty, :
24+va§ 3@+v)riz; 3 x4

Or=P|Tg % "3 m 8 &l
z3 3 =z 1
Ow=p(—gm+1r—7) (9.75)
3pr
0’,.3—%;(}1,2—1‘3

The stresses o,, on the lateral surface of the plate give bending mo-
ments M, uniformly distributed along the contour.

To obtain the solution for a simply supported plate, to the com-
ponents of the stress tensor (9.75) must be added the stresses due
to pure bending, and the constant b, must be determined so that
on the lateral surface r = a

h
M,—= S 0,25 dzzs — 0. (9.76)
-h
Then

24v z§ 3(34v)r2z 3 24wv ez 3 (3+4w) a?zx
°"=P( iy (32 w5 R T (32 73‘3) (9.77)

The fulfilment of condition (9.76) means that the application of
pure bending eliminates the bending moments A, on the lateral
surface of the plate, the stresses o,,
being equal to
24w z3 3 z
o =5 P (35 7))

Noting that the resultant vector
and the resultant moment of the
stresses o,, are zero, it may be stat-
ed on the basis of Saint Venant’s
principle that the field of the stress
tensor is sufficiently accurate at
points remote from the lateral
surface.

Consider the torsion of a body
of revolution. Let to the bases of
a body of revolution (Fig. 42) be applied given forces satisfying the
conditions of equilibrium of an abselutely rigid body and reducing
to twisting couples. Body forces are absent, and the lateral surface
of the body is free from surface forces.

This problem will be solved in terms of displacements in cylindri-
cal co-ordinates assuming that u, = uz; = 0, while ug, because of

Fig. 42
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the axial symmetry of the deformation of the body of revolution,
is independent of the polar angle ¢ and is a function only of r and
z,. Since u, = uz = 0 and uy = ug (r, z3), from formulas (3.29)
we find
€rr = €pp = €33 = €3, =0,
L ) 4 Oug (9.78)
=7 (7—7) w7

Substituting (9.78) in the formulas of Hooke’s law, we have

Orr == Ogep == 033 = O3, = 0,
dug  ug dug (9.79)
°r<v=l1(—5,.——7)s Ops = 5.~

Noting that the components o, and oy; are also independent of
the angle ¢ and that body forces are absent, from Egs. (2.30) we
obtain

00,9 00 20,9

“or drg r 0.
The last equation is rearranged in the form
0 7}
a—r (rzo'r(p) + -E (TZO"P:;) =0. (9.80)
The solution of Eq. (9.80) is
1 o0 1 a0
6‘93’:-77?’ O'rq,= —r—zaTs, (981)

Here the function @ (r, z;), called the stress function, is determined
from the compatibility equations.
The strain compatibility conditions (3.40) for the given problem,
with (9.79), take the form
a (1 8 1 % (r?org) !
o (72 99)) — 5 gy =0
9209 9? Oos
923 | or oz, (T) =0.

With (9.81), the second equation becomes

7} 20 3 D 20
dzg ( or? _TF_*_ oz )—0

The latter is satisfied if
720 3 a0 1’2o (9.82)

o' 1 or dz3
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By direct checking it can easily be verified that under condition
(9.82) the first equation is satisfied identically. Thus, the strain
compatibility condition for the given problem is of the form of (9.82).

The boundary condition for the function @ may be established
by the following argument. In view of the fact that the lateral

r

Fig. 43

surface of the bar is free from surface forces, the sum of the projec-
tions of the shearing stresses 043 and og,, acting at points of the
boundary of an axial section, on the normal to the boundary
(Fig. 42) must vanish, i.e.,

Oor €OS (R, T) 4 O43 cos (n, z5) = 0. (9.83)
Referring to Fig. 42, we have
cos (n, r)= % , Cos(n, z3)= —%—, (9.84)

where dl is an element of arc length of the boundary.
Substituting (9.81) and (9.84) in the boundary condition (9.83),
we find
IO dzy , oD dr

@ T a =%
from which %:O or O=C.

The magnitude of the twisting moment is related to the function @
by the equation

R(xy) R(x,)
M=2n | ordr=2n | Z2dr=2n(®[R(z), 2]— @ (0, z)}.
?
(9.85)

If the body of revolution has the shape of a cone (Fig. 43), the follow-
ing relation holds on its surface:

o

s —cosa. (9.86)

Vrta
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Obviously, any function of the argument representing the left-
hand side of (9.86) is a constant on the surface of the cone. We try
to find the stress function in the form

®0w9=A[V%%&+B(V%%&y} (9.87)

where A, B, n are unknown constants.

It appears from the above that this function satisfies the condi-
tion @ (r, z;) = constant on the surface of the cone. Function
(9.87) satisfies Eq. (9.82) if we assume

1
B=—=,

n=3.
Thus,
1 z3 3
2w =4[5 () |-
The constant 4 is determined from (9.85):

Ae _ 3M
~  2a(2—3cosafcosia) *

According to formulas (9.81), the shearing stresses are

O3 = —A(rg—_;?w» Orp= — A4

r2

80. THERMAL STRESSES

Let us determine stresses and strains in a hollow sphere due to a
steady-state temperature field when a constant temperature T, is
maintained on the inner surface of the sphere and a constant temper-
ature 7T, on the outer surface. In this problem the distribution of
all required quantities is symmetrical about the centre of the sphere,
i.e., all required quantities depend only on the radius r. In a sphe-
rical co-ordinate system Eq. (5.13) and the boundary conditions
(5.15) become therefore

d ar
T(rz dr ):0, (9.88)
T=T, when r=a
¢ ’ 9.89
T'=T, when r=b. (9-89)
The solution of problem (9.88), (9.89) is
=%+B, (9.90)

where
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Because of the symmetry of the state of stress about the centre of
the sphere we have

Ogp (1) =0yp (1),  Orp="0rp="0¢p = 0, o,=o0,(r).

By (2.31), the differential equation of equilibrium becomes
do,r

dr

For our problem u, = u, = 0 and u, = u, (r); hence, from (3.32)
we find

yo I g, 9.91)

du, u

ey = T , ew = ew = —rr— , eq,, = ew = eﬁb = O. (9.92)
Inserting (9.92) in (4.56), we have
Orp = (A 2u) GE+20-2—BT,
dup r
Ogp = Opp= A= +2 (h+p) - —BT, (9.93)

UCW =Oypp=0rp = 0.
Substituting relations (9.93) in (9.91) gives
d2u, 2 du, 2u, dT

R T A
1+v

where g=-1—

o, or

Tl e T8
By integrating this equation, we find

r

u,=-g—5 Trzdr—}—cir-i—%-, (9.94)

r2

d [1 d(r%ur)] dr

a

Substituting the function T = T (r) from (9.90) in this expression,
we obtain

ur=g[7+33—77——3‘7‘ +017‘+i—§. (9.95)
Inserting expression (9.95) in (9.93), we find
B A 2 3 |
O = (- 2p) [ B+ A 2B g — 22 ]

A r A a? Ba3]
)

Ag | Bg s
HR (Gt w5 et |

B Aga? 2Bga® 2
0¢¢=0¢¢=}L[_3i+ f;l +Tf;l_+c1_ :;]_‘_
A B A 2 B, 3
+2(7”+”)[2_rg+Tg_—iL__g'%- c‘+%]_BT‘

The constants ¢; and c, are determined from the boundary condi-
tions o,, = 0 when r = ¢ and r = b.




