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Introduction 

The theory of elasticity is concerned with the mechanics of defor­
mable media which, after the removal of the forces producing defor­
mation, completely recover their original shape and give up all the 
work expended in the deformation. 

The first attempts to develop the theory of elasticity on the basis 
of the concept of a continuous medium, which enables one to ignore 
its molecular structure and describe macroscopic phenomena by the 
methods of mathematical analysis, date back to the first half of 
the eighteenth century. 

The fundamental contribution to the classical theory was made 
by R. Hooke, C. L. M. H. Navier, A. L. Cauchy, G. Lame, G. Green, 
B. P. E. Clapeyron. In 1678 Hooke established a law linearly con­
necting stresses and strains. 

After Navier established the basic equations in 1821 and Cauchy 
developed the theory of stress and strain, of great importance in the 
development of elasticity theory were the investigations of B. de 
Saint V enant. In his classical work on the theory of torsion and 
bending Saint Venant gave the solution of the problems of torsion 
and bending of prismatic bars on the basis of the general equations 
of the theory of elasticity. In these investigations Saint Venant devi­
sed a semi-inverse method for the solution of elasticity problems, 
formulated the famous Saint Venant's principle, which enables one 
to obtain the solution of elasticity problems. Since then much effort 
has been made to develop the theory of elasticity and its applications, 
a number of general theorems have been proved, the general methods 
for the integration of differential equations of equilibrium and motion 
have been proposed, many special problems of fundamental interest 
have been solved. The development of new fields of engineering de-
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mands deeper and more extensive studies of the theory of elasticity. 
High velocities call for the formulation and solution of complex 
vibrational problems. Lightweight metallic structures draw partic­
ular attention to the question of elastic stability. The concentration 
of stress entails dangerous consequences, which cannot safely be 
ignored. 



CHAPTER l 

Elements of tensor calculus 

Many problems of mechanics, theoretical physics, and other 
sciences lead to the concept of a tensor. This concept is of a more 
complicated nature than the concept of a vector. The definition of a 
vector as a directed segment does not allow one to pass to the con­
cept of a tensor by a natural generalization. We shall therefore try 
to give a definition of a vector, equivalent to the former one, such 
that its generalization will lead to the concept of a tensor, which 
cannot be explained by means of a simple geometrical image. To do 
this, we have to introduce into consideration arbitrary curvilinear 
co-ordinates. With reference to these co-ordinates we shall give a 
definition of a vector, and subsequently a definition of a tensor as 
some object that is not altered by a change of the co-ordinate system. 

The advantage of tensor calculus in continuum mechanics is par­
ticularly apparent when we deal with arbitrary co-ordinate systems. 
In the following discussion we shall restrict our attention to a three­
dimensional Euclidean space in which the position of each point is 
determined by three numbers, co-ordinates. Here we shall present 
some basic data from tensor calculus. The presentation makes no 
claim to be complete or rigorous; a summary of definitions and for­
mulas is given which will be referred to in what follows. 

Denote the curvilinear co-ordinates of some point by xi, x2 , x3 

and introduce new co-ordinates of this point x\ x2 , x3 connected 
with the old ones by the relations 

(1.1) 

which are called the formulas of transformation of co-ordinates. 
Suppose that all functions :If in the given range of co-ordinates 

xt, x2 , X3 are single valued, continuous and have continuous partial 
derivatives of the first order, and the Jacobian is different from zero. 
From (1.1) we then find a transformation of co-ordinates which is 
inverse to transformation (1.1) 

(1.2) 
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If any two of the three co-ordinates are fixed and .the third one is 
V'aried continuously, we obtain a line which is called a co-ordinate 
line. We assume that at each point of space there pass three co-ordi­
nate lines not lying in the same plane. It may be proved that this 
requirement is always fulfilled if the Jacobian of transformation (1.1) 
is not zero. 

In the particular case, when we transform from one rectilinear 
rectangular co-ordinate system ox1x 2x3 to another system ox;x;x;, 
instead of (1.1) we have 

3 

Xk= ~ aknX~ (k=1, 2, 3), 
n=i 

(1.3) 

where akn are the cosines of the angles between the axes of the co-or­
dinate systems ox1x 2x 3 and ox;x;x;. 

Here and henceforth, we agree, for shortness in writing, to omit 
the summation sign in (1.3) assuming that the repeated index must 
ibe summed from n = 1 to n = 3. We shall no longer mention that 
we have three formulas (k = 1, 2, 3). Relations (1.3) are then writ­
ten as 

(1.4) 

A transformation of the form (1.4) is said to be affine orthogonal. 

t. SCALARS, VECTORS, AND TENSORS 

Suppose we have a quantity f (x1 , x2 , x3) in some coordinate system 
:xn (n = 1, 2, 3), and a quantity 7 (x\ x2 , x3) in the system xh; if 
under transformation (1.1) the values of these quantities at the same 
points are equal, the quantity f is called an invariant, or a scalar. 
Examples of scalar quantities are density, temperature. 

Suppose we have a set of three quantities An in some co-ordinate 
system xn (n = 1, 2, 3), and a set ,;p in the system;? (k = 1, 2, 3); 
if under the transformation of co-ordinates (1.2) the quantities .A" 
are determined by the formulas 

the set of three quantities An is called a contravariant vector, and 
the quantities An are called its components. As in formula (1.4), 
the summation in formula (1.5) is carried out with respect to the 
index n, which appears twice. It is easy to see that the set of three 
differentials of the co-ordinates forms a contravariant vector. 

Indeed, from formulas (1.2) we have 

(1.6) 
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Comparison of formulas (1.6) and (1.5) shows that ifXn are the com­
ponents of a contravariant vector. 

Suppose we have a set of three quantities An in some co-ordinate 
system xn, and a set A~~, in the system?; if-under the transformation 
of co-ordinates (1.1) the quantities A~~, are determined by the for­
mulas 

(1.7) 

the set of three quantities An is called a covariant vector, and the 
quantities An are called its components. It can easily be verified that 
in the case of the affine orthogonal transformation the definitions of a 
contravariant and a covariant vector are identical. Indeed, by sol­
~ing Eqs. (1.4) for 

(1.8) 

from (1.4) and (1.8) we find 
ax~~, ax:r. 
-a. =-a-=a.~r.n· Xn Xk 

(1.9) 

The last relations show that the transformation formulas (1.5) and 
(1.7) coincide, i.e., we have 

The set of quantities an (n = 1, 2, 3) is called an affine orthogonal 
vector. 

Suppose we have a set of nine quantities Amn in some co-ordinate 
system :ex-, and a set .Aik in the system xi; if under the transformation 
of co-ordinates ( 1. 2) the quanti ties A ik are determined by the for­

-mulas 

(1.10) 

the set of nine quantities A mn is called a contravariant tensor of 
rank two, and the quantities A mn are called its components. 

In formulas (1.10) a double summation must be performed for all 
yalues of the repeated indices n and m (m, n = 1, 2, 3). If 

- axm axn 
Aik = Amn--=:--=- t axt axk (1.11) 

t.he set of nine quantities Amn is called a covariant tensor of rank two. 
If 

(1.12) 

2-0884 
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the set of nine quantities A~ is called a mixed tensor of rank two. 
In the case of the affine orthogonal transformation the definitions of 
a contravariant, a covariant, and a mixed tensor are identical by 
virtue of (1.9), i.e., 

(1.13) 

The set of nine quantities Pnm is called an affine orthogonal tensor of 
rank two. 

Suppose that in any co-ordinate system we have a set of the fol­
lowing nine numbers: 

{ 1 when m=n, c5n -
m- 0 when m:::j:: n. (1.14) 

We shall show that c5~, called the Kronecker symbols, are the com­
ponents of a mixed tensor of rank two; to do this, we must show that 
the c5~ satisfy formulas (1.12) 

By (1.14}, we have 

(1.16) 

Substituting ( 1.1) in ( 1. 2), we obtain 

?=xk(x1(xt, x2, x8), x2(x1, x2, XS), x8(x\ X2, x3)). (1.17) 

By differentiating both sides of (1.17}, we find 

On the other hand, 

(1.18) 

On comparing (1.18) with (1.16) we obtain (1.15), which was to be 
proved. 

Tensors of higher rank are defined in an analogous way. Thus, if 
- i)xm iJxn OXS 
A-k-A ---' r - mns i)zi iJxk fJxT ' 

the set of 27 quantities Amns is called a covariant tensor of rank 
three (the number of components of a tensor is determined by the 
number of dimensions of the space to a power equal to the rank of 
the tensor). 
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Consider a contravariant and a covariant tensor of rank two, Amn, 
Amn· If, when the indices of Amn, Amn are interchanged, the fol­
lowing relations are valid: 

Anm = Amn, Anm = Amn• (1.19) 

the tensors are said to be, respectively, symmetric contravariant 
and symmetric covariant. If, when the indices are interchanged, the 
following relations are valid: 

(1.20) 

the tensors are said to be, respectively, antisymmetric contravariant 
and antisymmetric covariant. 

2. ADDITION, MULTIPLICA'IION, AND CONTRACTION 
OF TENSORS. THE QUO'IIENT LAW OF TENSORS 

(a) Addition. The operation of addition applies only to tensors 
having the same number of lower and upper indices (i.e., to tensors 
of the same rank and type). If we are given two tensors of the same 
rank and type, and if we sum algebraically each component of the 
first tensor and the corresponding component of the second tensor, 
we obviously obtain a tensor of the same rank and type as the origi­
nal tensors. This operation is called addition, and the resulting ten­
sor is called the sum of the two tensors. 

(b) Multiplication. Let us define the product of two tensors of 
any rank and type. By multiplying each component of the first ten­
sor by each component of the second tensor, we obtain a tensor whose 
rank equals the sum of the ranks of the two original tensors. This 
operation is called multiplication, and the resulting tensor is called 
the product of the two tensors. For definiteness, we assume that the 
multiplication in question is that of a contravariant tensor of rank 
two A mn by a tensor of rank three B~t (B~t is once contravariant and 
twice covariant). We then obtain a tensor c~nr whose components 
are determined by the formulas 

c;:nr = ATnB~to (1.21) 

This is a tensor of rank five (three times contravariant, twice cova­
riant). 

The operations of addition and multiplication can be extended to 
any number of tensors. 

(c) Contraction (reduction of indices). The operation of contrac­
tion applies only to mixed tensors; we shall illustrate this by a se­
ries of examples. Let us take, for example, a tensor of rank four 
AZtm, which has one contravariant index and three covariant indices. 
~utting now m = n, we obtain the tensor Bst = A~tn, in which n 
lS ~ repeated index; in accordance with our convention it must be 
2* 
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summed from 1 to 3. As a result we obtain a covariant tensor of rank 
two, i.e., a tensor whose rank is two less than that of the original 
tensor. The operation of contraction, obviously, cannot be repeated 
any more in this example. 

Let us now take a tensor of rank five A~~ and contract with respect 
to any pair of indices, one of which is a superscript and the other a 
subscript. If, for example, we puts= m, we obtain a tensor of rank 
three Bfr = A~?r· We can contract once more with respect to r 
and n, obtaining the covariant vector C t = A~fn· From a tensor of 
rank five A~nr, after double reduction of indices, we obtain the 
contravariant vector Dn = A~;:r. If in a tensor of rank four A~n 
the contraction is carried out twice, we obtain the scalar (invariant) 
/ 1 =A~~ or / 2 =A~~- In the case of affine orthogonal tensors the 
operation of contraction can be carried out with respect to any two 
indices since there is no difference whatsoever between contravariant 
and covariant affine orthogonal tensors. 

By contracting an affine orthogonal tensor Pmn with respect to 
the indices m and n, we obtain the invariant 

C = Pmm = Pn + P22 + Pss· (1.22) 

A combination of the operations of multiplication and contrac­
tion is called scalar (inner) multiplication. The operation of scalar 
multiplication of two tensors reduces first to their multiplication, 
and then to the contraction of the resulting tensor with respect to a 
superscript of one tensor and a subscript of the other. Suppose we 
have two tensors, A mn and B~t; by contracting their tensor product 
in four ways, we obtain a scalar product, viz. Amn B:r,t, Amn B~n, 
ArnB~t. AmtB~t· A scalar product of a contravariant vector Am 
and a covariant vector Bn is the invariant An Bn, which can obvious­
ly be termed the scalar product of the vectors Am and Bn. In the 
case of affine orthogonal vectors an and bm we obtain the scalar pro­
duct of these vectors, a ·b = anbn· 

(d) The quotient law of tensors. Suppose some tensor is given, say 
A~n· We set into correspondence with the covariant indices of this 
tensor arbitrary contravariant vectors ua and vl:l, and with the con­
travariant index a covariant vector Wv· If the product A~nuavf:lwv 
representing a tensor of rank six is contracted with respect to the 
indices m and a, nand ~. k and v, we obtain the invariant 

f = A':nnumvnwk• (1.23) 

Further, suppose we are given two tensors, A::,n and Baf:l. If the pro­
duct A::,n Baf:l, which represents a tensor of rank five, is contracted 
with respect to the indices m and a, n and ~. we have the contrava­
riant vector 

Ak Baf:l_ck af:l - • (1.24) 
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Thus, the operation of multiplication of tensors gives again a ten­
sor. We may now inquire whether a certain system of quantities is 
a tensor if its product with a tensor gives a tensor. There is a theo­
rem on that score which provides a means for easily establishing the 
tensor character of a given system of quantities. This theorem may 
be formulated as follows: 

(1) if for an arbitrary choice of the vectors um, vn, wk the product 
(1.23) represents an invariant, then A::On is a tensor; 

(2) if for an arbitrary choice of the tensor Bar. the product (1.24) 
represents a contravariant vector, then A::On is a tensor; 

(3) if the quantities Amn possess the symmetry property and the 
~ product Amnumun is an invariant for an arbitrary vector uk, then 

A mn is a tensor. 
To prove the theorem of the form (1), it is necessary to verify that 

the components A::On satisfy the definition of a tensor. 
According to the condition of the theorem, for two co-ordinate 

systems, xn and xn, we have T = f, or on the basis of (1.23) 
-v -a-r,- -v Aar,U V Wy =A ar,uavPwy. 

By interchanging the co-ordinates :Xn and xn in formulas (1.5) and 
(1. 7), in the system xn we obtain 

- axa 
ua = um--=--' iJxm 

- axr. 
vr. = vn----=- , 

iJxn 

Substituting these relations in the last formula, we have 

Hence, 

-v - - - 'V axa axr. a7;k - - -
Aar, uavr.wy = Aar,--=- ----- umvnwk. i)xm iJxn ox 'V 

Since, by condition, the contravariant vectors ua, vr. and the cova­
riant vector Wv are arbitrary, we have 

.ifV _ Ak axm axn li:Cv 
ar, - mn a-xa a-xr. iJxk . 

Consequently, A::On is a tensor. 
To prove the theorem of the form (2), relation (1.24) is multiplied 

scalarly by an arbitrary covariant vector D 1; then 

A~r,Bar,Dk= c~<Dk=f, 

where f is an invariant. Consequently, 
-k -a;r,- k ar, 
Aar,B Dk = AapB D,. 
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By interchanging the co-ordinates ;n and xn in formulas (1.10) 
and (1. 7), in the system xn we obtain 

Thus, 

axa axi3 
-=---=-t axm axn 

From this, since the tensors Bmn and Dy are arbitrary, we have 

;p _ Ak axm axn axv 
all - mn axa axil i)xk • 

which was to be proved. 
To prove the theorem of the form (3), the contravariant vector is 

represented as uk = if + wk. Then 

AmnUmUn = AmnVmVn + AmnWmWn + AmnVmWn + AmnVnWm. 

Since, by the condition of the theorem, Amnumun, AmnVmvn, 
and Amnwmwn are invariants and since, by virtue of the symmetry 
of the quantities Amn' we have AmnVmwn = AmnVnwm, it fol­
lows that Amnvmwn is an invariant. Then, noting that vm and wn 
are arbitrary vectors, we conclude from the theorem of the form (1) 
that Amn is a covariant tensor of rank two. 

3. THE METRIC TENSOR 

Consider two infinitely close points A (x\ x2, xs) and A1 (x1 + dx\ 
x2 + dx2 , xs + dxS) in space. These points define an infinitesimal 
vector dr, which is independent of the choice of co-ordinate system. 
Let the length of the vector dr be denoted by ds. If e defines, by con­
dition, the unit vector directed along the straight line AA1 , then 

dr = dse. (1.25) 

From the point A (x1 , x2 , xs) we draw co-ordinate lines which do not 
lie in the same plane and are not, in general, orthogonal. Denote 
by en a system of vectors, not of unit length, directed along the tan­
gents to the co-ordinate lines; then 

dr_1 = dx1e1 , dr2 = dx2e2 , drs = dxses, 

where dr1 , dr2 , drs are infinitesimal vectors defining a parallelepiped 
whose diagonal is the vector dr, i.e., 

(1.26) 
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From this, according to the rules for the scalar multiplication of 
vectors, we find 

where 
(1.27) 

(1.28) 

The system of vectors en is called the covariant base of a co-ordinate 
system. 

The coefficients gnk in the quadratic form of the differentials dxm, 
as seen from (1.28), form a symmetric matrix (gnk = g1m)· Thus, by 
the quotient theorem, gnk are the components of a covariant tensor, 
called the covariant metric tensor. 

When using curvilinear co-ordinates, it is advisable to introduce, 
along with the fundamental base en, the reciprocal contravariant 
base ek, i.e., a triplet of vectors ek connected with the fundamental 
vectors en by the formulas 

(1.29) 

where 6~ are the Kronecker symbols. 
To do this, it is sufficient to put 

ei = e2 X e3 e2 = e3 X e1 e3 = e1 x e 2 

g ' g ' g (1.30) 
g = e 1 • ( e 2 X e a) • 

From (1.29) it also follows that 
e 3 X e1 

e2 = gl ' 

gt=e1 -(e2 xe3). 

(1.31) 

Thus, en is perpendicular to the (ek, em) plane. 
If the co-ordinate system is orthogonal, it is obvious [see (1.30) 

and (1.31)1 that the base vectors en and ek coincide in direction, but 
their magnitudes are in general different. 

We represent the vector en as a linear combination of the vectors ek: 

en= cnkek (k, n = 1, 2, 3). 

Taking into account relations (1.28) and (1.29), we obtain Cnk = 
= gnk; consequently, en = gnkek. 

From this, by Crammer's rule, we find 

ek= G;k en=gnken (g=i=O). (1.32) 

Here Gnk is the cofactor of the element gkn in the determinant g. 
From (1.32), on the basis of (1.29), we have 

e~t.en= Gnk =gnk. (1.33) 
g 
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The gnk . are sym~etric. Substituting (1.32) in (1.29), we have 
(en •ei) ffk = gnigJk = 6~. . 

From this we conclude .that g1k are the components of a contrava­
riant tensor. The te.nsor g1k is called the contravariant metric tensor. 
The components g1k of this tensor can be calculated by means of 
(1.33). 

We now multiply the contravariant vector Am by the metric ten­
sor gkr and contract; we then obtain the covariant vector gkrA k, 
which will be denoted by A 7 • Consequently, 

Likewise, 
Ar = gkrAk. ( 1.34) 

AT=gRTAk, 

g~ =gkngnT. 

(1.35) 

(1.36) 

The vectors Ar and AT related by formulas (1.34) and (1.35) are 
called associated vectors. As seen from formulas (1.34) and (1.35), 
we can easily calculate the components of either of the vectors A r 

or AT from the components of the other. Hence, Ar and AT may con­
veniently be considered as different, respectively covariant and 
contravariant, components of the same vector A. 

The tensor g~ is called the mixed metric tensor. It is easy to prove 
that g~ is identical with the Kronecker tensor. Indeed, on the basis 
of formulas (1.34), (1.35), and (1.36) we have 

Ak = gkrAT = gkrgmT Am= g'f: Am, 
whence 

Ak=g'f:Am. 

For these relations to be fulfilled for all values of Ak, the components 
of the mixed metric tensor g'f: must be chosen as follows: 

{ 1 when k=m, 
g'f: = 0 when k =I= m, (1.37) 

Consider now the covariant tensor Ark· If the first index r is to be 
raised, the tensor Ark must be multiplied by gmn and then contracted 
with respect to the first index, i.e., 

A~k = gTmAmk• 

In order that one may know which index has been raised, a dot is 
inserted in its place. For example, in the equality 

A~.=gRnArn 
the second index k has been raised. Both indices can be raised by the 
formula 
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These operations can obviously be completely extended to tensors 
of any rank. All tensors obtained from each other in this way are 
called associated tensors; their components may also be regarded as 
the components of the same tensor. 

In a rectilinear rectangular system of co-ordinates the square of 
the distance between a point A of co-ordinates Xm and a point A1 

of co-ordinates Xm + dxm is given by 

Since 

it follows that 

ds2=dx:a. 

d oxm d n 
Xm= {)xn X • 

Formula (1.38) may now be put into the form 

d 2- oxm OXm d n d k 
S - {)xn oxk X X . 

By introducing the notation 

the last formula may be represented as 

ds2 = gnk dxn dxk. 

(1.38) 

(1.39! 

(1.40) 

We conclude from the quotient law of tensors that gnk is a covariant 
tensor. 

We now determine the values of the contravariant and covariant 
components of a vector a given at a point P of space. Draw through 
this point three co-ordinate surfaces 

xk = constant. (1.41) 

The intersections of these co-ordinate surfaces determine three 
co-ordinate lines. 

We calculate the angles that the directions ek and ek make with 
the axes of the rectangular Cartesian system of co-ordinates Xm· 
Take an elementary vector drk along ek; its length is determined by 
the formula 

dsk=ldrkl= V dx~. 
Here the index m is summed from 1 to 3. Taking into account that 
the co-ordinates Xm along the co-ordinate line xk depend only on 
the co-ordinate xk, the last formula is put into the form 

dsk= V ( ~:~ )2 d~ 
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or, by formulas (1.39), 
V- k 

ds11.= gkkdx. 

The expression for the cosine of the angle between the direction e11. 
and the Xm axis then becomes 

( ) dxm 1 OXm 
COS ell., Xm =--=---=---. 

ds11. V gkk iJxk 
(1.42) 

As is known, the formula for the cosine of the angle between the 
·direction ell. (or between the vector grad xk) and the Xm axis is of the 
form 

1 iJxk oxk 
cos (ek, Xm) =I d "I :;--x .. / ,, ;;--x • gra X"' u m V ( iJxk ) "' u m 

OXj 

(1.43) 

Taking into account that the components of the tensor gnk in a 
rectangular Cartesian co-ordinate system are equal to 6~, we have, 
by (1.10), 

from this 

kk = ( oxk) 2 
g OXj • 

•On the basis of this formula we find from (1.43) 
k 1 iJxk 

cos(e, Xm)= ,r- -8-. 
r gkk Xm 

( 1.44) 

Denote the contravariant and covariant components of the vector 
.a by All. and A~~., and its components in the rectangular Cartesian 
co-ordinate system by am. Further, let aek and aek denote the pro­
jections of the vector a, respectively, on ek and ek. Noting that 
a = imam (im are the unit vectors of the rectangular Cartesian co-or­
dinate system), according to the basic formula for the projection of 
a vector on a given direction we obtain 

(1.45) 

(1.46) 

•On the other hand, on the basis of formulas (1.5) and (1.7) we have 

k iJxk 
A =am-,-, 

uXm 
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Substituting these expressions in (1.45) and (1.46), respectively, we 
obtain, finally, 

1 
a.k = ,,- Ak, 

r gkk 

a.k = ,/ Ak. 
r gkk 

(1.47) 

(1.48) 

We note once more that the index k is not to be summed in (1.47) 
and (1.48). If the curvilinear system of co-ordinates is orthogonal, 
the directions ek and ek coincide, and aek = a.R.; denote these 
by ax"· 

If the curvilinear system of co-ordinates is orthogonal, then, as 
is known, 

where ll11 are scale factors. 
In this case we obtain from (1.47) and (1.48) 

axR.= ;h. Ak=HR.Ak. (1.49) 

The ax'< are called the physical projections of the vector a. 
We now denote a tensor of rank two in rectilinear rectangular 

co-ordinates x; by Pik• the physical projections of this tensor in 
curvilinear orthogonal co-ordinates xi by Pxixk, and its contrava-
riant components by A ik; by the formulas ( 1.10) for the transforma­
tion of the components of a tensor we then have 

A. h. iJxi iJxk 
t = Pafl OXa iJxfl . 

Taking into account (1.44) and noting that gkk = Hk. 2, we can write 
"h. 1 . h. 

At = H ;HR. Pafl cos (et, Xa) cos (e , Xfl). 

On the basis of (1.13) 

Pxixk = Pafl cos ( ei' X a) cos ( ek, Xfl); 
then 

P . L =H·ll Aik xtx" l h. . 

Noting that AiR.= gii gkk A; h.= Hi2Hk. 1 A;R., we have 

PxixR.=lliHR.Aik = Hi~k AiR.· (1.50) 

Let us determine the angle f} between two arbitrary vectors A 
and B given at the same point. The vectors A and B can be deter-
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mined by a linear combination of the form 

A= Ake~t=A~te~t, 

B = Bnen = Bnen. 

The scalar product of the vectors A and B is 

A·B=(ek·en)AkBn = (ek.en)A~tBn = (ek.en)AkBn = (ek·en)A~tBn 
or 

A·B = g~tnAkBn = gknA~tBn = AkB~t= A~tBk. 
On the other hand, 

where 
A • B = I A II B I cos f}, 

I AI= V A·A= Y gknAkAn= V gRn.AkAn =·-v AkAk, 

I B I= V gknBkBn= V gRnBkBn = V BkBk. 

Substituting (1.51) and (1.53) in (1.52), we find 

(1.51) 

(1.52) 

(1.53) 

COS f} = gknAkBn (1.54) 
V gknAkAn V gknBkBn . 

From this we obtain a condition for the orthogonality of two vec­
tors A and B: 

4. DIFFERENTIATION OF BASE VECTORS. 
THE CHRISTOFFEL SYMBOLS 

It follows from (1.26) that 
or 
axn =en 

(1.55) 

(1.56) 

The base vectors are, in general, functions of position of the point 
at which they define the co-ordinate trihedral. The variations of the 

base vectors are characterized by the values of the derivatives::~. 
In an Euclidean space the derivative of a vee tor with respect to a 
scalar argument is obviously also a vector. 

The values of:;; are represented as the sum of three vectors paral­

lel to the base vectors en, i.e., 
oen rj --= nke· oxk J 

(1.57) 

The quantities f~~t are called the Christoffel symbols, or they are 
sometimes referred to as the three-index symbols. If the co-ordinates 
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are Cartesian, then en are constant vectors, hence r'nk = 0, while 
for a curvilinear co-ordinate system r~ =I=' 0. 

It follows from (1.56) that 
oen aek 
i)zk = azn. (1.58> 

On the basis of (1.58) we have from formulas (1.57): 

r~kej=r~nej, 
from which it follows that 

(1.59) 

The Christoffel symbols are expressed in terms of the derivatives 
of .the metric tensor. By multiplying equality (1.57) scalarly by em, 
arid taking into account (1.28) we obtain 

(1.60) 

By interchanging the indices nand kin equality (1.60), and using 
(1.59), we find 

(1.61) 

By adding (1.60) and (1.61), we have 

iJgnm + ogkm - ( • oem + . oem ) = 2rj . 
i)zk axn en iJxk ek axn nkg]m• (1.62) 

Calculate the parenthetical expression in this formula. Taking into 
account relation (1.58), we find 

ogkn a ( ) aek + oen oem + oem 
axm = 7fX1ii en. ek = en. axm ell.. axm =en i)zk ek. axn • 

Consequently, formula (1.62) becomes 

2rj g = ognm + ogkm- ogkn 
nk Jm iJxk axn axm • (1.63) 

On multiplying (1.63) by gam, and summing the index m, we obtain, 
with (1.36) and (1.37), 

r~k =_!:._gam ( ognm + iJgkm - i}gkn ) (1.64) 
2 iJxk axn axm • 

From this it is also seen that the Christoffel symbols are symmetric 
in the indices n and k. 

It can easily be shown that the following equality holds: 

(1.65) 
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By differentiating the equality en ·em = 6:::_, we obtain 

aen + n Bem O --•em e ·-- = . axk axk 

Taking into account (1.57), we find 

aen ( 1l ) ri n --·em=- e ·e, mk= -rmk· axk 
a en 

We now represent -- as 
axk 

aen n j 
--=B;ke. 
axk 

Multiplying both sides of this equality scalarly by em gives 

aen Bn s;.i Bn --•em= jkUm= mk• axk 

On ~omparing this relation with expression (1.65'), we find 

B":nk= -r::nk. 

From this we arrive a( formula (1.65). 

5. A PARALLEL FIELD OF VECTORS 

(1.65') 

As we have seen above, the algebraic operations on tensors again 
lead to tensors, which cannot be said, as we shall see below, about 
their differentiation. The partial derivatives of the components of a 
tensor constitute a tensor only in a Cartesian co-ordinate system. 
In curvilinear co-ordinate systems the situation is more complicated. 
Here we have to introduce so-called covariant differentiation whose 
action on a tensor again gives a tensor. The covariant derivative is 
identical with the ordinary derivative when the tensor is referred to 
a Cartesian co-ordinate system. 

If f (s) is a scalar function (s is the parameter), then T = f in the 
new co-ordinates, and hence 

l . f(s+t..s)-f(s) l' f (s+~s)-t(s) liD = liD ..:....!.___:_......,...;:..__.!....!...:.. 

~s-+0 t..s ~a-+0 t..s 

or 

from whi.ch it is seen that the derivative of a scalar function with 
respect to the parameter is again a scalar. 

The definition of the covariant derivative of a vector and a tensor 
will be given in Sec. 6. We first turn our attention to the investiga­
tion of a parallel field of vectors. 
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Let the co-ordinates of an arbitrary point P on the curve under con­
sideration be functions of the parameter s. At each point of this. 
curve construct a vector equal to the vector given at the point P. 
Thus, we have a parallel field of vectors along the curve. We shall 
derive equations which this field must satisfy. 

Denote the components of the vector field under consideration in 
the system of co-ordinates x"' by A"', in the Cartesian system of co­
ordinates Xm by am. In the Cartesian co-ordinate system the com­
ponents of parallel vectors are constant along the curve, and henc~ 
dam = 0. 
ds 

By the definition of a vector, 

am= A"' OXm 
oxk • 

By differentiating the last equality with respect to the parameter s~ 
we have 

(1.66) 

On multiplying Eqs. (1.66) by gaf3 oxm , and summing the index m ax a 
from 1 to 3, we find, from (1.39) and (1.37), 

(1.67)· 

By differentiating equalities (1.39) with respect to xa, we further­
have 

(1.68)) 

In equalities (1.68) we make twice a cyclic permutation of the 
indices n, k, ex, and subtract (1.68) from the sum of the equalities 
thus obtained. We find 

(1.69) 

Substituting (1.69) in (1.67), we have 

dAf3 +rf3 A"' dxn = O 
ds nk ds · (1. 70) 

Thus, the parallel vector field along the given curve must satisfy 
the differential equations ( 1. 70). 

Take any vector at a given point of space and construct vectors 
parallel to it at all points of space. The components AB of this paral­
lel vector field are functions of the co-ordinates xP. If a curve is 
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<irawn through any point of this field, the vectors on that curve 
.obviously satisfy Eqs. (1. 70). But we now have 

dAII aAII dxn 
~= axn ds' 

.and Eqs. ( 1. 70) become 

( aAII +rll Ak) axn =O 
axn nk ds • (1.71) 

Taking into account that condition (1.71) must be true for all 
.curves issuing from the point P, we find that the parallel vector 
field satisfies a system of differential equations of the form 

<6. THE RIEMANN-CHRISTOFFEL TENSOR. DERIVATIVE 
OF A VECTOR. THE GAUSS-OSTROGRADSKY FORMULA. 
THE e-TENSOR 

(1.72) 

We now pass on to the determination of new tensors by differen­
~tiating given vectors and tensors. Let f be a given scalar function of 
the co-ordinates of a point :0. In the new co-ordinates ;m related to 
:ck by formulas (1.1) we then have T = f. Taking into account the 
last equality, and using (1.1), we have 

aT=~ axk 
axm oxk axm. (1. 73) 

Thus, the derivative of a scalar function with respect to the co-ordi­

nates gives a covariant vector :!k . 
Consider the parallel vector field of an arbitrary contravariant 

vector All along some curve and a covariant vector B 13 defined on 
the same curve. At any point of the given curve the product B 13AII 

is a scalar function of the parameters, and hence :s (B 13AII) is also 

.a scalar. On the right-hand side of the equality 

we substitute 

.or 

~ (B All) = dBf'> All . - B dAi3 
& f3 & ~ i3 & 

(1.74) 
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Taking into account that All is an arbitrary contravariant vector 
of the parallel vector field and that the product of such a vector 
with the expression inside the parentheses on the right-hand side of 
(1.74) is a scalar, we conclude from the quotient law of tensors that 

dBts -r~ » .. dxn 
ds ,_... ds (1.75) 

is a covariant vector. 
The covariant vector (1.75) is called the absolute derivative of the 

covariant vector B 11 with respect to the parameter 8 and is denoted 
b 6BII 1 y T ; consequent y, 

~BII = dBIJ -r~nB .. d,xn • lis ds ., ,. ds (1.76) 

Suppose that in any one co-ordinate system the following equation 
is satisfied: 

(1..77) 

it is then satisfied in every other system. In the case of a Cartesian 
co-ordinate system (Jin == 0) Eq. (1.77) becomes 

dB15 -O 
ds-. 

It follows that the vector B15 is also a parallel vector field along the 
curve under consideration. Thus, (1. 77) are the equations that the 
covariant parallel vector field B15 along the given curve must satisfy. 

Consider the parallel vector field of an arbitrary covariant vector 
A15 along a given curve and a contravariant vector Bll defined on the 
same curve. Proceeding in the same way as in the derivation of for­
mula (1. 76), and taking into account that the parallel vector field 
A 15 must satisfy (1. 77), we obtain the absolute derivative of the 
contravariant vector with respect to the parameter 8 

a::= d:: +rfnB" ~n. (1.78) 

Let Bll be a field of contravariant vectors defined in some space. 
Take an arbitrary curve passing through any fixed point of this 
space; from (1. 78) and 

we find 

l)BII == { aBP +rP B") dxn • 
l'>s axn kn ds 

3-0881. 
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Since ~n is an arbitrary contravariant vector and B:,t'J is a contra­
variant vector, it follows from the quotient law that the expression 
in the parentheses is a mixed tensor of rank two. This tensor is called 
the covariant derivative of the vector Bt'J and is denoted by B~n; 
here the comma before the index n indicates differentiation with 
respect to xn. Consequently, 

ft6 aBt'J ('J k 
D;n=~+fknB. (1.79) 

In a similar way we obtain a covariant tensor of rank two 
8Bp k . 

Bp, n = azn -fp,nBk• (1.80) 

Th_is tensor is called_ t:he covariant derivative of the, vector B 11• 
We• shall now extMd these· results t,o-. the differerttiatidll of a ten­

sor. Consider arbitrary parallel vector fields Bm and en· defined: 
along some curve. Let A mn be a tensor of rank two defined along the 
same curve. At each point of this curve A mnBmcn gives a scalar; 
hence, its derivative with respect to s is also a scalar 

..!!_ (A Bmcn) = dAmn Bmen +A !:!!::::__ en+ A . Bm den • 
ds mn ds mn ds mn ds 

By eliminating the derivatives of the vectors by means of (1. 70), 
we obtain 

d (A Bmcn) ( dAmn ra. A dxt ra. A dxt ) Bmcn dS mn = ---czs- mt an ds- nt mads • 

Consequently, we conclude from the quotient law that the expression 
in the parentheses on the right-hand side is a tensor of the same type 
and rank as Amn· It is called the absolute derivative of the tensor 
Amn and is denoted by B~;n • Then 

BAmn dAmn ra. A dxt ra. A dxt 
~=~- mt anTs- nt ma.Ts• (1.81) 

Consider a tensor field in some space. If a curve is taken passing 
through any point of this space, expression (1.81) along this curve 
is a tensor. 

Noting that 
dAmn 8Amn dx('J ---crs = a;r-Ts t 

formula (1.81) may be put into the form 

BAmn ( aAmn ra. A ra. A ) dx('J 
~= ~- m('J a.n- n('J ma (i8• (1.82) 
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Taking into account that (1.82) is a tensor and ~:tJ is an arbitrary 
contravariant vector, we conclude from the quotient law that the 
expression in the parentheses is a tensor with one covariant index 
more than Amn; this tensor is called the covariant derivative of the 
tensor Amn and is denoted by Amn, tJ· Here the comma indicates 
differentiation with respect to xfl; consequently, 

A aAron ra. A ra. A 
mn,-fi=-a;r- mf} a:n- n(} ma:• (1.83) 

The foregoing method can be used to evaluate the absolute and 
covariant derivatives of a tensor of any type and of arbitrarily 
high rank. Thus-, if a,tensor is speci6ed by contravariant components 
Amn, then 

Anm _ aAmn + rm Aa:n + rn Ams 
,tJ, -aJr a.P a:tJ • (1.84) 

Let us evaluate the second covariant derivative of. the covariant 
vector Bn i.e., with the aid of formula'(1.83), we determine 'the cova-­
riant derivative of the tensor Br.a: 
B aB,.,s rmB rmB a2B,. rm aBm r,st= --t-- rt m,11,- st r,m=-t--- ,..-.t--

ax ax a~s ax 
rm aBm rm aB,. B ( a rm rmrp T'f171'rp) - rt 7j;8- st """{j;m- m- axt TB - rp st- ~ sp rt o 

Let us permute the indices s and t in this formula and subtract one 
expression from the other. By using the symmetry property of the 
Christoffel symbols, we have 

where 
(1.85) 

RP - a rP a rP rmrp rmrp .rst= axs rt--t rs+ rt ms- rs mt· 
ax (1.86) 

The left-hand side of (1.85) is a tensor and Bp is an arbitrary cova­
riant vector; we conclude from the quotient law that R!'rst is also a 
tensor. The tensor R~rst, which is called the Riemann-Christoffel ten­
sor, consists only of the components of the covariant metric tensor 
Kmn and their derivatives up to the second order. 

Let us lower the index p in (1.85), i.e., 

. Rprst = g pmR~.t = g pm a=· r~- g pm a:t r~ + r~r P• ms- r~r p, mt .. 

where 
r - 1 ( agmp agps agms ) 

P• ms - 2 --;;;;-+ axm - axP ' 

r m, ps =.!. ( agmp + agms - agps ) . 
2 axs axP axm ' 
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from this 
agmp 
a;s=fp, ms+f m. ps· 

Noting that 

. a rm a ( rm) rm ag pm 
Cpm ax• rt = ax• gpm rt - rt a;;-= 

= a:a rp,rt-r~ (fp, ms +f m, J•S)I 

we find 

Rpr!Jt. = a~s r P• rt- a:t r P• rs + f;!!f m. pt- f:if m. ps• 

Inserting the expressions for r P· ms under the derivative signs in the 
last equality, and using formula (1.64}, this becomes 

R 1 ( o2gpt + o2grs 
, prst = -2 {)xS (}xT axt 8xP 

+ gmn (f m, rsr n. pt -r m. rtf n. ps)· (1.87) 

The properties given below follow' directly from the last formulas: 

Rprst = - Rrpst. 

Rprst = -Rprts• 

Rprst = Rstpr• 

Rppst = 0, 
Rprtt = 0. (1.88) 

"The equalities in the first two lines express the antisymmetry of the 
tensor Rprst with respect to each pair of indices p, rands, t. Taking 
into account properties (1.88}, after calculation we find that, of 81 
-components of the Riemann-Christoffel tensor, there are only six 
,independent components, namely R1212 , R1313, R 2323 , R1213 , R 2123 , 

-Ra1a2· 
It is known that a Cartesian co-ordinate system can be introduced 

into the whole Euclidean space. Since the components of the metric 
rtensor are constant in the Cartesian co-ordinate system, and hence 
the Christoffel symbols are zero, from formulas (1.87) we have 

Rprst = 0. (1.89} 

Thus, conditions (1.89) are necessary conditions for a space to be 
Euclidean. 

The converse may also be proved. If the Riemann-Christoffel ten­
-sor vanishes at all points of space, co-ordinates xt, x2, x3 may be 
chosen in this space such that the quadratic form will become ds2 = 
gihdxixk, with constant coefficients. The constancy of these coef­
ficients indicates that the space is Euclidean. Consequently, the 
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condition that the Riemann-Christoffel tensor is zero provides a 
sufficient condition for a space to be Euclidean. 

It has been shown above that in a three-dimensional space the 
Riemann-Christoffel tensor has only six independent components. 
Consequently, conditions (1.89) may be replaced by six independent. 
conditions of the form 

Rprst = 0 (prst = 1212, 1313, 2323, 1213, 2123, 3132). ( 1. 90) 

Thus, conditions (1.90) are necessary and sufficient conditions for a 
space to be Euclidean. 

Let us derive the Gauss-Ostrogradsky formula in a curvilinear 
co-ordinate system. 

As is well known, the formula for the transformation of a volume­
integral into a surface integral in a rectangular co-ordinate system,. 
i.e., the Gauss-Ostrogradsky formula, is of the form 

(1.91) 

where ro is a closed surface bounding the volume 1:, z~~. are the direc­
tion cosines of the outward normal to the surface- ro: 
- Take now a curvilinear system of co-ordinates :If and let A k deno­

te a contravariant vector defining the vector ak in the xk co-ordinate­
system. Remembering that A~ is a scalar, we have 

Ak _ 8a11. 
,k- {}xk • (1.92) 

Denote by nk the covariant components of the unit outward nor­
mal vector whose components in the xk co-ordinate system are z~~.. 

On the other hand, 
A~~.n~~. = a~~.z~~.. (1.93) 

Consequently from (1.91), with (1.92) and (1.93), we obtain 

~ A\d't= ~ Akn~~.d<u. (1.94) 
't (I) 

In conclusion we consider the e-tensor. Let the components of an 
object erst be altered in sign, but not in absolute value when any two 
indices are interchanged. Consequently, the components of the sym­
bol erst can obviously have only the following values: 0, when any 
two of the indices are equal; +1, when rst is an even permutation of 
the numbers 1, 2, 3; -1, when rst is an odd permutation of the num­
bers 1, 2, 3. 

Consider the determinant I a~ 1. Here the upper index denotes the 
row and the lower index the column. If the determinant is expanded 
in full by columns, it reads 

I T I i j k as = ± a1a"a3 • 
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Here the summation is carried out with respect to the indices i, j, k, 
which form permutations of the numbers 1, 2, 3, and the plus or 
minus sign is given accordingly as the permutation of these numbers 
is even or odd. By the definition of the e-symbols, the determinant 
equals 

Consider the sum 
i j h 

e;1haaaflav (i, j, k, rx, ~. 'Y = 1, 2, 3). 

Taking into account that the indices i, j, k are summation indices, 
we have 

ijh ijh ijh 
e;1haaaflay = - ehiiaaaflay = - e;1hayaflaa. 

Thus, the interchange of the indices rx and 'Y alters the sign. The same 
result holds for any other two of the indices. Consequently, the sum 
under consideration is antisymmetric in the indices rx, ~. -y, i.e., 

(1.95) 
i axi 

By putting ai=---=-=- in formula (1.95), and noting that the Jacobian 
ax3 

l a:~ I =1= 0, we obtain 
,l ax' 

(1.96) 

Introduce a new co-ordinate system yi = yi (xt, x2, ·xs) and set up 

an expression for eiih /~;:I· On the basis of formula (1.96) we obtain 

e;. I !::._ I = I axr ,- 1 e axa a.Xfl axY I !::._ II axr I 
;h ays ay• ally ayi ayi ayh ax• ay• 

or, after cancelling out I !;~ I =F 0, we have 

e·. I axr I= e I axr I a-xa a.xfl ax" 
Z]h ays ally axs ' ayi ayJ {}yk • 

From this and from the definition of a tensor the quantities 

e;111. I a::_r I represent a tensor ; it is denoted by Bijk· 
ax• 

Introduce now three non-coplanar vectors, Ai, B1, Ck. From the 
definition of the triple scalar product it follows that 



CHAPTER II 

Theory of stress 

Initially Cauchy and Navier regarded a solid as a system of mate­
rial particles. Each pair of particles were assumed to be intercon­
nected by forces of interaction directed along a straight line joining 
them and linearly dependent on the distance between the particles. 
With the level at which physics was at the beginning of the nine­
teenth century, it was impossible to describe the elastic properties 
of real bodies in this way. At present there are rigorous physical 
theories which enable one to determine the elastic properties of crys­
tals of different structure proceeding from the consideration of the 
forces of interaction between the atoms in a crystal lattice. An 
easier way followed by the modern theory of elasticity is to consider 
the distribution of the substance of a body to be continuous through­
out its volume; this allows the displacements of particles to be as­
sumed as continuous functions of co-ordinates. 

To calculate the force of interaction between particles situated 
on one side of an arbitrary element, imagined to be isolated inside 
the body, and particles situated on the other side of this element, it 
was found advantageous to introduce the concept of the averaged 
force of interaction between them. 

The error resulting from the above abstraction may be appreci­
able in the case of determining the relative displacements of points 
that are originally spaced apart at distances comparable with the 
distances between particles, and in determining the force acting on 
an element of comparable size with the square of the distance be­
tween particles. 

In solving practical problems of the deformation of a solid this 
abstraction introduces no serious errors, a fact which justifies the 
replacement of a solid by a continuous medium. 

7. TYPES OF EXTERNAL FORCES 

Two types of external forces acting on a body are distinguished. 
1. Surface forces are those which arise at points of the body sur­

face. 
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Let an element dro of the body surface be acted on by a force dP, 
then the vector 

dP 
dw =Tn (2.1) 

represents the force per unit surface area at the point M (Fig. 1). 
It is called the intensity of surface force and its dimension is for­
ce/length2. 

0 
Fig. 1 Fig. 2 

The resultant vector and the resultant moment of the surface 
forces applied to the entire surface ro are, by definition, 

(2.2) 

L=J(rXTn)dro. (2.3) 
(J) 

Here ~ is the surface integral, r is the radius vector of the point of 
(J) 

application of the force with reference to an arbitrarily chosen ori­
gin of co-ordinates. 

Examples of surface forces are the pressure of liquids or solids 
that are in contact with a given body, the pressure of light, etc. 

2. Mass forces are those which act on an element of mass of a body 
(Fig. 2). Let the mass dm = pd-r enclosed in an element of volume 

d-r of the body be acted on by a force dQ. The vector F = ~~ then 

represents the force per unit mass at the given point. 
Volume forces F* are also considered, which are defined by the 

formula 
dQ dO 

F*= --p ---"'--=oF lc dm • (2.4) 
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The resultant vector and the resultant moment of the volume 
forces applied to the entire volume 't are 

V =) Fpd't, 
,; 

L= J (-r X F) pd't. 

Here J is the volume integral. 

• 

(2.5) 

(2.6) 

A typical example of mass forces is provided by gravitational for-
ces. If the x3 axis is directed vertically downward, the gravity force 
per unit volume isl 

F*= iapg. (2.7) 

8. THE METHOD OF SECTIONS. THE STRESS VECTOR 

The positions of particles in an undeformed body correspond to 
its state of thermal equilibrium. If a certain volume is isolated from 
this body, all forces exerted on it by other parts are balanced. Under 

Fig. 3 Fig. 4 

the action of external forces, however, the positions of particles in 
the body change, i.e., the body deforms, with the result that internal 
forces arise. To determine the latter, use is made of the well-known 
method of sections. Suppose we have a deformable body which is 
in equilibrium under the action of external forces. Imagine it to be 
cut by a surface mm into two parts. By removing one part, we replace· 
its action on the remaining part by internal forces distributed over 
the surface of the section; these are the bonding forces between par­
ticles of the body situated on both sides of the section (Fig. 3). The 
forces acting at the points of the surface of the section may now be 
classified as external surface forces. For equilibrium of the remain-
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ing part, these forces must be chosen so that, together with the 
prescribed forces acting on the part of the body under consideration, 
they will constitute a balanced system of forces. Denote by Ll V and 
ilL, respectively, the resultant vector and the resultant moment of 
the forces distributed over a surface element Llro of the section mm 
with normal n at the point M. The direction of the normal n to the 
surface element Llro is considered positive if it is directed from the 
remaining to the removed part. 

Assuming that in the model of a continuous medium considered 
by us there is only central action between its particles, we have 

l . IlL O l" LlV T 
liD --,.---- = , liD -.---- = n. 

~w~o uW ~w~O uW 

The vector Tn is called the stress vector on the surface element 
with normal n at the point M. 

In considering the model of a medium introduced by W. Voigt in 
1887 it is assumed that, in addition to the ordinary central action, 
there is also rotational action between its particles. Then, besides 

the stress vector Tn, there is also a couple­
stress vector M n equal to 

M n = lim ~L =I= 0. 
~W-+0 uW 

The latter model will not be discussed here. 
The dimension of the stress vector, as 

follows from its definition, is force/length2 • 

The stress vector Tn can be resolved into 
two components: 

(1) The normal component directed along 
the normal n is called the normal stress 
and denoted by O"n· Fig. 5 (2) The tangential component directed 
along the tangent to the curve of intersec­

tion of the plane passing through T n and n and the surface of the 
section is called the shearing stress and denoted by 't"n (Fig. 4). 

The normal stress is commonly considered positive if its sense 
.coincides with the sense of the outward normal to the surface of the 
section at a given point. Otherwise negative. 

If the direction of the stress vector Tn coincides with the normal 
:to the surface _:of the section at a given point, then 

Tn =an and 't"n = 0. 

ln this case the normal stress is called the principal normal stress, 
and the area on which this stress is acting is called the principal 
area at a given point. 
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The stress referred to the surface element dro with normal n in 
the undeformed state is called the engineering stress, and the stress 
referred to the surface element dro' with normal n' in the deformed 
state is called the true stress. 

Suppose that the stress vector Tn characterizes the action of a body 
A on a body B transmitted through a surface element of the section 
with normal n, and the stress T -n characterizes the action of the 
body B on the body A transmitted through the same surface element 
(Fig. 5). . . 

On the basis of Newton's third law we have the equality 

(2.8) 

9. THE STRESS TENSOR 

We choose some point P in a body and draw, through it, the co­
ordinate lines of an arbitrary curvilinear system of co-ordinates a!. 

Consider, at the point P, a tetrahedron imagined to be isolated 
from the undeformed body by three 
co-ordinate surfaces defined by the cova-
riant base vectors ek and a surface the n 
outward normal to which is a certain 
direction n (n is the unit vector) passing 
through the same point P (Fig. 6). 

Consider the motion of the tetrahed­
ron. Denote by dro1 , dro 2, dro 3 , and dro, 
respectively, the surface areas CPB, 
APC, APE, and ABC. These surfaces, 
whose normals are, respectively, the 
vectors of the reciprocal base ek and the 
unit normal n, are acted on by the for-
ces -Tk drok (k = 1, 2, 3) and Tn dro, Fig. 6 
where T k and T n are the stress vectors 
on the co-ordinate areas with normals ek and n. Besides, the volume 
force of the isolated element is p ( F - W) d-r (here W is the 
acceleration, p is the density of the material of the undeformed 
medium). 

On the basis of D'Alembert's principle the equation of motion of 
the tetrahedron as a rigid body is of the form · 

Tn dro-Tk drok- p (F- W) d-r= 0. (2.9) 

Here the index kin the second term is summed from 1 to 3. Since the 
sum of the vectors of the areas for the tetrahedron is zero, we have 

(2.10) 
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Noting that ek · ek = tfk and n = nk ek ( nk are the covariant com­
ponents of the unit vector), instead of (2.10) we have 

nk dro ek = vdrok ek' 
gkk 

from which 

drok = V gkk nk dro. 

Substituting this in (2.9), we obtain 

Tn-Tk V tfk nk-P (F- W) :~ =0. 

Let the distance from the point P to the surface ABC tend to zero 
while the direction n is kept constant. Taking into account that 
dt: 
dro -0, from the last equation we find 

T n = V gkk T knk# (2.11) 

The stress vector Tk may be represented by three components 
referred to the vectors of the covariant base em, i.e., 

V gkk T k = ukmem. 

Substituting (2.12) in (2.11), we obtain 

T n = ukmnkem• 

(2.12) 

(2.13) 

Noting that Tn = T~em, where T~ are the contravariant compo­
nents of the stress vector, we find 

(2.14) 

In (2.13) a double summation is carried out with respect to the 
indices k and m, and in (2.14) a single summation is carried out with 
respect to the index k. 

Formula (2.14) determines the contravariant components of the 
stress vector on the area specified by the normal n; hence, we con­
clude from the quotient law of tensors that the akm constitute the 
contravariant components of a tensor of rank two. The tensor akrn 
is called the contravariant stress tensor. 

10. EQUATIONS OF MOTION AND EQUILIBRIUM IN TERMS 
OF THE COMPONENTS OF THE STRESS TENSOR 

It is known that in order to set up the equations of motion of an 
absolutely rigid body it is necessary and sufficient to equate to zero 
the resultant vector and the resultant moment of the external 
forces acting on it and the inertia forces. 
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In order to set up the equations of motion of a deformable body 
it is necessary and sufficient to equate to zero the resultant vector 
and the resultant moment of the external and inertia forces applied 
to each part of the body that can be imagined to be isolated from it. 

Equating the resultant vector and the resultant moment of the 
forces mentioned above to zero imposes certain conditions (which 
we proceed to derive) on the variation of the components of the 
stress tensor in passing from one to another point of the body In the 
following discussion it will be assumed that the components of the 
stress tensor are continuous and have continuous partial derivatives 
at all points of the body. Imagine that an arbitrary volume 't' bound­
ed by a reasonably smooth surface ro is cut out inside the body. 
The resultant vector and the resultant moment of the volume forces 
pF d't' acting on a volume element d't' isolated from the. volume 't', 
the inertia forces- pWd't' applied to this volume in the case of dy­
namic loading, and the surface forces Tn dro acting on the element 
dw must be equal to zero, i.e., 

J p (F- W) d't'+ J Tn dro-0, (2.15) 
't (l) 

J (r X p (F- W)) d't'+ J (r X T n) dro-0. (2.16) 
't (l) 

Since the component of the force p ( F - W) d't' in the direction of 
the unit vector vis equal to vp (F- W) d't' and the component of the 
force T n dro in the same direction is equal to v T n dro, instead of (2.15) 
we may write 

J p(F"'-Wm)vmd't'+ J T:vmdro-0. (2.17) 
't (l) 

Taking into account (2.14) and the Gauss-Ostrogradsky formula 
(1.94), the surface integral in (2.17) may be put into the form 

J T":vmdro= J (okm'Vm)nkdro= ~ (okmvm).Ad't'= J o~!:'vmd't'*. (2.18) 
(l) (l) 't 't 

Substituting this in (2.17), we obtain 

J (p (Fm- W") +a~!:') '\'m d't' = 0. 
't 

From this, because of the continuity of the integrand and the arbi­
trariness of the vector 'Vm and the volume 't', it follows that the inte-

* For a parallel vector field in the region '11m 

8'\lm rtl '11m, k= --- mk'11f3=0. 
axk 
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grand must vanish at each point of the body 

0~m + pFm = p wm. (2.19) 

If the body is in equilibrium, the acceleration of the element d" 
is zero and the equation takes the form 

(2.20) 

Here· cJ:'f:' ·is· tim -covariant derivative of the stress tensor a"m; the 
index k is summed from 1 to 3. 

Equations (2.-19) and (2.20) -aO'nrrecting the variation--of the com.:. 
ponents of the stress tensor with the :mass forces at any point inside 
the body are termed, respootively, the equations of motion· and the 
equations of equilibrium ~f a deformable body in contravariant 
form. These equations; whiCli involve nine components of the stress 
tensor, are non-homogeneoUs partial differential equations of the 
first order. In the absence of body forces these equations become 
homogeneous. 

Since the component of the moment r X· p ( F - W) d't in the 
direction of the unit vector v is equal to v. r X p (F- W)d't, 
the component_of the moment r X Tn dro in the same direction is 
equal to v ·r ··x 1'n dq>, and the radius vector r of the 'point may be 
represented as r = l1eb instead of (2.16) we write, using formu­
la (1.97), 

) BiJkP (Fi- Wi) zi.\'k d't + s BtjkT~zivk dro = o. (2.20') 
~ 00 

Taking into account formula (2.13) and the Gauss-Ostrogradsky for­
mula (1.94), the surface integral in Eq. (2.20') may be put into the 
form 

Since BiJk, m = 0* and v~m = 0, Eq. (2.20') is written as 

J EtjkVk [p (Fi- Wi) zi + (amizi).m1 d't = 0. 
~ 

Since a~+ pF1 = pWi, it follows that 

) eukvkamiz!m d't = 0. 
~ 

• Since eiik is a constant in a Cartesian system of co-ordinates, it follows 
that eiik,m = 0 in this co-ordinate system, and this is also true for every other 
co-ordinate system. 
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By virtue of the formula Zj = 6f, the arbitrariness of the volume,;. 
and the continuity of the: integrand we have · 

... , . j· h 

Biiha 1 '\1 = 0 •. 

Noting that e iik = -eiik• the last relation may be represented as. 
1 ·. . ~ 

2 Biik (O'h- a~1) v" == 0. 

By expanding this exp!ession, we have 
.(a2a _ 0a2) v.l + '<0ar _ 01a) v2 + (a12' _ 0 21) vs = 0. 

Since the direction v is arbitrary, we conclude that· 
0 km= 0 mk. (2.21)· 

The symmetry of the str~ss tensor is thus pr~ved. C~nsequently •. 
the stress tensor defining the state of stress at a g:lven point is deter-
mined by six independent components. · 

11. SURFACE CONDITIONS 

In the preceding section it has been stated that the necessary and· 
sufficient condition for the equilibrium of a deformable body is that. 
of zero resultant vector and zero resultant moment of the forces ap­
plied to each part of the body that can be imagined to be isolated from· 
it. This must also be true for parts of the body having a surface· 
coinciding with the body surface. Assume that the components of 
the stress tensor are continuous up to the boundary. 

The conditions for the equilibrium of an infinitesimal tetrahedron 
(see Fig. 6), when the surface ABC coincides with the surface of the· 
body, give a relationship between the stress tensor and the external 
forces. This relationship is of the form of (2.13) or (2.14), with the· 
difference that n in these formulas is the outward normal to the 
surface of the body at a given point. These conditions are called the· 
surface or boundary conditions. 

Thus, from the necessary and sufficient condition of zero resultant 
vector and zero resultant moment of the forces applied to each part 
of the body, including parts of the body having a surface coinciding 
with the body surface, it follows that six components of the stress 
tensor must satisfy, inside the body, three differential equations­
(2.19) in the case of dynamic loading or (2.20) in the case of static. 
loading, and three surface conditions (2.14). 
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It should be noted that six components of the stress tensor are 
not determined uniquely from the system of three differential equa­
tions. Each solution of the infinite number of solutions of this 
system that satisfies three boundary conditions corresponds to some 
statically possible state of stress. 

Consequently, under the action of applied external forces there 
may be an infinite number of statically possible states of stress. 
Thus, the problem of finding the state of stress in a body is statical­
ly indeterminate. 

Below (Chap. V) it will be shown how the actual state of stress 
can be determined from the infinite number of statically possible 
states of stress. 

f2. EQUATIONS OF MOTION AND EQUILIBRIUM REFERRED 
TO A CARTESIAN CO·ORDINATE SYSTEM 

Let :&11. be the axes of a rectangular Cartesian co-ordinate system 
drawn through some point of a stressed body. The covariant and 
contravariant components of the stress vector and the stress tensor 

X,r 

" I 

are then identical and, by formulas 
(1.55) and (1.56), equal to the physical 
components. Formulas (2.14) assume 
the form 

(2.22) .-.)~' ---~ 
I 

621 : !---+-' ___ x~'2 Here T nk are the components of the 
1 " stress vector Tn acting on a plane 
--- " 6'JZ passing through the given point of the 

body, the outward normal to which 
x, 6.rt makes angles (n, Zn) with the co-ordi-

nate axes; O'mk are the components of 
the affine orthogonal stress tensor, 
C1u (not to be summed) being the 

Fig. 7 

stresses normal to the 
.shearing stresses. 

co-ordinate planes; C1m11. (m =I= k) are the 

The symmetry of the stress tensor expresses the law of paired 
shearing stresses: at every point of a body the shearing stresses on 
two planes at right angles to each other are perpendicular to the 
line of intersection of the planes, equal in magnitude and directed 
either both towards the line of intersection or both away from it 
(Fig. 7 . 

Rotate the axes ox11. about the origin; we then have, by (1.13), 

cr;i = C1m11.CXrmCXlk (2.23) 

(cxrm is the cosine of the angle between the Xr and Xm axes). 
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Noting that CX.~s = 1, CX.r8 CX. 18 = 0 (r =I= i}, where the index s is 
summed, from (2.23) we obtain 

a;r = O'rr· 

Consequently, the sum of the normal stress components acting on 
three mutually perpendicular planes is independent of their orien­
tation at the given point 

In a rectangular Cartesian co-ordinate system, owing to the fact 
that the Christoffel symbols vanish and the covariant components of 
the stress vector and the stress tensor are identical with the physical 
components, the equations of motion (2.19) and the equations of 
equilibrium (2.20) become, respectively, 

aamn + F W Bxm p n= p R., 

aamn + pFn = o. 
axm 

(2.24) 

(2.25) 

These equations may also be written as follows: in the case of motion 

div Tn + pFn = pWn, (2.26) 

and in the case of equilibrium 
div Tn + pFn = 0. (2.27) 

Here TR. = irO'nr is the stress vector on the co-ordinate plane Xn = 
= constant. 

13. EQUATIONS OF MOTION AND EQUILIBRIUM REFERRED 
TO CYLINDRICAL AND SPHERICAL CO-ORDINATES 

It is often found convenient to use the equations of motion and 
equilibrium in a cylindrical and a spherical co-ordinate system. 

Fig. 8 

The physical projections of the force pF and the acceleration W 
in a cylindtical co-ordinate system are denoted, respectively, by 
pF n pF '~'' pF 3 and Wn W '~'' W3 , and the physical projections of 
the stress tensor in the same co-ordinate system are denoted by 
O'rn 0''1''1'' 0'33, (jr<p• O'r3• O'<p3 (Fig. 8}. 
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By using formulas (1.49) and (1.50), and taking into account that 
the components of the covariant metric tensor in a cylindrical co-or­
dinate system are 

gll = n: = 1, g22 = n: = rll, g33 = n; = 1, gu = g23 = g31 = 0, 

we have 

13 23 1 22 1 -"13 
(J = O'r3• (J = r (J(j)3t (J = 7=2 O'q>q>• u- = O'ss· 

By (1.84), 
mk o(Jfflk rm -ik rk mi 

0', m = ---g;:;n + jmU- + jmO' t 

from which, when k = 1, and from (2.28) we have 

(Jm1 = acr,, + ...!_ acr,q> + acrsr + (r! + r? + r~ ) alt + 
,m ar r a<p axs Ji 12 J3 

(2.28) 

(2.29) 

+ r]tati + r]za2i + r]aosi. 

By using (1.64), we find 

Then 

r!1 = r~s= n1 = r~1 = r:a= r~= r~=O, 

r~2 = ...!_, r~. = -r. r 

Substituting this equality in (2.19), we obtain the first equation of 
motion 

(2.30) 

The other two equations of motion are derived in a similar way 

O(j rq> 1 Q(j q>q> O(j q>S 2cr rq> 
--+---+--+--+pF'~'=pW'~', ar r 8<p 8x8 r 

acr,s + ...!_ acrq>s + acrss + cr,s + F = W . 
ar r 8<p axs r p 3 p 3 

The physical projections of the volume force and the acceleration 
in a spherical co-ordinate system are denoted, respectively, by 
pF, pF <I'• pF .p and W, W <I'• Wop, and the physical projections of the 
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aress tensor in the same coordinate system are denoted by Om o'P'~>' 
O'IJ!IJ!• Orq>• a'PIJ!, a,.,r (Fig. 9). In this co-ordinate system g11 = H: = 1, 

6rptp 
Zz 

Fig. 9 

faa= m = r111, gu = n: = r111 sin111 '1J', gllll =gliB= gal =0. Tak­
ing into account these relations, from formulas (1.49) and (1.50) 
we find 

pF1 =pFr. 

W 1=Wr. 

11 (J .... _ 1 
0 = Orrt - 0 - r2 sin2 'l(l W• 

i pFa=-pF,.,, 
r 

1 wa=-w,.., 
r 

1 
ass= -~-a"'"'' r 

12 1 a21- 1 
(J' = . Orm, --:;-:--:- 0: •• r Slfl 'l(l "' - rz sin 'l(l cp.,., 

From (2.19), (1.64), and (1.84) we obtain the equations of motion 

8crrr + 1 
--g;:- r sin 'l(l 

8crrlj) 1 acrq>IJ! 1 8crlj), 

-:a;:- + r.sin 'l(l "'""8iP + r or + 
1 + r [3o'r, +(a.,..- Ocpcp) cot 1(>] + pF lj) = pW ,.,, (2.31)' 

aarcp 1 acrw 1 acr411* 
a;:-+ r sin 'l(l aiP +--;- --a;r + 

1 +-;:- (3arcp + 2o4PIJ!cotljl) + pFq, = pW,. 
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Setting Wr = W 1P = W 8 = 0 and Wr = W 1P = W"' = 0 in 
Eqs. (2.30) and (2.31), we obtain the equations of equilibrium in terms 
of the components of the stress tensor, respectively, in a cylindrical 
and a spherical co-ordinate system. 

14. DETERMINATION OF THE PRINCIPAL NORMAL STRESSES 

Take a rectangular Cartesian co-ordinate system oxk. The direc­
tion defined by the unit vector n with components nk = cos (n, xk) 
is called the principal direction of the symmetric stress tensor ark if 
the vector arknk is parallel to the vector n, i.e., 

arknk = an,. 
where a is a scalar. 

The last relation is written as 

(ark - a8rk) nk = 0. (2.32) 

Equalities (2.32) in nk represent a linear homogeneous system of 
three equations. The condition for the existence of non-zero solutions 
is that the determinant of the coefficients of this system should be 
zero: 

(2.33) 

Let us now prove that all of its roots are real; denote them by 
a 1 (l = 1, 2, 3). Suppose the contrary: let a 1 = a 1 + i~ 1 and the 
corresponding values nk = Pk + iqk; substitute this in (2.32). On 
comparing the real and imaginary parts, we obtain 

(ark- IXz()rk) Pk + ~l()rkqk = 0, 

(ark - 1Xz8rk) qk - ~ l()rkPk = 0. 

Multiply the first equality by qr and the second by Pr• and sum r 
from 1 to 3. By subtracting one result from the other, and taking 
into account the symmetry of ark• ()rk• we obtain 

~ l (()rkPrPk + ()rkqrqk) = 0, (2.34) 
Noting that P~<• qk are not all zero and each term within the paren­
theses in (2.34) is positive, we come to the conclusion that ~ 1 = 0. 
Consequently, the roots of Eq. (2.33) are always real and the corres­
ponding values ni, being the solutions of the system of linear equa­
tions with real coefficients (2.32), are also real. The quantities a 1 are 
called the principal components of the stress tensor, and nL are their 
direction cosines. 

Suppose that a, ap are two distinct roots, and n~, nr are the cor­
responding values of nr; from (2.32) we then find 

(akr - az8kr) n~ = 0, (2.35) 
(akr- ap8kr) n~ = 0. (2.36) 
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Here the indices l and p are not summed. If (2.35) is multiplied by 

nr and (2.36) by nL then, by subtracting one result from the other, 
and taking into account the symmetry of Chr and l51m we obtain 

(crz - O'p) l5krn;n~ = 0. 

Since cr 1 =I= O'p, it follows that 

n~~=O. 

Thus, in this case the principal directions of the stress tensor are 
orthogonal and are uniquely determined. If Eq. (2.33) has two equal 
roots, say cr1 = cr2 , the direction n3 corresponding to the third prin­
cipal direction is perpendicular to the plane nl, n2• 

Consequently, any two mutually orthogonal directions lying in a 
plane perpendicular to n3 may be taken as the corresponding prin­
cipal directions. If, finally, all three principal stresses are equal, 
then any orthogonal directions may be taken as the principal dire­
ctions. 

The cubic equation (2.33) is now written as 
(2.37} 

According to the property of the roots of a cubic equation, the 
relations between the roots and the coefficients are as follows: 

/1 = 0'1 + 0'2 + 0'3, 

/2==1 cr; ~3 1+1 cr~ ~3 1+1 ~ ~2 l=crtcr2+crtcrs+cr2crs, 
O't 0 0 

Is= 0 0'2 0 = cr1u2cr3. 
· 0 0 cr3 

Take a matrix C in the form 
- -· -. -i 
C = llcill = llcrl5}-cr;ll. 

The determinant of this matrix represents the left-hand side o 

Eq. (2.33) written in an arbitrary curvilinear co-ordinate system :1!'. 
Consider continuous one-to-one transformations of co-ordinates 

"3Jt =? (xl, x2 , xB). According to the transformation of mixed ten­
sors (1.12) we have 

Introduce the notation 

i -p a'Xq axi 
Cj=Cq--. ---. 

axJ axP 

axq 
--=a'l 
ax; 3 ' 

axi . 
---=b~; 
axP 
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:then 

C=llc}II=II"C:b~aJ II= 11~1111 b~ llllaJII =BCB-1• 

From this we conclude that the determinants of the matrices C 
and Care equal. Thus, the equation 

lcJIS)- a} I = 0 (2.38) 

is invariant with respect to the choice of co-ordinate system and its 
roots always determine the principal components of the stress ten­
sor. Consequently, the coefficients of Eq. (2.37) are invariants under 
a transformation of co-ordinates since they are completely deter­
mined by the roots, i.e., by the principal values of the stress tensor. 
By expanding (2.38), we obtain formulas for the invariants 

It =cJt +()2 +a a= a~, 

/2=atas+cJ2aa+aaat ={ [(a~)2 -a~cr~), 

la=-crtcJ2cJa= la~l· 

If the co-ordinate axes are taken coincident with the principal 
directions of the stress tensor, the components akr (k =1= r) vanish 
in this co-ordinate system; the only non-zero stresses are the normal 
stresses ()k acting on these planes. 



CHAPTER Ill 

Theory of strain 

15. THE FINITE STRAIN TENSOR 

Consider a continuous medium S in which a curvilinear co-ordi­
nate system xr (r = 1, 2, 3) is chosen. If a set of some functions of 
position determines the extension of any infinitesimal straight mate­
rial segment passing through a given point, it is said that these 
functions determine the deformation of the neighbourhood of this 
point. 

Let the co-ordinate lines chosen in the medium in its initial con­
figuration be composed of material particles of the same medium. 
Suppose that during the deformation the co-ordinate lines continue 
to be made up of the same material particles. As a result of the de­
formation, the given co-ordinate system Px1x2x3 with covariant 
base vectors ek, being continually distorted together with the medi­
um, assumes a certain position in one of the subsequent configura­
tions S. The configuration S may be taken as a new co-ordinate sy­
stem Px1x2XS with base vectors ek. The reference system in which 
the displacement is determined is taken to be a co-ordinate system 
o.rox:x~ with base vectors eX (Fig. 10). The system o.rox~x~ may be 
chosen at will, and of the co-ordinate systems xr and "Xr only one 
may be chosen arbitrarily,' i.e., if the system xr is chosen, the system 

"Xr is determined by the deformation, and vice versa. 
According to formula (1.27), for the squares of line elements of 

the configurations S and S we have, respectively, 

(3.1) 

Here gnk• ink are the covariant metric tensors in S and S, respec­
tively; dxn are the components of the infinitesimal vector PQ defining 
the position of the point Q relative to the point P, and ixn are the 
components of the vector PQ (see Fig. 10) which, by virtue of con­
tinuity, is infinitesimal. 

The state of strain in a body is determined by the difference 

ds2 - ds2 =ink dxn d?-gnk dxn d~. 
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On the basis of (1.6) this difference may be put into the form 

ds2 - ds2 = 2enk dxn dx", 

where 

with 

(3.2) 

(3.3) 

(3.4) 

It is seen from (3.2) that Bnk are the components of a symmetric cova­
riant tensor of rank two, which is called the strain tensor. If all Bnk 

Fig. 10 

are zero for all points, then dS = ds and the body undergoes no~ de­
formation. The extension of a line element dsn along the co-ordinate 
line xn is, by definition, 

(3.5) 

According to formulas (1.40) 

dsn = Vinn dxn, dsn = V gnn dxn. (3.6) 

Substituting (3.6) in (3.5), we obtain 

yinn -1. 
gnn 
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From this, using (3.3), we find 

en = ~ /1 + 28nn -1. 
V gnn 

(3.7) 

Here the index n is not summed; the root is taken with the plus 
sign since the extension is zero when ~>nn = 0. 

The cosine of the angle Sn~t between two line elements din and d8~~., 
which were directed along the co-ordinate lines xn and aft before 
deformation, is determined, according to formulas (1.54), (1.6), 
and (3.6), by the formula 

By (3.4), this formula may be put into the form 

- gnl!. 
cos enl!. = v~- - . 

gnngl!.l!. 

After determining "ink from (3.3) and substituting in the last for­
mula, we find 

cos enl!. = gnl!. + 28nl!. • 
Jf(gnn +28nn) (gl!.l!. +281!.1!.) 

(3.8) 

Formulas (3. 7) and (3.8) show that the six components of the strain 
tensor defined by formulas (3.3) enable one to calculate completely 
the extensions along the co-ordinate lines, issuing from some point 
of a body, and the angle between two line elements after deformation, 
which were directed along the co-ordinate lines xk before deforma­
tion. Since the angle between the co-ordinate lines before deforma­
tion is known, the change in this angle can thus be determined. 

Let us now express the components of the strain tensor ~>n~t in 
terms of the components of the displacement vector u. It is seen 
from Fig. 10 that 

r = r +u. (3.9) 

Let en, en be the respective base vectors; hence, by (1.26), 

(3.10) 

It follows from the vector equation (3.9) that 

OT OT 1 OU 
--=---r---
oxk oxk axk • 
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Substituting (3.10) in the last relations, we have 

- a"Xm au 
em--=ek + --. axk axk 

(3.11) 

Since for the configurations S and S, respectively, 

on the basis of the rules for scalar multiplication and formulas (3.4), 
(3.11) we find 

au au au au 
= gnk+en· axk +ek. axn + axn axk. (3.12) 

Substituting (3.12) in (3.3), we obtain 

(3.13) 

Referred to the ;ca. co-ordinate system, the vector u is represented as 

u = ua.ea., u = ua.ea.. (3.14) 

Here the index a is summed. Taking into account (1.57), (1. 79), 
(1.65), and (1.80), we find 

(3.15) 

where u~n• ua., 11. are. the covariant derivatives, respectively, of the 
contravariant and covariant vectors, equal to 

a. - aua. +fa. m u --an nmU a ,n X 
(3.16) 

It should be noted that here the Christoffel symbols must be calcu­
lated from the metric tensors for the configuration S. 

Substituting (3.15) in (3.13), we have, finally, 

(3.17) 

By formulas (3.17), the components of the strain tensor are calculat­
ed through the covariant derivatives of the covariant and contra­
variant components of the displacement vector u in the system of 
the directions of the base vectors &- and ea.. 
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16. THE SMALL STRAIN TENSOR 

If the strains (extensions and shears) and the angles of rotation 
are small compared with unity and have the same order of smallness 
(as is the case in considering the deformation of bodies whose all 
dimensions are comparable in magnitude), the non-linear terms in 
the general formula (3.17) can be rejected as small quantities. In 
this case the strain tensor is called the small strain tensor and deno­
ted by enk· Consequently, 

(3.18) 

The materials used in engineering, with the exception of rubber, 
some plastics and others, retain elasticity only at very small exten­
sions and shears. This points clearly to the practical importance of 
the small strain tensor. 