CHAPTER X

Theory of propagation
of elastic waves

81. TWO TYPES OF WAVES

The existence of two types of waves in a homogeneous isotropic
medium was first proved by S. D. Poisson; one type of wave is known
as compression-dilatation waves, the other as shear waves. Poisson
showed that they are characterized by different velocities of wave
front propagation, and also by the fact that compression-dilatation
waves involve no rotation of particles, while shear waves are not
accompanied by a change of volume.

We proceed to the proof of the existence of two types of waves. Let
us consider an infinite medium. The mass forces F acting on this
medium and the displacement field u are represented as

F = vO + rot ¥, (10.1)
u = V¢ -+ rot . (10.2)

Here @ and ¢ are scalar functions of the co-ordinates (z;, z,, z3)
and the time ¢, and ¥ and 4 are vector functions of the co-ordinates
and the time f.

It follows from (10.2) that

div u = Ag. (10.3

Substituting expressions (10.1) and (10.2) in the equation of motion
of an elastic medium (5.5), taking into account (10.3), and inter-
changing the order of the differential operators, we obtain

V[cfAcp at2 +®]+rot[ ciAPp — at2 —|—‘l"] 0, (10.4)

where
=it ok (10.5)
It is easy to see that (10.4) is satisfied if we assume
cheg—T0— _0, (10.6)
aap—2P— v, (10.7)

Thus, it is proved that the vector field % defined by (10.2) is the
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solution of Eq. (5.5) if the functions ¢ and  satisfy (10.6) and (10.7);
the function ¢ is called the longitudinal potential, and ¢ is the
transverse potential.

The question now arises as to whether these equations have solu-
tions that cannot be represented in the form indicated above. It may
be shown that there are no such solutions. We shall mention some
important consequences.

(a) Let ¥ = 0 and let the initial conditions be y = 0 when ¢ = £,.
The resulting equation for the determination of 4 is then the homo-
geneous equation (10.7) with zero initial conditions. This means that
1P is always zero; it follows from Egq. (10.2) that « = V¢ and
rot u = 0.

This shows that a wave described by the function ¢ involves no
rotation of the particles of the medium, i.e., each of them has a mo-
tion of translation. Such waves are therefore called longitudinal.
It must be emphasized once again that if ¥ = 0 and if at a cer-
tain instant the wave field is longitudinal in nature, it always re-
mains so, i.e., longitudinal waves propagating in an isotropic homo-
geneous infinite medium do not generate transverse waves.

Equation (10.6) describing longitudinal waves is a non-homoge-
neous wave equation. It is known that if the function @ and the ini-
tial conditions in a finite part of space are different from zero, then
the surface separating the disturbed from the undisturbed region
(the wave front) is propagated in the direction of its normal towards
the undisturbed region with a velocity ;.

(b) Let now @®=0 and let the initial conditions be ¢ = 0 when
t = f,. Then ¢ = 0 and u = rot. In this field the dilatation is
zero. Indeed, div u = div rotyp = 0.

Waves possessing this property are called transverse or shear waves.
Transverse waves propagating in an infinite medium do not gen-
erate longitudinal waves. The velocity of propagation of the trans-
verse wave front is c,.

In a homogeneous medium with boundary the longitudinal and
transverse waves travel independently only until the front inter-
sects the boundary. Waves (reflected waves, as they are called) of
both types are then formed for it is usually impossible to satisfy
the system of boundary conditions by introducing a reflected wave
of any one type.

Consider several examples.

1. Plane longitudinal wave. Suppose that body forces are absent,
the transverse potential ¢ is identically zero, and the longitudinal
potential ¢ depends only on z, and ¢{. Equation (10.6) then transforms
into the equation of vibration of a string.

2 0% e 0
1 9z2 ez

17%
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and has a solution of the form
¢ = f (2 — c1f) + g (73 + c4t),s (10.8)

where f and g are arbitrary twice differentiable functions.

The first term in (10.8) represents a wave of constant shape moving
with the velocity ¢; in the positive direction of the z; axis, and the
second term represents a wave of constant shape moving in the oppo-
site direction.

The displacement corresponding to solution (10.8) is, by (10.2),

U= — f (1, —cgt) + g (x4 +c1t). (10.9)

oxy

Expression (10.9) shows that for a fixed ¢ the wave field on each
plane perpendicular to the z; axis does not change from point to
point and is parallel to the z, axis. If the direction of propagation of
a plane wave does not coincide with the z, axis, the displacement
field is described by more complicated formulas, although the physi-
cal picture remains the same. Let us derive the corresponding for-
mulas.

Let the direction of propagation of plane longitudinal waves nr
make with the co-ordinate axes angles whose cosines are n;. Denote
by I the distance measured along a straight line parallel to the direc-
tion m. For simplicity, we consider a wave travelling in one direction.
Substituting for I its expression I = zxn, (k =1, 2, 3), we obtain

@ =f( —al) =] (zunn — c1f).
From (10.2), the components of the displacement vector are obtained
as
Uy = nvf’ (xhnk - clt) (v=1, 2, 3)'

2. Spherical longitudinal wave. Consider the case when the longi-
tudinal potential @ in a spherical co-ordinate system depends only
on the radius r and the time £. The transverse potential ¢ is again
identically zero. Body forces are absent. .

In this case Eq. (10.6) in spherical co-ordinates becomes
P 200 1 0
=TT =0

or 1 9

62
77 ()= 5z (re) =0.

The solution of this equation is |
rg =f(r—ci) + g+ a);
hence,
1
0= f(r—cit) F— g (r +e). (10.10)
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The first term in (10.10) represents a wave diverging from the centre,
and the second term represents a wave moving towards the centre.

Consider a wave diverging from the centre. Since the longitudinal
potential @ depends only on rand £, the only non-vanishing projection
of the vector u in spherical coordinates (r, ¥, @) is

ur:g—?-:Tf (r—clt)—r—zf(r—cﬂ). (1011)

Expression (10.11) indicates that the displacement u, is directed
strictly along the radius and does not change from point to point
if the points lie on the same sphere (for a fixed time ¢).

It is important to emphasize that as r tends to zero, u, tends to
infinity, and so do the strains and stresses. In general, Lamé’s equa-
tions are unsuitable to describe a medium undergoing large defor-
mations. But formally these equations admit such solutions and
they are suitable, and convenient, for describing real processes
when r is bounded from below. Suppose, for example, that an elastic
wave is produced by a uniform pressure applied to the surface of
a spherical cavity of radius r,. Formula (10.11) then describes the
solution in the region r=r,, and the singularity as r —0 is found
to be outside the region in which the solution is sought. In this exam-
ple the function f appearing in formula (10.11) is easily determined
from the given pressure p = p (r,, £) on the cavity.