Let Q be a point close to the point P, and Q its position after dis­
placement. In Fig. 10 PP = u and QQ = "t represent the displace­
ments of the points P and Q, respectively. 

By expanding u1 at the point P, and neglecting small quantities 
of higher order in dxn (dxn are the contravariant components of the 
vector PQ), we have 

au (P) a 11 ut(Q) =U (P) + axn dxn=u (P) +axn (u ek) dxn. 

From the last relation we find the displacement du of the point Q 
relative to the point P: 

du=uk ekdxn 
,n 

Substituting du = du11~, and multiplying scalarly both sides of 
the above equality by em, we obtain 

duk = Uk, ndxn, (3.19) 

where u11 , n is the covariant derivative at the paint P 
Introducing the notation 

1 
ekn =2 (uk, n +un. k). 

(3.20) 1 
ffi~tn = 2 (uk, n-Un, A), 

instead of (3.19) we have 

duk = (ekn + ffi~tn) axn 

We conclude from formula (3.20) that rokn is an antisymmetric ten­
sor called the rotation tensor. The displacement of the type ekndxn 
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results from the deformation of the neighbourhood of the point P, 
while the displacement of the type rokndxn results from the rotation 
of the neighbourhood of the point P as an absolutely rigid body 
about this point. 

17. STRAIN COMPATIBILITY EQUATIONS 

As is clear from (3.17) or (3.18), the components of the strain ten­
sor are not independent, they must satisfy some conditions. These 
conditions can be obtained on the assumption that the body in the 
undeformed configuration is in Euclidean space and continues to 
remain in it during deformation. As is known, the necessary and 
sufficient condition for this is that the Riemann-Christoffel tensor 
should be equal to zero for both the undeformed state S and the 
deformed state S, i.e., 

Rmnpq = 0, 
(3.21) or 

Rmnpq - Rmnpq = 0. 

Substituting the expressions for the components 
Christoffel tensor (1.87) in (3.21), we obtain 

of the Riemann-

82gnq ) -·j - -
axm 8xP + g' (f i, npf j, mq -· 

- - 1 ( 82gmq 82gnp 82gmp 82gnq ) 
-fi,nqfj,mp)-2 8xn8xP + 8xmaxq- 8xnaxq 8xm8xP -

-gii (ri. nprj, mq-ri. nqrj, mp) = 0. (3.22) 

By using (3.3), and taking into account the fact that the Riemann­
Christoffel tensor has only six independent components, R1212 , 

R1313 , R 2323 , R1213 , R 2123, R 3132 , from (3.22) we obtain six indepen­
dent equations 

82emq 82enp 82enq 82emp r 8 r 8 

8xn 8xP + 8xm 8xq - axm 8xP axn 8xq - 2 Brs (f qmf pn- f mpf qn} + 
+2f~pBmqr +2f~mBnpr -2f~qBmpr -2f~pBnqr = 0, (3.23) 

where 
1 ( 8epr Bern 8enp ) 

Bnpr=-r 8xn + 8xP ----ax;:- ' 
mnpq: 1212, 1313, 2323, 1213, 2123, 3132. 

These equations indicate that the components of the strain tensor 
Bnk are dependent. The equations that must be satisfied by the com­
ponents of the strain tensor Bnk are the necessary and sufficient con-
ditions for the configurations S and S to belong to the Euclidean 
space. 
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18. THE STRAIN TENSOR REFERRED TO A CARTESIAN 
CO-ORDINATE SYSTEM 

61 

In a Cartesian co-ordinate system the covariant and contravariant 
vectors are identical; the covariant derivatives are also identical 
with the ordinary derivatives since in this case the metric tensor is 
constant and the Christoffel symbols are therefore equal to zero. 

Thus, according to (3.17), the components of the finite strain ten­
sor in a Cartesian co-ordinate system x'k are determined by the for­
mulas 

(3.24) 

Remembering that in the case of an orthogonal Cartesian co-ordi­
nate system gnn = 1 and gn'k = 0, formulas (3. 7) and (3.8) become 

(3.25) 

These formulas are used to calculate the extensions of line ele­
ments issuing from some point of a medium parallel to the axes of a 
rectangular Cartesian co-ordinate system, and the angles between 
these line elements after deformation. 

According to (3.17) or (3.24), the small strain components in a 
rectangular Cartesian co-ordinate system x'k are 

1 ( OUn au'k) 
e'kn=2 ax'k + OXn • (3.26) 

If small strains are considered, from (3.25) we have 
1 

en= 1 +2 (2enn) + ... -1:::::: enn• 

cos e'kn = 2e'kn { 1.- ~ 2 (enn + e'k'k +2enn8'k'k) + •.. }:::::: 2e'kn• 

Thus, it follows from en = enn that enn are the extensions of line 
elements which were parallel to the corresponding axes of the· rec­
tangular Cartesian co-ordinate system before deformation. The 
quantities 2e'kn are the cosines of the angles formed after deformation 
between two line elements which were parallel to the co-ordinate 
axes before deformation. 

We have 

cos e'kn = cos [900 - ('\''kn + '\'n'k)J = sin ('\'n'k + '\''kn) :::::: '\''kn + '\'n'k• 

Here '\''kn is the angle of rotation towards the axis oxn of a line ele­

ment parallel to the axis ox'k and equal to 0°un ; '\'n'k is the angle of 
x'k 

rotation towards the axis ox'k of a line element parallel to the axis 
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oxn and equal to ~uh (Fig. 11). Hence, 2ehn is the change in the angle 
uXn 

between two line elements parallel to the axes oxn and oxk (k =1= n). 
In a Cartesian co-ordinate system the components of the rotation 

tensor are 
(J)kn =.!. ( ~- oun ) . (3.27) 

2 oxn OXk 
Rotate the axes oxh of a rectangular Cartesian co-ordinate system; 
the new axes are denoted by oxh. Noting that ekn is a tensor, on the 
basis of (1.13) we have elm = emrCXmR.CXrn, from which eh = ekk• 

i.e., the sum of the extensions in 
three mutually orthogonal directions 

Xk issuing from the same point of a body 
dxkun is independent of their orientation at 

the given point. 

Fig. f1 

19. COMPONENTS OF THE SMALL 
STRAIN AND ROTATION TENSORS 
REFERRED TO CYLINDRICAL 
AND SPHERICAL CO-ORDINATES 

The physical projections of the 
displacement vector u in a cylindrical 
co-ordinate system (r, cp, x3) are denot­
ed by un u"', u3 and the physical 

components of the strain 
By ~using ~formulas (1.49) 

tensor by e,,, e"'"'' e33 , e,"', e"'3 , e3,. 

and (1.50}, we find 

ul = urt 

e11 = e,,, 
e12 = re'"'' 

u1 = ru"', 

e12 = r1e"'"'' 
e13 = re"'a' 

Us= Us, 

eaa = eaa• 
e31 = ear• 

(3.28) 

According to (3.20) and (3.28), for the six independent components 
of the small strain tensor and the rotation tensor we have 

(3.29) 
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1 { iJus iJucp ) 
rocpa = ror = 2r iJip - r iJxs ' (3.30) 

1 ( iJur iJu8 ) 
<Oar = rocp = 2 iJx, - -a;:- . 

In formulas (3.30) use has been made of the following abbreviated 
notation: rorcp = ro3, rocps = ror, roar = rocp. 

Suppose that u3 = 0, and Ucp and ur are independent of the z3 
co-ordinate; from formulas (3.29) and (3.30) we find 

(3.31) 

1 ( a aur) rorcp = ro3 = 2r Tr ( rucp) - iJip • 

These formulas define the three components of the strain tensor in 
the case of so-called plane strain with respect to the r<p plane in 
polar co-ordinates. 

The physical components of the displacement vector u in a sphe­
rical co-ordinate system (r, cp, 'IJ>) are denoted by ur, ucp, "~~>• and the 
physical components of the strain tensor in the same co-ordinate 
system by em ecpcp• ell>~~>• ercp• ecp11>, ell>, .. According to formulas (1.49) 
and ( 1.50) we have 

eu = err• e11 = rle"" esa = r2 sin2 lj>eii>IP• (3.32) 

et2 = rercp, e13 = r2 sin 'li'ecp,p, e3t = r sin 'lj>e,pr· 

Substituting (3.32) in (3.20), we find 

1 iJUcp 1 1 
ecpcp= rsin 'ljl a;p+-; Ur + r tan'ljl U,p, 

1 iJu,p 1 
e,p~j> =o- --+- Ur 

r iJ'Ijl r ' 

1 ( f iJur iJu,p 1 ) 
ercp =2 rsin'ljl iJ<p +""Tr"-r Ucp • 

(3.33) 

1 ( 1 iJUcp 1 1 iJu,p ) 
ecp,p=2 -;a;p- rtan'ljl u,p+ rsin'ljl ~ ' 
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(3.34) 

20. PRINCIPAL EXTENSIONS 

By analogy with the theory of stress, the principal directions of 
the strain tensor in a rectangular Cartesian co-ordinate system are 
defined as the directions for which the following conditions are 
fulfilled: 

(3.35) 

Here e is a scalar, r:x.k are the direction cosines of the unit vectQ'r";. 
By using the Kronecker symbols, the system of equations (3.35) 

is written as 
(elm - 6kn8) IY..n = 0. (3.36) 

Since the cosines cannot all be zero simultaneously, we have 

I Bkn - 6kn8 I = 0. (3.37) 

The principal values of the strain tensor, which are called the prin­
cipal extensions, are the roots of the cubic equation (3.37). The di­
rections corresponding to the principal extensions e1, e 2, e 3 are 
mutually perpendicular. When two of the roots are equal, the direc­
tions corresponding to these roots lie in a plane perpendicular to 
the direction corresponding to the simple root; in this case any mu­
tually orthogonal directions lying in this plane may be taken as 
principal. If all three roots are equal, then any perpendicu­
lar directions may be taken as principal. 

The cubic equation (3.37) is written in the form 

es- /1e2 + /2e -Is = 0. 

According to the property of the roots of a cubic equation, the rela­
tions between the roots and the coefficients are as follows: 

/1 = 81 + 82 + Ba, 

12 = e1e 2 + e1e 3 + e 3e 2, 

Ia = 818283. 
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By analogy with the theory of stress, Il> I 2, I 3 are invariants. Thus, 

11 =81 +e2+es = e~, 
1 

/2 = e1e2 +e1es+e2ea = 2 [(e~)z-e~ep), 

Is= e1e2ea = le~ I· 
The first invariant of the strain tensor in the case of small strains 

represents the unit change of volume. Indeed, take the principal axes 
of the strain tensor at a point P of the medium. Construct on these 
axes a parallelepiped having edges equal to dxk before deformation. 
After deformation the parallelepiped under consideration, remain­
ing rectangular, will have edges (1 + ek) dxk. The volume of the 
parallelepiped before deformation is d-r: = dx1dx2dx3 , after defor­
mation 

d-r:1 = (1 + e1) (1 + e2) (1 + e3) d~dx2dx3 = 
= (1 + e1}(1 + e2) (1 + e3) d-r:. 

Rejecting small quantities of higher order, we have 

d-r:1 = (1 + e1 + e2 + e3) d-r:. 

Denoting the unit change of volume at the point P, or the volume 
strain, by e, we obtain 

e 
Remembering that I 1 = e1 + e2 + e3 = e11 + e22 + e33, for the 
volume strain we obtain 

e I + + iJu1 iJu2 iJus d. 3 3 = t=eu ess eaa=-+-+-= 1vu, ( . 8) 
iJx1 iJx2 iJx8 

i.e., 8 = I 1 is the volume strain at the point P. 
If the co-ordinate axes are taken coincident with the principal 

directions of the strain tensor, the components ekr (k =1= r) vanish 
in this co-ordinate system, and only extensions ek acting on these 
planes will remain. 

21. STRAIN COMPATIBILITY EQUATIONS IN SOME 
CO-ORDINATE SYSTEMS (SAINT VENANT'S CONDITIONS) 

In view of the fact that in the case of a Cartesian co-ordinate sys­
tem the Christoffel symbols are identically zero, the compatibility 
equations (3.23) in this system assume the form 

iJ2Bmq iJ2Bnp iJ2Bnq iJ2Bmp 

OXn iJXp + OXm OXq iJXm iJxp OXn iJxq O, 
where mnpq: 1212, 1313, 2323, 1213, 2123, 3132. 
5-0884 

(3.39) 
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The compatibility equations in a Cartesian co-ordinate system 
were obtained by Saint Venant for small strains directly by elimi­
nating the displacement components from formulas (3.26). 

If Saint Venant's conditions are fulfilled for an arbitrary tensor 
eli, a displacement field can be found for which eu is the strain ten­
sor. In the case of a simply connected body the displacement is de­
termined to within a rigid-body displacement, in the case of a mul­
tiply connected body some additional conditions must be fulfilled. 

To obtain the strain compatibility equations in a cylindrical co­
ordinate system, we take account of formulas (3.28) and (1.64) in 
Eqs. (3.23); after some computations we obtain 

_!_ iJ2err _!_ .!..._ ( r2 iJec:pq> ) - a err - 2 ()2 (req>r) 
r iJcp2 + r or or or r or ocp = o, 

iJ2err + iJ2ess _ 2 02ers = 0 
ax~ i}r2 or OXa ' 

fi2ecrq> + _1_ iJ2ess + _!_ oess - 2 _a_ ( aeq>s + e ) = 0 
ax~ r 2 acp2 r or r OXa acp rS ' 

_ _!_ iJ2err + .!.._ ( _!_ {) (req>s) ) - _1_ iJ2 (r2erc:p) - _a_2- (era) = 0 
r iJcp OXs or r or r 2 or OXs or acp r ' 

(3.40) 

a ( a (req>(jl) ) iJ2era iJ2 (req>s) iJ2 (req>r) 
r- e - ---+ + -0 OXs rr or iJcp2 or acp OXs iJcp - ' 

~ ( ~) iJ2erq> - r _a_2- ( eq>s ) - _!_ ._!2ers - 0 
acp or r + ax~ ar OXs r r acp OXa - • 

22. DETERMINATION OF DISPLACEMENTS 
FROM THE COMPONENTS OF THE SMALL STRAIN TENSOR 

Formulas (3.26) are used to calculate the components of the small 
strain tensor when displacements uk (x1 , x2 , x3) are given in a rec­
tangular Cartesian co-ordinate system. To calculate the latter when 
the components of the strain tensor ekn are given, it is necessary to 
solve the system of six first-order linear partial differential equations 
(3.26). For the system to be consistent, the given components ekn 

must satisfy the so-called compatibility conditions, or the conditions 
for the integrability of this system. Assume that ekn are given single­
valued functions of xk having continuous second-order partial deri­
vatives. 

If displacements uk are found from the given components of the 
strain tensor, by adding to them an arbitrary infinitesimal rigid­
body displacement of the body as a whole, we obtain new displace­
ments obviously also corresponding to the given components of 
the strain tensor since the rigid-body displac-ement has no effect on 
pure strain. Hence, for definiteness we may, for example, assign, in 
addition, the projections of the displacement vector of some point 
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of the body and the components of the rotation tensor at this point. 
The region of assignment of the components of the strain tensor, 

which are used to find the projections of the displacement vector in 
the same region (occupied by the body before deformation), is de­
noted by 't. Assume, for the present, that this region is simply con­
nected. From (3.26) and (3.27) we have 

DUk 
-D- = ekn +wkn· (3.41) 

Xn 

Let the components of displacement u~ and the components of the 
rotation tensor w~k be given at a point M 0 (x;, x~, x;). The compo­
nents of displacement at a point M' (x;, x;, x;) are, from (3.41), 

M' 

uk = u}& + 1 (ekn +wkn) dxr.. (3.42) 

Here the integration is carried out along an arbitrary curve joining 
the points l'tr and M' and lying entirely within the region 1:, Xn 

are the current co-ordinates of a point of this curve; consequently,_ 

dxn = - d (x~ - Xn) 

Substituting the last relation in (3.42) gives 
M' M' 

uk = u}& + J ekn dxn- J Wknd (x;- Xn)• 

M* M* 

By integrating the last integral by parts, we obtain 
M' M' 

uk = uk + J ekn dxn- Wkn (x~- Xn) 1:: + J (x;- Xn) D;:kn dxm. (3.43) 
M* M* m 

Here the index m is also summed. By (3.27), 

DWkn 1 D ( DUk DUn ) D 1 { DUk DUm ) 
DXm = 2 DXm DXn - DXk = DXn 2 DXm + DXk -

D 1 { DUn DUm ) 
- DXk 2 DXm + DXn ' 

By using (3.26), we find 
DWkn D D 
DXm = DXn ekm- DXk enm· 

Substituting this in the last integral of (3.43), we obtain, finallyt 
M' 

Uk = Uk + Wkn (x~ -x~) + r [ekm + (x;- Xn) ( Dekm- Denm ) ] dx J DXn DXk m• 
M* 

(3.44) 
5* 
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By their physical meaning, uk must be independent of the path of 
integration ArM'; for this, in the case of a simply connected region 
it is necessary and sufficient that the integrand be the total diffe­
reiltial at all points (x1 , x 2 , x3) and for all values (x;, x;, x~) in the 
region 't'. These conditions lead to the following relations: 

0, (3.45) 

where mkrn: 1212, 1313, 2323, 1213, 2123, 3132. 
Thus, relations (3.45) ensure the consistency of six differential 

equations (3.26) for the determination of three functions uk. These 
equations are identical with Saint Venant's compatibility condi­
tions; hence, Saint Venant's conditions also ensure the integrability 
of six differential equations (3.26). With Saint Venant's conditions, 
formulas (3.44) determine uk whatever the shape of the curve of 
integration lying entirely within the region 't'. 

If the body is multiply connected, the integral in formula (3.44) 
can, in general, receive finite increments, in which case the 
uniqueness of displacements is not ensured, whereas they must be 
unique. By means of suitable imaginary cuts a multiply connected 
body can be transformed into a simply connected body; if Saint 
Venant's strain compatibility conditions are fulfilled, the displace­
ments uk determined by (3.44) will then be single-valued functions 
provided that the curve of integration nowhere crosses the lines of 
.cuts. As the point M' approaches some point of the line of a cut from 
the left or right, uk will, in general, assume different values. It 
appears from the above that in the case of a multiply connected 
region the additional conditions for the compatibility of strains 
.are (uk)left = (uk)rrght along all lines of cuts. 

The most general tensor presentation of the theory of stress and 
strain for an arbitrary co-ordinate system is of particular value for 
:finite deformations. The general equations and formulas derived 
above will enable us to develop them subsequently in appropriate 
co-ordinate system. 

In the following discussion we shall mostly use a rectangular 
Cartesian co-ordinate system. 



CHAPTER IV 

Stress-strain relations 

23. GENERALIZED HOOKE'S LAW 

The equations obtained in Chaps. II and III are not sufficient to 
determine the states of stress and strain produced in a body by ap­
plied forces. These equations must therefore be supplemented by cer­
tain relations connecting the states of stress and strain. These rela­
tions are determined from the physical properties of a solid under­
going deformation. The establishment of the stress-strain relation 
is an important problem of continuum mechanics requiring the 
carrying-out of preliminary experiments. This relation is usually 
idealized by simple mathematical formulas. 

During deformation, the removal of the external forces leads in 
some cases to complete recovery of a body to the natural state, i.e., 
the strain is recoverable, while in other cases the body, on remov­
ing the load, retains the strains, called permanent or plastic strains, 
i.e., the strain is irrecoverable. The following discussion will be 
concerned with fully recoverable small strains. 

Assume that at each point of the body under consideration there 
is a one-to-one correspondence between the states of stress and strain. 

By expressing this analytically, we obtain six relations of the form 

ai1 =Iii (e~t1 ), (4.1) 

which are uniquely solvable for the components of the strain tensor 

eii = cpii (a~tz). ( 4.2) 

The undeformed state of an elastic body is taken to be a state 
in which there are no stresses. This state will be further used as the 
origin of stress and strain. Hence, the functions ji3 and also cpii vanish 
when !heir arguments become zero: 

jii (0) = cpii (0) = 0. 

For many materials, relations (4.1) and (4.2) are linear if the magni­
tudes of the stresses are confined to a certain range. 

The linear law for the relation between stress and strain is called 
the generalized Hooke's law. The general form of writing Hooke's 
law is as follows: 

(4.3) 
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Interchange in turn the superscripts ijkl in (4.3) to jikl, ijlk, 
jilk; from the symmetry of the stress tensor and the strain tensor 
we reveal the symmetry of the quantities 

Ciikl = Ciikl = CiJlk = ciizk, (4.4) 

which form a tensor of rank four. The quantities ciiR.z are called the 
elastic co«;lfficients of a body. The total number of different coeffi­
cients CiJkl, as may be ascertained from (4.4), is 36. The elastic 
coefficients depend on the metric tensor g11 of the undeformed body 
and on its physical properties. Noting that 

J1 when a=m, 
gma = gkmgka = lO when a:=/= m, 

(4.3) is written as 
"'ii _ Ciikle g gkmg gln 
v - kl km In • 

According to the rule for scalar multiplication, Ciiklgkmgln is a 
mixed tensor Cgn, and ek 1gkmgln are the contravariant components 
of the small strain tensor. 

Thus, instead of (4.3) we have 

(Jii- cij emn 
- mn • (4.5) 

We write Hooke's law (4.3) as ail = Ciiklek1 (Ciikl = Cfikl = 
= cijlk = c}ilk by virtue of the symmetry of O'ij and ell.) and 
make transformations similar to those applied above. We then 
obtain 

(4.6) 

For the case of a prismatic rod loaded axially in tension Hooke's 
law is written as 

e = Ce1, e' = C'e1, 

where e and e' are, respectively, the longitudinal and lateral strains, 
C and C' are constants equal to 

C - 1 C'- -~ -E' - E' 

Here E is the longitudinal modulus of elasticity, vis Poisson's ratio. 

24. WORK DONE BY EXTERNAL FORCES 

Let an elastic body be acted on by surface forces Tn and volume 
forces pF. Suppose these forces are given increments dTn and pdF, 
respectively. In consequence the displacement vector u changes to 
du. The work dV done by the forces Tn and p F during the additional 
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deformation of the body is 

dV = ) pF 11. dull. dT: + ) T nit dull. dro, 
't (!) 

where T: is the volume of the body and ro its surface. 
Noting that Tnlt = akrnn and transforming the surface integral 

into a volume integral, for dV we obtain 

dV = ) pF 11. du~~. dT: + ) a:r ( a11.r du~~.) d1: 

" 't 

or 

dV = J ( pF 11. + 00~k: ) dull. dT: + J altr a~r (du~~.) dT:. 
't 't 

In view of the fact that 

aakr + F =0 
oxr p It ' 

we have 

dV = ) altrd :~~ dT:. (4.7) 
't 

In the integrand of (4. 7) the indices k and r are to be summed. Be­
cause of the symmetry of the stress tensor altr• we have 

d OUJt d 1 ( OUJt OUr ) d 
(Jkr OXr = (Jitr 2 OXr + OXk = (Jitr eltr· 

On the basis of the last relation we finally obtain for dV: 

dV = ) altr deltr dT:. (4.8) 

In statics this formula determines the work done by the external forces 
p F and Tn during the increments of the components of the strain 
tensor produced by the change in the above forces; the work per unit 
volume is 

(4.9) 

25. STRESS TENSOR POTENTIAL 

According to W. Thomson's idea, the first and second laws of 
thermodynamics are applicable to the study of the deformation proc­
ess in a body. Suppose that the deformation process in a body is 
thermodynamically reversible; the state of the body is then uniquely 
determined by the thermodynamic variables. 
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If U, Q, A, S are, respectively, the internal energy, the quantity 
of heat, the work done by external forces, and the entropy per unit 
volume of the body, in the case of small strains we have, by the first 
and second laws of thermodynamics, 

dU = dQ + dA, dQ = T dS. (4.10) 

Here dU and dS are, respectively, the increments of internal energy 
and entropy representing the total differentials of the independent 
thermodynamic variables defining the state of the body, T is the 
absolute temperature. 

Eliminating the increment of heat dQ from (4.10), and using (4.9), 
we obtain the fundamental thermodynamic relation for the deforma­
tion process in a body: 

dU = T dS + C111.,.de11.r• (4.11) 
We define an elastic body so that the specification of the strain 

tensor e11.r and of one thermodynamic variable (temperature T or 
entropy S) will completely determine its state, i.e., the stress tensor 
(1Jtr and the thermodynamic potentials U and F = U- TS (the lat­
ter is termed the Helmholtz free energy). 

The independent variables determining the state of an elastic body 
are chosen as e11.r and the temperature T. The Helmholtz free energy 
is then a function of e11.r and T only, i.e., 

F = F (e~~.,., T). (4.12) 

After determining U from 
F = U- TS, (4.13) 

and substituting it in (4.11), we find 

dF = C1~trde~~.,.- SdT. (4.14) 

On the other hand, from (4.12) we have 
8F 8F 

dF = Be11.r deltr + 7FF dT. (4.15) 

On comparing the coefficients of like differentials in (4.14) and 
(4.15), we obtain 

Here 

oF 
O'Jtr = Be* ' 

kr 

oF 
8= -iii· 

(k=for). 

(4.16) 

The first relation of (4.16) shows that for the given choice of the inde­
pendent thermodynamic variable the Helmholtz free energy is the 
stress tensor potential for an elastic body. If the independent thermo­
dynamic variable is chosen to be the entropy, i.e., if we suppose that 
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the state of an elastic body is completely determined by specifying 
the strain tensor ekr and the entropy S, then U = U (ekr• S) and the­
refore 

au au 
dU = aekr dekr + as dS. (4.17) 

On comparing (4.11) and (4.17), we obtain 

au T= au 
CJkr = ae* ' as 

hr 
(4.18) 

The first relation of (4.18) proves that the internal energy is the stress 
tensor potential. 

In the case of an adiabatic process, i.e., when dQ = 0, it follows 
from the first relation of (4.10) that dA is the total differential of 
the independent variables ekr. i.e., 

a A 
dA =-a- de1a. Ckr 

On the other hand, by (4.9), we have 

dA = CJkrdekr. 
from which 

(4.19) 

If an isothermal process (T = constant) takes place, by virtue of 
the second relation of (4.10) the increment of heat dQ, as well as dU, 
is the total differential. Consequently, we conclude from the first 
relation of (4.10) that dA is the total differential. Then 

(4.20) 

As seen from (4.19) and (4.20), in the case of adiabatic and isother­
mal quasi-static processes the work done by external forces is the 
stress tensor potential and it can be determined from the equality 

aA 
dA =Gkr dekr = -0- dekr· (4.21) ekr 

If the body is linearly elastic, the quantities aaA are, according to 
Ckr 

(4.6), linear and homogeneous in the components of the strain tensor 
ekr· Hence, A is a second-degree homogeneous polynomial in ekr· 
Consequently, by Euler's theorem on homogeneous functions, we have 

a A 
-0-ekr=2A. Ckr 

This relation is known as Clapeyron's formula. 
The independent variables determining the state of an elastic body 

are now taken to be the stress tensor akr and the temperature T. 
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Introduce a new function 

J = U- TS - ahrelm 

which depends only on ahr and T; then 

aJ aJ 
dJ = acrhr da hr + aT dT • 

()n the other hand, from (4.9), (4.11), and (4.22), we have 

dJ = - S dT - ehrdahr• 

·Comparison of (4.23) and (4.24) leads to the expressions 

* aJ 
ehr = - acrhr ' 

. aJ 
8=-­

aT • 

(4.2·2) 

(4.23) 

(4.24) 

(4.25) 

Thus, in the case when the independent variables are chosen as 
·Ghr and T, function (4.22) is the potential for the strain tensor of an 
-elastic body. It can easily be shown that, in the independent variab­
les ahr and T, the function 

(4.26) 

is the strain tensor potential for adiabatic and isothermal deforma­
tion processes in a body. 

Formula (4.9) can be rearranged in the form 

dA = C1hrdehr = d (ahrehr) - ehrdC1hr• 

From this, remembering that for adiabatic and isothermal defor­
mation processes dA ~ is the total differential, we have 

d(A-ahrehr)= -ehrdahr• 

Consequently, 

Thus, the function ahrehr - A is the strain tensor potential for adia­
batic and isothermal processes. 

If the body is linearly elastic, by Clapeyron's formula ahrehr = 
= 2A, and by (4.26) the strain tensor potential, called the elastic 
potential, is A. Consequently, 

(4.27) 

These relations are known as Castigliano's formulas and are valid 
for adiabatic and isothermal processes in linearly elastic bodies. 
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26. POTENTIAL IN THE CASE OF A LINEARLY 
ELASTIC BODY 

75 

Suppose that the deformation process in a solid takes place adiaba­
tically or isothermally; then relation (4.19) holds. With this relation, 
dA is the total differential of a continuous single-valued function 
A depending only on the strain tensor ehr· Assume the body to be 
linearly elastic. Substitute the expressions of the generalized Hooke's 
law (4.6) in (4.9): 

dA = Cftemn deii· 

For the right-hand side of this equality to be also the total differen­
tial, the condition Cgn = C?]n must be fulfilled. Taking this into ac­
count, upon integration we find 

(4.28) 

27. VARIOUS CASES OF ELASTIC SYMMETRY OF A BODY 

The theory of elasticity deals with homogeneous and non-homo­
geneous, isotropic and anisotropic bodies. A homogeneous body is 
one whose elastic properties are the same at all of its points; an iso­
tropic body is one whose elastic properties are the same in all direc­
tions. Otherwise the body is said to be non-homogeneous and ani­
sotropic. An example of anisotropic bodies is provided by crystals. 

Metals and their alloys used in engineering have polycrystalline 
structure in the form of randomly oriented crystal grains. A poly­
crystal whose size is of the same order of magnitude as the size 
of crystal grains is by its nature non-homogeneous and anisotropic. 
In comparing specimens whose dimensions considerably exceed the 
size of individual grains, in view of the arbitrariness of the orienta­
tion of grains and the smallness of their size in comparison with 
the specimen dimensions (from fractions of a micron to tens of mic­
rons), a polycrystal behaves as a homogeneous and isotropic conti­
nuous medium. 

It should be noted that the manufacturing processes and various 
kinds of mechanical treatment introduce more or less significant 
anisotropy and inhomogeneity into a metal; hence, there is always 
only approximate homogeneity and isotropy of materials. 
: · iThe symmetry of the structure of anisotropic bodies leads to rela­
tions among the elastic coefficients. We shall consider some special 
cases of elastic symmetry. 

For anisotropic linearly elastic bodies when the deformation 
process takes place isothermally or adiabatically, in view of the fact 
that Cf]n = Cgn the number of elastic coefficients is 21. 
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Let the body have one plane of elastic symmetry, which is taken 
as the ox1x 2 plane. If the direction of the ox3 axis is reversed, the 
signs of x 3 and u 3 must be reversed, and hence the signs of the strain 
components e31 , e23 are also changed. 

The reversal of the direction of the ox3 axis must not change the 
magnitude of the elastic potential A since it is an invariant. In for­
mula (4.28) the first degree terms in e23• e13 must therefore vanish, 
i.e.' 

C13 c23 c22 c33 c33 c23 c13 c31 
11 = 11 = 23 = 13 = 23 = 12 = 12 = 22 = 0. (4.29) 

Thus, in the case when the body has one plane of symmetry of elas­
tic properties, the number of elastic constants reduces to 13. 

Let the body have two mutually perpendicular planes of symmetry 
of elastic properties. These planes are taken as the co-ordinate planes 
ox1x 2 and ox2x 3 • If the magnitude of the elastic potential is to remain 
unaltered when the direction of the ox2 axis is reversed, in which 
case the sign of the component e12 is changed, in addition to condi­
tions (4.29) we must set 

C11 c22 c33 c13 0 12= 12= 12= 32= . (4.30) 

Consequently, if the body has two mutually perpendicular planes 
of symmetry of elastic properties at each point, there are only nine 
non-zero elastic constants; they can be represented as the matrix 

c11 
11 

c11 
22 

c11 
33 0 0 0 

c11 
22 

c22 
22 

c22 
33 0 0 0 

c11 c22 33 0 0 0 33 33 c33 

0 0 0 c23 
23 0 0 

0 0 0 0 c13 
13 0 

0 0 0 0 0 c12 
12 

It follows from inspection of this matrix that if there are two ortho­
gonal planes of elastic symmetry in a body, the third orthogonal 
plane is also a plane of elastic symmetry. Such a body is said to be 
orthotropic. 

If the body possesses the same elastic properties with respect to 
each of the three planes of symmetry, and if the magnitude of the 
elastic potential is to remain unaltered when the axes ox1 , ox2 , ox3 

are permuted cyclically, i.e., when e11 , e 22 , e33 or e12, e 23 , e 31 are per­
muted cyclically, in addition to conditions (4.29) and (4.30) the 
following conditions must be fulfilled: 

C11 c22 c33 c22 c33 c33 c12 c13 c23 
11= 22= 33• 11= 11= 22t 12= 13= 23· (4.31) 
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Consequently, when the body possesses the same elastic properties 
for each of the three planes, the elastic potential is of the form 

ctt 

A =-¥-(ei 1 +e~2 +e~3 ) +err (e22eaa + eaaeu +eue22) + 
+ cg ( 2 + 2 + 2) -2- et2 e23 e.H (4.32) 

and only three independent elastic constants will remain. 
Finally, if the body is isotropic, the elastic potential must be cons­

tant when any rotation of the co-ordinate axes is made. On the 
other hand, the stress tensor or the strain tensor has three indepen­
dent invariants of the first, second, and third degree in the compo­
nents of the stress and strain tensors. The elastic potential must 
therefore be expressed in terms of the invariants of the stress tensor 
if the elastic potential is represented by the components of the stress 
tensor, or in terms of the invariants of the strain tensor if the elastic 
potential is represented by the components of the strain tensor 
(4.28). Since the elastic potential is a homogeneous function o'f the 
second degree, it can contain only the first invariant to the second 
power and the second invariant to the first power, i.e., 

A = P (eu + e22 + eaa) 2 + Q (eue22 + e22eas + eaaeu - e~a -
- e~3 - e~1 ). (4.33) 

Thus, an isotropic body is characterized by only two elastic cons­
tants, P and Q. By applying formulas (4.20), and remembering that 
e~r (k =f: r) are the shearing strains in (4.20), whereas in (4.33) they 
denote half the shearing strains, from formula (4.33) we obtain 

akr = (2P + Q) SBI!r + (- Q) ekr• 

where 8 is the volume strain, B11 r are the Kronecker symbols. 
Taking into consideration the notation introduced by G. Lame 

2P + Q =A., - Q = 2r.t, (4.34) 

we obtain formulas for the components of the stress tensor for a li­
nearly elastic isotropic body in terms of the components of the small 
strain tensor 

(4.35) 

The constants A. and r.t are called Lame's elastic constants. 
These formulas express the generalized Hooke's law for an isotro­

pic body. 
Note that, by virtue of formulas (4.34), formula (4.33) can now be 

represented as 
2A = A.82 + 2r.terkekr· (4.36) 

Here both indices, k and r, are to be summed. 
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Since the strain energy is always positive, we conclude from for­
mula (4.36) that f.1 > 0. Indeed, if the tensor ekr is chosen so that 
ekk = 0, formula (4.36) takes the form 

2A = 4f.1 (e~2 + e; + e:1), 

from which f.1 > 0. 
Let us prove that the principal directions of the strain tensor at 

each point of an isotropic body coincide with the principal direction 
of the stress tensor. By taking the principal directions of the strain 
tensor at some point of the body as the co-ordinate axes, we have 
e12 = e23 = e31 = 0; by formulas (4.35), a12 = a 23 = 0'31 = 0, 
which was to be proved. For isotropic bodies no distinction is there­
fore made between the principal directions of the strain tensor and 
those of the stress tensor; both are referred to as the principal direc­
tions. 

Let an isotropic body be subjected to axial tensile loading; the 
state of stress at each of its points is given by 

O'u =I= 0, 0'22 = 0'12 = 0'23 = 0'31 = 0'33 = 0; 
formulas (4.35) then become 

A.e + 2~-te11 = O'w A.e + 2~-te22 = 0, A.e + 2f.1e33 = 0. (4.37) 
By adding these formulas together, we obtain 

1 e = 31.+2~-t O'u. (4.38) 

Inserting (4.38) in the first formula of (4.37), we have 

(4.39) 

On comparing (4.39) with the formula of Hooke's law for a prismatic 
rod in axial tension, we find 

E = 1-t (31.+2!1) (4.40) 
1.+~-t • 

From the last two formulas of (4.37), with (4.38), we have 
I. I. 

e22=ess= -2il8=- Z!J.(31.+Zf.L) O'u. 

Substitute the value of a11 from (4.39) in this formula and introduce 
the notation 

then 
(4.41) 

(4.42) 

Equalities (4.42) express the law of lateral contraction in axial ten­
sion; 'V is called Poisson's ratio. 
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Suppose that an isotropic body is subjected to a uniform hydro­
static pressure; then 

(4.43} 
O'u = 0'23 = O'sl = 0. 

By using (4.43), from (4.35) we obtain 

A.8 + 2f.Lerr = - p (r = 1, 2, 3). (4.44} 

Adding formulas (4.44) together gives 

(3A + 2f..l) 8 = -3p. (4.45) 

By introducing the notation 

(4.46) 

where K is known as the bulk modulus, from (4.45) we obtain 

p = -KS. (4.47) 

According to the law of conservation of energy, when p > 0 there is 
a decrease in volume; taking this into account, from formula (4.47) 
we have K > 0. On the basis of formulas (4.40), (4.41), and (4.46) 
the quantities A, f..l, and K are expressed in terms of E and " as-

Ev E , E 
A= (i+v) (1-2v) ' f..l= 2 (1+v) ' K = 3(1-2v) • (4-48) 

From the last two formulas of (4.48), remembering that E > 0, 
f..l > 0, and K > 0, we obtain 1 - 2v > 0, 1 + " > 0, from which 
the range of possible values of Poisson's ratio is 

-1 <" < 0.5. (4.49) 

As seen, Poisson's ratio can also take some negative values. Expe­
riments show, however, that Poisson's ratio for known materials 
takes positive values; instead of inequality (4.49) we therefore have-

0 <" < 0.5. 