Thus, solution (10.11) has a singularity at r = 0. This singularity
is called the centre of dilatation. Note that, in contrast to a plane
wave which does not change its shape during propagation, a sphe-

rical wave does change its shape. Indeed, the coefﬁcients—i—and ’}z‘

in formula (10.11) show that the wave amplitudes change with r.

3. Plane transverse wave. Suppose that body forces are again ab-
sent; the longitudinal potential ¢ = 0, and the transverse potential
1 has only one non-vanishing component {5, which depends on z,
and t alone. From (10.7) we obtain

2 0y by ()

2 oz} a2

Hence
Py = [ (x; — cqt) +1g (z1 + c,b).

.For.simplicity, we consider only a wave travelling in the positive
direction of the z; axis. The projections of the displacement vector
are given by the formulas

Uy =ug =0, uy=—f (z; — cyt).

Here the direction of the z; axis is the direction of propagation of the
wave. In contrast to a plane longitudinal wave, however, its velocity
of propagation is c,, and the direction of its displacement does not
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coincide with the direction of wave propagation, but is perpendicular
to it (in the present case the displacement is directed along the x,
axis).

It can easily be verified that the dilatation in this wave, as in
the general case of a transverse wave, is zero:

According to formulas (3.27), the components of the tensor of rota-
tion of particles are obtained as

1 "
0= 0,=0, 0)3='§f (T4 —cot),

i.e., the particles rotate along an axis parallel to the z, axis.

82. RAYLEIGH SURFACE WAVES

Consider an elastic half-space. Let the origin of coordinates be
placed on its surface, with the z; axis directed along the boundary
and the x, axis into the medium (Fig. 44). It is assumed that body
forces are absent. We seek a solution of Eqs. (10.6) and (10.7) that is
independent of z; (plane strain), varies in time according to a sine
law, dies off with depth, and satisfies the conditions Ty, = T,, = 0

on the boundary z; = 0. When

X, z, = 0, we have
Ogp = Oy = 0. (10.12)
0 - x;  This is a problem of free vibrations
N of a half-space.
' The solution is sought in the
form:
X @ = Ae~oxe+igxi—ct) (g >0), (10.13)
2 , .
} g = Be~Bartigxi-ct) (8> 0),
Fig. 44 Py =Py =0.

Here g is a given frequency. The constants a, B, ¢ (c is the phase
velocity), 4, B must be chosen so that (10.13) will satisfy Egs. (10.6),
(10.7) and the boundary conditions (10.12).

Substituting (10.13) in (10.6) and (10.7), we obtain, after simple
manipulation,

Va 3
a=q]/ 1——:—%-,

ﬁ:ql/i——j;—.

(10.14)
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On the basis of solution (10.13) and formula (10.2) we find
uy = (igAe—%: — fBe~Bxs) glalxi—ct),
Uy = (— o Ae~%%: — jqBe~Bx:) gigxi—ct),

Consequently, the displacement vector #% is in planes perpendicular
to the z, axis.
The displacements on the boundary z, = 0 are

uy = (igA —PpB) e~ia®-ct) |y, = — (a4 4 igB) eld*-ct_ (10.15)

By using the formulas for the displacement and Hooke’s law, it is
easy to obtain expressions for the components of the stress tensor
on the boundary:

o =pg {(2—%) A+2 ) 1 —5 B} eiwn-en,

012=pq2{—-2il/1 —-%;— A+ (2 —z—;) B} giatx—ct),

In order to satisfy the boundary conditions (10.12), it is necessary to
put

2 2
(2—%) A—]—2i]/1~z—%B=0,
, c? c2
—2;1/1——6%—A+(2—C—%-)B=0.
We have obtained a linear homogeneous system of equations in A

and B. For 4 and B to be different from zero, the determinant R of
this system must be set equal to zero:

R= (2_-2%)2—4 ]/(1_{%—) (1—-5)=0 @017

(10.16)

or
R=(2—k2—4V (A—k (1—vk)=0,
where

e _
k__c?’ Y——?<1-

This equation determines the phase velocity ¢; it is important to
emphasize that the latter is independent of the frequency ¢, but de-
pends only on the ratio c,/e;.

Let us show that ¢ < ¢}. Indeed, putting ¢ = ¢,, we obtain R = 1.
On the other hand, when ¢ = 0, we have R = 0 and R’ = —2 X
X (1 —y) <<O0. It follows from this that Eq. (10.17) has the root
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k== < 1 for all values of c,/c, (Fig. 45). It may be shown that

there are no other roots on the interval [0, 1] (the root ¢ = 0 corres-
) ponding to the zero solution not being
considered). In particular, when A = p, i.e.,

when c¢,/c; = L

V3’
c=l/2 (1——1/1?)%

£ From (10.16) we obtain

c2D ¢\ D
A=—2) i T B= (2__03_)_‘1.,

Fig. 45 where D is an arbitrary constant. Then

uy=D ]/1 -—% [Qe‘“xs—— (2——2%-) e-szJ eig(x—=ct),

Uy =1iD [2]/ 1—_. Z_:.) e—ax,_(g__z;) e—Bx,] eia(x—ct)_

2 2

We have constructed the solution in complex form, but since the
equations and the boundary conditions of the problem are linear,
its solution is given by both the real and the imaginary part of the
resulting expressions; for example,

U= D]/1 ——Z% [Qe-ax._ (2——2—;—) e"sz] cos g (zy—ct), (10.18)

Ug= —D[? ]/(1-—-2-;,—) (1—_;%-) - 0xy
— (2—%—) e'ﬁxs] sin g (zq —ct).

Since the coefficients o and B [formulas (10.14)], characterizing
the attenuation with depth, grow with increasing frequency g, we
deduce from (10.18) that the longer the wave, the greater is the
depth at which it has an effect.

When z, = 0, from (10.18) we obtain

ST
uy=D]/ 1 -—Z—g-%%- cos q (z; —ct),

u2=—D[2'l/(1—-%;—) (15 )—(2—5) ] sina es—et.

It follows from this that the points of the surface move in ellipses.
The waves considered above were first studied by Rayleigh
(J. W. Strutt). They are observed far from the disturbance source.

(10.19)
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Since the energy carried by these waves is concentrated at the surface-
and is dissipated over the surface, its dissipation is slower than in
waves where the energy is dissipated over the volume of the disturbed
region. During earthquakes, therefore, for an observer remote from.
the epicentre the Rayleigh waves represent the greatest danger.

83. LOVE WAVES

Consider an elastic layer of constant thickness H with elastic:
constants A, p and density p, resting on an elastic half-space with.

H DA

g
N A\ 7\\\\%
Pies Ao, e
Xz

Fig. 46

4

parameters Ay, Wy, P5. Assume that the velocity of transverse waves
in the layer ¢, is less than the corresponding velocity c,, in the
half-space:

62 < C*z. (10.20)’

Let the z; axis be taken along the interface, with the z, axis directed
into the half-space (Fig. 46).

Let the boundary of the layer z, = —H be free from load, i.e.,
Tyy =Ty, = Ty3 =0. When 2, = —H,
Ogp = Oy5 = Og3 = 0, (10.21)
and at the interface
Uy=ujf, Us=u;, us=uj, (10.22):
Ogp=0%, Oiy=0y, Oa3==0p (10.23).

(starred quantities refer to the half-space). In addition we require
that as z, tends to infinity the displacements should tend to zero.
We shall try to find solutions of Eq. (5.5) for the layer and the half-
space such that the only non-zero components are u; and u¥ and
these are independent of z5. Such a wave, if it exists, is a transverse
one since div u = 0.
From Eq. (5.5) (without considering body forces) we obtain

d%ug 1 9%ug d%u¥ %u¥ 1 d%uf (10.24)

oz + 0z} =T§- atz 0x2 022 ~ c2p o0t
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In view of the above assumptions regarding the displacements the
first pairs of conditions (10.21), (10.22), and (10.23) are automatical-

1y satisfied, and the last give the following results: when z, = —H,
ou .
ax: =0; (10.25)

when z,=0,
*
Ug=uf, Pt =P (10.26)
We shall seek solutions whose dependence on z; and ¢ is described

by a sine law, i.e.,
Uz =f (xz) em(x;—-ct)’ u’3" = f* ($2) eia(xy—ct) (10'27)
Here ¢ is a given frequency, ¢ is unknown phase velocity about which

Wwe assume ¢, << ¢ << C,,, this being consistent with (10.20).
Substituting (10.27) in Eqgs. (10.24), we obtain

fgoef=0(a=) S—1),
o _ (10.28)
fo—eBf=0(p=) 1—74),
from which
f (z,) = A sin (agz,) + B cos (agz,), (10.29)

fy (x2) = Ce~Bexs  C eBaxs,
For the solution f, (z,) to be bounded we must put C; = 0, then
f (x2) = Ce—Baxs, (10.30)
It follows from the boundary conditions (10.26) that

B=C, A= —%3@ c. (10.31)

Substituting (10.27) in (10.25), and using (10.29), we obtain
A cos (agH) + B sin (agH) = 0
or, with (10.31),
tan (agH) = J;Lf- ) (10.32)

Since « and P are expressed in terms of ¢, ¢,, ¢, by means of formu-
las (10.28), it follows that (10.32) is an equation for the determina-
tion of the ratio c/c, as a function of the parameters gH, c,/c,,,
B/l

Let us show that the roots of Eq. (10.32) exist. We assume the
parameter §¢ = gH to be unknown, and the remaining parameters
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to be given. As § = ¢H varies from zero to 2% , tan (eegH) varies from

zero to infinity, and since the tangent is a continuous function, there
is a value & = §, for which (10.32) is satisfied. This proves the ex-
istence of the root of Eq. (10.32).

We write down the final formulas for displacements:

us==C [ cos (aqzry) — ‘::f sin (aqxz)J eialxs—ct),

uf= Ce—aBxy+ig(x,—ct)

The solution obtained represents a wave running in the direction of
the x; axis with the velocity ¢. The displacements in the wave are
in a plane perpendicular to the direction of propagation and parallel
to the boundaries of the layer. It is essential to note that their phase
velocity depends on frequency ¢ (see 10.32), i.e., these waves have
dispersion.

These waves were first discovered by A. E. Love and therefore
they are called after his name. Love waves, while differing from
Rayleigh waves by the presence of dispersion, by their purely trans-
verse character, etc., have many features in common with them.
As Rayleigh waves, they are usually observed during earthquakes
at considerable distances from the epicentre. As in Rayleigh waves,
the energy in Love waves is concentrated near the interface, and
hence they are attenuated more slowly than other waves.



CHAPTER Xi

Theory of thin plates

84. DIFFERENTIAL EQUATION FOR BENDING
OF THIN PLATES

A body having the middle surface in the form of a plane and whose
thickness is sufficiently small compared with its other two dimen-
sions is called a thin plate. Plates find wide application in engineer-
ing; as typical examples we may mention concrete and reinforced

|’4/ X1 X |A1
g s
1
w
w|
7 p
A1
I o A'
B1 £ "
X3 _ I\ B X
Uy P 1
Fig. 47 Fig. 48

concrete plates used in structures, for ship hulls. A plane dividing
the thickness of the plate in half is called its middle plane. We choose
the axes of co-ordinates z; and z, in the middle plane, and the z; axis
perpendicular to it.

If the deflection of the middle plane of a plate is small compared
with the plate thickness, the following assumptions apply: (1)
a normal to the middle plane before bending transforms into a nor-
mal to the middle plane after bending; (2) the component 035 of the
stress tensor is small compared with the other components of the
stress tensor; (3) during bending the middle plane of the plate does
not deform.

Let the deflection of the middle plane be denoted by w, and the
displacements parallel to the z; and z, axes by u; and u,, respectively.

Consider sections of the plate parallel to the planes x,z; and z,z5,
as shown in Figs. 47 and 48, respectively. Referring to these figures,
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and remembering the first assumption, for displacements of a point
B lying on a normal to the middle plane of the plate we have

u, = —xgtan a, uy = —zx3 tan p.
Since the deflection is considered to be small, it follows that
ow __ ow
a—tana-——m ) B_tanﬁ—a—%,

Taking into account the last relations, we find

ow ow
U= —I3 oz, ) u2=—$3a—x2, (11.1)

From formulas (3.26), with (11.1), we find

*w 0w w
€= "% H7 €= — T3 gury  €12= T I3 . (11.2)

By virtue of the assumption (1) we have
813 = 623 = 0. (11.3)

On the basis of the assumption (2) we put 0,3 = 0; by formulas
(11.2), Hooke’s law becomes

G — Ezg (azw_ azw)
u= 1—v2 \ 9z? oz} | X
Exzg *w 2w
On=—q—or (G +v 51 )
(11.4)
Groe — B2 0w
127 T 9z, oz,
Denote by M,, M, the bending Fig. 49

moments, by M,, = M,; the
twisting moments, and by Q,, Q, the shearing forces per unit length
of sections parallel to the planes z,r; and z,z; (Fig. 49), i.e.,

h/2 h/2

M= S 0413 dg, My= S 09073 A3,
~h/2 —h/2
h/2
M12=M21= S 02,x3dx3, (11.5)
-h/2
h/2 h/2

Qi = S O34 d$3, 02 = S 039 dx3.
—h/2 ~h/2
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In spite of the fact that according to (11.3) it is necessary to put
03 = 2pes; = 0, 03, = 2peg, = 0, in setting up the equations of
equilibrium we must take into account the resultant forces (shearing
forces) Q, and Q, due to the shearing stresses 03, and 0,5 as quantities
of the same order of magnitude as the intensity of transverse force p
and the moments M,, M,, and M,,.