For most materials " has approximately the same value, close tO> 
1/3. Consequently, from the first formula of (4.48) we have A.> 0. 

Thus, it follows from (4.36) that the strain energy A is a positive 
definite quadraticform in the components of the strain tensor vanish­
ing only when the components of the strain tensor are all zero simul­
taneously. 

By solving (4.35) for the components of the strain tensor ekrt and 
taking into account the first two formulas of (4.48), we obtain the-
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generalized Hooke's law for an isotropic body: 
1+v 3v 

ekr = -r akr- 7F a6k,, (4.50) 

where 

( 4.51) 

28. THERMAL STRESSES 

Let T be a temperature change at some point of a body; the volu­
me of a sufficiently small neighbourhood of this point will vary in 
proportion to T. In consequence, the extension of all fibres issuing 
from the given point is equal to aT. The components of the strain 
tensor are then 

(4.52) 

Here a is the coefficient of linear thermal expansion. Actually. the 
deformation of the neighbourhood of the point resulting from the 
temperature difference encounters environmental resistance. In this 
case the total strain ekr is found by superimposing the above thermal 
expansion e!tr and the elastic strain e'kr, i.e., 

(4.53) 

In an isotr~pic linearly elastic body, provided the proportional limit 
is not exceeded, the components of the strain tensor e'kr are, by virtue 
of Neumann's hypothesis, related to the components of the stress 
tensor by the formulas of the generalized Hooke's law 

O'kr = lv8"6kr + 2~-tekr· 
According to formulas (4.52) and (4.53), 

8" = 8- 3aT. 

(4.54) 

(4.55) 

Substituting (4.53) and (4.55) in formulas (4.54), we obtain 

O'kr = A.e6kr + 2~-tekr- ~T6k,.. (4.56) 
Formula (4.56), where ~ = (3/., + 2~-t) a, expresses the generalized 
Hooke's law for an isotropic body. On the basis of Neumann's hypo­
thesis the components of the total strain tensor appearing in formulas 
(4.56) are determined in terms of the displacements uk by formulas 
(3.26). 

29. ENERGY INTEGRAL FOR THE EQUATIONS OF MOTION 
OF AN ELASTIC BODY 

Suppose that a body is acted on by a surface force Tn and a vol­
ume force p F. Let us determine the work done by these forces from the 
initial moment t = 0 corresponding to the natural state of rest 
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to the moment under consideration t. The displacement of the points 

of the body during the time dt is ~7 dt. Denote the work done by' 
the external forces during the time dt by dR. Then 

dR = ) ( pF 11 a;: dt) dT + J ( T nil 0:,11 dt ) dco. 
1' (I) 

Substituting T nk = akrnr, and transforming the surface integral 
into a volume one, we obtain 

~~ = ~ [ ( 88:k; +pF11 ) a;tk +akr a!r { ~:ek ) J dT. 
T 

From the equations of motion we find 

~~ = J p a;;2k a:ek dT + J akr :t ( ~~: ) dT. 
T T 

Here the first term represents the derivative of the kinetic energy 
of the body with respect to time. Indeed, 

r iJ2Uk OUk d r 1 ( OUk ) 2 dK 
J p ai2atd't=dt J 2 p at d't=-;rt· 
1' T 

Because of the symmetry of the stress tensor a1m 

If the process of elastic deformation takes place adiabatically or 
isothermally, we have, by (4.19), 

f ae,..r d f iJA aekr d d f A d J (Jkr at 't= J iJekr at 't=dt J 'to 
1' 1' T 

Consequently, 

~~ = :t ( K + J A d't) . 
T 

By integrating the last relation between the limits 0 and t, and re­
membering that at the initial moment the body was in the natural 
state of rest, we find 

(4.57) 
1' 

where J Ad't is the work that must be expended by the external for-

"' ces to produce deformation. This work is equal to the elastic strain 
6-0884 
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energy; A is the elastic strain energy per unit volume. Formula 
(4.57) is true not only for isothermal and adiabatic processes, but 
A is then not a potential. 

If the body is linearly elastic and isotropic, A is determined by 
formula (4.36). Thus, the work done by the external forces is expend­
ed in producing the kinetic energy of the body and the strain energy. 
Formula (4.57) expresses the law of conservation of mechanical 
energy~ 

If, under the action of the external forces, the body passes from 
the natural state of rest to a new, deformed, state of rest, the kinetic 
energy is -zero and formula (4.57) takes the form 

R= ~Ad-c. (4.58) 
T 

30. BETTI'S IDENTITY 

Let a linearly elastic body be in two different states of stress, 
(oiJo eiJ) and (oiJo ei1). Then 

(4.59) 

(4.60) 

By forming oi1eiio with (4.59), and grouping together the coefficients 
of ei1, with the use of (4.60), we obtain Betti's identity 

(4.61) 

Betti's identity shows that for a linearly elastic body the work done 
by the first state of stress in the strain of the second state of stress 
is equal to the work done by the second state of stress in the strain 
of the first state of stress. -

3f. CLAPEYRON'S THEOREM 

Let a linearly elastic body be in a state of rest under the action 
of a surface force Tn and a volume force pF. The work done by the 
above forces during the displacements uk is equal to 

R = ) pF kuk d't + J T nkuk dro. 
T CJl 

Inserting Tnk = okrnro and transforming the surface integral into 
a volume one, we obtain 

R = f [ ( ~~k: +PFk} uk +okr ~~: J d't. 
T . 
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By the equilibrium equations (2.25) and the symmetry of the stress 
tensor CY~tr• we have 

If the deformation process takes place adiabatically or isothermally 
we have, by Clapeyron's formula, 

j A d't= ~ R. (4.62) 
't 

It follows from equality (4.62) that the elastic work of deformation 
is equal to half the work done by the statically applied external 
forces during the displacements. This proposition is known as Cla­
peyron's theorem. 

II* 



CHAPTER V 

Complete system of fundamental 
equations in the theory 

of elasticity 

32. EQUATIONS OF ELASTIC EQUIUBRIUM AND MOTION 
IN TERMS OF DISPLACEMENTS 

Equations (4.1) ralating the stress and strain tensors complete 
the sy~tem of fundamental equations (2.24), (3.26) of the theory of 
elasticity, i.e., the resulting system of nine equations is 

aaij a2uj 

BXf+pF, = p 8t2' 

CJiJ =Iii (erk) 

(5.1) 

(52) 

Here the unknowns are six components of the stress tensor a 11 
and three displacements uk. The components of the small strain 
tensor erk are calculated in terms of uk by means of formulas (3.26). 

The system of equations (5.1) and (5.2) contains both the com­
ponents of the displacement vector and the components of the stress 
tensor. In order to obtain the equations of equilibrium and motion 
in terms of displacements, from (5.2) we determine 

Here the coefficients of the second derivatives of the unknown func­
tions uk are functions of the first derivatives of these functions. 

As a result, we have a system of three second-order non-linear 
partial differential equations in three functions uk of three independ­
ent variables Xr in the case of equilibrium and four independent 
variables, Xr and the time t, in the case of dynamic application of 
forces. These equations are too complicated to be worth giving; it 
is more convenient to set them up directly in each particular prob­
lem. 

In the case of a law of the form (4.6) the coefficients 8
81i1 are the 
erk 

elastic constants crJ' and the differential equations constitute a sys­
tem of three linear equations with variable coefficients when the 
body is non-homogeneous and with constant coefficients when the 
body is homogeneous. 
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For an isotropic homogeneous linearly elastic body we have 

aa ij ae a ( OUi f}u j ) 
-=A<'>··- ~--

ox1 ' 1 oxt + f..l. ax1 ax} + oxi • 

Substituting the expressions for these partial derivatives 
(5.1}, we find 

(5.3) 

in Eqs. 

(5.4) 

The resulting equations of motion in terms of displacements involv­
ing three functions ui are called Lame~s differential equations. 
The system of equations (5.4) is equivalent to the differential equa­
tion in vector form 

(5.5) 

which is obtained from Eqs. (5.4) if each of them is multiplied by 
ii and then summed with respect to the index j, remembering that 
e = div u. For elastic equilibrium, instead of the system of equa­
tions (5.4) and Eq. (5.5) we then have 

a a 
(A.+ f..l,) a,x.-+ f.t~UJ + pFJ = 0, (5.6} 

1 

(A.+ J.t) V div U + f..I.~U + pF == 0. (5.7) 

In the case when the 'body is acted on by surface forces only, i.e.,. 
when the volume force pF is zero, Eqs. (5.6) take the form 

(A.+!') 8
08 +J.L~u1 = 0. (5.8) 
Xj 

Differentiating (5.8) with respect to x/t and summing the index j,. 
gives 

(A. + 2J.L) ~e = o, 
from which 

~e = o. 
Thus, in the absence of body forces the volume strain is a harmoni~ 
function. 

By applying the operator A to both sides of (5.8), we obtain 

(A+ J.t) -a8 ~a+ f..I.~L\u1 = 0. 
ZJ 

Noting that ~e = 0, we have 

~~Uj = 0, 
i.e., the displacement vector is a biharmonic function. 
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Adding the formulas of the generalized Hooke's law (4.50) {when 
r = k) gives 

e_ 3 1-2v 
- -E--a, (5.9) 

where 3a is the sum of the normal stresses acting on three mutually 
perpendicular planes. Since e is a harmonic function, so also is 
a by (5.9). 

By applying the operator ill\ to both sides of each of the formulas 
of the generalized Hooke's law for an isotropic and homogeneous 
body, and remembering that the volume strain is a harmonic func­
tion and u1 are biharmonic functions, we come to the conclusion 
that the stress components are also biharmonic functions. 

Substituting the expression given by formula (4.56) in the differ­
en_tial equations (5.1), we obtain 

00 ( ·~) • (A.+ !l) 8x1 + J..tdu1 + p Pr-:- atr - ~ 8x1 = o. (5.10) 

These differential equations are called the Duhamel-N eumann ther-
moelastic equations. · · 

It should be noted that the elastic constants). and ll are functions 
of temperature T and, as esta~lished by experiments, they usually 
decrease with increasing temperature. hi. the case when temperature 
gradients in a bpdy are not too great, A. and J..t may be considered 
constant. 

· The system of differential equations (5.10) fnvolves three"unknown 
functions zi'" since the .. temperature change is assumed to be known; 
the latter is determined as follows: let a body be subjected to a change 
in temperature depending on the' co-ordinates of a point and the time 
t. Assume that the body is thermally isotx:opic and homogeneo~~; 
in addition, the thermal conductivity A.* and the specific heat c 
are temperature independent. This assumption is fully justified when 
the temperature differences are not too great. In this case the function 
T (x10 x2, x3; t) must satisfy, throughout the body, the Fourier heat 
conduction equation · ' 

aZL\T+~= !!._ (5.11) 
C'\' iJt 1 

where A is the. Laplacian operator, y is the specific weight, a·is the 
thermal diffusivity, a1 = ).*c-ly-1, Q is the quantity of .heat per 
unit volume generated or absorbed per unit time by a heat source 
situated at the given point of the body. 

In the case of a steady tempera~~,re state of a body Eq. (5.11) 
reduces to Poisson's equation · 

o· 
L\T= --, I. ... . ,(5.12) 
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If the body contains no heat sources, we obtain Laplace's equation 

!!.T = 0, (5.13) 

i.e., the temperature is a harmonic function. 
To determine the function T completely, it is necessary to specify 

the appropriate boundary conditions aD.d also the initial conditions 
in the case of a transient temperature state. It is assumed that the 
unknown function and its partial derivatives are continuous up to 
the surface of the body. The initial value of T may be given by any, 
continuous or discontinuous, preassigned function f (x1 , x2, x3), i.e., 

T (xu x2 , x3 ; 0) = f (x1 , x2 , x3). (5.14) 

In the simplest case the boundary condition specifies the temperature 
over the surface ro of the body under consideration as a function of 
position and time 

(5.15) 

at any time t > 0. 
· On the boundary one can also prescribe the heat flow through the 

surface nf the body 
aT j o ( fin 00 = -q Xft X2, Xsi t),. (5.16) 

where q0 is the heat flux entering or leaving the body across unit 
area of the body surface per unit time. 

Finally, according to Newton's law of cooling, the condition on 
the surface of the body may also be given as 

!.!_I = ~ (T*- r). an oo A,* 
(5.17) 

Here T* is the temperature of the surrounding medium, ki'J...* is the 
relative heat transfer coefficient, k is ·the surfaee hea,t transfer coef­
ficient. 

In the case. of a simultaneous consideration of- the. heat conduction 
problem and the tliermoelastic·'problem we have to deal with the gen­
eralized heat conduction equation 

aT +bz a d" ZAT . at' Tt IV u =a Ll • 

Here u is the elastic . displacement vector, 

b2= Cp-Cv ( ) 
Cp >cv, ac11 

(5.18) 

Cp, C0 are the specific heats at constant pressure and constant vol­
ume, respectively; a is the coefficient of linear expansion. 

The generalized heat conduction equation (5.18). differs from the 
usual equation (5.11) with Q = 0 by the presence-of the additional 
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term b2 :t div u and can be obtained from the first law of thermo­

dynamics. The idea of such a formulation of the problem is due to 
the well-known Russian physicist N. A. Umov who stated it in 1871 
in Theory of Thermomechanical Phenomena in Elastic Solids. In this 
approach the solution of the thermoelastic problem is reduced to a 
simultaneous solution of the generalized heat conduction equa­
tion and the equations of motion and strain compatibility with 
the appropriate initial and boundary conditions for tempera­
ture and stresses. In this formulation the problem is realized 
when, in addition to temperature fields, the body is acted on by 
rapidly varying external forces, which may give rise to a rather 
significant redistribution of the temperature fields in the body, and 
this in turn may entail a redistribution of stresses. In cases where 
the thermal stresses in the body result only from external heating, 

the term b2 :t div u can be neglected in the generalized heat conduc­

tion equation. 
The heat conduction problem then becomes the first, and independ-

ent, step of the thermoelastic problem. Clearly, the term b2 :t div u 

vanishes in all static problems, and hence here the thermoelastic 
problem and the heat conduction problem are solved separately. 

By the foregoing method, from (2.30) and Hooke's law (4.35), 
using formulas (3.29) and (3.30), it is easy to obtain the differential 
equations of motion in terms of displacements in a cylindrical co­
ordinate system. These are as follows: 

(A+ 2f..l.) r :~ - 2f..1. ( 0;;8 - 0~8 (rw'l')) + pr ( F 7 - a;t~r ) = 0, 

1 80 ( 8Wr oW3 ) ( o2
Uq> ) (A+2u)---2u --- +P F -- =0 (5.19) r r olp r ox8 or q> ot! ' 

(A+2f..l.)r :x: -2,....( :r (rw~)- ~~) +pr (F3 - a;~s) =0, 

where 

(5.20) 

From (2.31) and (4.35), with the use of formulas (3.33) and (3.34), 
the differential equations of motion in terms of displacements in a 
spherical co-ordinate system are obtained as 

(A +2f..l.) r sin lJl :~-

-2f,.t ( ';;¢ - ~ (w"' sin '(l)) + pr sin lJl ( F 7 -
00:~r ) = 0, 



where 
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(A.+ 2J.') sin lJ1 !: - 2J.' ( ! (rrocp sin lJ')- ~~ } + 

+prsin lJ1 ( Fw- a;~"') =0, 

89 

1 a 1 ( a . auq> ) 
6 =err+ eq>q> + e¢¢ = /=2 Br (r2ur) + r sin 'IJl O'IJl {U¢ Sill'¢)+ "8(p . 

(5.22) 

For an axially symmetric problem Eqs. (5.19) become 

ae Q(l)q> ( o1ur ) 
(1..+2f.')ror+2w axa +pr F,-8i2 =0, Fcp=O, 

ae 8 (F o2ua) (A.+ 2J.') r ox a - 2J.' 7j; (rroq;) + pr 3 - 7ji2 = 0 
(5.23) 

since ucp = 0, and u, and u 3 are independent of the q> co-ordinate. 
Due to the last circumstance ro, = ro3 = 0 and 

a=.!._aa (ru,)+aaua. (5.24) 
r r X 3 

In the case of equilibrium and when Fr = F3 = 0, Eqs. (5.23) 
reduce to 

(5.25) 

From this 

a ( 1 fJ ) atrocp 
Tr r a;: (rrocp) + oxft = 0. 

Mter determining the solution rocp of this equation, we find 6 by using 
either of Eqs. (5.25). To determine Ur and u3 , from (3.30) and (5.24) 
we obtain differential equations of the form 

au, OUs 2 ---=- rocp 
1Jx3 or ' 

1 a OUs 
7 Tr (rur) + OX a =e. 

(5.25') 

From this 



90 Ch. V. Fundamental Equations 

After finding the solution ur of the last equation, we also find u3 

by using either of Eqs. (5.25). 
For an axially symmetric problem the equations of motion in a 

spherical co-ordinate system assume the fnrm 

(P-+2f1) :~+2ft rsi~'i' 0~ (w<Psin¢)+pr (Fr- a;t~r )=0, F<P=O, 

ae 1 a ( o2 u"' ) (P-+2fl) i.l'iJ-2f1 8in\jJ a,:-(rw<Psin¢)+pr F"'-"""ai2 =0, 
where 

(l)<P = 21r ( ~~.- :r (ru¢))' Wr = W¢ = 0 

since U<P=O, U¢=U¢(r, ¢) and Ur=Ur (r, ¢). 

33. EQUATIONS IN TERMS OF STRESS COMPONENTS 

Consider the basic equations of the statics of a linearly elastic 
isotropic body 

(5.26) 

(5.27) 

Nine equations, (5.26) and (5.27), contain nine unknown functions 
uk, O'kr· 

In Chap. III it has been stated that the six components of the strain 
tensor ekr are not arbitrary functions of the co-ordinates of a point 
in a body, but must satisfy six Saint Venant's strain compatibility 
conditions. Remembering this, we substitute formulas (5.27) in 
Saint Venant' s strain compatibility conditions; after some manipula­
tion, we find six relations 'interconnecting the components of the 
stress tensor. Consequently; there are then in all three differential 
equations (5.26) and six relations among the components of the stress 
tensor, which' we proceed to derive. Suppose that the body is homo­
geneous, i.e., P- and f1 are independent of position. The resulting 
system of equations will apply only to isotropic homogeneous and 
linearly elastic bodies. 

Substituting (5.27) in Saint Venant's conditions (3.45), after some 
rearrangement, we obtain 

(5.28) 

(5.29) 
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and four more similar relations also corresponding to conditions 
(3.45). By differentiating the first equation of (5.26) with respect 
to x11 the second with respect to x2, the third with respect to - x3, 

and adding, there results 

-2 a2al2 - a2an + a2a22- a2aaa + p (aFt + aF2- aFa) (5,30) 
axl ax2 - axf ax~ ax~ axl ax2 axa . 

Inserting (5.30) in (5.28), we have 

a2 (<Tn+cr22) + a2 (<Tn+<T22) _ a2craa -~ ( a2a + a2a )= 
axr ax~ a xi 1 + v axr a xi 

= p ( aF3 _ aF2 _ oF1 ) 

axa ax2 axl 
or 

The last two relations· are obtained in a similar way from the :re­
maining two equations· of the type (5.28). 

By adding the last equalities, we find the formula 
1+v aFr 

~O"=-p3(1-v) axr" (5•32) 

Substituting (5.32) in (5.31), we obtain 

1+v ilau + a2~ = -~p (1 +v) aF1 -p v (1+v) aFr 
3 axl 3 i)xl 3(1-v) axr. 

1+v Lla + a2a = _ _! (1 +v) aF2 _ v(1+v) aFr 
3 22 axi 3 p ax2 p 3(1-v) axr' (5.33) 

1+v Ll + a2a 2 (1 + ) aF3 v (1+v\ aFr 
-3- O"aa cxJ = -]'" p · V ax3- p 3 (1-v) axr . 

These equalities constitute. the first group of the Beltrami-Michell 
relations. 

To obtain the second group of the Beltrami-Michell relations, we 
transform (5.29). For this purpose we differentiate the second equa­
tion of (5.26) with respect to x3 , the third with respect to x2, and add 
them together; by adding the result to (5.29), we have 

1+v A + a2a - . 1+v ( aFs + aF2) --u0"23 --p-- - -
3 . ax2 axa 3 ax2 axa . 

The remaining two equations of this type are obtained in a similar 
way. 
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Thus, the second group of relations takes the form 

1+v Lla + {J 2a = _ i+v ( 8F1 + {JF 2 ) 

3 111 fJx1 iJx2 p 3 iJ:t2 iJx1 ' 

1+v ~a + o2a = _ 1+v ( iJF2 + iJF3 ) 
3 23 iJx2 o:ta p 3 8:ta 8:t2 ' 

1+v fPa _ 1+v ( iJF3 + 8F1 ) 
-3- ~031 + ox1 iJx3 p 3 iJx1 iJx8 ' 

(5.34) 

Consequently, the Beltrami-Michell relations represent six linear 
differential equations containing six functions O'rs-

It is important to note that the system of equations (5.33) and 
(5.34) is suitable only for a linearly elastic isotropic homogeneous 
body in the case of isothermal or adiabatic deformation processes 
in the body, whereas six Saint Venant's compatibility equations are 
suitable for any body. 

In the case when the body forces are absent or constant the Belt­
rami-Michell relations become 

0. (5.35) 

Similarly, with the use of (4.50) and (2.30), when Fr = F 'II = F 3 = 
= Wr = W 'II = W3 = 0, the compatibility equations (3.40) in 
a cylindrical co-ordinate system are rearranged in the form 

2 4 iJCJ r<p 1 iJ29 
~O'rr--2 (O'rr-O''fCP) --~ -,-+ -1+ '"'!li""= 0, r r ucp V ur 

2 4 iJCJ<Pr 1 1 ( a 1 iJ2 ) 
~O'cp<f!+-;=2(0'rr-O'q>Ql)+-;:ra;p+ 1+v r a,:-+-; iJcp2 8=0, 

. 1 a2e 
~a33 -r- 1 + v o:ti = 0, 

1 a ( 1 ae) 2 a 4 ~O'rtp+1+var r acp +-;raq;-(arr-aQJ<P)--;:r-ar<P=O, 

(5.36) 

where 
1a( a) 1 a2 at. 0=0'rr+aQllll+aaa. ~=r-a;: ra;: +-;::r acp2 +ax!· 

For an axially symmetric problem Eqs. (5.36) assume the form 
2 1 ~e 

~O'rr --;r ( O'rr - O'QlQl) + 1 + v 072 = 0 • 

A 2f( ) 1 189_0 
L.lO'<P<P + -;=2l 0rr- O'cpQl + 1 + v r Tr- ' 



34. Fundamental Boundary Value Problems 93 

(5.37) 

where 

since O'r<P = O'_«P3 = 0, and the remaining .co~nents of the stress 
tensor are independent of the cp co-ordinate. 

34. FUNDAMENTAL BOUNDARY VALUE PROBLEMS 
IN ELASTOSTATICS. UNIQUENESS OF SOLUTION 

In practice the most common types of loading and fixing of bodi;s 
are the following: (1) the forces applied to the surface of a body are 
given; (2) the displacements are given at all points of the surface; 
(3) the displacements are given over a part of the surface, and the 
external forces over the remainder. In this connection three types 
of fundamental boundary value problems are distinguished in 
elastostatics. 

The first fundamental boundary value problem consists in finding, 
in the region occupied by the body, three projections of the displace­
ment vector and six components of the stress tensor, which must be 
continuous functions of position up to the surface of the body and 
satisfy Eqs. (5.1) and (5.2), and, in addition, the following condi­
tions on its surface: 

(5.38) 

where T ns are the projections of the given forces acting on the surface 
of the body. 

The second fundamental boundary value problem consists in find­
ing a solution of Eqs. (5.1) and (5.2) satisfying the following boun­
dary conditions on the surface of the body: 

(5.39) 

where u; are the projections of the given displacement vector of the 
points of the body surface. 

The third fundamental boundary value problem consists in deter­
mining a solution of Eqs. (5.1) and (5.2) satisfying conditions (5.38) 
over a part of the surface, and conditions (5.39) over the remainder. 
Besides these problems, other problems are encountered which also 
have applied significance. Some of these will subsequently come 
under consideration. 
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For thermoelastic problems involving surface forces as well as tem-
peratures, the boundary conditions (2.22) take the form 

Tnt= (A.6 + 2tJ.eu- ~T) n1 + 2flet 11n2 + 2fletana, 

T nz = 2fle21n1 + (A.6 + 2fle22 - ~T) n2 + 2flezana, (5.40) 

T na = 2flea1n1 + 2flea2n2 + (A.6 + 2Jle33 - ~T} na. 
Equations (5.10) and (5.40) show that the elastic displacement vec­
tor u in the body is the same as that arising when the body is acted 
on by the forces ~VT applied at each of its points and calculated per 
unit volume, and the pressure n~T on the surface, as well as the body 
and surface forces. 

The proof of the existence of a solution of the above problems in­
volves great mathematical difficulties. At present, however, the 
solvability of all boundary value problems of the theory of elasti­
city is established under rather general conditions. Assuming the 
existence of solutions of the foregoing boundary value problems, we 
proceed to the proof of their uniqueness. 

Suppose that one of the above fundamental boundary value prob­
lems has two solutions, uit, a;k and uk, cf;k. Obviously, the difference 
of these solutions 

uk = uk - uk, O'rk = a;k - a;k, 
in the absence of body forces, must satisfy the basic elastostatic equa­
tions (5.1) and (5.2). Hence, formula (4.62) holds for uk and cr7 k: 

(5.41) 

In the case of the first fundamental boundary value problem Tnr = 
= 0 on the surface of the body for the solution made up of the differ­
ence of two solutions of the given problem since both solutions must 
satisfy conditions (5.38) for the same forces prescribed on the surface 
of this body. 

In the case of the second fundamental boundary value problem, 
for the solution made up of the difference of two solutions of the 
given problem, we have u7 = 0 on the surface of the body, similarly 
to the preceding case. 

Finally, in the case of the mixed problem Tnr = 0 over a part of 
the surface, and u7 = 0 over the remainder. 

Thus, in all three fundamental boundary value problems the 
integrand is zero on the surface of the body, i.e., 

TnrUr = 0; 
hence, in all three cases 

J Ad't=O. (5.42) 
'( 
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Remembering that A is a positive quadratic form, from (5.42) 
we obtain 

A= 0. 

As follows from (4.36}, this in turn is possible when erk = 0. We 
conclude from this that e;k = e;k or, on the basis of the generalized 
Hooke's law (4.35}, a;k == a;". Consequently, both solutions give 
the same state of stress and strain. 

Thus, the theorems of uniqueness of solution for the above problems 
are proved. It should be noted that it does not followfrom the zero 
strain compQnents, as may be inferred from formula (3.26}, that 
ur = 0. In the solution of the first fundamental boundary value 
problem we can therefore obtain, for the projection of the displace­
ment un various values differing from one another only by a rigid­
body displacement of the whole body, which has no effect on the 
state of stress or strain in the body. In the second and third fundamen­
tal boundary value problems there is no such difference because the 
displacements are given over the entire surface in the second problem 
or over a part of the surface in the third problem. 

In this section we have proved that the system (5.1}, (5.2) with 
given external forces uniquely determines the state of stress 
or strain in the body. In the foregoing proof of the uniqueness of 
solutions of the above-mentioned boundary value problems, which 
is given by G. Kirchhoff, the body may be assumed both simply 
connected and multiply connected. 

35. FUNDAMENTAL PROBLEMS IN ELASTODYNAMICS 

In the case of elastodynamics, as in statics, three fundamental 
problems may be formulated for Eqs. (5.4). In contrast to the funda­
mental boundary value problems in elastostatics, in the case of dyna­
mic loading to the boundary conditions must be added the initial 
conditions specifying the projection of the displacement vector 
u'k and the projection of the velocity vector vh of a point of the body 
at a certain time f 0 from which the study of the problem begins, 
i.e.' 

uk (x., x2, x 3; t) lt=t. = uk (x., x2, x3), 

:t uk (Xt. x2, xa; t) I t=t. = vk (xh X2, xa). 

(5.43) 

(5.44) 

Thus, the integrals of the system of equations (5.4) must satisfy not 
only the boundary conditions, but also the initial conditions (5.43), 
(5.44). 

As in the preceding section, let us prove the uniqueness of solutions 
of the problems consider-e-d here, without taking up the proof of the 
existence theorems. 
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Assuming that these problems have two solutions, we consider 
their difference, which is the solution of the system of equations 
(5.4) with F k = 0. For this solution, in the case of the first problem 
the stress vector on the surface of the body Tn = 0 for t ~ t0 ; in 
the case of the second problem the displacement vector of a point 

of the surface of the body u = 0 fort ~ t0 , and hence 88~ = 0 on the 
surface ro; in the case of the third problem Tn = 0 for t ~ t0 over 
a part of the surface, and u = 0 for t ~ t 0 over the remainder; 

hence,~~ = 0 over this part of the surface of the b~dy. 
Since both solutions of the problem must satisfy the same initial 

conditions, it follows that the initial conditions for the difference 
of these solutions are homogeneous, i.e., at the initial moment 
t0 we have 

U= 8u =0. at (5.45) 

It appears from the above that the work R calculated for the differ­
ence of the solutions u for t ~ t 0 is zero. On this account, from for­
mula (4.57) we have 

K + J Ad't=O. (5.46) 
T 

Since the kinetic energy of the body K and the strain energy are 
positive quantities, from (5.46) we obtain 

K = 0, A= 0, 

and hence 
8u 
Tt=O, erlt=O for t~t0 • 

It follows from the condition 88~ = 0 that the displacement vector u 
is time independent; it follows from the condition erk = 0 that 
the strain is zero. Consequently, the solution u can represent only a 
rigid-body displacement of the body. According to the condition of 
the problem, u = 0 at the initial moment; hence, this rigid-body 
displacement must be zero at all points of the body and at all times. 
Thus, the two solutions are completely coincident. 

36. SAINT VENANT'S PRINCIPLE (PRINCIPLE OF SOFTENING 
OF BOUNDARY CONDITIONS) 

Referring to the problems of bending and torsion of long prismat­
ic bars, in 1855 B. de Saint Venant published his famous principle: 
The mode of application and distribution of forces over the ends of a 
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prism is immaterial for the effects produced over the remaining length, 
so that it is always possible, to a sufficient degree of approximation, to 
replace the applied forces by statically equivalent forces having the same 
resultant moment and the same resultant vector. 

Thirty years later, in 1885 the first general formulation of this prin· 
ciple was given by J. Boussinesq: A balanced system of external for­
ces applied to an elastic body when all points of application of the 

Fig. 12 Fig. 13 

forces of this system lie inside a given sphere produces negligibly small 
deformations at distances from the sphere sufficiently greater than its 
radius. 

To prove Saint Venant's principle, Boussinesq considered a semi­
infinite body subjected to concentrated forces perpendicular to its 
plane boundary. It is rather interesting to note that up to now there 
has been no rigorously general proof of Saint Venant's principle. The 
existing attempts in this direction are primarily devoted to the esti­
mation of the error of Saint Venant's principle as applied to prisma­
tic bodies and also to bodies whose dimensions are all of the same 
order of magnitude. The problem of estimating the error of this 
principle in relation to thin-walled bars and shells is only slightly 
worked out on account of its great complexity. 

When solving problems of the theory of elasticity reference is often 
made to Saint Venant's principle. ~f, in solving the problem, the 
boundary conditions are prescribed in full accord with the actqa,l 
~~stribution of forces, the solution may be very complicated. Based 
on Saint Venant's principle, it is possible, by softening the boundary 
conditions, to obtain a solution which will give, for a major portion 
of the body, a field of the stress tensor Y~!:Y ~~J.Q_se to the actual one. 
The determination of the~ stress tensor in the region of load applica.!" 
tion presents special problems of the theory of elasticity called con­
tact problems or problems of analysis of local stresses. Figure 12 
shows two statically equivalent force systems: one in the form of 
a concentrated force P perpendicular to the plane boundary of a 
semi-infinite plate, and the other in the form of uniformly distributed 
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forces over a semicylindrical surface whose resultant is equal to the 
force P and perpendicular to the boundary of the plate. At points 
sufficiently far removed from the region of application of the above 
forces the stress tensors in both cases are practically the same. The 
regions of a cantilever beam in which the stress tensor is essentially 
dependent on the mode of application of the force are dashed in 
Fig. 13. 

The efficient solution of the boundary value problems of elastic 
equilibrium mentioned in Sec. 34 involves great difficulties in the 
general case. In this respect Saint Venant 's principle holds a special 
place in the theory of elasticity. Owing to this principle, we have at 
present solutions of numerous problems of the theory of elasticity for 
Saint y.enant's principle allows the boundary conditions -to be sof­
tened;Lthe given force system applied to a small part of an elastic 
body is replaced by any convenient (in simplifying the problem) 
statically equivalent force system applied to the same part of the 
surface of the body. 

37. DIRECT AND INVERSE SOLUTIONS OF ELASTICITY 
PROBLEMS. SAINT VENANT'S SEMI-INVERSE METHOD 

In direct solutions of problems dealing with elastic bodies we seek 
the stress and strain tensors and the displacement vector produced 
by the external forces acting on them. For this it is necessary to 
integrate Lame's differential equations (5.4) if the fundamental un­
knowns ar~ taken to be displacl;)ments uk, or the differential equations 
(5.26) and the Beltrami-Michell relations (5.33), (5.34) if the funda~ 
mental unknowns are taken to be the components of the stress tensor 
with given boundary and initial conditions. In the first case it is said 
that the problem is solved in terms of displacements, and in the 
second case in terms of stresses. 

In solutions of inverse problems we assign either displacements or 
the components of the strain tensor in the body under consideration 
and determine all the other quantities, including the external forces. 
The solutions of inverse problems present no great difficulties, but 
it is not always possible to arrive at solutions of any practical in­
terest. Based on this, Saint Venant proposed a semi-inverse method 
consisting in partially specifying displacements and stresses simulta­
neously and then using the equations of the theory of elasticity to 
determine the equations that must be satisfied by the remaining 
displacements ~ml stresses. The resulting equations are rather easily 
integrated. Thus, this method provides a complete and accurate solu­
tion for a large number of special problem most commonly encoun­
tered in practice. Saint V~nant applied his method to the problems of 
unconstrained torsion and bending of prismatic bodies. · ·. · 
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38. SIMPLE PROBLEMS OF THE THEORY OF ELASTICITY 

The simple problems of the theory of elasticity will be defined 
as those in which the components of stress, and hence of strain, at 
any point of a body are constant or depend linearly on the co-ordi­
nates. Obviously, in the simple problems the Beltrami-Michell relations 
or the strain continuity equations are satisfied identically. These 
problems are solved by the semi-inverse method. 

1. All-round uniform pressure. 
Let a body be subjected to an all-round uniform external pres­

sure-np (n is the unit normal vector to the surface of the body). Body 
forces are neglected. Assign a stress tensor in the form 

O"u = 0"22 = O"aa = -p, O'u = 0"23 = 0'31 = 0, (5.47) 

which satisfies the differential equations of equilibrium (2.25) and 
the Beltrami-Michell relations. 

Determine the external forces producing a stress tensor of the form 
of (5.47) in the body under consideration; on the basis of formulas 
(2.22) we have 

Tnk = -pn 
or 

Tn= -np, 

i.e., the stress vector applied on the surface of the body must repre­
sent the pressure -np, which is aetually the case. Thus any three 
mutually perpendicular sections are principal planes at all points 
of the body. By the generalized Hooke's law (4.50), the components 
of the strain tensor are · 

1-2v 
ekk = - -E- p, ekr = 0 (k =I= r). (5.48) 

Suppose that the given body is fixed at some point, which is taken 
as the origin ofco-ordinate axes, and an elementary fibre situated on 
the x 3 axis is fixed at that point; moreover, the rotation of an eleme­
tary fibre situated on the x 2 axis is constrained in the x1x2' plane~ 
Analytically these fixing conditions are written respectively for all 
xk = 0 as follows: 

0 8u1 __ 8u2 __ 8~ __ O 
Uk= ' • 8xa iJ~s iJzl 

(5.49) 

Substituting solution (5.48) in formulas (3.44), and taking into ac. 
count the fixing conditions (5.49), we determine, after simple compu­
tations, the projections of the elastic· displacement vector 

(5.50) 
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Consequently, the displacements of points of the body are radial; 
they increase directly with the distance from the origin and are 
symmetrical about it. 

2. Axial extension of a prismatic rod. 
Let a prismatic body with straight axis and bases of arbitrary 

shape at right angles to it~ be subjected to axial tension. Body forces 
are neglected. A stress tensor chosen in the form 

<ru = 0'22 = O'u = 0'2a = O'a1 = 0, <raa = P (5.51) 

satisfies the differential equations of equilibrium (2.25) and the Belt­
rami-Michell relations. Determine the external forces producing 
a stress tensor of the form of (5.51) in the given prismatic body. By 
formulas (2.22) we have: on the lateral surface of the rod (n3 = 0) 

Tnl = Tn2 = Tna = 0, 

on the bases of the rod [cos (x3 , x1) = cos (x3 , 

xs) = ± 1] 

(5.52) 

Ta1 = Ta2 = 0, Tss = + p. (5.53) 

Equalities (5.52) show that the lateral surface of the body must be 
free from external forces, which is exactly true since the body is 
acted on by axial forces only. Equalities (5.53) show that uniformly 
distributed tensile forces of intensity p must be applied to the bases 
of the rod. Actually the transmission of a tensile force to the rod 
under consideration may differ greatly from uniformly distributed 
tensile forces. According to Saint Venant's principle, however, solu­
tion (5.51) may be considered as exact over a part of the rod suffi­
ciently far removed from its bases. 

By the generalized Hooke's law (4.50), the components of the 
strain tensor are 

e12 = e2a = e31 = 0, 
V V D» 

eu= -E<raa, e2a= -7fCJ3at eaa=T· 
(5.54) 

As in the first problem, at the centroid of the upper base of the rod, 
where the origin is placed, we assume the boundary conditions 

(5.55) 

Substituting solution (5.44) in formulas (3.44), with (5.55), we oh­
tain 

(5.56) 

The first two formulas of (5.56) show that the displacements u1 and 
u2 at all cross sections are the same and proportional to the distance 
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of a given point of a cross section to the axis of the rod. The third 
formula of (5.56) shows that plane sections remain plane after defor­
mation. In a course in strength of materials the last result is taken 
as the starting assumption known as the hypothesis of plane sections. 

3. Extension of a prismatic rod under its own weight. 
(a) Let a prismatic rod of length l fixed at its upper end be 

subjected to tensile deformation under its own weight. Denote the 
density of the material by p. We choose the axes of a co-ordinate 
system so that the origin is at the centroid of the upper base perpen­
dicular to the axis of the rod, and one of the axes of the system, say 
x3 , directed vertically downwards, coincides with the axis of the rod. 
The projections of the mass force are then 

F1 = F 2 = 0, F 3 =g. 

By using Saint Venant's semi-inverse method, we choose the compo­
nents of the stress tensor in the form 

t1n = tJ22 = t1u = tJ23 = tJs1 = 0, 
tJss = ax3 + b. (5.57) 

Here the constants a, b are not yet known. The Beltrami-Michell 
relations are satisfied identically by these components of the stress 
tensor; the first two equations of equilibrium are also satisfied iden­
tically, and from the third equation we obtain 

a=- pg. 
Now we have 

t1ss = - pgx3 + b. 
Taking into account formulas (5.57}, and remembering that n3 = 0, 
where n is the outward normal to the surface of the rod, for the 
projection of the force acting on the lateral surface of the rod we 
have, by (2.22}, 

T nl = T n2 = T n3 = 0. 

As seen from the last equalities, the lateral surface of the rod must 
be free from forces, which is actually the case since the rod is under 
its own weight only. On the lower base of the rod (x3 = l) we have 

n1 = n2 = 0, n 3 = 1, 

where n is the outward normal to the lower base. According to for­
mulas (2.22) 

T~ 1 =0, T~2 = 0, T~3 = -pgl+b. 
By the conditions of the problem, the lower base is free from forces, 
hence 

T~3 = - pgl + b = 0, 
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from which 
b = pgl. 

We have, finally, 

C1aa = pg (-x3 + l). (5.58) 

Proceeding in a similar way, on the upper base of the rod (x3 = 0) 
we have 

r:~ = r~; =0, r~: = -pgl. 

This corresponds to fixing conditions of the upper base such that 
there are only normal stresses uniformly distributed throughout the 
base. No such fixing is practicable, but by virtue of Saint Venant 's 
principle solution (5.57) may be considered to be exact for every 
other mode of fixing. 

By the generalized Hooke's law, the components of the strain 
tensor are 

" 1 eu=ess= --E pg(-xa+l), eas==-gpg(-xs+l), 
(5.59) 

e12 = ess =eat= 0. 

For the boundary conditions (5.55) of the second problem, with 
(5.59), from formulas (3.44) we have 

vgp l) vgp l) u1 = E x1 (x3 - , U2=E x2 (x3 - , 

(5.60) 
u3 =- ~~ [x: +v (X: +x~)- 2lx3]. 

As the third formula of (5.60) shows, the points lying on the axis of 
the rod are displaced only along this axis. 

Since there are no shearing stresses, and hence no shears, at the 
cross sections of the rod, these sections remain normal to all fibres 
after deformation of the rod and, as the third formula of (5.60) 
shows, are distorted into paraboloids of revolution which are convex 
downwards. 

(b) A prismatic rod of length l fixed at its upper end is under the 
action of its own weight and a force P applied to the free end in 
the direction of the axis of the rod. We place the origin of co-ordi­
nates at the centroid of the upper section and choose one of the axes, 
x3 , along the axis of the rod in the downward direction. Based on 
Saint Venant's principle, we replace the force P by a statically equiv­
alent load of intensity p = PI (J) uniformly distributed over the 
lower base of the rod ( (J) is the area of the lower base perpendicular 
to the axis of the rod); by reason of the linearity of the problem, the 
solution is represented as the sum of the solutions of the second 
and third problems. 
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4. Torsion of a circular prismatic bar. 
Let the extreme cross sections of a circular prismatic bar with 

axis ox3 be acted on by couples whose moments are equal in magni­
tude but opposite in sense; in this case the bar is subjected to torsion 
(Fig. 14); the lateral surface of the bar is free from surface forces, 
and there are no body forces (F k = 0). 

The elementary solution of the problem in the theory of strength 
of materials is based on the assumption that the cross sections of 

Xt 

Fig. 14 

Xz 

the bar, remammg plane and at constant distances apart, rotate 
with respect to one another and their radii do not distort. If this 
assumption is taken into consideration, the projections of the dis­
placement vector of some point in a certain cross section of the bar are 

(5.61) 

where 'f is the constant angle of twist per unit length of the bar. 
Let us examine whether these displacements are compatible with 

all the basic equations of the theory of elasticity. Substituting (5.61) 
in formulas (3.18), the components of the strain tensor are obtained 
as 

(5.62) 

The volume strain is 

e = ell + eu + ess = 0. (5.63) 

As seen from formulas (5.62), Saint Venant's compatibility equations 
are satisfied identically. 

Noting that the mass forces are zero and relation_ (5.63) holds, 
we verify that displacements (5.61) satisfy Lame's equations of elas­
tic equilibrium (5.8). 
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By the generalized Hooke's law, the stress components are equal to 

O'u = 0'22 = O'as = O'u = 0, (5.64) 

O'l!a = J..tTXu O'a1 = - J..t't'X2. 

Thus, there are only two components of shearing stre::;:; acting at 
any cross section of the bar. Substituting (5.64) in formulas (2.22), 
we have Tnk = 0 on the lateral surface, where n3 = 0. Consequently, 
the lateral surface of the bar must be free from stresses, which is 
actually the case. Further, substituting (5.64) in formulas (2.22) 
for the extreme cross sections (n1 = n2 = 0, n3 = ± 1), the surface 
forces corresponding to solution (5.61) are obtained as 

Tn1 = =F J..tTX2, Tn 2 = + J..tTX1, Tna = 0. 

Thus, solution (5.61) leads to the conclusion that the extreme cross 
sections of the bar must be acted on by only tangential forces distri­
buted according to law (5.64). The resultant vector and the resultant 
moment of these forces with respect to the centre of the circle are 

V 1 = J Tnt dro=- f . .tT J x 2 dro, 
ffi ffi 

v2 = J T n2dro = J..t'r J Xt dro, 
ffi ffi 

L = J (T n 2Xt- T n tX2) dro = J..tT J (x: + x:) dro. 
ffi ffi 

Owing to the fact that the ox1 and ox2 axes pass through the centroid 
of the circle, the static moments of its area are 

J x2 dro = J x1 dro = 0 
ffi ffi 

We have, finally, 

vl = v2 = 0, L = f.tTio, 

where I 0 is the polar moment of inertia of the area of the circle, i.e., 

I l ( 2 2) d nR4 • o= J x1+x2 ro=-2-, 
ffi 

here R is the radius of the circumference. 
The realization of the transmission of external forces at the ends 

of the bar according to law (5.64) is impra,cticable, but on the basis 
of Saint Venant's principle solution (5.64) may be considered exact 
for any law of transmission of external forces if the conditions of 
static equivalence are fulfilled, i.e., the constant ,; is chosen so (this 
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is possible) that the moment M of the applied couple at either of 
the extreme sections is equal to the resultant moment L0: 

L 0 = J.t'f/0 = M, 

from which we obtain 

M 
'f=-

!Jlo' 

giving Hooke's law for a circular prismatic bar in torsion. 
5. Pure bending of a prismatic bar. 
Let the ox3 axis be taken coincident with the axis of the bar, and 

the ox1 and ox2 axes coincident with the principal centroidal axes 

X.J 

Fig. 15 

of inertia of a cross section, the ox1 axis being directed towards the 
stretched fibres (Fig. 15). 

Suppose that the lateral surface of the bar is free from external 
forces, and that body forces are absent. Moreover, let the extreme 
sections of the bar under consideration be acted on by two couples 
whose planes of action coincide with one of its principal planes, the 
moments of the couples being equal in magnitude and opposite in 
sense. In this case the bar is subjected to pure bending and, as is 
known from the theory of strength of materials, the solution of this 
problem is based on the assumption that each cross section, remain­
ing plane, rotates about a centroidal axis of this section perpen­
dicular to the plane of action of the couples (the neutral axis ox2) 

through a certain angle. 
Assume that the components of the stress tensor are 

(5.65) 

where a is a constant, x1 is the distance of the point of the cross sec­
tion at which the normal stress 0'33 is calculated to the neutral axis 
of this section. 

Let us examine whether the stress components are compatible with 
the basic equations of the theory of elasticity. Since the problem un­
der consideration is also a simple elasticity problem, the components 
of the stress tensor (5.65) identically satisfy the Beltrami-Michell 
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relations. The components of the stress tensor (5.65) also satisfy 
the equations of elastic equilibrium. 

On the lateral surface of the bar, where n3 = 0, from formulas 
(2.22}, with (5.65), we have 

Tnl = Tn2 = Tna = 0. 

Thus, the lateral surface must be free from external forces, which 
is actually the case. 

At the extreme sections, where cos (x3, x1} = cos (x3 , x2) ' 0, 
cos (x3 , x3) = ± 1, from formulas (2.22}, with (5.65), we have 

T~a = n2 = 0, na = ±ax~" (5.66) 

Formulas (5.66) show that there must be only normal stresses distri­
buted according to law (5.66) at the extreme sections of the bar. 
The resultant vector and the resultant moment of these forces are 

V3 = J o33 dro =a J x1 dro, 
ro ro 

L 1 = J o33x2 dro = a J x1x2 dro, 
(t) (i) 

L 2 = J CJa3x1 dro =a J x: dro. 
ro ro 

Taking into account that the ox1 and ox2 axes are directed along the 
principal centroidal axes of inertia of the cross section, the static 
moment with respect to the ox2 axis and the product of inertia of the 
cross-sectional area with respect to the ox1 and ox2 axes are zero, we 
have, finally, 

L 2 = al, 

where I is the moment of inertia of the cross-sectional area with 
respect to the neutral axis ox2 • 

The transmission of external forces according to law (5.66) is 
impracticable; hence, based on Saint Venant's principle, instead of 
these forces one can take a load in the form of bending moments 
so that the equivalence condition is fulfilled, i.e., 

al = M, 
from which 

and hence, 
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By the generalized Hooke's law, the components of the strain 
tensor are equal to 

v vM 
eu=e22=-BOaa=- EI Xt, 

M 
eaa =Efxio (5.67) 

e12 =e2a =eat= 0. 

We place the origin at the centroid of the left extreme section and 
fix the bar at it so as to satisfy the conditions 

From (3.44), using the fixing conditions and formulas (5.67), we ob­
tain, after some manipulation, formulas for the determination of 
displacements: 

M 1 (Ill) Ut= 2EI [x1-v x1 -x2 ], 

vM 
U2 = - EI XtX2t (5.68) 

M 
Ua = EI XtXs• 

As formulas (5.68) show, the axis of the bar x1 = x2 = 0 before de 
formation, remaining in the ox1x 3 plane called the plane of bending1 

is distorted into a parabola after deformation: 

M I 
Ut=- 2EI Xa, U2=Ua=0. 

The curvature of the elastic line is, neglecting small quantities of 
higher order, 

K _ ..!,__ cPu1 

- R- dx~ • 

Substituting the expression for uu we obtain the formula 

1 M 
R=- EI' 

which determines the curvature of the axis of the bar proportional 
to the magnitude of the bending moment. Since the curvature is 
constant, the elastic line, parabola, may be replaced by a circle, 
neglecting small quantities of higher order. 

As follows from the formula for the displacement u17 any cross 
section x3 =constant transforms into a plane section after defor­
mation. 



CHAPTER VI 

The plane problem 
in the theory of elasticity 

The solution of elasticity problems for the general case of three­
dimensional bodies involves great mathematical difficulties; we are 
compelled by this circumstance to turn to the solution of more or 
less wide classes of special problems, one of which is the plane prob­
lem of elasticity. The latter comprises three cases of elastic equilib­
rium of a body having great practical significance, viz. plane strain, 
plane stress, and generalized plane stress. 

39. PLANE STRAIN 

The deformation of bodies is described as plane strain if the dis­
placement vector of any point is parallel to a certain plane called 
the plane of deformation and is independent of the distance of the 
point under consideration to this plane. 

Suppose that a body is subjected to plane strain parallel to the 
ox1x 2 plane; then 

u1 = u1 (x1 , x2}, u2 = u2 (x17 x2), u3 = 0. (6.1) 

Inserting (6.1) in formulas (3.26), the components of the strain tensor 
are obtained as 

(6.2) 

the latter are in general different from zero and independent of x3 , 

and the remaining components are 

e23 = esl = ess = 0. 
The volume strain is then equal to 

,_ .. - e.= {}ul + OUt 

{}:z;l i}:z:t 

and is also a function only of the co-ordinates x1 and x 2 • 

In this case the formulas of the generalized Hooke's law take the 
form 

ou = A-61 + 2~-telll 0'22 = A-61 + 2~-te22• 
O'u = 2~-teu, 0'23 = O's1 = 0, O'ss = A.el. (6.3) 
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Consequently, in plane strain the stress tensor consists, in general, 
of four non-zero components depending on two arguments, x1 and 
x 2• Because of the presence of the component cr33 a state of plane 
strain is achieved. It can easily be shown that for a body in plane 
strain the number of independent components of the stress tensor 
is three. Indeed, by adding the first two formulas of (6.3), and using 
the fifth formula of (6.3), we obtain 

1.. 
O'aa = 2 (!..+ fl) (cru + 0'22) 

from which1 with (4.41), we have 

O'aa = V (O'u + 0'22). (6.4) 

In the case considered the differential equations of equilibrium 
(2.25) become 

ocru + ocru + F = 0 ~ + ocrss + F = 0 F 0 (6.5) 8x1 8x2 p 1 ' 8x1 8x2 P 1 1 3 = • 
These equations show that the mass force applied to any point 
9_f the body must be parallel to the plane of deformation and inde­
pendent of the x3 co-ordinate. 

- Lame's equations (5.6) are also accordingly simplified and take the 
form 

(I..+J.l) ~e1 +J.l~Ut +PFt =0. uzl 
89 

(1.. + J.l) Oz: + J.t~Ua + pF2 = 0; 
(6.6) 

here ~ is the two-dimensional Laplacian operator. 
Of Saint Venant's strain compatibility conditions, as is easily seen, 

there remains 

(6.7) 

the other five conditions are satisfied identically. 
For an isotropic homogeneous body the compatibility equation 

(6. 7) in the absence of body forces becomes, by virtue of (6.3) and 
(6.5), 

(6.8) 

Indeed, from the formulas of Hooke's law (6.3), with (6.4), we have 
1 1.. 

eu = ~ [cru- 2 (A.+fl) (cru +cr22)l, 

e22 = 2~ [0'22- 2 (A.~f..L) (0'21 +0'22)]. (6.9) 

1 
ea = 2fl O'tz; 
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on the other hand, from the differential equations (6.5) with F1 = 
= F 2 = 0 we have 

(6.10) 

Substituting (6.9) in (6. 7}, and using (6.10), we arrive at Eq. (6.8). 
which is called Levy's equation. 

Taking into account Hooke's law in the form of (6.9}, the strain 
compatibility condition (6. 7) may be given a new representation 

• • •a - 8 [cru-v(cru+O'z2)l+-2 [0'22-v(cru+cr22)]=2 8 011 • (6.11) 
, 8:~;2 8xt X1 Xs 

From the definition of plane strain it follows that it .is exactly 
realized in a prismatic body of infinite length with str.aighLaxis 
when the surface and body forces lie in the planes of cross_sections 
and are independent of the co-ordinate along the axis of the b.ody. 
When a prismatic body is of finite length, plane strain is not exactly 
realized in it. The longer the body, the more nearly does the defor­
mation approach plane strain provided that the ends of the body 
are acted on by forces distributed according to the law cr33 = 1.81 • 

Since, by definition, the conditions on the lateral surface of a pris­
matic body are independent of the x3 co-ordinate, the boundary 
conditions are prescribed on the contour of one of the cross sections 
or on several contours if the section is multiply connected. Thus, 
the system of differential equations of equilibrium (6.5) and rela­
tions (6.3}, together with contour conditions, describe simpler elas­
tostatic problems (Sec. 34); here again, three fundamental two­
dimensional boundary value problems may be distinguished. ~: · · 

According to (2.22}, the contour conditions for the first funda­
mental boundary value problem are written as 

O'nnl + O'un2 = Tnlt 

O'unl + 0'22n2 = Tn2• 
(6.12) 

The differential equations of equilibrium and Levy's equation as 
well as the contour conditions (6.12) in the absence of body forces 
contain no elastic constants of material. Consequently, in the case 
of plane strain in the absence of body forces the state of stress in 
the body at any simply connected section parallel to the plane 
of deformation is determined by the forces prescribed on the 
contour of this section, its shape, and is independent of the mate­
rial properties. 

If the section is a multiply connected region, the independence 
of the state of stress of the ·material properties is ensured by the 
additional condition that the external forces applied to each of the 
boundaries of the region should be b~alanced. (The proof of this pro-
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position will be given somewhat later.) This statement constitutes 
the theorem of Maurice Levy, which underlies the determination 
of the stress tensor on models from a material of different elastic 
properties. 

In plane strain we obviously have 

2rota = 0. 

For convenience, ro12' will be further denoted by ro3• From the formulas 

after determining the expressions 

Llu = ael - 2 i)(J)3 Lluz = ael + 2 i}(J)3 
1 iJx1 iJx2 ' iJx2 iJx1 

and substituting them in Lame's equations of equilibrium (6.6), 
we obtain a system of differential equations for el and ffis in the form 

(A+ 2~-t) aae1 __;_ 2~-t aaros + pF 1 = O, 
xl x2 

ae aro 
(/,+2~-t)-a 1 +2~-t-a 8 +pF2 = 0. 

x2 xl 

Assuming F1 = F 2 = 0, the last equations become 

ael iJro* ael iJro* 
i)xl = iJx2 ' i)x2 = - iJxl f 

where ro* = A.~~ll ro 3 • These equations constitute the Cauchy-Rie­
mann differential relations, and hence the functions 81 , ro* are 
conjugate harmonic functions. 

40. PLANE STRESS 

A state of stress in a plate is 
said to be plane if the stress 
vector on planes parallel to the 
bases is zero throughout its 
volume. 

Fig. 16 
Let the middle plane of the 

plate of thickness 2h be taken 
as· the co-ordinate plane Ox1x 2 (Fig. 16). By definition, 

0'13 =· 0'23 = O'ss = 0; 
hence the system of differential equations (2.25) assumes the form 
of (6.5) . - · 



112 Ch. VI. Plane Problem 

Since o-33 = 0, for an isotropic body we have 

__ ~ ( ou1 + ou2 + ou3 } + 2 ou3 _ O ass--/\, - - - f,.t-- • ox1 8x2 ox3 ox3 

Inserting, from this, the value of 8
8u3 in terms of 0°u1 and 8

8u2 in the 
Xs Xt x2 

remaining formulas of Hooke's law, we obtain relations between 
the components of the stress and strain tensors in the form 

where 

a = 'A* ( i}ul + i}u2) -1- 2 i}ul 
11 i}xl ox2 1-' i}xl ' 

a ='A* ( i}ul + i}u2) _J_ 2 i}u2 
Ill! ,ox1 ox2 1 f.1 ox2 1 

'A*= 12"-JL 
"-+2JL. 

(6.13) 

(6.14) 

As seen, formulas (6.13) are obtained from the first three formulas 
of (6.3) by replacing Lame's coefficient 'A by the coefficient 'A*. 

Substituting (6.14) in Eqs. (5.6), we obtain 

('A*+ f..t) 8
881 + f.LdUt + pF 1 = 0, xl 

:('A*+f..t) :~: +f..tdu11 +pF2=~, Fa=O. 

i}2 i}2 
Here d = -8 2 + -8 2 • xl Xz 

These equations differ from Eqs. (6.6) only in that the coefficient 
'A is replaced by the coefficient 'A*, and are three-dimensional. 

Thus, in spite of a considerable simplification in the basic equa­
tions for the plane stress problem, the problem remains three-dimen­
sional since the x3 co-ordinate is not eliminated from the foregoing 
equations. For the case when the plate thickness is sufficiently small, 
however, L. N. G. Filon propounded an idea permitting the reduc­
tion of the problem to a two-dimensional one. The idea is that the 
calculation of the means of the displacement vector and the stress 
tensor in a thin plate gives a reasonably accurate solution of the 
problem of] plane stress; the latter, following A. E. H. Love, is 
termed 'generalized plane stress'. 
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41. GENERALIZED PLANE STRESS 

Suppose now that a plate of height 2h is loaded on the lateral 
surface by external forces parallel to the bases and symmetrically 
distributed with respect to the middle plane; the bases of the plate 
are supposed to be free from external forces. Assume further that 
the component of the mass force perpendicular to the middle plane 
of the plate is zero, and that the other two components are disposed 
symmetrically with respect to the middle plane of the plate. The 
state of stress set up in such a plate is called generalized plane stress; 
it is often encountered in applications and is a practically important 
case. 

By condition, on the bases x3 = ± h 

(6. 15) 

and on the lateral surface of the plate T n 3 = 0; also, F 3 = 0. 
From the third differential equation of equilibrium 

acr18 + acrsa + acrss + F = 0 
{}xl {}x2 {}x8 p 3 I 

using conditions (6.15), for x3 = ± h we have 

acrss = o. 
8x3 

Consequently, the derivative of 0'33 with respect to the x3 co-ordi­
nate, as well as 0'33 , vanishes when x3 = + h; hence, if the plate 
thickness is sufficiently small, 0'33 is very small, and we may as­
sume 0'33 = 0 throughout the plate. 

It is obvious, by symmetry, that the projection of the displacement 
vector of any point of the middle plane on the ox3 axis is zero and is 
an odd function in x3 ; hence, its mean value is u: = 0. We also as­
sume that the variations of the projections ~ (x1 , x2, x3), 

u2 (x11 x2 , x3) across the thickness of the plate are small; instead of 
u1 , u2 we may therefore consider their mean values across the thick­
ness, which are determined by the formulas 

h 

uT = 2~~ J u 1 dx3 , 

-h 

h 

u; = ih J u 2 dx3• 

-h 

(6.16) 

Now multiply both sides of the system of differential equations of 
equilibrium (2.25) by (2h)-1dx3, and integrate with respect to the 
x3 co-ordinate between the limits -h and +h; then, by conditions 
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(6.15), 
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h 

1 1 aa13 d 1 1h 0 
2h j axa Xa=2;i'"(<J'ta -h= ' 

-h 

h 
1 r aa23 d 1 1h 0 2h J ax8 Xa=2hf<J'2a -h= . 

-h 

We finally obtain (remembering that a33 = 0, F 3 = 0) 

where 

aaf1 + aaf2 + F* = O . aaT2 + aa;2 + F~ = O 
axl ax2 p t ' axl ax2 p 2 ' 

oafs + aara = 0, 
axl ax2 

+h 

a!t = 2~ J a 11 dx3 , 

-h 
.... ' 

+h 

F~ = 2
1h J F 2 dx3 

-h 

(6.17) 

(6.18) 

are the mean values of aw ... , F 2 across the thickness of the plate. 
It follows fromthedefinitionofplanestressthat u1 , u2,au,a22,a21 

are even functions of x3, and a13, a 23 are odd functions. Consequently, 
the mean values a:3 , a:3 are zero, and Eq. (6.18) is an identity. 

By averaging the values of the given external forces 011 the lateral 
surface of the plate across its thickness on the contour of any section 
parallel to the bases (or on the contours if the section is multiply 
connected), we have 

where 

a! tnt +ahn2 = T~1o 

ahnt + a~zn2 = T~z, 

+h 

nt = 2~ I Tnt dxa; 
-h 

+h 

T~z = 2~ J T n 2 dxa. 
-h 

(6.19) 

Transforming to the mean values, and noting that a 33 = 0, from 
the formulas of Hooke's law (6.13) we obtain 

* ~*e*+ 2 auf Ott="' t ~-a-· xl 

* _:_ ( aut --1- au; ) 
<J't2- ~ ax2 • axl , 

where ·use has ·been made of the notation 

e* _ aut + au; · 
t - axl "'aX; . 

(6.20) 
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Relations (6.20) between the mean values of the components of the 
stress tensor cri17 cr;2, <Ji2 and- the derivatives of the mean values of 
the displacements ut, u; in generalized plane stress differ from 
relations (6.3) in plane strain only in that the constant A.* takes the 
place of Lame's elastic constant_ A.. The differential equations of 
elplilibrium (6.17) and the contour conditions (6.19}, which must 
be satisfied by cri17 cr:Z, cri2, completely coincide with the differential 
equations of equilibrium (6.5) and the contour conditions (6.12) 
in plane strain. Consequently, for generalized plane stress Lame) 
equilibrium equations and the Beltrami-Michell relations for the 
averaged values are written as in plane strain, (6.6) and (6.11}, 
the only difference being that A.* stands for A.. 

Thus, we come to a very important conclusion that plane strain v 
and generalized plane stress, being essentially different problems 
of plane elasticity, are mathematically identical. 

42. AIRY'S STRESS FUNCTION 

The solution of problems of plane elasticity is considerably simpli­
fied if body forces are disregarded either because of their smallness 
or remembering that a problem involving body forces can always 
be reduced to a problem with no body forces by finding some par­
ticular solution of the corresponding non-homogeneous differential 
equations of equilibrium. In the following discussion it will be as­
sumed that there are no body forces. 

In the plane problem of elasticity an auxiliary function first intro~ 
duced by G. B. Airy plays an important part. It should be noted 
that owing to the introduction of this function an efficient method 
has been developed for the solution of problems of plane elasticity. 

In the absence of body forces Eqs. (6.5) become 

iJCJ11 + ilCJn = O, iJcr12 + iJCJ22 = 0. (6.21) 
ilx1 • ilx2 iJx1 ilx2 

The first equation of (6.21) shows that the expression cr11 dx2 -

...:... cr12 dx1 is thf' total differential of a certain function Q (~, x2); 

hence, 
iJQ iJP 

0'12 = - ax1 , 0'22 = ax2 ·• (6.22) 

Similarly, from the second equation we have 
aP aQ 

0'12 = - ax2 , 0'22 = ax1 , (6.23) 

where P (x1 , x2) is some function. Comparison of these formulas for 
the same quantity gives the relation · 

iJQ iJP 
ilx1 = iJx2 ' 

8* 
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which shows that the expression P dx1 +Q dx2 is the total differential 
of a certain function <l> (x1 , x2), so that 

P dx1 + Q dx2 = d<l>, 

whence 

Substituting the values of P and Q in formulas (6.22) and (6.23), 
we obtain 

a2!IJ 
0'12 = - f}x ax ' 

1 2 
(6.24) 

These formulas were first obtained by G. B. Airy. The function 
<l> (x1 , x2) is called Airy's stress function. 

Obviously, if it is assumed that relations (6.24) hold, Eqs. (6.21) 
are satisfied identically. Besides, as is known, for 0'111 a 22 , and a12 

to correspond to the actual state of stress, they must satisfy the 
compatibility conditions (6.8), i.e., 

L\ (a11 + 0'22) = 0. (6.25) 

On the other hand, from relations (6.24) we have 
{)2!IJ a2!IJ 

au +az2=-a 2 +-8 2 = L\<D. 
XI Xll 

Taking into account the last equality, from (6.25) we obtain, finally, 

L\L\<D = 0, (6.26) 

where 

{)4 {)4 a4 
dd=-+2 --+-ax4 ax2 ax2 ax• • 1 1 2 2 

In the following discussion it will be assumed that the stress fu)lc­
tion has continuous derivatives up to the fourth order in the region. 

Thus, for the stress function to determine an actual state of stress, 
it is necessary and sufficient that it should be biharmonic. 

Let us now derive contour conditions that must be satisfied by 
Airy's function. Assuming that the external forces T nl• T nz are 
given on the boundary of the region under consideration, we trans­
form the contour conditions (6.12). It will be assumed in what fol­
lows that the contours are simple, i.e., not self-intersecting, and rea­
sonably smooth. 

We express n1 and n2 in terrns of the derivatives of the co-ordinates 
x1 and x2 with respect to the arc length l measured in the positive 
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sense along the contour under consideration. Referring to Fig. 17, 
we have 

(6.27) 

Inserting (6.24) and (6.27) in the contour conditions (6.12), we obtain, 
on Lr (r = 0, 1, 2, ... , m), 

or 
d (BID) d (BID) 

df 8xz =Tnl•df axl =-Tn2· 
(6.28) 

For an arbitrary point N of the con­
tour Lr we introduce the notation 

a<D / - B (6.29) 8x2 N- r 

By integrating equalities (6.28), we then obtain 
M 

:: = Ar- J T n2 dl, 
N 

Xz 

Fig. 17 

(6.30) 

8<1> BID Thus, the increments of the functions 8 , 8 in passing from N 
Xf Xz 

to M (these points lie on the same contour) are, respectively, equal 
to the projections on the ox2 and ox1 axes of the resultant vector of 
the external forces applied to the contour between these two points. 
With formulas (6.30), it is easy to find the derivatives 

(6.31) 

(6.32) 

Inserting the values of 8 
8<1> , 8

81D from (6.30) in (6.31), and inte-
x1 Xz 

grating the result thus obtained with respect to l, we have 
M M M 

<l>=Cr+Arx1+Brx2+ J [ _d:zl J Tn2dl+[~2 J Tnidl] dl. 
N N N 

(6.33) 
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Formula (6.33) shows that if we are given the values of the external 
forces on any contour, the value of <1> can be calculated at any point 
of the same contour, apart from an additive linear expression of the 
form 

Cr + Arx1 + BrXz• 

It should be noted that this expression drops out for the components 
of the stress tensor calculated by formulas (6.24). 

If the given region is simply connected, C0 , A 0 , and B 0 may be 
taken equal to zero on the contour L 0 • If the region is multiply con­
nected, taking the constants C"' B 7 , and Ar to be zero on any one of 
the contours, we cannot choose the others arbitrarily. 

Substituting the values of 0°11> , 0°11> from (6.30) in (6.32), we 
xi x2 

determine the value of the normal derivative 
M M 

~~ =(Ar- J Tnzdl) d:~ +(Br+ J Tntdl) : 2 (6.34) 
N N 

from the given external forces applied on the contours. 
Thus, the solution of the plane problem of elasticity is reduced to 

the determination of a biharmonic function from the known contour 
values of this function and its normal derivative. 

On passing once round any closed contour, we have, by formulas 
(6.30) and (6.33), 

(6.35) 

(6.36) 

where V1 and V2 are, respectively, the projections on the o~ and 
ox2 axes of the resultant vector of the external forces applied to the 
contour under consideration. By integrating (6.36) by parts, we ob­
tain 

(6.37) 

where x1N and x2N are the co-ordinates of an arbitrary point N of 
the contour under consideration L 7 from which a complete circuit 
is started. The third term in (6.37) determines the value of the re­
sultant moment of all external forces applied to the given contour 
about an arbitrarily chosen origin of co-ordinates. 
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Formulas (6.35) and (6.37) enable one to establish conditions for 

single-valuedness of the function <l> and its derivatives fJfJ<D , aa<D • 
xi x2 

The function <l> and its derivatives fJfJ<D , aa<D are single valued if the 
Xt Xz 

resultant vector and the resultant moment of the external forces 
applied to every contour of the region are each zero; if the resultant 

~:t---,, ·----

Fig. 18 

vector is zero, the function is not, in general, single valued, and its 

derivatives fJfJ<D , aa<D are single-valued functions; if, however, the 
Xt Xz 

resultant vector is not zero, both the function <l> itself and its deri­
vatives are not single valued. 

A number of interesting solutions of Eq. (6.26) can be obtained by 
assigning Airy's function in the form of polynomials of different 
degrees. As the simplest example we choose Airy's function in the 
form of a second-degree polynomial, which obviously satisfies Eq. 
(6.26), 

iT'> 1 lb 1 ll 
<V = "2 a2X I + 2XtX2 + 2 C2X2• 

In the absence of body forces the components of the stress tensor are, 
from Airy's formulas (6.24), 

O"u = C2t 0"22 = a2, O"u = - b2· 

Thus, all three components are constant in the entire region. For 
a rectangular strip with sides parallel to the co-ordinate axes (Fig. 18), 
the forces applied to the contour where a 11 = ± 1, a 22 = + 1 are, 
by formula (6.12), 

Tu = O"u = C2, Tu = O"u = - b2, T22 = 0"22 = a2. 

Equation (6.26) is also satisfied by a third-degree polynomial 

<l> as a + ba _ _. + ca ll + da a = 6 Xt 2 XiX2 2 XtX2 6 X2. 

On the basis of formula (6.24) the stress components are 

O"u = CaX1 + dax2, 0"22 = aaxl + bax2, 

O"u = - baa; - CaX2. 
(6.38) 
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Assuming c3 = a 3 = b3 = 0, d3 =I= 0, we obtain 

O'u = daXz, O'zz = 0, O"u = 0. (6.39) 

This system of components of the stress tensor corresponds to pure 
bending of a rectangular strip by external forces applied at both its 
ends, x1 = 0, x1 = l. These external forces must be equal, by for­
mulas (6.12), to -d3x 2 at the end x1 = 0 and to d3x 2 at the end x1 = l. 
The resultant vector and the resultant moment of these forces are 
obviously given by 

c c 

V = ~ J O'u dx2 = 0, M = ~ J aux2 dx2 = ; d3c3~. 
-c -c 

Here ~ is the thickness of the strip, 2c is its depth. 
By Saint Venant's principle, the solution found above is also 

applicable well away from the ends of the strip when, instead of 
the external forces applied at both ends of the strip and distributed 
according to law (6.39), there are statically equivalent couples of 
moment M, the state of stress differing from (6.39) near the region 
of application of the couples. If the only non-zero coefficient is a3 , 

the non-vanishing component of the stress tensor is the normal stress 
a 22 = a 3x1 • If, however, only one of the coefficients b3 , c3 is different 
from zero, say c3 =1= 0, there is a shearing stress 0'12 in addition to 
the normal stress 0'11 • When use is made of polynomials of higher 
degree than the third, the biharmonic equation is satisfied for certain 
relations between their coefficients. 

43. AIRY'S FUNCTION IN POLAR CO-ORDINATES. 
LAME'S PROBLEM 

The equilibrium equations for the plane problem of elasticity in 
a polar co-ordinate system become, on the basis of Eq. (2.30) in 
the absence of body forces, 

Barr 1 Barrp f1rr- CJrprp _ 
ar-+--;:----aqJ+ r -0, 

1 aarprp aarrp 2 ---+-+-a rp=O. r 8(jl ar r r 

(6.40) 

The solution of this system may be taken in the form 

1 a<D 1 a2<D a2<D 
Urr = r iJr + 7 8(jl2 ' CJrprp = 8r2 ' 

1 a<D 1 a2<D 
(6.41) 

O'rrp = 7 a;p---;:- ar 8(jl' 

where <I> (r, cp) is Airy's stress function in a polar co-ordinate system. 
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The first two relations of (6.41) must satisfy condition (6.25), i.e .• 

11 (0'77 + O'<pq>) = 0, (6.42} 

where 11 is the two-dimensional Laplacian operator in a polar co­
ordinate system 

82 18 182 

11 = ~ + --:;:-a;:- + ---,:2 8rp2 . 

Substituting the expressions for am cr<P<il from (6.41) in (6.42), we 
obtain a biharmonic equation for the determination of Airy's func­
tion: 

( !:____ ..!_~+-1 .!:_) ( 82<D +-1 8<D +-1 82<D) =0 (6.43)· 
8r2 + r 8r r2 orp2 8r2 r 8r r2 8rp2 • 

In the case of a symmetrical distribution of stress about the origin 
Eq. (6.43) takes the form 

d4<D + ~ d3<D - _1_ d2<D _1_ cl<D - 0 
dr4 r dr3 r 2 dr2 + r3 dr - ' -

and the general solution i3 

<1> = A ln r + Br2 ln r .!+ Cr2 + D. (6.44} 

Substituting (6.44) in formulas (6.41), we obtain the components of 
the stress tensor in the case of a symmetrical distribution of stress 
about the origin: 

1 
O'rr = A ---,:2 + B ( 1 + 2 ln r) + 2C, 

1 
cr<p<p =- A---,:2+ B (3 +2ln r) +2C, (6.45} 

O'rcp = 0. 

If the point r = 0 belongs to the region, A and B must be taken equal 
to zero to make the components of the stress tensor bounded; then 

O'rr = O'q>q> = C. 

The problem of the deformation of a hollow circular cylinder sub­
jected to a uniform pressure on the inner and outer surfaces was 
first solved by G. Lame. The solution of this problem can easily be 
obtained from relations (6.45) subject to the boundary conditions 

O'rr = - p1 on the cylinder r = ru 
(6.46). 

O'rr = - p 2 on the cylinder r = r 2 , 

where r1 , r 2 are, respectively, the inner and outer radii of the cylinder. 
The determination of the coefficients A, B, C requires a third con­

dition in addition to two boundary conditions (6.46). The third con­
dition is the independence of the projections of the -arsphice~ent 
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vector ur, uq> of the polar angle cp since the independence of the com­
ponents of the stress tensor of the angle cp does not necessarily lead 
to the independence of the displacement vector of the polar angle cp. 
In the case of plane strain ur and ulP are determined from the formulas 
of Hooke's law: 

our 1 +v (1 ) fir= ----:z;; [ -'V O'rr -'VO'q>q>] = 

= 1 ~" { ~ + B [ (1- 4v) + 2 ( 1-2v) ln r] + 2C (1 - 2'-·)} , 

u 1 auq> 1 +v 
--f"+--;:- iJ<p =,_-[-'VO'rr+(1-v)crq>q>]= 

= 11" {- ~ + B [(3-4v) + 2 (1- 2v) In r] + 2C (1-2v)}. 