Substituting the expressions for oy;, 0,,, and 0;, in the first three
relations of (11.5), we find, for a homogeneous plate,

M= —D(az—w-l-v azw),

ox? or}
*w w
M2=—D(——a$g +V __(91‘§ ), (11‘6)
’w
Miz——-D(i—\) m—-,
Eh3 . ST
where D= =y 1 the flexural rigidity of the plate.
Q&
Mt
&y l Xy
P %z
My My*d)qu
X
iz /3\‘ M d
Xz/ My*dy, My Moy +dy, Mz Qrtdy, Qs
8%y, 4,
Fig. 50

Consider an element cut from the plate by two pairs of planes
parallel to the co-ordinate planes x,z; and z,z; (Fig. 50). For equi-
librium of this element it is necessary that the sum of the forces
acting on this element and the sum of their moments about the z,
and r, axes separately should be equal to zero. Disregarding body
forces, and neglecting small quantities of the third order, we have

dxloi d$2 + dx202 dxi + P dxi d-’rg = O,
dleiz dxz i dszz dxi + 02 dxi dxg = O,
dx’Mzi dxﬁ _— dlei dxz +Qi d$2 dx1 = O.
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Here d,, is the partial differential of a function that follows it with
respect to the x) co-ordinate. After some manipulation we find

00, | 00, ,
e T o, TP=0 (11.7)
oM oM _
o= 400 119
om oM
6z:1 - 0:t11 +0:1=0. (119

Inserting relations (11.6) in (11.8) and (11.9), we have, for a plate
of constant thickness,

Q1= —D i) (62w_‘_62w),

oz, \ 0x2 dz}

Qy= —D i) (62w_‘_62w)'

dzy \ 0zt ox}

(11.10)

Substituting the expressions for Q; and Q, in Eq. (11.7), we obtain

o*w *w dw _p
dz} +2 0x? 0} + ox§ D °* (11.11)

This equation was first derived by Sophie Germain.
Thus, the problem of a plate bent by a transverse force p is red-
uced to the integration of Eq. (11.11).

85. BOUNDARY CONDITIONS

Let us establish the boundary conditions for a rectangular plate
corresponding to several modes of fixing its edges; the z; and z, axes
are directed parallel to the edges of the plate.

(a) Clamped edge. 1f the edge x; = 0 of the plate is clamped, the
deflection at the points of this edge is zero and the plane tangential
to the deflected middle surface coincides with the middle plane of
the plate before bending:

L p— (11.12)

We—qg=0 _ =
le 0 ’ 0z; |x,=0

(b) Simply supported edge. 1f the edge x; = 0 of the plate is sup-
ported and is free to rotate, the deflection and the bending moment
at this edge must be zero:

%w

%w
wlxl=0—0, —c9-a:-§_+v6_x§=0°
Since along the edge 2; = 0 we have w = 0, it follows that
ow ?w
W|x=0 = B2y |uim0" 02F lx—0 0.
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Consequently, the boundary conditions for a simply supported edge
.are
%w

wlx1=0 = 0’ 3z} |x,=0
=

=0. (11.13)

(c) Free edge. 1f the edge z; = 0 is free, it is necessary, at first
:glance, to require that the bending moment M, the twisting moment
M,,, and the shearing force Q; along it should be zero

- Milx1=0=0’ Mi2|x1=0=07 01,x1=0=0. (11.14)

Thus, in this case there are three boundary conditions whereas
there were two of them in the other cases. Conditions (11.14) were
obtained by S. D. [Poisson.

A Myz Later G. Kirchhoff showed
', ax, that two boundary conditions
! sufficed to determine com-

I pletely the deflection w satis-
Xz sz¢XzM!%_._§-_ fying Eq. (11.11) because two
! Mipdxs Poisson’s conditions relating
: to the twisting moment M,
e 2%z | and the shearing force OQ,
V ] may be combined into one
boundary condition. Conse-
Mz * %Mz quently, Poisson’s system of
boundary conditions (11.14) for
Sophie Germain’s equation
(11.11) is overdetermined.
Consider two adjacent elements of length dz, at the edge z;, = 0
{Fig. 51). The twisting moment per the element of length dz,is
M, ,dz,; it may be replaced by two shearing forces equal to M,, and
acting at a distance dz, apart; in Fig. 51 these forces are shown by
solid vectors. For the next element dz, the twisting moment
(M, + dy,M,,) dz, may also be replaced by two shearing forces,
M,, + d.,M,,; they are shown by dashed vectors. Thus, we find
that the distribution of twisting moments M,, is statically equiva-
0xy )
‘On the basis of Saint Venant’s principle this replacement will have
an effect on the state of stress in the immediate vicinity of the edge,
but the state of stress in the remaining part of the plate will remain
unchanged.
Consequently, instead of the last two in the boundaryconditions
{11.14) for a free edge of a plate we obtain one condition:

(Q,_ 0M 1 )x1=0=0. (11.15)

0z,

Fig. 51

lent to the distribution of shearing forces of intensity Q; = —
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On the basis of relations (11.6) and (11.10) for a free edge the boun-
dary conditions (11.15) and M, |x,—o = O may be expressed as

Pw 9w
LB B )
or3 0z, 0z5 |x,=0
(11.16)
*w +v *w —0
9} 0z} |x,=0"

In the case of a plate with a curved edge the co-ordinate axes at
a point of the edge are taken to coincide with the normal n» and the
tangent v, as shown in Figs. 52 and 53. The relations between M,

My
——& X7
Mz Qs X7
My o Xz
ol

Mn Mpz \n Xz T a n

T n

X2

Fig. 52 Fig. 53

M., Q, and M,, M,,, Q,, Q, are determined from the conditions

for the equilibrium of an element of the plate, such as represented
in Figs. 52 and 53:

M, = M,cos?a -+ M,sin2a— M, sin 2a,
M e = M g3 0052 20, + 2= M2 sin 9, (11.17)

Q,=Q; cosa--Q,sina.
When the curved edge of the plate is clamped,

w .
w=0, 22_o; (11.18)

in the case of the simply supported edge
w=0, M,=0.
If the edge of the plate is free, then

M, =0, Q,—2r_y, (11.19)

where the term —2%‘1- is obtained similarly to Fig. 51.