From these relations we find 

U 7 = 11" {- ~ -B[1-2 (1-2v)ln r] r+2C(1- 2v)r} + f (cp), 

< J (6.47) 
4(1-v2) r uq, = E Brcp- J f (cp) dcp + g (r). 

Here the functions f (~) and g (r) are to be determined. 
Since the projections of the displacement vector u,., uq> must be 

independent of cp, we have to put 
t (cp) = o, B = o~ (6.48) 

On putting B = 0 in relations (6.45),- from the boundary conditions 
(6.46) we find 

A A 
- 2 +2C= -p~, - 2 +2C= -p2 • 
rl rz 

By solving this system of equations, we obtain 
A_ (p2- P1) rlr~ 

- r~-rf ' 

Inserting (6.49) in (6.45), the stress components are, finally, 
rfr:(p2-Pl) 1 +rfp1-riP2 

()' -....!....:~~~ 
rr- r~-rf r2 r~-rf ' 

2 2( ) 1 2 2 r1r2 P2- P1 _ + r1p1-r2P2 
O'Q>!Ji = r~-rf r2 rl-rf · 

Substituting (6.49) in (6.47), we have 

Ur = E t t" 2) [r~r~ (Pt- p1)..!.. + ( 1 - 2v) (r:p1- rip2) r] , r 2-r1 r 

uq> = g (r). 

(6.49) 

(6.50) 

(6.51) 
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Since O'rcp = 0, it follows that 

1 ( du<P u<P ) 2f..tercp =2f-t 2 dr- -r- = 0, 

and then 
dg (r) dr 

--g(i=f" = r , 
from which 

g (r) = qr, 

where q is an integration constant. 
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Thus, the tangential projection of the displacement vector u<P 
represents a rotation of an absolutely rigid body. 

Let us now consider the problem of determining the state of stress 
in a thin concentric circular disk rotating with a constant angular 
velocity ro. The disk is acted on by the volume force pF r = pro2r. 

Noting that here the deformation is symmetrical about the pole 0, 

we have u<P = 0, ~~ = 0. Hence, from formulas (3.29) and (2.30), 

err= d;;, e<P<P = u; , (6.52) 

dr< CJ - CJ vrr + rr <P<P + 2 O ---a;:- r pro r = . (6.53) 

Taking into account (6.52), from (3.40) we obtain the strain com­
patibility equation in the form 

..!... _!!_ ( r2 decpcp ) - derr = 0 
r dr dr dr 

or 
d [ de<P<P J a; ra;:-+ (e<P<P-err) = 0. 

The last relation is satisfied if 

(6.54) 

By using the formulas of Hooke's law (5.27), and noting that 
0' 33 = 0, O'rr = O'rr (r), O'<P<P = O'<P<P (r), we rearrange relation (6.54) 
in the form 

Substituting in this equation the expression for O'rr - o <P<P from 
(6.53), we have 

da<P<P da 
--= ----L!:.-(1 +v) pro2r. 

dr dr 
(6.55) 



124 Ch. VI. Plane Problem 

Differentiating (6.53) with respect to r gives 

d ( darr ) + darr da<P<P + 2 2 0 dr r a;- err- ---a;- pw r = . 

Substituting (6.55) in the last equation, we find 

:r [ + :r (r2orr) J + (3 +v) pw2r = 0. 

Integrate this equation: 

a = A + .!!... - 3 +" pw2r2 rr r2 8 • (6.56) 

From (6.53) and (6.56) we have 
B t+3v 

a<P'P = A -7--8- pw2r2. 

To find the constants A and B we have the following boundary 
conditions: 

From this 

arr = 0 on the cylinder r = r 2 , 

arr = 0 on the cylinder r = r1• 

The solutions of this system of equations are 

A= 3t" pw2 (r~ +r~), B =- 3t" pw2r:r~. 

Consequently, 

3+v ( 1 r1r2 ) C1rr=-8-pw2 r:+r2-r2- ~~2 ' 

a<P<P= Pt [ (3 +v) (r~ +r~ + r~~~)- (1 +3v) r2J. 
(6.57) 

On the basis of these formulas it is easy to verify that the stress 
arr is tensile and attains a maximum value at r = V r1r2• The stress 
a q>cp is also tensile and its maximum value occurs at r = r1• When 
the hole is very small (r1 ~ r2), the stress O'<P<P changes abruptly at 
its edge, i.e., stress concentration occurs. It follows from the second 
formula of (6.57) that 

max 3+v 2 1 a <Pep = - 4- pw rs. 
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If the disk is solid (r1 = 0), we must take B = 0 to obtain a bound­
ed solution; then 

pw2 
O"cpcp = - 8- [(3 + v) ~- (1 + 3v) r2 ]. 

In this case we have, at the centre, 

3+v 2 • O"rr=O"cpcp=-8-pro r2. 

Thus, in a disk with a very small hole the stress O'cpcp at its edge is 
twice that at the centre of a solid disk. If the wall of the disk is very 
thin, it is permissible to put r2 :::::: r1 ; it follows from the second for­
mula of (6.57) that 

As a sample problem let us investigate the distribution of stress 
and displacement in a circular bar under pure bending (Fig. 19). 
Since the stress tensor is inde-
pendent of the cp co-ordinate, 
the stress function is taken in 
the form of (6.44). We formu­
late the boundary conditions 
of the robl 

( O"rr=O when r= R2 , 

I (' ::, d: ~ :·:~;n :" ~· J Fig. t9 

~ th~ formulas (6.45) these conditions may be put into the 
form 

1 
R" A+ (1+2lnR2) B+2C =0, 

I 

1 
R" A+(1+2lnR1) B+2C =0, 

1 

-Aln ~: +B [R~ ln R1 -R:lnR2 +R:-R~] +(R~-R~) C =M. 

The solutions of this system of equations are as follows: 

A 4M R"R" I Rt. =-n 1 2 n""if;, 

B=- 2: (R:-R~}, 

C= ~ [R~-R~+2(R:lnR1 -R~lnR~)], 
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where 

Thus,· 

___ 4M ( RIRI I .!!1. + RB 1 _r_ + RB 1 .!!!. } crrr D 2 n R 1 n R 2 n ' r 2 1 r 

cr = - 4M ( - Rl Rl In .!!.1_ + R1 In _r_ + R" In _:& + R"- R2 ) 
!Jlli> D r2 R2 1 Rt 2 r 1 2 • 

We now determine the displacements ur and u~. For the given prob­
lem the formulas of Hooke's law, with (4.50) and (3.31), become 

a;; =+ [(1 +v) Ar-2 +2 (1-v) B lnr+ (1-3v) B +2 (1-v) C), 

1 au"' u 1 
7 acp +-f=7f[-(1+v)Ar-2 +2(1-v)Blnr+ 

+(3-v)B+2(1-v) C), (6.58) 

_!_ aur + aucp -~=0. 
racp ar r 

On integrating successively the first and second equations of this 
system, there results 

Ur =! [ -(1 +v) Ar-1 +2 (1-v) Br lnr- (1 +v) Br+ 

+2 (1-v) Cr] + 1; (cp), 
4B 

Ucp = E rep- It (cp) + Ia (r). 

Taking into account these relations in the third equation of system 
(6.58), we obtain 

_!_I~ (cp) + 1; (r) +.!.It (cp)- _!_ Ia (r) = 0. 
r r r 

From this 

1; (cp) + ldcp) = C, rl; (r)- Ia (r) =-C. 

The general solutions of these two equations are, respectively, 
11 (cp) = P1 sin cp + P2 cos cp + C, 12 (r) = P3r + C. 

We thus have 

Ur= ~ [- (1 +v) Ar-1 +2 (1-v) Br lnr-(1 +\') Br+ 

+2 (1-v) Cr] + Pt cos cp- P 2 sin cp, 

.u"'= ~ rcp-Ptsincp-P2 coscp+P3r. 
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To determine the constants P1 , P 2, and P 3 'Ye must take some point, 
say 0, and fix the bar so as to eliminate its motion as a rigid body, 
i.e., we must put, at this point, 

Then 

auq> 
Ur=Ucp= -=0. ar 

Pt = _.!. [-(1 +v) A 2 +2 (1-v) B R 1 +R2 ln R 1 +R2 

E R1 +R 2 2 2 

-(1 +v) B R11R2+2 (1-v) C Rl tR~~ J' 
P 2 =P3 =0. 

The displacements become, finally, 

Ur= ~ [-(1+v)Ar-1+2(1-v)Brlnr-(1+v)Br+ 
+ 2 (1-v) Cr] + P 1 cos <p, 

4B p . 
Ucp=E r<p- 1 sm<p. 

It is seen from the formula for the displacement ucp that the cross 
sections remain plane in pure bending. 

44. COMPLEX REPRESENTATION OF A BIHARMONIC FUNCTIO~, 
OF THE COMPONENTS OF THE DISPLACEMENT VECTOR 
AND THE STRESS TENSOR 

In the preceding section the solution of the equations of plane 
elasticity was reduced to the boundary problem for the biharmonic 
equation, which is satisfied by Airy's function. The methods of 
complex function theory may also be used to advantage in the solu­
tion of the equations of plane elasticity. The application of these 
methods was first given in fundamental investigations of G. V. Kolo­
sov and N. I. Muskhelishvili. The complex representation of the 
general solution of the equations of plane elasticity was very fruitful 
for the effective solution of the basic problems in plane elasticity. 

In Sec. 32 it was shown that the volume strain for an isotropic 
homogeneous body in the absence of body forces is a harmonic func­
tion; in the case of plane strain we have 

CJ261 + CJ261 - 0 (6.59) 
oxf dxl - • 

The complex representation of solutions of this equation is most 
easily obtained by writing it in complex form 

CJ261 -0 (6.60) 
aZaz- ' 
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which is directly obtained from (6.59) by introducing new independ­
ent complex variables z = x1 + ix 2 and z = x1 - ix2 instead of the 
variables x1 and x2 , where 

We find from Eq. (6. 60) that in a certain region of the plane of the 
~omplex variable z the harmonic function may be represented as 

(6.61) 

where rp (z) is an analytic function of the variable z. 
By multiplying the second equation of (6.6) by the imaginary 

unity i, and adding to the first, with F1 = F 2 = 0, we obtain 

fl~ (u1 + iu2)+ (1.+ fl) ( 8~1 + i 0~2 ) 81 = 0. 

Noting that 

the preceding equation is written in complex form 

2f-t 82 (u, +_iu2) + (1. + fl) a~= 0. 
az i}z az 

By integrating this equality with respect to the argument z, we 
obtain 

(6.62) 

where rp1 (z) is also an analytic function of the variable z. 
Transforming in (6.62) to conjugate expressions, we have 

2f-t a (ut ~ iu2) + (1. + fl) 81 = rpt(z). 
iJz 

(6.63) 

By adding together equalities (6.62) and (6.63), and using, along 
with the relation 

(6.64) 

expression (6.61), we find 

2 (A+ 2f-t) 81 = 2 ~::1-t) [ rp' (z) + rp' (z)] = fPt (z) + Ql1 (z), (6.65) 
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from which 

cp 1 (z) = 2 ~::!L) cp' (z) + ic; (6.66) 

here c is a real constant. 
Substituting the last formula and also formula (6.61) in equality 

(6.62), and integrating the result obtained, we have 

2f-t (ut + iu2 ) = xcp (z)- zcp' (z)- '¢ (z) + icz, 

where x = \~3: = 3-4v; '¢ (z) is an analytic function of the 

argument z. 
Rejecting the term icz, which gives only e. rigid-body displace­

ment, we obtain an important formula for the complex representa­
tion of the displacement in a state of plane strain 

(6.67) 

This formula also expresses the displacement in the case of generaliz­
ed plane stress in a thin plate if x is replaced by x* defined by the 
relation 

* Jv*+3EL 3-v 
X= =--

1.*+11 1+v • 

Since v < 0.5, it follows that x > 1 and x* > 1. 
We now proceed to the derivation of formulas for the complex re­

presentation of stress components by means of the same pair of ana­
lytic functions cp (z), '¢ (z). For this purpose we write down the for­
mulas of the generalized Hooke's law (6.3) in complex form as follows: 

O'u +0'22 =2 (f.t+A.) 81> 

a 22 - au+ 2iO"t 2 =2f-t (e22- eu + 2iet2) = -2 ! [2f-t (u1 - iu2)]. 
(6.68) 

Taking into account (6.61) in the first formula of (6.68) and equality 
(6.67) in the second formula of (6.68), we obtain very important 
relations giving the complex representation of the components of 
the stress tensor in a state of plane strain: 

au +a22 = 2 [cp' (z) + cp' (z)] 4 Re [cp' (z)J, 

a22 -au+ 2iat2 = 2 (zcp" (z) + ljl' (z) ]. 
(6.69) 

Formulas (6.67) and (6.69) have found wide application in plane 
elasticity; they are useful for the reason that the properties of the 
analytic functions involved in them are well studied. 

Let us now express the stress fup.ction <D (x1 , x2) in terms of the 
same analytic functions cp (z), '¢ (z). 
9-0884 
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From formulas (6.24) we have 
a2<D 0 a2<D 

au+o-22 =-1<1>=4--_, 0"22 -au+2w12 =4 "z 2 • az az u 

From these formulas, with (6.69), we obtain 
a2<IJ -- a2<D -- --

2 -- = q/ (z) + cp' (z), 2 --- = zcp" (z) + 'IJ' (z). 
~~ ~ . 

By integrating the first equation with respect to z, and the second 
with respect to z, we find 

2 a~ = cp (z) + zcp' (z) + gt (z), 
az 

2 a~ = zcp' (z) + 'iJ (z) + g2 (z). az 
On comparing these equalities we have 

From this 

and hence 

from which 

cp (z)- g2 (z) = 'iJ (z)- g1 (z). 

a<D -- --
2 --- = cp (z) + zcp' (z) + 'iJ (z) + c1, az 

2<D=zcp(z) +z cp(z)+ J 'IJ(z)dz+x(z)+c1z. (6.70) 

Noting that the second derivatives of the stress function (6.24) 
are real quantities, the function itself must be real, apart from cz + 
+ c0 • On this account, in expression (6. 70) it is necessary to put 

x (z) = J ljl (z) dz + cz + c0 , 

where c, c0 are arbitrary complex constants. If we take c1 = 0, 
c = 0, c0 = 0, without influence on the state of stress, the formula 
for the complex representation of Airy's stress function becomes, 
finally, 

or 
2<1> = zcp (z) +zcp (z) +X (z) +x (z) 

<I>= Re (zcp (z) + x (z)). 

(6.71) 

(6.72) 

Here the symbol Re indicates that it is necessary to take the real 
part of the expression which follows it. 
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Let us derive an expression in complex form for the resultant 
vector of the forces acting on the side with positive normal on some 
curve AB (Fig. 20) taken inside the medium in the plane of defor­
mation ox1x 2 • Substituting in relations (6.12) formulas (6.24), which 
express the components of the stress tensor in terms of the deriva­
tives of Airy's function, and noting that 

dx 2 dx 1 
n!=--;n:, n2= -dz' 

we obtain 

(6.73) 

By using these formulas, we set up an expression of the form 

T + ·r . a ( a<D + . a<D ) 
n! ~ n 2 = -ldt oxl ~ ax2 . 

If the components of the resultant vector in question are denoted 
by (V1 , V 2 ), from the preceding formula 
we find Xz 

V1 +iV2= J (Tnl +iTn2) dl= 
AB 

= -i ( a<D +i a<D )B, 
oxl ox2 A 

where the symbol ( ) ! denotes the 
increment of 'the bracketed expression x, 
along the curve AB. o 

With (6. 71) and the relation x' (z) = Fig. 20 
= tp (z), from the preceding formula 
we obtain the complex representation of the resultant vector of the 
forces acting on the curve AB 

-- --B 
V1+iV2= -i(cp(z)+zcp' (z)+'i' (z))A. (6.74) 

The resultant moment L 0 of the forces applied to the curve AB ori 
the side with positive normal about the origin is 

Lo= J (xlTn 2 -x2Tn!)dl. 
A.8 

9* 
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From the last equality, using (6. 73) and performing the integration 
by parts, we obtain 

( iJ<D {J(!J ) B B Lo=- Xt-0 +x2-0 - +(<l>)A• x1 x 2 A 
(6. 75) 

It is obvious that 

iJ<D iJ<D [ ( {J(!J • iJtll ) J x1 -+x2-=Re z --£- . 
{Jxl ax. OXt OXs 

On the other hand, we have, by formula (6. 71), 
iJtll iJ<D -- -

-0-- i -0- = <p (z) + z<p' (z) +'I' (z). x1 x2 

This equality together with (6. 72) enables us to give formula (6. 75) 
the required complex representation of the resultant moment 

- B L 0 = Re (X (z) - z1j1 (z) - zz<p' (z))A. (6. 76) 

45. DEGREE OF DETERMINANCY OF THE INTRODUCED 
FUNCTIONS AND RESTRICTIONS IMPOSED ON THEM 

It is easy to show that if the stress tensor <111, 0'22 , <112 is given, the 
function <p' (z) is determined except for an additive imaginary con­
stant ci, and the function 1j1' (z) is found exactly. 

Let <p' (z), 1j1' (z) be a pair of analytic functions related to the given 
components <111 , 0'22, o12 by formulas (6.69); then 

o11 + 0'22 = 4Re <p' (z), 

0'22 - On + 2ia12 = 2 [z<p" (z) + 1JJ' (z)J. 

(6.77) 

(6. 78) 

Let also <p; (z), 1j); (z) be another pair of functions related to the same 
O'u, o-22, <112 by the formulas 

O'u + 0'22 = 4Re <p; (z), (6. 79) 

<1 12 - <111 + 2i0'12 = 2 [z<p7 (z) + '11; (z)]. (6.80) 

On comparing equalities (6. 77) and (6. 79), we obtain 

<p; (z) = <p' (z) + ci. 

It appears from formulas (6. 78) and (6.80) that 

'1'7 (z) = 'I'' (z). 

It follows from the Jlast two equalities that 

<Jlt (z) = <p (z) + ciz + y, 

'1'1 (z) = 'I' (z) + y', 

where y, y' are, in general, complex constants. 

(6.81) 

(6.82) 
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The converse statement is also true. If q> (z) is replaced by the func­

tion q> (z) + ciz + y, and 'ljl (z) by the function 1jJ (z) + y', the state 

of stress remains unchanged. The validity of this proposition follows 

from direct substitution of these functions in formulas (6. 77) and 

(6. 78}.;, 

It is easy to see that if the projections of the displacement vector 

are given, the constants c, y, and y' cannot be prescribed arbitrarily. 

Let q> (z), 'ljl (z) be a pair of functions related to the given components 

l)f the displacement vector by formula (6.67); then 

~2~-t (u1 + iu2) = Xq> (z)- zq>' (z)- '¢ (z): (6.83) 

By replacing q> (z) and 'ljl (z) according to j(6.81) and (6.82), from the 

preceding formula we obtain 

2~-t (u1 + iu2) = 2~-t (u1 + iu2) + (x + 1) ciz + xy- i. 
It is seen from this that the projections of the displacement vector 

remain unchanged if 

c = 0, xy - y1 = 0. (6.84) 

Thus, in this case only one of the constants y, y' may be prescribed 

arbitrarily. When the stresses are given, it is possible, by a suitable 

choice of the constants y, c, y', to fulfil the conditions 

q;·(i~T = o, I ill q>r (i0) -- · o, ~-'i'1i~)-o, (6.85) 

where Zo is so~~ fi~e(rpoint of the regfon.-These coiidiTioi'ls completely 

specify a pair of analytic functions q> (z) and 'ljl (z). 
When the projections of the displacement vector are given, it is 

possible, by choosin~ one Q!t_he_ ~~-~s.tap.,!.s.L y__~r y', to set 

q> (z0) = 0 or 'ljl (z0) = 0. (6.86) 

One ol these conditions completely specifies a pair of analytic func­

tions q> (z) and 'ljl (z). If the deformable medium occupies a simply con­

nected region, the functions q> (z), 'ljl (z), X (z) are single valued in 

this region. If a closed curve AA is considered in a simply connected 

region, where the functions q> (z), 'ljl (z), x (z) are single valued, it 

ollows from (6. 7 4) and (6. 76) that 

V1 + iV2 = 0, L 0 = 0, 

i.e:, the re~ultant vector and the result~nt moment of the forces ap­

phed to th.ts curve are zero. For a I?ulttply connected region, as, for 

example, m the case of a plate w1th holes, the functions q> (z) and 
'ljl (z) may be multiple valued. 

We now turn to .the investigation of the nature of multiple-valued­

ness of. these functwns, first.for ~he case of a finite multiply connect­

ed regwn and then for an mfimte multiply connected region. It is 
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clear that physically the components of the stress tensor must be 
single valued in the region; the same condition is imposed on the 
displacement vector. Hence, according to formulas (6.69), along an 
arbitrary closed curve AA drawn in the multiply connected region 
occupied by the body, we have 

(rp' (z) + rp' (z)):!: = 0, 
(zrp" (z) + rp' (z)):!: = o. 

(6.87) 

(6.88) 

From (6.87) it is apparent that Re rp' (z) is a single-valued harmonic 
function. It is known, however, that the analytic function rp' (z) 
may be multiple valued in a multiply connected region for, on pass­
ing round a closed curve situated in the region and enclosing any one 
of the interior contours, the imaginary part of rp' (z), in general, 
changes by a certain constant amount, and hence the function rp' (z) 
itself receives an increment equal to a purely imaginary constant. 
We shall see later that in this case no such increment takes place. 
It appears from the above that the function rp" (z) is holomorphic, 
i.e., a single-valued analytic function. Noting that 

(rp" (z)):!: = (rp" (z))1 = 0, (6.89) 

from (6.88) we have 

(¢' (z))i = (¢' (z)):!: = 0, (6.90) 

i.e., ¢' (z) is a holomorphic function in a multiply connected region. 
By differentiating expression (6.67) with respect to the x1 co-ordi­

nate, we have 

2f-t a (ul + iu2) = xrp' (z)- rp' (z)- zrp" (z)- ¢' (z). 
i}xl 

Because of the single-valuedness of the quantities zrp" (z) + ¢' (z) 

[the second formula of (6.69)1 and;_ (u1 + iu 2 ), from the last equal-
ux1 

ity we have 

(xrp' (z)- rp' (z)):!: = 0. 

Comparison of this equality with (6.87) gives 

(rp' (z)):!: =-= (rp' (z)):!: = 0, (6.91) 

i.e., rp' (z) is also a holomorphic function. 
On the basis of (6.91) formulas (6. 74) and (6. 76) for a closed curve 

become 

vi+ iV2 = ·- i (rp (z) + ¢ (z)):!:, 

L 0 = Re (X (z) -z¢ (z)):!:. 
(6.92) 
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Let z11. (k = 1, 2, ... , m) denote the affixes of arbitrarily chosen 
points inside the corresponding contours L11. having no points in 
common and enclosed by the outer contour L 0 • The function q> (z) 
is written as 

z 

<p (z) = J q>' (z) dz +c, (6.93) 

where z0 is an arbitrarily fixed point in the multiply connected region 
under consideration. The integral 

z 

J q>' (z) dz 

is, as a rule, a multiple-valued function, and, on passing round any 
inner contour L~~., it generally receives an increment 2:rtiA~~., where 
A11. is, in general, a complex constant (the factor 2:rti has been intro­
duced for convenience). 

It is easy to notice that the function 
z m 

<p*(z)= J q>'(z)dz- ~ A~~.In(z-z~~.)+c (6.94) 
z0 k=i 

is holomorphic in the region under consideration. Indeed, on passing 
once round the contour L11. the function A~~. In (z - ·zh.) receives the 
same increment 2:rtiA~~., while the remaining terms in the sum receive 
no increments, so that the function q>* (z) reverts to its former value. 

Taking into accoun_t formula (6.94), from equality (6.93) we obtain 
m 

q> (z) = ~ A~~. In (z- z~~.) +IP* (z), 
11.=1 

(6.95) 

where q>* (z) is a holomorphic function. Further, starting from the 
formula 

• 
'!' (z) =--= J lj)' (z) dz + c', 

Zo 

and reasoning in a similar manner, we have 
m 

lj) (z) = ~ B~~.In (z -z0) + '!'* (z), (6.96) 
k=i 

where Bk are, in general, complex constants and '!'* (z) is a holomor­
phic function. 

We substitute the expressions for the functions q> (z) and 'IJ (z) in 
formula (6.67); on passing once round a closed curve Li situated in 
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the given region and enclosing only the contour Lk, the displacement 
vector u1 + iu2 receives the increment 

(u1 +iu2)z.;. = : i(xA"+Bk)• 

It is seen from this formula that for displacements to be single valued, 
the following condition must be fulfilled: 

xA" + B" = 0. (6.97) 

We now determine the coefficients Ak and Bk; for this, from the 
first formula of (6. 74) we calculate the resultant vector of the forces 
applied on the proper side to the same curve Lk; its magnitude is 
given by 

(6.98) 

It follows that the resultant vector (V1k, V2k) is independent of the 
choice of the curve Lit. 

By solving Eqs. (6.97) and (6.98) simultaneously, we obtain 
A __ V1k+iV2" B _ x(V1A-iV2A) 
k- 2n(1+x) ' k- 2n(1+x) • (6.99) 

Inserting these values of A" and Bk in formulas (6.95) and (6.96), 
we have, finally, 

m 

cp(z)=- 2n(;+x) ~ (Vtk+iVa~~) ln(z-zk)+cp*(z), (6.100) 
k=1 

m 

'¢(z)= 2n(:+x) ~ (V1k-iV2k)ln(z-zk)+'i'*(z). 
k=1 

,.--

(6.101) 

Consider the case of an iri.fmite multiply connected region (for 
example, the region occupied by an infinite plate weakened by a 
finite number of curvilinear holes); it can be obtained from the re­
gion considered above by taking the outer contour L 0 at infinity. 
For every point situated outside the circumference L enclosing all 
boundaries of the holes we have 

ln(z-zk)=lnz+lri ( 1- z:}. 
The function ln (1 - zkz-1) is holomorphic outside the circumference 
L, including the point at infinity; hence, from formulas (6.100) 
and (6.101) we find 

V+"V cp (z) = - 1 ' 2 ln z + cp** (z) 
2n(1+x) ' 

'i' (z) = x (Vt- iV2) ln z + 'i'** (z) 
2n(1+x) ' 

(6.102) 

(6.103) 
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where (V1 , V2) is the resultant vector of the forces applied on all con­
tours of the region; cp** (z), 'ljl** (z) are functions holomorphic every­
where outside the circumference L, except possibly at the point. 
at infinity. 

Substituting expressions (6.102) and (6.103) in (6.69), and impos­
ing conditions for boundedness of the components of the stress ten­
sor in the whole infinite region under consideration, we arrive at the­
relations 

(6.104} 

(6.105)> 

where r, f' are, in general, complex constants; cp 0 (z), 'i'o (z) are­
functions holomorphic outside the circumference L, including the­
point at infinity, so that the following expansions are valid in it& 
neiuhbourhood: 

cp 0 (z)=a0+~+ a:+ ... , z z 

'llo (z) = bo+~ + b~ + .. ·. z1 z 

(6.106)1 

By virtue of formulas (6.85), without changing the state of stress in. 
a mediuQJ., we can always assv.me 

a0 = b0 = 0, Im r = 0. 

The quantity Im r has a mechanical meaning. To show this, we­
proceed as follows. Differentiate relation (6.67) with respect to x1. 

and ix2 , and add the resulting expressions. Then 

Jl [ ( ou, + rou 2 ) + i ( ou2 _ nu, ) J = xcp' (z)- cp' (z) = 
0~ 0~ 0~] 0~ 

= (x -1) Re cp' (z) + i (x +f) Im~qJ' (z) •. 

From this the value of the rotation ro is determined by the'formula. 

ro= .!_ ('Bu2 _ Bu1 ) = 1+x QJ' (z)-c7fzl 
2 oxl ox2 2fl 2i • 

From this formula, with (6.104), we find, as z -+ oo, 

Hence, 

(J)oo = 1 ~X Im r. 

2flrooo 
Imf=-­

i+x 
(6.106')> 
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Let cr1 , <J 2 be the values of the principal stresses at infinity, and 
c. the angle between the cr1 direction and the ox1 axis; we have 

a - crl+cr2 + crl-cr2 cos2a 
u- 2 2 ' 

<J - crl +cr2 - crl-cr2 cos 2a 
22- 2 2 ' 

crl-cr2 . 2 
<Jtz=--2- sm a. 

Qn the basis of these formulas 

<Ju + <J22 = <J1 + <J2, 

<J22- <Ju + 2i<Ju = - (crt - <J 2) e-2ia:. 

By comparing the last expressions with formulas (6.69), 
(6.104), (6.105), and (6.106), we obtain, as z--+ oo, 

1 
Re f= 4 (at +cr2), 

1 f' = -"2 (crt -cr2)e -2ia. 

and using 

(6.107) 

Hence, the distribution of the stress tensor in parts of the plane at 
infinity differs infinitesimally from a uniform distribution. 

Substituting formulas (6.104) and (6.105) in (6.67), we have, for 
large I z I, 
2f.t(Ut+iu2)=- x2<:(1~:)) ln(zz)+(xf-f)z-f'z+ ... , (6.108) 

where the dots indicate terms remaining bounded as I z I increases. 
Thus, the displacement at infinity is not bounded; it is bounded 

!if the resultant vector (V1 , V2) of the forces acting on all contours of 
the region and the stresses at infinity are zero and if, further, Im r = 
= 0, i.e., the part of the plane at infinity undergoes no rotation. 

If the stresses at infinity are zero and the resultant vector of the 
•external forces is not zero, the displacement still increases as ln (zZ) 
= 2 ln r. 

-46. FUNDAMENTAL BOUNDARY VALUE PROBLEMS AND THEIR 
REDUCTION. TO PROBLEMS OF COMPLEX FUNCTION 
THEORY 

By the fundamental boundary value problems of plane elasticity, 
as for a three-dimensional body (Sec. 34), we shall understand the 
following problems: 

First fundamental problem. The determination of elastic equilib­
rium when the external forces applied to the boundary L of a region 
.S are given. 
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Second fundamental problem. The determination of elastic equilib­
rium when the displacements of the points of the boundary L are 
given. 

Fundamental mixed problem. The determination of elastic equilib­
rium when the forces applied on a part of the boundary are given, 
and the displacements of points on the remainder. 

If the region S is infinite, the stresses at infinity must be given in 
the case of the first fundamental problem, i.e., Re r and f', and the 
quantities vl, v2, r, r' in the case of the second fundamental prob­
lem and the fundamental mixed problem. Assuming that the solu­
tion of the above problems exists, its uniqueness for a finite region 
can be proved as in the case of the corresponding three-dimensional 
problems; we shall not consider the proof of the uniqueness theorem 
for an infinite region; if need be, the reader can find it in the mono­
graph by N. I. Muskhelishvili Some Basic Problems of the Mathemat­
ical Theory of Elasticity. 

It is seen from formulas (6.67}, (6.69) that the solution of the plane 
problem of elasticity reduces to finding a pair of complex functions 
c:p (z) and '\j1 (z}, analytic in the given region S, which must satisfy, 
on its boundary L, certain conditions corresponding to any one of the 
problems formulated above. 

Suppose that the boundary L of the regionS is not self-intersecting, 
is closed, and has a tangent at each point. Besides, we assume that 
the components of the displacement vector and of the stress tensor are 
continuous up to the boundary L. 

1. For the first fundamental problem, in the case of a finite simply 
connected region S bounded by a contour L the functions q> (z) and 
'¢ (z) must) by (6. 74), satisfy the boundary condition 

1P (t) + tq>' (t) + lJl (t) = /1 +if 2 +c. (6.109) 

Here t = x1 + ix2 is the affix of a point of L, and x1 and x2 are its 
Cartesian co-ordinates; then 

I 

ft+if2=i J (Tnt+iTn2}dl, 
0 

(6.110) 

where T nt• T n 2 are given values of the projections of the external 
forces acting on L. 

The expression on the left -hand side in (6.109} gives the boundary 
value of the function q> (z) + zq>' (z) + '\j1 (z) when z·, remaining 
inside the region S, tends to a point t of the contour L. This boundary 
condition exists on account of the above assumption regarding the 
continuity of the components of the stress tensor up to the contour 
L. (It should be noted that in formula (6. 7 4) the arc denoted by AB 
lies entirely within the regionS. However, by virtue of the assump-
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tion of continuity of the components of the stress tensor up to the 
contour, we have legitimately applied this formula in the case when 
the arc A B belongs to the contour L.) 

2. For the second fundamental problem, in the case of the same 
finite simply connected region S the functions cp (z) and 'ljl (z) must, 
by (6.67), satisfy on the contour L the relation 

xcp (t)-tcp' (t)- 'I' (t) = 211 (u! +iu~), (6.111) 

where u~ and u: are given values of the displacement of a point of L. 
Here, as above, the left-hand side of equality (6.111) represents 

the boundary value of the expression 

xcp (z)- zcp' (z)- 'I' (z) as z-+ t. 
This boundary value exists since 

xcp (z)- zcp' (z)- 'i' (z) = 211 (ut + iu2), 

and, according to the condition adopted above, u1 and u 2 are con­
tinuous up to the contour L. 

3. For the first fundamental problem, in the case of an infinite 
region S bounded by a closed contour L the regular functions cp0 (z) 
and 'ljl0 (z) in it, on the basis of condition (6. 109), with (6.104) and 
(6.105), must satisfy the boundary relation 

<po (t) + tcpo (t) +'l'o (t) = fi + if2 +c. 
Here use has been made of the notation 

fi + if2 = ft + if2 + 2: 1(-t::) (In t- x lnt) + 
+ vi-iv2!... -(r+r)t-f't. 

2n (1-x) t 

(6.112) 

(6.113) 

When the point t descri\bes the contour L in the positive sense, the 
expressions / 1 + i/2 , In t, and In t receive, respectively, increments 
i (V1 + iV2), -2ni, and +2ni, so that the increment of the express­
ion r; + if; is, as can easily be verified, zero. The function t; + if; 
is therefore single valued and continuous on L. 

4. For the second fundamental problem, in the case of an infinite 
region S bounded by a contour L the functions cp 0 (z) and 'ljl0 (z), 
on the basis of formula (6.111), with (6.104) and (6.105), must sa­
tisfy the boundary condition 

xcp0 (t)- tcpo (t)- 'i'o (t) = 211 (ui + iu2), (6.114) 
where 
2 ( •+· •) 2 ( *+" *)+ x(V,+iV2) l (t-t) 11 Ut tU2 = 11 Ut lU2 211: (1 +x) n -

vi-iV2 t < r -r) +-r,-
2n(1+x) t- X - t t. (6.115) 
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As seen from (6.115), the right-hand side of equality (6.114) repre­
sents a single-valued and continuous function on L since such are 
all the terms in it. 

5. In the fundamental mixed problem we have conditions of the 
form of (6.109) on those parts of the boundary where the projections 
of the stress vector are given, and conditions of the form of (6.111) 
~n the remainder, where the projections of the displacement vector 
are given. 

As we saw earlier, the condition of continuity of the components 
~f the stress tensor up to the boundary L of the region S leads to the 
eontinuity up to the boundary of the expression 

cp (z) + zcp' (z) + lp (z). 

and the condition of continuity of the projection of the displacement 
-vector leads to the continuity up to the boundary of the expression 

)C!p (z)- zcp' (z)- lp (z). 

It is obvious that the expression cp (z) + zcp' (z) + lp (z) may be 
eontinuous up to the boundary without necessarily fulfilling the con­
dition of continuity (up to the boundary L) of the components of the 
stress tensor. Hence, the latter condition may be replaced by a 
weaker condition of continuity up to the boundary of the above ex­
pression. In the following discussion it is assumed that for the first 
two fundamental problems the functions <p (z), cp' (z), and 'ljJ (z) are 
eontinuously extendible to all points of the boundary L of the region 
S; this imposes a strong condition on the unknown functions, but 
eonsiderably simplifies the arguments used in applying efficient 
methods for solving the fundamental problems. 

The condition of continuity of <p (z), cp' (z), and 'ljJ (z) in the case 
~f the first fundamental problem rules out discontinuous external 
loads, such as concentrated forces; for the mixed problem the func­
tions <p (z), cp' (z), and 'ljJ (z) will not be separately continuous at the 
points of junction. 

47. MAURICE LlllVY'S THEOREM 

Consider the first fundamental problem for a finite simply connect­
ed region. Since the unknown analytic functions <p (z) and 'ljJ (z) are 
single valued in the given regio~ S and the elastic constants A. and 
f.1. do not enter into the boundary condition (6.109), it follows that 
the solution of this problem given by the functions <p {z), 'ljJ {z) is 
independent of the elastic constants A. and f.l., or, in other words, when 
the external forces are given on the boundary of a finit\'l simply con­
nected region, the state of stress· in the body filling it is independent 
of the elastic properties of the material. For a finite multiply con-
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nected region, the solution determined by the functions <p (z), 'ljl (z) 
depends on the material of the medium. For the solution determined 
by the functions <p (z), 'ljl (z) to be independent of the elastic constant 
x, the resultant vectors of the forces applied to each of the contours 
Lh, as follows from formulas (6.100) and (6.101), must separately 
be zero. It is in this case that the s~ate of stress is independent of 
the elastic constants of the body. This result constitutes the theorem 
of Maurice Levy, which underlies the method of finding the state of 
stress at each point of an isotropic homogeneous medium on models 
of different material. In particular, this theorem makes it possible 
to replace the determination of the state of stress in homogeneous 
and isotropic materials by the determination of the state of stress 
in transparent bodies, optically sensitive to the state of stress set up 
in them. 

The basic methods that furnish the means of solving problems of 
plane elasticity for a sufficiently wide class of regions are the confor­
mal mapping method and the Cauchy-type integral method. A simul­
taneous application of these methods proves most effective for simply 
connected regions. 

The investigation of multiply connected regions is much mom 
complicated and will not be considered here. 

48. CONFORMAL MAPPING METHOD 

Let a finite or an infinite simply connected region in the plane of 
the variable z, bounded by a simple contour L, be mapped in a one­
to-one manner onto the unit circle I ~ I < 1 in the ~plane by means 
of the analytic function 

z = (i) ( ~). (6.116) 

assuming that w (0) = 0 for the finite region and w (0) = oo for 
the infinite region. 

For the infinite region, we consider the case when the displacements 
Uv u2 at infinity are bounded; vl, V2, r, r' in condition (6.108) 
must then be equal to zero; the components of the stress tensor at 
infinity are also zero. The unknown functions <p (z) and 'ljl (z) are­
holomorphic (regular) in the region S, including the point z = oo. 

In order to use the conformal mapping (6.116) in the solution of 
the fundamental problems and, in general, problems of plane elastic­
ity, we transform the boundary conditions (6.109) and (6.111) to. 
the variable ~-

Introducing the new notation 

<p (z) = <p (.(J) (~)) = <p1 (~), 'ljl (z) = 'ljl (w (S)) = 'ljl1 (~), (6.117) 

we find that the functions <p1 ( ~), 'ljl1 ( ~) are holomorphic in the region 
of the unit circle I ~ I < 1; its boundary is denoted by y. 
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We introduce polar co-ordinates (r, 8) in the s plane; they may be· 
regarded as the curvilinear co-ordinates of a point (x1 , x2) of the z 
plane; since the mapping is conformal, the co-ordinate lines corres­
ponding to r = constant and 8 = constant are mutually orthogonal. 
Take a point (x1 , x2) in the z plane, and through this point draw co­
ordinate lines r = constant and 8 = constant (Fig. 21). Denote the 
projections of the vector a, applied at 
the point z, in the x1 , x2 co-ordinate Xz 

system by a1 , a 2, and in the er, e8 system 
by an a8• It is obvious from Fig. 21 that 

or 

ar + ia8 = (a1 cos a + a 2 sin a) + 
+ i (-a1 sin a + a 2 cos a) 

where a is the angle made by the er 
direction with the x1 axis and measured o 
from this axis in the positive direction. 
To calculate eirx, we transfer the point z in 
the er direction to the position z+dz; the 

x,. 

Fig. 21 

corresponding point s = rei8 in the s plane moves in the radial di~ 
rection to the position s + ds; hence, we have 

dz = eirx I dz I, ds = ei8 1 ds /, 

from which, with (6.116), 

eirx _ ..:!:!__ _ w' (~) d~ __ i8 w' (~) 
-I dz I- I w' (~J II a~ I - e I w' (~J I · 

From the last relation we find 

e-irx= ~ ~ 
r I w' (~) I · 

Substituting (6.119) in (6.118}, we obtain 

'+' ~ ~ ( +" ) ar · We = 7 I w' (~) I a1 W 2 • 

(6.119) 

(6.120) 

The projections of the displacement vector on the er and e8 di-­
rections are then determined from the equality 

+. ~ <O'W ( +" ) 
Ur We=-:;:- lw' (~)I u 1 lU2 • (6.121) 

On the basis of formulas (1.13), for plane stress and plane strain 
(k, l, r, s = 1, 2) the following relations hold between the components 
of the stress tensor am a 88 , are in polar co-ordinates and the compo­
nents of the stress tensor a11 , a 22 , a12 in rectangular Cartesian co-
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.ordinates: 
arr + aaa = au + a22• 

aaa - arr + 2ia7a = (a22 - au + 2ia12) e2ia; 
(6.122) 

the validity of these relations is checked directly. After determining, 
.by (6.119), 

2ia- .£.. (ro' (~))2 ~2 ro' (~) 
e - r2 1 ro' (~) I" 7 ro' (~) ' 

lfrom formulas (6.122), with (6.69), (6.116), and (6.117), we find 

arr +a a a= 2 [<l>1 (~) + <D1 (~) ], 
2~2 (6.123) 

aaa-arr+2iare 2 , [ro (~) <Di (~) +ro' (~) '¥1 (~)], 
r ro (~) 

where <D1 ( ~) = cp' (z) = <D (z), '¥ 1 ( ~) = 'IJ'' (z) = '¥ (z). 
In this case instead of the boundary conditions (6.109) and (6.111) 

we have, respectively, 

cp 1 (a)+ ro (a) cpi (a)+ '1'1 (a)= !'f. (a)+ if~ (a)+ c, (6.124) 
ro' (cr) 

ro(cr) -- --
xcp1 (a)--= cpi (a)- 'Pt (a)= 2f.t [u!* (a)+ iu~* (a)], 

ro' (cr) 

where 

if (a)= it (t), n (a)= !2 (t), 
uT* (a)= uf (t), u~* (a)= u~ (t) 

and a is the affix of a point of the circumference y. 

(6.125) 

It should be noted that since the conformal mapping is a one-to-one 
mapping, it is necessary that ro' ( ~) * 0. The new unknown analytic 
functions cp1 ( ~) and 'IJ'1 ( ~) corresponding to the old functions cp (z) 
and 'IJ' (z) may be sought in the form of power serie 

00 00 

cp1 (~) = 2J ak~k, 
k=1 

¢1 (~) = 2J bk~h., 
k=O 

where the coefficients ak and b~< are, in general, complex quantities. 
The boundary conditions (6.124) or (6.125) enable one to construct 

an infinite system of linear equations for the determination of these 
.coefficients. 

In cases where the mapping function ro ( ~) is a polynomial the 
problem is reduced to a finite system of linear algebraic equations 
{this result was obtained by N. I. Muskhelishvili). We restrict our­
selves to the foregoing general considerations and proceed to the 
presentation of the theory of the Cauchy-type integral, Harnack's 
theorem, and the Riemann. problem. 
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49. CAUCHY-TYPE INTEGRAL 

As is known, the Dirichlet and Neumann problems for Laplace's 
equation are solved by means of potentials for a simple and a double 
layer, and in the solution of boundary value problems for other 
differential equations use is made of various kinds of generalized 
potentials. The boundary value problems of the theory of analytic 
functions of a complex variable, to which problems of plane elastic­
ity are reduced, are solved with the help of the Cauchy-type integral 
and its various generalizations. Based on this, we present, without 
proof, some results from the theory of the Cauchy integral, the Cau­
chy-type integral, and the limiting values of the latter. 

1. Cauchy integral. Let f (z) be a function, analytic in a simply 
connected region S bounded by a simple sectionally smooth closed 
line L, and continuous in S + L. The value of the function f (z) at 
any point z E S is then determined by the boundary value of this 
function on the line L as 

I (z) = ~ r f ( t) dt 
2m J t-z • 

L 
(6.126) 

Here the integration is carried out along the line L in the positive 
sense. The integral appearing on the right-hand side of (6.126) is 
called a Cauchy integral. If the point z is outside L, by Cauchy's 
theorem, 

(6.127) 

because the integrand f (t)l(t - z) is analytic in S and continuous 
inS+ L. 

In the case of a multiply connected finite region Cauchy's formula 
is of the form 

f (z) = _1_ r f(t) dt 
2nt J t-z ' 

L 
(6.128) 

where L = L; + Lf. + . . . + L'fn; each of Lv is a simple sectionally 
smooth closed line, all Lv (v = 1, 2, ... , m) being within L 0• If 
z is a point outside L, by Cauchy's theorem, 

- 1-. r .mdt=o. 
2m J t-z 

L 
(6.129) 

Let f (z) be a function, analytic in a simply connected infinite re­
gion s- bounded by a simple sectionally smooth closed line L, in­
cluding the point at infinity, i.e., f (oo) = c0 , and continuous on 

10-0884 
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s- + L. Then 
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_1__ r f (t) dt = - f (z) + f (oo) 
2m J t-z 

L 

for points z lying outside L; 

1 r t <t> at = 1 < oo > 
2ni J t-z 

L 

(6.130) 

(6.131) 

for points z lying within L. Formula (6.130) is called Cauchy's for­
mula for an infinite region. 

2. Cauchy-type integral. Let f (t) be a given continuous function 
on a simple sectionally smooth closed line L; then 

_1_ r t <t> at 
2ni J t-z 

L 
(6.132) 

expresses a single-valued analytic function in any simply connected 
region not containing points of the line L. Integral (6.132) is called 
a Cauchy-type integral, the function f (t) is called its density func-

tion, and t 1 z its kernel; for the derivatives of all orders of the 

Cauchy-type integral the following formula holds: 

p<n) ( ) = ~ {' f (t) dt 
z 2ni J (t-z)n+l · 

L 
(6.133) 

Before proceeding to the study of the behaviour of the Cauchy­
type integral on the line of integration, we shall consider the ques­
tion of classes of functions. Let f (t) be some function, the argument 
t and the function f (t) being either real or complex. Iff (t) is a func­
tion of the class of continuous functions, then, by definition, the in­
crements of the argument l t 2 - t1 I and of. the function I f (t2) -

- f (t1) I simultaneously tend to zero. The question of the order of 
smallness of the increment of the function in relation to the increment 
of the argument is not examined. However, many properties of the 
function, such as its expansion in series and the rapidity of their con­
vergence, the representation by integrals, etc., are closely related to 
the order of the modulus of continuity of the function, i.e., w (6) = 
_.:,_ sup If (t2) - f (t1) I, where t1 .and t2 belong to the curve L and 
I t2 - t1 I< B. 

We shall consider the most interesting class of functions for which 
the modulus of continuity is representablB as a power-law function 
of the increment of the argument, i.e., 

(6.134) 

Here f (t) is a function of.the point ton a smooth curve L; t 10 t2 are 
any two points of the curve L; 4 an(! a are positive numbers. A 



49. Cauchy-type Integral 147 

is called Holder's constant, and a Holder's exponent; 0 <a < 1. 
Condition (6.134) is called a Holder condition (H condition}, and 
a function f (t) satisfying the H condition is called a function of the 
class H. Obviously, if a> 1, it would appear from condition (6.134) 
that f' (t) = 0 everywhere, and hence f (t) == constant. When a = 1, 
the Holder condition is identical with the Lipschitz condition. If 
for sufficiently close t1 and t 9 the H condition is fulfilled for a cer­
tain exponent a 1 , it is obviously fulfilled for any exponent a< a 1• 

Thus, to a smaller a corresponds a wider class of functions. The nar­
rowest class is the class of functions satisfying the Lipschitz condi­
tion. 

3. The principal value of the Cauchy-type integral. Let f (x) be 
a given real function becoming infinite at a certain point c of a finite 
interval of integration a < c < b. If we cut out an entirely arbitrary 
neighbourhood of the point c, the function f (x) is bounded in a -< 
< x < c - e1 and c + e1 < x < b, and is unbounded in c - e1 -< 
< x < c + e2• The point c is called a singular point. 

The limit 
c-e, b 

e~~ { J f (x) dx+ J f (x) dx}, 
~-o a c+~ 

(6.135) 

if it exists, is called the improper integral of the function f (x) be­
tween the limits a and b. If this limit is finite, it is said that the in­
tegral converges, and the function f (x) is termed integrable on the 
interval [a, b). If, however, the integral is infinite or does not exist 
at all, it is said that the integral diverges. It is known that the im­
proper integral exists if the order of infinity of the function is less 
than unity, i.e., 

(6.136) 

If the function f (x) becomes infinite of order one or higher, the im­
proper integral does not exist. 

If a point t 0 of the contour L is substituted for the point z in the 
curvilinear integral (6.132}, we obtain a singular curvilinear integra! 

r ..JJ!)_at. (6.137) J t-t0 
L 

We represent it as 

r ..lJ!)_ dt = r f (t)- f (to) dt + f (to) r ~ . 
J t-t0 J t-t0 J t-t0 
L L L 

Since by the Holder condition 

If (t)- f (to) I< A It- to rx 
10* 
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or 

lf(t)-/(t0)1< A 
t- to I t- to I 13' 

where ~ = 1 - ct < 1, it follows that the first integral, on the basis 
of (6.136), exists as improper. 

In the second term the integrand admits the primitive In (t - t0 ), 

which is multiple valued. Assume that In (t - t0 ) is the contour 
value of the analytic function In (z - t0 ), single-valued in the plane 

Fig. 22 Fig. 23 

cut along a curve joining the points t 0 and oo. We agree, for definite­
ness, that the cut is made to the right of the line L. Draw a circum­
ference of radius e from the point t0 of the line L as a centre, and let 
t1 and t2 be the points of intersection of this circumference and the 
line L (Fig. 22). Following (6.135), we have 

t, a 

J dt 1. [ J dt + J dt J 1. I t1- t0 --=-1m -- --=1m n--
t-t0 e-o t-t0 t-t0 e-o t2-t0 

L a t 1 

or 

r !.:.t =limlnl :1 -~0 l+ilim[arg(t1-to)-arg(t2-to)]. J t o e-o 2 o e-o 
L 

Since I t2 - t 0 I = I t1 - t0 I, it follows that In I:: !~I = 0. 
The expression in the square brackets is equal to the angle between 
the vectors t0t1 , t0t 2 (Fig. 23), and for the above choice of the cut this 
angle must be measured to the left of the curve; hence, 

and consequently, 

I' I tt- to . 1m nt=T"= £n, 
e-o 2 o 

r at . 
I t=t=m. 
" 0 L 
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Thus, the Cauchy principal value of the singular integral (6.137) 
for the function f (t) satisfying the Holder condition is 

r ...lJ!Lat= r f(t)-f(to>dt+inf(to)o (6.138) 
J t-t0 .l t-t0 
L L 

4. The limiting values of the Cauchy-type integral. Let L be a simple 
smooth closed line, and f (t) a given function on it satisfying the 
Holder condition; the Cauchy-type integral (6.132) then has the 
limiting values 

F-<t >=_1_ r t(t)dt _.!.t<t > 
0 2n:i J t- t0 2 ° (6.139) 

L 

as z -+ t0 from the outside of L, and 

F+ <t > = _1_ r t (t> dt +.!. t <t > 
0 2n:i J t- t0 2 ° 

L 

(6.140) 

as z -+ t0 from the inside of L. 

Here the singular integral 2~i J ft (t) t~t is understood as a Cauchy 
L 

principal value and is evaluated by formula (6.138). By adding 
formulas (6.139) and (6.140) together, we find the value of the Cauchy-
type integral at a point lying on 
the line L Xz 

_1_ f f (t) dt = F+ (t0 )+F- (to) 
2n:i J t-t0 2 · 

L 
(6.141) 

Consider, now, the Cauchy-type 
integral for the case when the 
line of integ-ration is a straight 
line extending to infinity. Without 
loss of generality, we take this 
straight line coincident with the 

N" 0 

Fig. 24 

z 

real x1 axis and denote it by L (Fig. 24). The upper half-plane is 
denoted by S+, and the lower half-plane by S-; the points of the x1 

axis are not included in either s+ or s-. 
Let f (t) be, in general, a complex function of the real variable t 

satisfying the H condition for all finite values of t and tending to 
a definite limit f (oo) as t -+± oo. Moreover, the function f (t) for 
large values of t satisfies the condition 

B 
/f(t)-f(oo)l<ltll..' A.>O, B>O. (6.142) 
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Assume also that the function f (t) tends to the same finite limit 
f (oo) as t -- +oo and t---oo. If f (oo) =I= 0, the Cauchy-type 
integral 

_1_ r ...1J!L at 
2ni J t-z ' 

L 

(6.143) 

assuming the point z to lie off the x1 axis, is divergent. Indeed, we 
have 

N" N" N" 
r f(t)dt= r f(t)-f(oo) dt+f(oo) r __!:!___. 
J t-z ] t-z J t-z 
N' N' N' 

In the first integral on the right-hand side the integrand is, by (6.142), 
of order I t 1-1-1. for large values of I t I; hence, by the well-known 
criterion for convergence of integrals with infinite limits, the integ­
ral in question is convergent. We evaluate the second integral 

N" 

f ~= ln(N"-z)-ln(N'-z) = ± ia+ In~, ] t-z r 
N' 

where a is the angle included between the straight lines JOmmg 
the point z to the points N', N", and r', r" are the distances of the 
point z, respectively, toN' and N" (Fig. 24). In the last equality the 
sign of the first term is to be taken positive if z lies in the upper half­
plane, and negative for the lower half-plane. If N' and N" independ­
ently tend, respectively, to -oo and +oo, then a tends ton, while 
ln '~ does not tend to any limit; it follows that the integral in ques-

' tion does not tend to any limit. We now assume that during the whole 
process ON' = -ON" = ON. Then 

r" 
lim ln ....., = ln 1 = 0, 
N-oo r 

and we have 
N oo 

lim r f(t)dt = .r f(t)t-=!z(oo) dt±nf(oo). 
N-oo J t-z \ 

-N -oo 

(6.144) 

Iff (oo) = 0 integral (6.143), as the analysis shows, subject to con­
dition (6.142), is convergent. 

Thus, the Cauchy singular integral 
N 

J :~~ dt = ~i~ J ft(t) ~t 
L -N 
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is called a principal value and is determined by formula (6.144). 
Under the above conditions imposed on the function f (t), the func­
tion F (z) defined by the formula 

F(z)=-1-. l" f(t)dt (6.145) 
2m j t-z 

L 

is obviously holomorphic ins+ and s-. For this case the Sokhotskii­
Plemelj formulas for an infinite straight line are of the form 

00 

+ 1 1 r t <t> 
F (to)= 2 f (to)+ 2n:i J t-to dt, 

-oo 
(6.146) 

-00 

Here F+ (t0 ) and F- {t0 ) are the limits ofF (z) as z --* t0 , respectively, 
from the upper and lower half-planes. 

50. HARNACK'S THEOREM 

Let L be a simple closed line. Denote the finite part of the plane 
bounded by the line .L by S+, and the infinite part of the plane out­
side this curve by s-. The line L is not included in either s+ or s-. 
Take a real continuous function of the point on the line L. If 

_1_ \. f (t) dt = 0 f II E S+ 
2n:i t-z or a z ' 

1 
then f (t) = 0 everywhere on L. If, however, 

- 1- i f (t) dt = 0 for all z E s-
2n:i j t-z 

L 

then f (t) = constant on L. 
By applying Harnack's theorem to the difference of two real con­

tinuous functions /1 (t) and / 2 (t) given on L, we have /1 (t) = / 2 (t) 
on L for all z E S+, and ft (t) = / 2 (t) + c on L for all z E s-. 

Harnack's theorem is formulated in a similar way when L is an 
infinite straight line. 

51. RIEMANN BOUNDARY VALUE PROBLEM 

Let L denote a set of a finite number n of simple non-intersecting 
arcs and closed lines in the plane of the complex variable z. Assume, 
further, that a definite positive direction is chosen on each of the 
arcs and lines comprising L. Unclosed arcs are denoted by akbk choos­
ing the notation so as to have the positive direction from ak to bk. 
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A function F (z) is said to be sectionally holomorphic in the whole 
plane if it is holomorphic in the plane of the complex variable z cut 
along L, is continuously extendible to all points of L from the left 
and from the right, with the exception of the ends ak, bk, and if the 
following inequality holds near the ends ak, bk: 

B 
jF(z)l< --" (0~/.,< 1), 

/z-ci 
where cis the affix of any one of the ends ak, bk; A. and Bare positive 
constants. 

Let G (t) and f (t) be given functions on L satisfying the H condi­
tion, with G (t) =¥= 0 on L. It is required to find a sectionally holomor­
phic function F (z) whose boundary values on L from the left and 
from the right, except at the ends ak, bk (the concept of the boundary 
values from the left and from the right is indeterminate), satisfy the 
condition 

F+ (t) - G (t) F- (t) = f (t), (6.147) 

where G (t) is known as the coefficient of the Riemann problem, nnd 
f (t) its free term. In the case when the function f (t) = 0 on L, the 
problem is said to be homogeneous. 

When G (t) = 1, we obtain the Riemann problem of the particular 
kind 

F+ (t) - F- (t) = f (t) on L. (6.148) 

In this case the problem is reduced to the determination of a section­
ally holomorphic function F (z) from the given jump f (t) on L. 
The solution of this problem can be obtained from the Cauchy-type 
integral 

F 0 =_1_ 1 t<t)dt_ 
0 z 2:rti J t-z · (6.149) 

L 

Similarly, the function F 0 (z) is a sectionally holomorphic function 
vanishing at infinity and, in addition, it satisfies in the neighbourhood 
of any end c of the line L the condition 

B 
IF0 (z)l< " I z-cl 

(6.150) 

and also 
F; (t) - F~ (t) = f (t) (6.151) 

except at the ends ak, bk. Consequently, (6.149) is a solution of prob­
lem (6.148). 

Let us consider the difference F (z) - F 0 (z) = F. (z), where 
F (z) is the required solution of problem (6.148). On the basis of 
(6.148) and (6.149) we have, on L, 

FZ (t) - F; (t) = 0. (6.152) 
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According to the well-known theorem, the values of the function 
F * (z) from the left and from the right of L analytically continue 
each other. Hence, if the function F * (z) is assigned appropriate val­
ues on L and if it is remembered that by virtue of condition (6.150) 
any end c is a removable singularity, we may consider F* (z) to 
be bounded and holomorphic in the whole plane. According to Liou­
ville's theorem, F* (z) = constant in the whole plane; consequently, 
F (z) = F 0 (z) + K or 

F (z) = - 1-. \ .JJ!l dt +K (6.153) 
2m J t-z ' 

L 

whereK is an arbitrary constant. If it is assumed that the solution 
F (z) vanishes at the infinitely remote point, we must put K = 0. 

If the solution of problem (6.148) is to be a sectionally holomorphic 
function everywhere except at the point at infinity where it may 
have a pole of order not higher than m, then, by the generalized 
Liouville theorem, 

F(z)= 2 ~i J {~~dt+Co+C1z+ ... +Cm-1Zm-i+Cmzm, (6.154) 
L 

where C0 , C1 , ... , Cm are arbitrary constants. 
Of particular interest is the case when G (t) = g, where g is a giv­

en, in general complex, constant different from unity. Then on L 

F+ (t) - gF- (t) = f (t), (6.155) 

except at the ends. Assuming a pole of order not higher than m at 
infinity, the general solution of problem (6.155) is of the form 

X 0 (z) \ f (t) dt 
F (z) = 2iii J Xt (t) (t-z) + X 0 (z) P (z), (6.156) 

L 

where P (z) = C0 + C1z + ... + Cm_1z m-l + Cmzm; C0 , C1 , •.• 

. . . , Cm are arbitrary constants; X0 (z) is a particular solution of 
the homogeneous problem 

n 

Xo(z)= [J (z-ak)-V(z-bk)V- 1• 
k=l 

(6.157) 

Here 

(6.158) 

The foregoing results are easily extended to the case when the line 
Lis an infinite straight line. In the following discussion these results 
will be used to solve the fundamental boundary value problems for 
a half-plane. 
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52. REDUCTION OF THE FUNDAMENTAL BOUNDARY VALUE 
PROBLEMS TO FUNCTIONAL EQUATIONS 

By using the arbitrariness in regard to the function 'ljJ (z), we 
ean set 'ljJ (0) = 0 for a finite region, and 'ljJ ( oo) = 0 for an infinite 
region. Since in the case of a finite region to the point ~ = 0 corres­
ponds the point z = 0, and for an infinite region to the same point 
~ = 0 corresponds z = oo, we can take 'ljJ1 (0) = 0 in both cases. 

For an infinite region we assume that the stresses are zero at infini­
ty, the resultant vector of the external forces applied to the boundary 
is zero, and so is the rotation at infinity. The functions <p ( ~), 'ljJ ( ~) 
:are then holomorphic inside the circle I ~ I < 1. 

We further assume that the functions <p (~), <p' (~), 'ljJ (~)are con­
tinuous up to the circumference y of the circle under consideration. 

(a) We write down the boundary condition (6.124) and its conjugate 
for the first fundamental problem: 

w(a)-,- -- . 
IJlt (a)+= IJl, (a)+ 'ljJt(a) = ft + tj2, 

w' (a) 

IJlt (a)+ ;, ~;) <p; (a)+ 'i't (a)= It- i/2· 
(6.159) 

By multiplying both sides of equalities (6.159) by Cauchy's kernel 
1 da 

2:ni a-~' 

where ~ is a point lying inside the unit circle I ~ I < 1, and integrat­
ing them along the circumference y, we obtain 

_1_. I IPJ (a) da+-1-. r w(a} IPJ.(a) da+-1-. I 'ljl!(a} da=A(~). 
2m J a-~ 2m J w' (a} <1-~ 2m J cr-~ 

y y y 

(6.160) 

_1_ f qJ1 (a} da+-1- f w(a} IPJ.(a} da+-1-. I '1'1(a} da=B(~). 
2:ni J a-~ 2:rti J w' (a} a-~ 2m J cr-~ 

y y y 

Here use has been made of the notation 

A(~)=-1- I t]+if2 da B(~)= 2:n1' I /1-i/2 da. 
2:ni J a-~ ' , J a-~ 

y y 

According to Harnack's theorem, relations (6.159) and (6.160) are 
-equivalent. Taking into account that the functions <p1 (a) and 'ljJ1 (a) 
are the boundary values of the functions <p1 ( ~) and 'ljJ1 ( ~), regular 
inside the circle I ~ 1 < 1, and <p1 (a), 'ljJ1 (a) are the boundary values 
of the functions regular outside the circle I ~ I < 1 and vanishing 
at infinity, we ultimately find, using the properties of Cauchy's 
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cp1 (~) + _1__ f w (a) <ri (a) d~ =A(~), 
2m J w' (a) a-1; 

v 
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(6.161) 

'IJ (~)+-1-. f w(a) <ri(a) da=B(~). (6.162) 
1 2m J w'(a) a-1; 

v 

The first equation, which is a functional equation, together with 
the condition cp1 (0) = 0 (in the case of a finite region the quantity 
Im cp; {0) may be fixed arbitrarily), completely determines cp1 ( ~), 
and then the function \j)1 ( ~) can be found from the second relation. 

(b) Proceeding as in the case of the first fundamental problem, for 
the second fundamental problem we obtain 

1 r w(a) <ri(a) -
xcpt(~)- 2:rti J w'(a) a-1;da-A1(~), 

v 
1 r (!) (a) <ri (a) - r 

¢t(~)+ 2ni J w'(a) a-1; da-~cpt(O)=B(~}, 
y 

where 

A (~) = ~ f ut + iu2 da B (~) = - ~ i ul- iu2 da. 
1 2:rti J a -1; ' 2m J a -1; 

y y 

In an exactly similar way it is possible to obtain a functional equa­
tionfor the mixed boundary value problem, which is of somewhat more 
complicated form; we shall not elaborate upon it. 

The foregoing functional equations can be reduced by a simple 
transformation to a Fredholm integral equation of the second kind; 
we leave detailed discussion at this point. 

53. EQUILIBRIUM OF A HOLLOW CIRCULAR CYLINDER 

Consider the equilibrium of a hollow circular cylinder subjected 
to (a) uniformly distributed tangential forces applied on the boundar­
ies; {b) a constant pressure on the boundaries. Both cases come under 
the first boundary value problem. 

In the case (a) the resultant vectors of the forces applied on either 
of the boundaries r = r1 and r = r 2 are separately equal to zero; 
hence, from formulas (6.100) and (6.101) it follows that the functions 
cp (z) and \jJ (z) are holomorphic inside the ring (Fig. 25). The functions 
cp (z) and \jJ {z) are determined from the boundary conditions 

cp(t1)+ttcp'(t1)+1J.•(t1)=f(t1)+c1 on circumference r=rt. 
(6.163) 
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where 
l a 

f(t 1)=i) (T 11 +iT12)dl=ir1T 1 ) (-sina+icosa)da=iTt(t1-r1), 

0 0 

f (t2) = iT2 (t2- r2). 

Because of equality of moments, the relation between the tangential 
forces T1 and T"' is of the form 

Ttr~ = T2r~. 

In the circular ring the functions <p (z) and 'ljl (.z) are taken in the form 

Xz <p (z) = 0, b 
'ljl (z) =-. (6.164) z 

Inserting (6.164) in the boundary 
conditions, we find 

whence 

Thus, 

Fig. 25 <p (z) = 0, ¢ (z) = -iT 1r~ _!_. 
z 

Substituting these functions in formulas (6.123), we obtain 

f177 + aaa = 0, f177 - aaa- 2ia7 a = - 2iT 1 r~ ~. 

From this we find that 

arr = aaa = 0, 

Further, from formula (6.121), with (6.67), we find 

2ft(U7 + iua) = i T1r~ , 
r 

whence 

U 7 =0, 

zz 

The problem (b) was solved above by the stress function method, 
here the same problem is solved by the complex function method. 
In the problem (b) the resultant vectors and the resultant moments 
of the forces applied on either of the boundaries r = r1 and r = r2 
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are separately equal to zero. On the basis of formulas (6.100) and 
(6.101), for this problem, too, the functions IJl (z) and 1Jl {z) are ho­
lomorphic inside the ring, and are determined from conditions (6.163); 
here f {t1), f (t2) assume the form 

a; 

f (t1) = - ip1r1 ) (cos a+ i sin a) da = - pf(ti- ri), 
0 (6.165) 

f (t2) = - P2 (t2- r2). 

The functions IJl (z) and 1Jl (z) are taken in the form 
b 

IJl(z)=az, tjJ(z)=-z, (6.166) 

where the coefficients a and bare supposed to be real. For these, sub­
stituting (6.164) and (6.166) in the boundary conditions (6.163), 
we obtain a system of two linear equations 

1 1 
2a+b-2 =-ph 2a+b-2 = -P2· 

rt ra 

The roots of this system are 
pzr~-ptr¥ 

a=-2(2 2)' b= r¥r~ (Pt- P2) 
r~-rf ra-rt 

Then 
ljl (z) = _ P2r~- Ptrf z 1Jl (z) = _ rir~ ~p1 -;- P2) ..!_. 

2 (r~- rV ' r2-r1 z 

Substituting these functions in formulas (6.123) and (6.121), we ob­
tain relations (6.50) and (6.51) with q = 0 for the determination of 
the components of the stress tensor and of the displacement vector. 

Consider, now, the following problem. 
Let given stresses Tnr and Tna be applied on the circumference L 

of a hole of radius R in an infinite plate. The plate is under uniform 
stress at infinity. Determine the state of stress in the plate. 

On the basis of formulas (6.69) and (6.122) we have 

cr.,- ic:r.,a = IP' (z) + IP' (z)- [ziP" (z) + ¢' (z)] e2ia. (6.167) 

Substituting (6.104) and (6.105) in (6.167), and using (6.106), we 
have, on the circumference L, 

~ -
- ~ [k (k+ 2) ~ (..!!...)lt+l +k~ (-t )lt+l-

"'-J Rlt+t t Rk+l R lt=i 
-k-.l!!!:_ (!!...)It-t]- V 1+iV2 ..!!..._ V1 -iV2 ...!._+ 

Rlt+l t n (1+x) R t 2nR R 

+2 Re f-f' ( y )2 =Tn.,-iTna· (6.168) 
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We expand Tnr- iTna on the circumference r = R in a Fourier 
complex series: 

00 

T nr- iT na = ~ [ ak ( ~ } k + a_k ( 4} k J + ao, (6.169) 
h=1 

where 
2:t 

ak= 2~ J (Tnr-iTna)(-F)kae (k=O, +1,+2, ... ). (6.170) 
0 

Substituting (6.169) in (6.168), and comparing the coefficients of 

like powers of~ , ~ on both sides of the resulting relation, we obtain 

b1 +2 R r 2 b2 Vt+iV2 V1 -iV2 
7[2 e =ao, Ra- :rt(i+x)R =a-t. 2:rtR =ah 

(6.171) 

- k (k + 2) ___!!:}}__ + (k + 2) bh+2 = a-<k+O (k = 2, 3, ... ). 
Rh+t Rk+3 

After determining ak and bk from these recursion relations, the com­
ponents of the stress tensor are found from formulas (6.123). Consider 
the case when Tna = T 2 = constant, Tnr = 0, and when there is 
no stress at infinity, i.e., r = r' = 0; from (6.170) and (6.171). 
using the fact that vl = v2 = 0, we have 

a 0 = -iT2 , ak = 0 (k = +1, +2, ... ), 
ak = 0 (k = 1, 2, ... ), b1 = -iT2R 2 , bk = 0 (k = 

= 2, 3, ... ). 

Consequently, 

IJl (z) = 0, 

and 

R2 
'¢ (z) =- iT2 - z 

The solution obtained coincides with the earlier solution, assuming 
r1 = oo, T1 = 0, r 2 = R. 

For the case Tna = 0, Tnr = -p, and r = f' = 0 we have 

a 0 = -p, ak = 0 (k = 1, 2, ... ), 

ak = 0 (k = 1, 2, 3, ... ), b1 = -pR2 , bk = 0 
(k = 2, 3, ... ). 
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and 

54. Infinite Plate with an Elliptic Hole 

1 <p (z) = 0, ljJ (z) =- pR2 -
z 

1 1 
Ore= 0, Or= - pR2 -" , Oe = pR2 - 2 r• r · 
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The last formulas coincide with formulas (6.50), assuming r2 = oo~ 
p 2 = 0, p 1 = p, and r1 = R. 

54. INFINITE PLATE WITH AN ELLIPTIC HOLE 

Let us use the conformal mapping method to solve the problem 
of an unloaded elliptic hole in an infinite plate sul}jected to equal 
principal normal stresses p at infinity. 

Since the quantity Im r does not affect the state of stress, it is 
taken to be zero; from formulas (6.107) we find 

r 1 r' =0. =-zP• 

With the use of the formula 

z = ro (~) = A (~-1 + m~), A > 0, 0 <. m < 1 

(6.172). 

(6.173) 

the outside of the ellipse with centre at the point z = 0 and semi­
axes A (1 + m), A (1 - m) is conformally mapped onto the unit 
circle I ~ I < 1. 

Remembering that the hole is not loaded, from relations (6.104} 
and (6.105), with (6.172), we find 

<p(z)= ~ z+<p0 (z), 1jJ(z)=ljJ0 (z). (6.174) 

From this, by virtue of (6.117) and formula (6.173), we have equal­
ities corresponding to (6.174): 

1Jl1 (~) = A; ~- 1 + A;p ~ + IP~ (~), lP1 (~) = lP* (~), 
or 

Ap -
1Jl1 (~) = -2- ~ 1 + IP* (~), lP1 (~) = "'* (~), 

IJl*(~)= A;p ~+IP~(~), 
where <p* ( ~) and "'* ( ~) are functions holomorphic inside the circle. 

Substituting the functions <p1 ( ~) and 1jJ1 ( ~) in (6.124), we see that 
the functions <p* ( ~) and "'* (~) ri:mst satisfy the same equation that 
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is satisfied by the functions cp1 (C) and 'lj)1 (C), if the right-hand side 
is replaced by 

f(a)=f:(a)+if:(a)+ A2p (-a-1+ w(a) )+C. 
w' (a) a2 

Taking into account that f: (cr) = t: (cr) = 0 for the given problem, 
and assuming C = 0, we have, after some manipulation, 

f (a)= _ Ap [a-i +a (1 + ma2)J 
2 a2 -m • 

In the functional equation (6.161) and in relation (6.162), instead 
of the functions cp1 (C), 'lj)1 (C), h (cr) + i/2 (cr) (provided cp. (0) = 0) 
we introduce the functions cp. (C), "~'• (C), f (0'), i.e., 

(C)+ _1_. r w <a>~ da = _1_. r ..1J!!l_ da 
cp* 2m J w' (a) (a-~) 2m J a-~ ' 

v v 
.~. (C) = _1_ r t < al da - _1_ r (;)'(iji IP* r a) da. "'* 2ni J a-~ 2ni J .w' (a) (a-~) 

y y 

Substituting (6.173) in Eq. (6.175), we find 

1 r (1 +ma2) ljl* (a) da 
<p* (C)+ 2ni J a(m-a2) (a-~) = 

y 

The functions 

= - P: 2~i J a 1 ~ [_-} + 
v 

1+ma2 -­
a(m-a2) cp~ (a), 

1 -a 

(6.175) 

(6.176) 

(6.177) 

are the boundary values of the regular functions outside the circum­
ference y 

1+m~2 , ( 1 ) 1 
~<m-~2) cp. T ' T' 

which vanish at infinity. The function a (12+ma2) ~ has poles 
a-m a-., 

C = ± V m, C = 0' inside y. Taking into account everything that 
was said above, and noting that the point C lies inside the circle 
I C I< 1, from (6.177), using the properties of the Cauchy integral 
and the residue theorem, we obtain 

1 <J>.(C)= -2 pAmC. (6.178) 
Then 

cpt.(C) = Ai ( T- mC) • (6.179) 
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Substituting (6.174), (6.175), and the derivative of function (6.179) 
in (6.176) we find 

pA 1 \. r az + m J da 
'I'*(~)= -2 2ni . a+ a(1-mcr2) a-~­

y 

-pAm _1_ f a(cr2+m) da (6180) 
2 2:rti J (1-ma2 ) (a-\;) • · 

y 

Since 
a2 +m =~+ (1+m2)a 

a (1- ma2) a 1-ma2 

and m < 1, the functions a, are the boun-

dary values of the functions 
(1 +m2) ~ ~ (~2+ m) 
1-m~2 ' 1-m~2 ' 

regular inside I ~ I < 1 and m/a is the boundary value of the func­

tion ~ , regular outside I ~ I < 1. 

Hence, noting that the point ~lies inside the circle I ~ I < 1, and 
using Cauchy's formula, from (6.180) we find 

'1'1 (~) = "'* (~) = - Ap (1 + m2) 1-~m~2 . (6.181) 

Relations (6.179) and (6.181) can easily be expressed in terms of 
the basic variable z if for ~we substitute the inverse function as deter­
mined from (6.173): 

~= 2~A (z-V z2-4mA2) 

(the minus sign is taken before the radical as the point z corres­
ponding to I ~ I < 1 is outside the ellipse); the components of the 
displacement vector and of the stress tensor 0'11 , 0' 22 , 0'12 can easily 
be found from formulas (6.121) and (6.123). 

55. SOLUTION OF BOUNDARY VALUE PROBLEMS 
FOR A HALF-PLANE 

The following notation will be used below. Let Ell (z) == u (x1 , 

x2) + iv (x1 , x2) be a function of the complex variable z defined in 
some region of the z plane. Then Ell (z) denotes a function assuming 
values conjugate to 1.1> (z) at points z conjugate to z, i.e. 