18—0884
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86. BENDING EQUATION FOR A PLATE REFERRED
TO POLAR CO-ORDINATES

In studying the bending of a circular plate it is advantageous to
use a polar system of co-ordinates (r, ¢). In this co-ordinate system,
on the basis of the formulas expressing the relation between polar
and Cartesian co-ordinates

r2=uzi 4 z3, q>=arctan—:2—, (11.20)
1

the harmonic operator takes the form

02 1 9 1 92
A=W+TF+7-0_¢—2' (11.21)

Consequently, the bending equation for a plate (11.11) in a polar
co-ordinate system is written as

# 1 4 1 & 2 19 1 P
(r+rotmop) (Frtratma)v=95 (122

1f the load p is distributed symmetrically about the centre of the

Mpr

<¢

r/"])d\\

Mrp
\
'

Fig. 54

plate, the deflection w depends only on the polar radius. In this case
Eq. (11.22) becomes
d2 1 d d2? 1 d P
(e +77) (tv7)v=75

Let the bénding moments acting at sections with normals » and ¢
be denoted by M, and M, respectively, and the twisting moment by
M,,. These moments, as usual, are calculated per unitlength. Sup-
pose that the oz, axis coincides with the polar radius r; then the
moments M,, M, and M,, have the same values as the moments
M,, M,, M,, (Fig. 54). Thus, transforming from Cartesian to polar
co-ordinates by means of (11.20), and putting ¢ = 0 in formulas
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(11.6), we have, ﬁnally,

*w 1 ow 1 2w
Mr=—'D( 923 +v 512 )(D—O—_D[W_i_’v (77—{_ r2 W)]’
1 ow 1 0w *w
r or +—1?-5§)2—+v or? )’

1 o*w 1 ow
Mor=(1—9D (550~ %)

My= _D( (11.23)

In a similar way, from (11.10) we obtain formulas for the shearing
forces
) a2 1 0 1 9
Or=—0737[(w+7797+r—2762‘)w]' (11.24)
1 9 ik 1 o
Oo=—Dra|(grtrortaz)w] (11.29)

If the edge of a circular plate of radius a is clamped, then

w|,—g=0, _‘;% = 0; (11.26)
if it is simply supported, then
W|r=a=M; r=a=0; (1127)
if it is free, then
1 My
| =0, (Q,—77p—)r=a=o. (11.28)

The general solution of Eq. (11.22) is
w = wy -+ wy,

where w, is a particular solution of Eq. (11.22), w, is the general solu-
tion of the homogeneous equation

1 02 02 1 02
(e ++a+7mmr) (e tratmas) vi=0. (11.29)

The general solution of this equation is given by A. Clebsch in the
form

= R® (r) 4+ 2, R (r) cosng -+ Z R® (r)sinng. (11.30)

The solution R® (r), which is independent of the angle ¢, repre-
sents the symmetrical bending of a circular plate. Substituting
this solution in Eq. (11.29) gives

d? 1 d n? a2R{P 1 dRr{P n? (k)
(F"'Tﬁ_r_?)( et g _72—3”)’"0’

18*
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where &k = 0, 1, 2. The general solution of this equation for n = 0 is

R =A,+By2+Colnr+Dy?lnr; (11.31)

for n=1
RP = APr £ B 4 cPr ™ - DPr1nry (11.32)

for n>=2
R;k) — Aﬁk)r" + B;k)r—n + C;h)rn+2 +D$1h)rn+2. (11.33)

The constants of integration AP, Bﬁf), c® and DP (k=1, 2)
are determined!from the fixing conditions for the edge of the plate.

87. SYMMETRICAL BENDING OF A CIRCULAR PLATE

Consider the transverse bending of a circular plate of radius a under
a uniformly distributed load p when the plate is (1) simply supported
along the edge and (2) clamped along the edge.

From the axial symmetry of the bending and from Clebsch’s solu-
tion (11.30), the solution of the problem is sought in the form

w=wy+ Réo) (r)v

where w, is a particular solution of the equation

92 1 8 82 1 9 p
(se+73) (37 73 ) v="1" (11.34)
which follows from (11.22); this solution is given by
R
wo =gz ™

For the solution R.” (r) determined by formula (11.31) to be bounded,
we must take Cy = 0; then

w= Ay+ Bor2+ Dyr? In r—f——6—4%-r‘*.
On the basis of formula (11.24) we have, at any section r,
P . 1
QT= —D[ﬁr—*-llDo—r‘} .

On the other hand, Q, = ——2p—r. Hence, Dy = 0. Thus

w= A+ Bor® + 55 T (11.35)

The coefficients 4,, B, are determined from the fixing condition for
the plate along the edge. For the case (1) we have, when r = a,
Tw=0, Z24vi2_o. (11.36)

r or
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For the case (2), when r = a,

ow

Substituting (11.35) in conditions (11.36) and (11.37), we obtain
a system of linear algebraic equations:
for the case (1)

A0—+—Boa +md‘*“‘0

2B, + —== 160 az-+wv (230—1——1—51—)-112):0,
for the case (2)

A0+Boa2—{—ma“—0,

2B0a +—1@ ad=0.

After determining the constants 4,, B,, we finally obtain:
for the case (1)

5
w—'B4_D (a®—r?) (1:1__: az_,.z) ,

for the case (2)

P (a2 —r2)2
w=-5 (a2 —r?)2,

From the first formula of (11.4) for the case (1)

3(3-+v) PzS( 2 _r2),

Orr=—"33" "8

This stress at the centre of the plate (r = 0) is

__3(34v) a?pzy
Or=—"5" "w -

According to the exact solution, the stress at the centre of the plate
is, by formula (9.77),

3(3+w) aﬁpz 2+v z§ 3 =z
32 -+ (F— 5 —hs‘)

Opr =

Comparing the last two formulas, we notice that the additional
term appearing in the exact solution is small if the thicknessof the
plate is small compared with the radius. Thus, when v = 0.25 and
2h 1 2h h ys .
zg3 = h, for =% = 11—0, —23- =—;— the additional term is,
respectively, 0.94, 3.8, and 15 per cent of the leading term.
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Absolute derivative, of tensors, 34
of vectors, 33

Addition of tensors, 19

Affine transformations, 16

Airy’s formulas, 116

Airy’s stress function, 116
boundary conditions for, 116
complex representation of, 130
in polar co-ordinates, 120

Analogies, hydrodynamic, 196
membrane, 191

Analytic continuation, 162

Angle, between co-ordinate lines, 25
between directions in space, 27

Anisotropic body, 75

Associated tensors, 25

Base vectors, 23
Beltrami-Michell relations, 91, 92
for generalized plane stress, 115
for plane strain, 110
Bending, of circular plates, 249, 274
under gymmetrical loading, 251,
27
of prismatic bodies, 206
by couples, 105
of elliptical cross section, 216
of thin plates, 268
by couples, 252
by transverse force, 268
Bessel functions, 247
Betti’s identity, 82
Betti’s reciprocal theorem, 219
Biharmonic equation, 116
in spherical co-ordinates, 249
Biharmonic function, complex repre-
sentation of, 130
Body forces, 40
Body of revolution, loaded symmet-
rically, 246
~_ torsion of, 253
Boundary conditions, for Airy’s
stress function, 116
for bending of plates, 271
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in generalized plane stress, 114
in heat conduction problems, 87
in non-linear elasticity, 230
in plane strain, 110
in thermoelastic problems, 94
Boundary value problems, funda-
mental, first, 93, 138
mixed, 93, 139
second, 93, 139
two-dimensional, 110, 138
in elastodynamics, 95
in elastostatics, 93
reduction of, to functional equa-
tions, 154
uniqueness of solution, 95
Boussinesq’s formulas, 239
Boussinesq’s hydrodynamic analo-

gy, 196
Bredt’s formulas, 196
Bulk modulus, 79

Castigliano’s formula, 74
Castigliano’s principle, 222
Cauchy principal value, 147
Cauchy type integral, 146
limiting values of, 149
Cauchy-Riemann relations, 111
Cauchy'’s formula, 146
Cauchy’s integral, 145
Centre of flexure, 213
Christoffel symbols, 28
Circular cylinder, hollow, under uni-
form pressure, 121, 156
under uniformly distributed tan-
gential forces, 155
solid, loaded symmetrically, 247
Circular disk, rotating, 123
Circular plate, bending of, 249, 274
symmetrical bending of, 251, 276
Clapeyron’s formula, 73
Clapeyron’s theorem, 82
Coefficient of linear thermal expan-
sion, 80
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Compatibility equations for strains
(Saint Venant's), 60

in Cartesian co-ordinates, 65
for plane strain, 109
in cylindrical co-ordinates, 66, 92
for agxially symmetric problems,
2

Complementary work, 224
principle of minimum, 224
Complex potentials, 162
Complex representation, of Airy’s
stress function, 130
of biharmonic function, 130
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of harmonic function, 128
of resultant moment, 132
of resultant vector, 131
of stress tensor, 129, 163
Complex torsion function, 196
Complex variable theory, 138
Components, of strain, in terms of
displacements, 61
of stress, complex representation
of, 129, 163
of vectors and tensors, 16, 17
physical, of vectors and tensors, 27
Compression of spheres, 244
Conformal mapping, 142
Conservation of energy, 82
Contact pressure, 244
Contact problems, 240
Contraction of tensors, 19
Contravariant tensor, 17
Contravariant vector, 16
Convolution of functions, 171, 174
Co-ordinate lines, 16, 25
angle between, 25
Co-ordinates, transformation of, 15
Couple-stress vector, 42
Covariant derivative, of tensors, 35
of vectors, 34
Covariant tensor, 17
Covariant vector, 17
Cylinder, circular, hollow, under uni-
form pressure, 121, 156
under uniformly distributed tan-
gential forces, 155
solid, loaded symmetrically, 247

D’Alembert’s principle, 43
Diffusivity, 86

Direct methods of solution, 98
Dirichlet conditions, 170
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Displacement vector, 57, 85

Displacements, complex represen-
tation of, 129, 164
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principle of virtual, 220
Duhamel-Neumann equations, 86

Elastic coefficients, 70
relations between, 75
Elastic constants, Lamé’s, 77, 79, 86
Elastic potential, 74, 75
Energy, complementary, 224
principle of minimum, 224
integral of, 80
potential, 222
principle of minimum, 222
strain, 79, 82
Energy integral for equations of mo-
tion, 80
e-tensor, 37
Equality, theorem of, for shearing
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Equations, of compatibility, 60, 65,
66, 92, 109
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plane stress, 114
for non-linear body, 230
for plane problem, in polar co-
ordinates, 120
for plane strain, 109
for plane stress, 111
in Cartesian co-ordinates, 48
in cylindrical co-ordinates, 49
in spherical co-ordinates, 49
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variational, 228
vector, 232
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in cylindrical co-ordinates, 49
in spherical co-ordinates, 49
in terms of displacements, 84
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Extension, of line element, 56
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Extensions, principal, 64
External forces, 39

generalized

Finite strain tensor, 55
components of, in terms of dis-
placements, 57
in Cartesian co-ordinates, 61
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Flexural rigidity of plate, 270
Flexure, centre of, 213
Flexure function, 209
Forces, body, 40
surface, 39
Formulas of transformation of co-
ordinates, 15
Fourier heat conduction equation, 86
Fourier integral transformation, 170
Fourier inversion formula, 170, 173
Fourier multiple transforms, 172
Fourier transform, 170
Functional equations, reduction of
boundary value problems to, 154
Fundamental equations of elasticity,

Gauss-Ostrogradsky formula, 37
Generalized heat conduction equa-
tion, 87
Generalized Hooke’s law, 69
for generalized plane stress, 114
for isotropic body, 77, 80
for plane strain, 108
for plane stress, 112
in complex form, 129
Generalized plane stress, 113
equations of equilibrium for, 114
generalized Hooke's law for, 114

Half-plane, first boundary value prob-
lem for, 165
mixed bé)undary value problem for,
167
second boundary value problem for,
166

solution of boundary value prob-
lems for, 161
weightless, solution of biharmonic
equation for, 177
with concentrated force applied to
its boundary, 180
with distributed force applied to
its boundary, 179
Half-space, indentation by sphere, 245
under concentrated load, 238
under distributed load, 238
vibrations of, 262
Hamiltonian operator, 221
Harmonic function, complex represen-
tation of, 128
Harnack’s theorem, 151
Helmholtz free energy, 72
Hertz contact problem, 240
Hélder condition, 147

Homogeneous body, 75
Hydrodynamic analogy, 196
Hydrostatic pressure, 99

Identical relations between strain com-~-
ponents, 60
See Compatibility equations
Improper integral, 147
Indentation problems, 245
Initial conditions, in elastodynamics,.

in heat conduction problems, 87
Inner multiplication, 20
Invariant, 16
Invariants of stress and strain, 54
Inverse methods of solution, 98
Isotropic body, 75

Kirchhoff’s boundary conditions, 272
Kronecker symbols, 18

Lamé’s elastic constants, 77, 79, 86
Lamé’s equations, 85
for generalized plane stress, 115
for plane strain, 109
for plane stress, 112
Lamé’s problem, 120
Laplace’s equation, 87
in spherical co-ordinates, 249
Laplacian, 121
Lateral contraction, 78
Lévy’s equation, 110
Lévy’s theorem, 111, 141
Limiting values of Cauchy type inte-
gral, 149
Line element, extension of, 56
Lines of shearing stress, 187
Lipschitz condition, 147

Mass forces, 40
Membrane, 191
Membrane analogy, 191
Method of sections, 41
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potential energy, 222
Modulus of elasticity in tension, 70, 78
Multiplication of tensors, 19

Newton’s law of cooling, 87
Non-homogeneous body, 75
Non-linear elasticity, 230
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Orthotropic body, 76

Parallel vector fields, 30
Physical components of vectors and
tensors, 27
Plane, absolutely rigid, indentation
by sphere, 245
infinite, under body forces, 174
under concentrated force, 176
Plane problem, 108
equations of equilibrium for, in
polar co-ordinates, 120
Plane strain, 63, 108
compatibility equations for, 109
equations of equilibrium for, 109
generalized Hooke’s 'law for,
108
Plane stress, 111
-equations of equilibrium for, 111
generalized Hooke's law for, 112
Plane stress, generalized, 113
equations of equilibrium for, 114
generalized Hooke's law for, 114
Plates, bent by couples, 252
boundary conditions for, 271
circular, bending of, 249, 274
symmetrical bending of, 251, 276
flexural rigidity of, 270
infinite, with circular hole, 157
with elliptic hole, 159
middle plane of, 268
thin, 268
bending equation for, 268
in polar co-ordinates, 274
theory of, 268
under transverse loading, 268
Poisson’s boundary conditions, 272
Poisson’s equation, 86
Poisson’s ratio, 70, 78
Potential, complex, 162
elastic, 74, 75
strain tensor, 74
stress tensor, 71
Potential energy, 222
principle of minimum, 222
Prandtl’s formula, 187
Prandtl’s stress function, 186
Pressure, Zztween bodies in contact,
2

hydrostatic, 99
over surface of half-space, 238
Principal directions, of strain, 64, 78
of stress, 52, 78
Principal extensions, 64
Principal strains, 64
Principal stresses, 52

Principle, of Castigliano, 222
of minzirznlium complementary work,

of minimum potential energy, 222
of Saint Venant, 96
of virtual displacements, 220
variational, of Reissner, 228
Prismatic bodies, bending of, 206
by couples, 105
of elliptical cross section, 216
torsion of, 182
of circular cross section, 103
Hooke’s law in, 105
with groove, 199
with hole, 201
of elliptical cross section, 198
of equilateral triangular cross
section, 198
of hollow cross section, 188
of rectangular cross section, 200,

of square cross section, 227
unconstrained, 225
Pure bending, of circular bars, 125
of plates, 252
of prismatic bars, 105
of rectangular strip, 120

Quotient law of tensors, 20

Rayleigh waves, 262
Rayleigh-Ritz method, 224
Reciprocal contravariant base, 23
Reciprocal theorem, Betti's, 219
Reissner’s functional, 228
Reissner’s variational principle, 228
Rel.ative8 heat transfer coefficient,
7

Resultant moment, 40
complex representation of, 132
Resultant vector, 40
complex representation of, 131
Riemann-Christoffel tensor, 35
Riemann’s boundary value problem,
151

Rotation tensor, 59
in Cartesian co-ordinates, 62
in cylindrical co-ordinates, 62
in spherical co-ordinates, 62

Saint Venant’s compatibility condi-
tions, 65
in Cartesian co-ordinates, 65
for plane strain, 109
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in cylindrical co-ordinates, 66, 92
for axially symmetric problems,
92

Saint Venant's principle, 96
Saint Venant’s semi-inverse method,

Saint Venant’s torsion function, 183
Scalar, 16
Scalar product, 20
triple, 38
Semi-inverse method of solution, 98
Shear, 57
Shear circulation theorem, 190
Shearing stress, 42
lines of, 187
maximum, 187
on perpendicular planes, 48
properties of, 187
Simple solutions, 99
Small strain tensor, 59
components of, in terms of dis-
placements, 61
in Cartesian co-ordinates, 61
in cylindrical co-ordinates, 62
in plane polar co-ordinates, 63
in spherical co-ordinates, 63
Sokhotskii-Plemelj formulas, 151
Sophie Germain, equation of, 271
Specific heat, 86
Sphere, compression of, 244
hollow, thermal stresses in, 256
indentation by, 245
Strain, components of, 57, 61
identical relations between, 60
finite, 55
invariants of, 54
plane, 63, 108
principal, 64
principal directions of, 64, 78
small, 59
volume, 65, 85
Strain energy, 79, 82
Strain invariants, 54
Strain tensor, 56
finite (see Finite strain tensor)
small (see Small strain tensor)
Stress, components of, 42
couple-, 42
invariants of, 54
normal, 42
plane, 111
generalized, 113
principal, 52
principal directions of, 52, 78
shearing or tangential, 42
thermal, 80, 256
vector, 42

Stress function, for torsion problem,
186

of Airy, 116
of Prandtl, 186
Stress invariants, 54
Stress tensor, 43
complex, 129, 163
symmetry of, 47
Stress vector, 42
Stress-strain relations, 69
Summation convention,
Surface conditions, 47
Surface forces, 39
intensity of, 40
resultant moment of, 40
resultant vector of, 40
Surface heat transfer coefficient, 87

16

Tensors, absolute derivative of, 34
addition of, 19
antisymmetric, 19
associated, 25
components of, 17
contraction of, 19
contravariant, 17
covariant, 17
covariant derivative of, 35
definition of, 16
finite strain (see Finite strain tensor)
inner multiplication of, 20
metric, 23
mixed, 18, 24
multiplication of, 19
physical components of, 27
quotient law for, 20
rotation, 59
Riemann-Christoffel, 35
small strain (see Small strain tensor)
strain, 56
stress, 43
symmetric, 19
Thermal conductivity, 86
Thermal stresses, 80, 256
in hollow spheres, 256
Three-dimensional problems, 232
Boussinesq’s formulas, 239
contact, 240
half-space, indentation by sphere,
24

under concentrated load, 238
under distributed load, 238
vibrations of, 262

solutions, Boussinesq's, 237
Boussinesq-Papkovich, 234
Kelvin's, 232

sphere, compression of, 244
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indentation by, 245
thermal stresses in, 256
Torque, 185
Torsion, lines of shearing stress in, 187
of body of revolution, 253
of prismatic bodies, 182
of circular cross section, 103
Hooke’s law in, 105
with groove, 199
with hole, 201
of elliptical cross section, 198
of equilateral triangular cross
section, 198
of hollow cross section, 188
of rectangular cross section, 200,
226
of square cross section, 227
unconstrained, 225
stress function for, 186
Torsion function, 183
complex, 196
Torsion ligoblem, analogies for, 191,
6
Torsional rigidity, 185
Transformations, affine, 16
of co-ordinates, 15
orthogonal, 16
Twisting moment, 185

Uniqueness of solution, 94, 95

Variational equation of equilibrium,

Vectors, absolute derivative of, 33
angle between, 27
associated, 24
base, 23
differentiation of, 28
components of, 16, 17
contravariant, 16
covariant, 17
covariant derivative of, 34
definition of, 16
orthogonal, 28
parallel, in space, 30
physical components of,*27
reciprocal base, 23
scalar product of, 20
triple, 38
Vibrations, free, of half-space, 262
Volume forces, 40

Wave front, 259
Waves, longitudinal, 259
Love, 265
of compression-dilatation,% 258
of shear, 258
plane, 259, 261
propagation of, 258
Rayleigh, 262
spherical, 260
surface, 262
transverse, 259
velocity of, 259
Work, done by external forces, 70, 81
elastic deformation, 83
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