(6.182) 
11-0884 
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or 

where 

u1 (x1 , x 2) = u (x1 , -x2-}, v1 (x1 , x2) = -v (x1 , -x2). 

(6.183) 

It is readily observed that if 1.1> (z) is holomorphic in some regionS, 
then <l> (z) is holomorphic in a region S representing a region sym­
metrical with respect to the region S about the real axis. Indeed, as­
sume that 1.1> (z) is holomorphic inS; in the regionS we then have 

au av au av 
ax2 =- axl. (C-R) 

Taking into account relations (6.183) in the conditions (C-R), in 
the regionS we have 

The last relations show that the functions u1 (x1 , x2) and v1 (x1 , x2) 

satisfy the conditions (C-R) in the region S. 
Let a body occupy the lower half-plane bounded by a straight 

line which will be taken as the axis of abscissas. Let the lower half­
plane Im (z) < 0 remaining on the tight when moving along the ox1 
axis in the positive direction be denoted by s- and the upper half­
plane by s+. 

Let the function 1.1> (z) be defined in s-; the function 1.1> (z) is then 
defined in the regions+. Let there be a boundary value~.~>- (t) where t 
is the affix of some point of the ox1 axis; from formula (6.182) it 
directly follows that there is a boundary value ~.~>+ (t) such that 

1.1>- (t) = ~.~>+ (t) 
or 

CD- (t) = Q)+ (t). (6.184) 

Let complex potentials 1.1> (z}, 'IJ' (z) be defined in the region s-, 
and let there be unloaded parts of the boundary ox1• 

Let us rearrange formulas (6. 77}, (6. 78), and (6.83) in a convenient 
form to use; for this purpose we construct the analytic continuation 
of the function 1.1> (z) into s+ through the unloaded parts of the boun­
dary. From formulas (6. 77) and (6. 78) we have in the region S-: 

o22 - io12 = <D (z) + <D (z) + z<D' (z) + 'I' (z), (6 .185) 
where' 

cp' (z) = 1.1> (z), 'lj)' (z) ='I' (z). 
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Take the function 

<!> (z} = - <!> (z)- z<D' (z}- '!' (z} (6.186) 

defined by this equality in the region s+. 
It appears from the above that the function <I> (z) defined by equa­

lity (6.186) is holomorphic in the region s+. 
We write z for z in (6.186}, assuming that z is ins-, and transform 

to conjugate values, i.e., 

<D (z) = -:- <D (z)- z<D' (z)- 'I' (z): 

from this 

'I' (z) = - <D (z) - <D (z) - z<D' (z). (6.187) 

Formula (6.187) determines the function 'I' (z) in the region s­
through the function <I> (z) continued into the upp~r half-plane. 
On the boundary Im z = 0 expression (6.186) (as z -. t from the 
region s+) becomes 

(J)+ (t) = - (J)+ (t)- t<D'+ (t)- 'I'+ (t). (6.188) 

Expression (6.185) on the boundary Im z = 0 is of the form 

a22- iaJ2Ix.=O = <D- (t) = <D- (t) + t<D'- (t) +'I'- (t); (6.189) 

hence, on parts of the boundary where a 22 = a 12 = 0 we find 

<D- (t) = -<D- (t)- t<D'- (t)- -qr- (t). (6.190) 

Comparing (6.188) and (6.190}, and using (6.184}, by the definition 
of (f)+ (t) and lji+ (t), we have 

<D+ (t) =CD- (t). (6.191) 

Consequently, the function <I> (z) defined by means of (6.186) in 
the upper half-plane is the analytic continuation of the function 
<D (z), holomorphic in the lower half-plane, through the unloaded 
parts of the boundary; in other words, the function <D (z) defined by 
formula (6.186) is a sectionally holomorphic function in the whole 
plane cut along the loaded parts of the boundary Im z = 0. 

It follows from the equality conjugate to expression (6.189) that 
the function 'I' (z) can be continued through the unloaded parts. 
Relation (6.185) may be put into a different form. Substituting (6.187) 
in (6. 78) and (6.185}, we obtain convenient formulas to use in prac­
tice 

a22- au+ 2iat 2 = 2 [(z- z) <D' (z)- <D (z)- CD (z)], (6.192) 

a22-ia12= <D (z)- <D {z)+ (z-;) CD' (z). (6.193) 

11" 
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We now rearrange formula (6.83). For this purpose we continue the 
function cp (z), holomorphic in the region s-, into the region s+ 
so that in this region 

q/ (z) = <D (z), 

where <D (z) is given by the right-hand side of (6.186). (As found, in 
the presence of unloaded parts it analytically continues the unknown 
function <I> (z), regular in the lower half-plane, through these parts.) 
By using formula (6.186), the last relation can be put into the form 

cp' (z)=- [<D (z) + z<l>' (z) +'I' (z)] =- [zcp' (z) + \jj (z)]'; 

in the region s+ we then have 

cp (z) = ·- zcp' (z)- \ji (z) + c1• 

It results from this equation that the following relation holds in 
the region s-: 

¢ (z) = - cpl(z)- zcp' (z)+ct. 

With the use of the last relation, formula (6.83) becomes 

2~-t(u 1 +iu2 ) =X<p (z)+ cp (z) -(z-Z) cp' (z)+c. (6.194) 

In the following discussion it is assumed that the function <D (z) 
is continuous from the left and from the right on the contour Im z = 
= 0 except possibly at a finite number of points tk, and that, in ad­
dition .. 

lim x2<D' (z) = 0 (6.195) 
x1 -+0 

for any point of the contour, while the following inequality is valid 
near the points tk: 

A 
Jcp'(z)J=J<D(z)J< " (O~Ic<1). (6.196) 

Jz-tl! I 
/ 

These conditions ensure that the stress tensor and the displacemtmt 
vector are continuously extendible to all points of the boundary, 
with the possible exception of the points tk. 

Suppose that, for large I z I, the functions <D (z) and lf (z) may be 
represented as 

(6.197) 

where y, y' are constants; the symbol o ( ! ) represents a quantity such 

that lo (!)I< 1: 1 (e depends on I z I and tends to zero as I z I -+ oo). 
To these conditions must be added further conditions: for example, 
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that the following expressions hold for large I z 1: 
cp (z) = 'V ln z +o (1) +constant, 

'ljl:(:) = -y' ln z +o (1) +constant, 

where 

I o(1)1<e (e-+0 as lzl-+oo). 

165 

(6.198) 

With these relations, the components of the stress tensor are zero at 
infinity. 

Let {V;, v;) be the resultant vector of the forces applied to a seg­
ment AB of the boundary Im z = 0 on the side of the region s-. 
Substituting (6.198) in formula (6.74), and letting the end A go to 
the left and the end B to the right independently of each other, we find 

v; + w; = i <-v+ y') ln _:;.._ + 1t <:V'- -y) + ie. 
Lr 

Here r' and r" are, respectively, the distances of the points A and B 
from the origin and e is a quantity tending to zero as r' and r" -+ oo. 
For the resultant vector (V;, V;) to remain finite when r' and r" -+ oo 
independently of each other, we must assume 

-v+:V' =0; (6.199) 

then 

v; + w; = n <:V'- -y). 

On the other hand, the following relation must be true: 

v; + w; = v 1 + iV 2t 

where (V1 , V2) is the resultant vector of the external forces applied 
to the entire boundary (it will always be finite if the forces are ap­
plied over a finite part of the boundary); consequently, 

v1 + iV2 = n (:V'- -y). (6.200) 

From two linear equations, (6.199) and (6.200), we have 

Vt+iV2 ~, Vl-iV2 (6.201) -v=- 2:rt '-v= 2:rt 

1. Solution of the first fundamental problem. In this problem the 
external forces on the contour L are prescribed as follows; 

T n. = o22 = - p (t), T n. = o12 = -r (t), 

where p (t) and 't (t) are, respectively, the pressure and the tangen­
tial force satisfying the Holder condition on the contour Im z = 0, 
including the neighbourhood of the point at infinity. Moreover, 
p (oo) ___:_ 't (oo) = 0. According to (6.193) and (6.195), the boundary 
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condition becomes 
<D+ (t) -(I)- (t) = p (t) + i1: (t). (6.202) 

It is seen from (6.202) that the solution of the first fundamental prob­
lem is reduced to the determination of a sectionally holomorphic 
function from a given jump. The solution of this problem, vanishing 
at infinity, is, by (6.149), 

<D (z) = _1__ r p (t)+i• (t) dt. 
2m J t-z (6.203) 

L 

Knowing the function <D (z), the components of the stress tensor (0'11 , 

0'22 , a13) and of the displacement vector (u1 , u2} can be determined 
by formulas (6.192}, (6.193}, and (6.194). 

2. Solution of the second fundamental problem. Here the values 
of the components of the displacement vector on the contour L are 
prescribed as 

(6.204) 
where g1 (t) and g2 (t) are given functions having derivatives which 
satisfy the Holder condition, including the point at infinity, and 
u1 (oo) = u 2 (oo) = 0. 

On differentiating (6.194) with respect to t. the boundary condi­
tion (6.204) takes the form 

a>+ (t) + x<D- (t) = 2f.L [(g; (t) + ig; (t)]. (6.205) 

We introduce a sectionally holomorphic function denoted by Q (z) 
such that 

{ 
<D (z) in s-

Q (z) = ' 1 £fi ( ) • s+ 
--'V z In • 

X 

(6.206) 

The boundary condition (6.205) then becomes · 

g+ (t)- g- (t) = - 2)1 (g; (t) + ig; (t)). 
X 

It is seen from this equation that the second fundamental problem 
is also reduced to the determination of a sectionally holomorphic 
function from a given jump; its solution is of the form 

Q'(z) = - ~ \ Ki (t)+igi (t) dt (6.207) 
• xm J t-z 

L 

Thus, from (6.206) we have, finally, 

. { Q (z) 
<D (z) = - xQ (z) 

in s-
in s+, 
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3. Solution of the fundamental mixed problem. Let the projections 
of the displacement vector g1 (t) and g2 (t) be given on a set of a 
finite number n of segments a~~.b~~. of the boundary Im z = 0, and the 
projections of the external force p (t) and 't' (t) on the remaining part 
of the boundary. The set of segments a~~.b~~. is denoted by L', and the 
remaining part of the boundary by L". Since we already know the 
solution of the first fundamental problem, it is more convenient to 
take account of the effect of the given forces on L" separately; on 
this consideration we may always assume that the components 
p (t) = 't' (t) = 0 on L". 

Thus, the boundary conditions for this somewhat modified mixed 
problem take the form 

u1 + iu2 = g (t) + c (t) on L', (6.208) 
p (t) = 0, 't' (t) = 0 on L", (6.209) 

where g (t) = g1 (t) + ig 2 (t) is a function given on L'. The above 
problem i,S related to the analysis of punches. 

If the quantity c (t) in condition (6.208) is constant on L', it may 
be taken equal to zero, without loss of generality, for in this case 
the value of c influences only the rigid-body translation of the whole 
system. Here it is assumed that, in addition, the resultant vector 
(V1 , V2) of the forces applied to L' is given. The fundamental mixed 
problem in this formulation corresponds to the case of n rigidly 
connected punches. 

When c (t) = c~~., where c~~. are some constants, it is permissible to 
fix arbitrarily only one of them on a~~.b~~., without loss of generality, 
and the rest of the constants c~~. are to be determined. In this case, in 
contrast to the preceding one, it is assumed that the resultant vec­
tors (V1 ~~., V2~~.) of the forces applied to each segment a~~.b~~. separately 
are given. This formulation of the problem corresponds to the action 
of n punches independently undergoing vertical displacements. 
When n =, 1, the above problems are identical. On the basis of (6.208) 
the boundary condition (6.205) on L' for both problems takes the 
form 

<D+ (t) + x<D- (t) = 2flg' (t). (6.210) 
By (6.193}, with (6.195}, the boundary condition (6.209) on L" is 
equivalent to the relation <D+ (t)_ = <D- (t}, so that the function <D (z) 
is holomorphic in the entire plane cut along L'. Consequently, the 
solution of the fundamental mixed problem is reduced to a non­
homogeneous Riemann problem. 

Suppose that g' (t) satisfies the Holder condition on L'. The solu­
tion of problem (6.210}, not vanishing at infinity, can then be repre­
sented as 

<D (z) = J.I.Xo (z) f g' (t) dt +X (z) p (z) (6.211) 
:rti J x: ~t)(t-z) 0 ' 

L' 
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where X 0 (z) is a particular solution of the homogeneous problem 
corresponding to (6.2'10), holomorphic in the entire plane cut along L'; 
it is given by 

n -13 13-1 
X0 (z) = I1 (z- ak) (z-bk) , 

1<=1 

with 
A= ln ( -x) 1 . ln x 
I' 2:rti =2-t :2n· 

Also, P (z) is some polynomia1: 
Since the holomorphic function cD (z) is to vanish at infinity, the 

polynomial P (z) must be of degree not higher than n- 1; hence, 

P (z) = P n-1 (z) = C0z''>-1 + C 1Zn-2 + ••• + C n-1-

The coefficients C0 , C1 , ..• , Cn-I in the polynomial Pn-I (z) are 
determined from additional conditions of the problem. When c (t) = 
= c" on the segment a"b", for such conditions we take the require­
ment that the resultant vector (V1", V2") of the forces applied to 
each segment a"b" must be equal to prescribed values. 

According to (6.202) we have 

P (to)+ i1: (to)= c_p+ (to)- <D- (to), 

where t 0 is the affix of a point of L'. Inserting (6.210) in this relation, 
we have on L' 

p (t0) + i't" ( t 0) = x + 1 c_p+ (t0) _l:l!:._ g' (t0). 
X X 

(6.212) 

By applying the Sokhotskii-Plemelj formula to the right-hand side 
of (6.211), we find 

<D+ ( ) , ( ) + 11Xt (t0 ) f g' (t) dt x+ ( ) p (t ) 
to = 1-tg to :rti J Xt (t) (t-to) + o to n-1 o • (6.213) 

L' 

Inserting the value of c_p+ (t0 ) from this in condition (6.212), we ob­
tain 

p(to)+i't"(to)= f.l(x;1) g' (to)+ (x+i~~;t(to) X 

r g'(t)dt x+1 + 
X J Xt (t) (t- to)+ -x- X (to) p n-1 (to). (6.214) 

L' 

Substituting in the obvious relation! 

J [p (to)+ i't" (to)] dto =- v2k + iV1k (k = 1, 2, ... , n) 
akbk 
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the value of the integrand from the preceding equality, we arrive at 
a system of n linear equations for the constants clt-1 (k = 1, 2, ... , 
•.. , n); its unique solvability follows from the uniqueness of solu­
tion for the original mixed problem. 

To solve the problem when c (t) = constant on L' (c1 = c2 = 
= ... = en), we calculate the values of 2fl (u; + u;) on the unload­
ed part L" of the boundary L. Taking into account that in this case 
the function <I> (z) is extendible to the unloaded segments of the 
boundary L", we obtain, by formulas (6.194) and (6.211), 

211 (u; + iu;) = (x + 1) <I> (t1) = 1268 4 

= (x+1)~tX6(t1 ) \ g'(t)dt +( +1)X+(t )P (t) 
ni j Xt(t)(t-t1 ) X o I n-1 I • 

L' 

(6.215) 

H t . h ffi f · f L" ' au1 ' au2 ere 1 1s t e a x o a pomt o ; u! = -a , U 2 = -a • 
X1 Xt 

On the other hand, on the unloaded segments b~tak+l we have the 
obvious relation 

all.+! 

J (u;+iu;)dt 1 =g(ak+t)-g(b~~.) (k=1, 2, ... , n-1). 

•~~. 

Inserting (6.215) in this relation, we come to a system of n - 1linear 
equations for c~~. (k = 0, 1, ... , n- 1). 

The additional equation is obtained by using a given value of 
the resultant vector (V1 , V2 ) of the forces applied to L'. On the basis 
of the first formulas of (6.197) and (6.201) we have 

lim z<l> (z) =- Vt + iV2 ; 
Z->00 2:rt 

on the other hand, from formula (6.211) we find lim z<l> (z) = C0• 
Z->00 

Consequently, 

Thus, it remains to determine C1 , C2 , ••• , Cn_1 from the above­
mentioned system of n - 1 equations whose unique solvability fol­
lows from the uniqueness of solution for the ori ~ inal problem. 

In the case when g' (t) = 0, which corresponds to a straight base 
of a punch parallel to the boundary Im z = 0, formulas (6.211), 
(6.213), (6.214), and (6.215), on account of the vanishing integral 
term in them. are considerably simplified. 
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56. SOME INFORMATION ON FOURIER INfEGRAL 
TRANSFORMATION 

The Fourier integral transformation is an efficient method for 
.solving elasticity problems when a body is infinite or semi-infinite. 
We state, without proof, some results pertaining to Fourier in­
tegral transformations. 

1. The Fourier transform of a certain function f (x) given on the 
interval (- oo, oo) is the integral 

00 

TC£)= 11 I t(x)eisxdx, 
V2n J 

-oo 

where 6 is an arbitrary real number. _ 

(6.216) 

For the existence of the Fourier transform f (6) it is sufficient to 
assume that the function f (x) is absolutely integrable on the inter­
val (-oo, oo). 

For the function f (x) satisfying, in addition, the Dirichlet condi­
tions* on any finite interval, the following Fourier inversion formula 
is valid at points of continuity: 

00 

1 r -
f(x)= YZn J f(6)e-isxd6 (-oo<x<+oo), (6.217) 

-oo 

which expresses the function f (x) in terms of its Fourier integral 
transform. At points of discontinuity the right-hand side of equality 
(6.217) gives 

1 
y[f (x-0)+ f(x+O)]. 

For functions satisfying the Dirichlet conditions on any open in­
terval 0 < x < A and absolutely integrable on the interval (0, oo) 
we have 

ft(x)=V ~ f fs(6)sin(6x)d~, fs(s)= 
0 

= l/ ! f f (x) sin (6x) dx, (6.218) 
0 

r-oo 

/(x)= V ; J fc@cos(6x)dx, fc(6)= 
0 

.. 00 

= V ! -J f (x) cos (6x) dx. 
0 

* If a function f (x) on an interval (0, A) has no more than dinite number 
-of finite discontinuities and a finite number of maxima and minima, this function 
.is said to satisfy the Dirichlet conditions on the given interval. 
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The function 
00 

y ~n } g (~) f (x- ~) d~ 
-oo 

is called the convolution of the functions f arrd g on the interval 
(-oo, oo). 

Theorem. If f (~) and g (~) are the Fourier transforms of functions 
f(x) and g(x), i.e., 

00 00 

- 1 j t m =--=- t (x) eisx dx, 
V2n 

-00 

g (~) = ~ r g (x) ei~x dx, 
V2n J 

-oo 

then the Fourier transform of the product 1 (~) g (~)is the convolution 
of the functions f (x) and g (x). Indeed, assuming that the inversion 
of order of integration is permissible, we can write 

00 00 00 

J g (~) f (x-~) d~ = ~ g (6) d~ V1
2n j f(t) e-it(x-6) dt = 

-00 -00 -00 

00 00 00 

= J f(t) e-itx dt V1
2n J g (6) eits d~ = J /(t) g (t) e-itx dt. 

-oo -oc -oo 

Hence, 
00 00 

~ f(t)g(t)e-itxdt=} g(~)f(x-~)d~. (6.219) 
. -oo -oo 

Theorem. The Fourier transform of the function drf/dxr is equal 
to the Fourier transform of the function f (x) times ( -i~r if dkf/dxk -+ 
-+0 as x -++oo (k = 0, ... , r- t), Le~, 

00 00 

J ddx~x) ei~x dx = (- i~r J f (x) ei;x dx. (6.220) 
-oo -00 

According to the definition of the Fourier transform, 

(6.221) 

On integrating the left-hand side of (6.221) by parts, we find 

[ ~dT-lj(x)eisX]oo -i~__!_ r dr-lf(x)eisXdX=dTf(i;) 
V2n dxr 1 -oo V2n J dxr 1 dl;r • 

-00 
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Since dr-lf (x)/ dxr-l -+ 0 as x -+ + oo, we have 

- ·t _1_ F' ar-lf (x) iSx d = arj (~) 
~'o -v 2:rt J dxr 1 e X d~T • 

-00 

(6.222) 

Integrating, now, the left-hand side of (6.222) by parts, we ftnd 
00 

( - "1:)2 _1_ l dT-2f (X) isX d = dTf (£) 
~"' V2:rt J dxr-2 e X d~r • 

-00 

Repeating this operation, provided that dnf (x)/dxn -+ 0 (n = 1, 
2, ... , r- 1) as x -++oo, we obtain, finally 

00 -

(- i£f _1- ~ t (X) eisx dx = dTj~(~) v 2:rt J d~T • 
-00 

With (6. 221), the last equality takes the form of (6. 220). 
2. Multiple Fourier transforms. The theory of the Fourier trans­

formation of functions of one variable can be extended to functions 
of several variables. Suppose, for example, that f (x1 , x 2 ) is a func­
tion of two independent variables, x1 and x 2 ; the function f, being 
considered as a function of x1 , has the Fourier transform 

(6.223) 

and the function T (£1 , x 2 ), being considered as a function of x 2 , 

has the Fourier transform 

(6.224) 

We see from expressions (6. 223) and (6. 224) that the relation be­
tween the functions f (x1 , x 2 ) and F (£1 , £2) is of the form 

00 00 

F (£t, £2) = 2~ ) ) f (xt. x2) ei(!;,x,H.x.) dx1 dx2• (6.225) 
-oo -oo 

The function F (£1 , £2) is the two-dimensional Fourier transform 
of the function f (x1 , x2). On the basis of (6. 217) the function f (x1 , x2) 

can be expressed in terms of f(£1 , x2) by the following formula: 
00 

f (xt. x2) = V1 \ !(£t, x2) e-i6,x, dst• 
2:rt " -oo 

(6.226) 
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Similarly, from expression (6.224) we find that 
00 

T<st, x2) = V~n J F (st, Sz) e-i~,x. ds2. (6.227) 
-00 

From relations (6.226) and (6.227) we derive a formula known as the 
inversion formula for the two-dimensional Fourier transformation 

00 00 

f (xb x2) = 2~ J. J F (St• s~) e-i(~,x,H,x.> dst ds2· (6.228) 
-oo -oo 

The extension of this formula to functions of more variab _ es is ob­
vious. 

Let f = f (XJ., .•. , Xn), then the n-dimensional Fourier trans­
form of this function is 

F (st, ... , sn) = 
.!.n oo oo 

- ( i ) 2 l l f (x X ) ei(1;,x,+ · · · +snxn) dx dx - 2;:t J • · • J t, • • ·' n t • · • n• 
-oo -oo 

For this case the inversion formula is of the form 

f (x1, · · · Xn) = 

(6.229) 

1 ~n r r . 
= ( ];t) J ... J F(st. ... , Sn)e-t(1;,x,+···Hnxn>dst ... d£,. 

-oo -oo 

We now show that ifF (s1 , s 2) and G (s1 , s 2) are the Fourier trans­
forms of functions f (x1 , x 2) and g (x1 , x2), the Fourier transform 
of the product F (s1 , s 2) G (s1 , s 2) is the convolution of the func­
tions f (x1 , x2) and g (x1 , x2). Indeed, we have, by formula (6.225), 

00 00 

2~ j .\ F (st. s2) G (st. s2) e-i<6,x,H.x.> dst ds2 = 
-oo -oo 

00 00 00 00 

= 2~ J ~ G (St• S2) e-i(1;,x,H.x,) dst ds2 [ 2~ j j' f (t1, t2) X 
-oo -oo -00 -00 

00 00 

X ei(t;,t,H,t,) dtt dt2] = 2~ j J f (tt. t2) dtt dt2 X 
-oo -oo 

00 00 

X { 2~ ) j G(st, S2)e-i[6,(x,-t,)H,(x.-t,)]dstds2}· 
-oo-oo 
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Taking into account (6.228), we obtain the convolution formula 
00 00 

-oo -oo 

00 00 

~ j P (st. sz) G (st. sz) e-i(~,x,H,x,) dst dsz· (6.230) 
-oo -oo 

As the n-dimensional analogue of formula (6. 230) we obtain 

00 00 

~ · · . ~ f (t1, ... , tn) g (xi- tb ... , Xn- tn) dt1 ... dtn = 
-oo -oo 

00 "" 
= ~ ... \ P(st, ... , sn)G(sh ... , sn)e-i<~,x·+···Hnxn>dst ... dsn· 

-oo "' -oo 

57. INFINITE PLANE DEFORMED UNDER BODY FORCES 

(6.231) 

Let an infinite plane be acted on by given volume forces pP1 (x1 , x2), 

pP 2 (x1 , x 2 ), and let the projections of the displacement vector and 
the components of the stress tensor tend to zero as x1 , x 2 -+ oo. De­
termine the state of stress for the case of plane strain. By multiplying 
the equilibrium equations (6.5) and the strain compatibility equation 
(6.11) by the Fourier kernel exp i (s1x1 + s2x2), and integrating 
them with respect to each of the variables x1 and x 2 between the 
limits -oo and +oo, we come to a system of linear algebraic equa­
tions 

(6.232) 

where use has been made of the two-dimensional Fourier transforms 
of the functions ak, Fk (r, k = 1, 2) defined by (6.225): 

00 00 

akr (~1. Sz) = 2~ ~ ~ (Jkr (xh x2) exp [i (stXi + szXz)l dxi dx2, 
-oo -oo 

00 00 

Fk{s1, s2) = 2~ ~ ~ Fk (xt. x 2 ) exp [i (stXt + szx2)J dxt dx2. 
-00 -00 
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By solving system (6.232), we find 

- - - P i6,F, + i62F; (6 233) 
Ott +022- - 1-v 6~+ 6~ , . 

- - _ P 11-2vl 6i-6~ (·t F ·t F) 4 61~2 li62F. -is,F;> 
au-022-- (l-v) (£¥+ 6~)2 L'<>1 1+£'<>2 2- P (M+ 6~)2 , 

(6.234) 

- _ PI6~-W (·t F ·t F) 1-2v ~~62<i6,F1+i62F2) (6.235) 
IJ12-- (6~+W2 L.,t 2-£.,2 1 -p 1_v (M+6~)2 

On the basis of the inversion formula for the two-dimensional Fou­
rier transformation (6.228), from (6.233) we find 

-00 -00 

Let us show that the function i£ 1/(6~ + 6~) is the Fourier trans­
form of the function xkl(x~ + X:). Indeed 

00 00 

2~ ) ) x~ ~ x~ exp i (£1x1 + £2x2) dx1 dx2 = 
-00-00 

Here · 

-oo 

=~ 

Then 
-oo oo 

x2 >0 
:rtie-6,x, when t 0 

'<>1 > 
x2 <0 

-:rtie-6,x, when £
1 
< O 

, x 2 >0 
- :rtie~•x• when £1 < 0 

x 2 <0 
when t 0 

'<>1 > . 

2~ ) ) x~ ~ x~ exp i (6tXt + £2x2) dx1 dx2 = 
-oo -oo 

0 00 

= i. r ieXe(6,+i!;,) dx2 + i. l ieXz( -!;,+iSe) dx~ = ~ 
2 .l 2 _I - " £f + £~ . 

-00 0 
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Noting that the function i£nl(£~ + £~) is the Fourier transform of 
the function xhl(x~ + x~), we obtain, by the convolution formula 
(6.230), 

f f i"£nFh (~t• s2l · (t t )] dt dt j j M+~~ exp [ -~ ':l1X1 +.,2X2 ':ll ':l2= 

-oo -oo 

(k= 1, 2). 
-oo -oo 

From this formula and calculations similar to those given above 
[the functions 2i£1W(£~ + £~)2 , i£1 (£~ - £~)/2 (£~ + £;)'2 are the 
Fourier transforms of the functions x1 (x~ - x~)l(x~ + x~) 2 and 
x1x;l(x~ + x~) 2 ] we obtain 

<Yu + <Y22 = 
00 00 

p 
2:rt (1-v) 

-00 -00 

p(1-2v) 
<J11-<J22=- :rt(i-v) X 

00 00 X.\· \' (x,-a,)(x2--a2)[(x2-a2)F1 (a1, a 2)-rx,-a,)F2 (a1, a 2)] 
- [(xl-al)2+(x2-a2)"]" X 

-oo -oo 

p(1-2v) 
a 12 = - --74-':n-,-( 1=----v'-) 

00 00 

-00 -00 

-oo -oo 

00 00 

-oo -oo 

As an example let us consider the problem of an infinite plane 
acted on by a concentrated force F'. The solution of this problem 
is useful in displaying the nature of stress singularities in the neigh­
bourhood of the point of application of the force. We choose the 
origin at the point of application of the force, and take the direction 
of the force coincident with the negative x1 axis. The mass forces 
may then be represented as 

F 
F 1 (x1, x2) = -- 6 (x1) 6 (x2), F2 (x1, x 2) = 0. 

p 
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Here 6 (xk) is the Dirac function possessing the following properties: 

6 (xk) = 0 when xk =I= 0, 

-00 

From the last formulas we obtain, finally, 

au= Fxl 2 {<t-2v) + 22+x~ 2}' 
4n (1-v) (x~+x2 ) x1 x2 

Fx1 { 2x~ } 
a 22 = 4n(1-v)(x~+x~) (i+ 2v)-xi+x~ ' (6.236) 

Fx2 { 2xf } 
a, 2 = 4n(1-v)(x~+x~) (i- 2v)+x~+x~ ' 

Also, the component of the stress tensor a 33 is determined by the well­
known formula 

O'aa = 'V (au + a22)· 

It is clear from formulas (6.236) that all components of the stress 
tensor increase without limit as xk -+ 0. 

58. SOLUTION OF THE BIHARMONIC EQUATION 
FOR A WEIGHTLESS HALF-PLANE 

To solve the plane problem of elasticity in the absence of body 
forces, it is necessary, as was established in Sec. 42, to integrate 
the two-dimensional biharmonic equation (6.26). The solution of 
this equation will be given for a half-plane bounded by a straight 
line. Let this half-plane occupy the region x1 > 0 in a rectangular 
co-ordinate system. 

By multiplying (6.26) by exp i~x2 , and integrating with respect 
to the variable x 2 between the limits -oo and +oo, we obtain 

(6.237) 
-oo 

On th·e basis of formula (6.220) equality (6.237) can be put into the 
form 

00 

+ (- i~)4 ~ <Deisx, dx2 = 0 
-00 

12-0884 



178 Ch. VI. Plane Problem 

or 

(6.238) 

where 
00 

Q (xt. 6) = J <D (xt, x2) ei~x2dx2 (6.239) 
-00 

The roots of the characteristic equation of the differential equation 
(6.238) are 

The general solution of (6.238) is then 

Q= (A+Bx1) e-161 x, +(C +Dx1) 1el~ lx,, 

To obtain a bounded solution, it is necessary to put C = D = 0, 
giving 

Q= (A+Bx1) e-16!x,, (6.240) 

The coefficients A and B are determined by the boundary conditions 
of the problem. 

From the Fourier inversion formula (6.217), and (6.239), we find 

00 

<D (Xtt X2) = 2~ ) Q (Xt 1 S) e-i~x. ciS (6.241) 
-00 

Thus, the stress function can be obtained by quadrature. 
Now multiply Airy's formula!~ (6.24) by exp isx2 , and integrate 

with respect to the argument x2 between the limits -oo and +oo; 
taking into account formulas (6.216), (6.220), and (6.239), we find 

(6.242) 

(6.243) 

(6.244) 
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From (6.242), (6.243), and (6.244) we obtain, by the Fourier inver­
sion formula, 

00 00 

au (Xi> X2) = -/2n ) Uif (XH ~) e-i£x, d~ = - 2~ ) ~2Qe-lSxo d~, 
-oo -oo 

(6.245) 

-oo 

This method will be used to solve two problems. 
1. Half-plane with a distributed force applied to the boundary. 

Let the x2 axis be taken along the boundary of the half-plane, with 
the x1 axis directed into the half-plane. Suppose that T21 = 0 and 
T11 = p (x2) are given on the boundary x1 = 0, and there are no 
body forces acting on the half-plane. Assume that the components 
of the stress tensor tend to zero as x1 -+ oo. The integration constants 
A and B in solution (6.240) are determined from the boundary con­
ditions 

T11 = -0"11 (0, x2) = p (x2), T 21 = -<112 (0, x2) = 0. 

By multiplying these conditions by exp i~x2 , and integrating with 
respect to the variable x2 , we have, for x1 = 0, 

00 

Utt = V~n J a11 (0, X 2) eisx. dx2 = 
-oo 

(6.246) 

(]12 = 0. 
Substituting (6.240) in (6.242) and (6.244), we find from the boundary 
conditions (6.246) that 

V2n- V2n -
A= -~-2 p (~). B =~I~ I p (~). (6.247) 

Inserting (6.247) in (6.240), and substituting the result obtained in 
formulas (6.245), we find 

12* 

00 

au=- ; 2n J "P m r1 + 1 ~I xd e-ls (x,-isx. a~. 
-oo 

00 

a22 = - V~n J p (£) [1-1 ~ 1 xt] e-l~ Jx,-i6x, d~, 
-oo 

(6.248) 
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If, in particular, the pressure on the boundary x1 = 0 is uniformly 
distributed over the section -a -< x2 < a (Fig. 26), we have, by 
formula (6.246), 

a -
- (!:) = -.l!L i i~x. d = V 2 sin (a£) 
p "' V 2:n: J e x2 Vii Po 6 • 

-a 

(6.249) 

Since function (6.249) is even in ~. formulas (6.248) are rewritten 
as 

00 

a22 -- _ 2Po \ i-£x1 • · (!: (!: ) d :n: J £ e-~x, sm <oa) cos <oX2 ~. 
0 

00 

a12 = - 2p~x1 ) e-t;x, sin (~a) sin (~x2) d~. 
0 

By evaluating, now, these integrals, we find the components of 
the stress tensor 

a 11 = :~ [2 (82 -81) +sin 281 -sin 282], 

U22 = :~ [2(82-81)-sin281+sin282], 

a 12 = :~ (cos282-cos281), 

where, referring to Fig. 26, 
x 2 -a x +a 

81 =arc tan-- ' 82 =arc tan - 2 -. 
xl xl 

(6.250) 

2. Half-plane with a concentrated force applied to the boundary. 
Consider the stress distribution in a half-plane (Fig. 27) with a con­
centrated force T applied to the boundary at the origin in the direc­
tion of the x1 axis, when body forces are absent. The solution of 
this problem can be obtained from solution (6.248) assuming that 

Po = ~i T/2a and a -+0 in formula (6.249). Then 

- (!:) =.!.... sin (as) I =.!.... (6.251) 
P "' 2 a£ a ... o 2 · 

Inserting (6.251) in formulas (6.248), we find, after evaluating the 
integrals, 

(6.252) 
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where 

r=Vxi+x;. 
As x1 -+ 0, x2 -+ 0, the components of the stress tensor increase 

without limit. We now calculate the normal and tangential stresses 
on a plane perpendicular to the radius vector. Let the rotated co-

a a 

T 

x, 
Fig. 26 Fig. 27 

ordinate axes be taken to coincide with the normal and tangent to 
the given plane (Fig. 27). From formulas (1.13) 

O'~e = 0' mktXrmtX~k 

and from the table given below we have 
' 2T Zt 2T cos 9 

O'u= ---n-72= -n--r-' 
a~= 0, a;2 = 0. 

Introducing the notation cr;1 = O'm a;9 = 0' re• 0'~ = O'eth we obtain 
the formulas 

2T .x1 2T cos 9 
O"rr= -n- 7= ---n---7-, O"re=Oee=O. 

I .xl I .x2 I zs 

x' I a11 =cos9=~ I . e .x2 I 0 1 a 12 =sln =-r r 

.x2 I . e .x2 I 
.X I 0 a 21 = - s1n = -- a22 =cos e = - 1 

r r 

.x' 3 I 0 I 0 I 1 



CHAPTER VII 

Torsion and bending 

of prismatic bodies 

59. TORSION OF A PRISMATIC BODY OF ARBITRARY SIMPLY 
CONNECTED CROSS SECTION 

Let the bases of a homogeneous isotropic prismatic body be acted 
on by forces that reduce to twisting couples. Moreover, body forces 
are absent and the lateral surface of the body is free from external 
forces. 

Let the ox8 axis be taken parallel to the generators of the lateral 
surface, and the ox1 and ox2 axes at one of the bases of the bar (Fig. 28). 

The problem of the elastic equilibrium of a prismatic body under 
the above conditions is reduced to that of finding f1kr satisfying, in 

Xz 

Fig. 28 

x, 

the region occupied by the body, 
the differential equations of equi­
librium ~(2.25) in the absence of 
body _forces a:t;td the formulas of 
Hooke's law (4.35), as well as the 
boundary conditions on the lateral 
surface -and at the bases of the 
prismatic body. 

The problem thus formulated 
presents great mathematical dif­
ficulties. Hence, on the basis of Saint 
Venant's principl&; if the- length 

of the prismatic body is sufficiently great in relation to the dimen­
sions of its bases, we can relax the boundary conditions at the bases 
so that the resultant vector and the resultant moment of the forces 
applied to the bases will have prescribed values; the actual distribu­
tion of forces at the bases will have little, if any, effect on parts-of 
the body well away from the bases. Such an integral satisfaction of 
the conditions at the bases permits a sufficient freedom for the choice 
of solution. 

Starting from the above assumptions, Saint Venant solved this 
problem in terms ~f displace:rne11ts by his semi-inverse met.hod, The 
solution of the formulated problem in terms of displacements is 
sought by Saint V enant in the form 
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where ,; is a constant called the degree of twist and cp (x1J, x2) is a 
function to be determined. 

Displacements (7.1) show that the cross sections do not remain 
plane but warp, and, moreover, all sections warp identically. 

From the formulas of Hooke's law (4.35), with formulas (3.26), 
the components of the stress tensor akr corresponding to displacements 
(7 .1) are obtained as 

crat=f:LT ( :x~ -x2), CJs2=fJ.T ( :x: +xi) (7.2) 

and 

cr11 = cr22 = cr33 = a12 = 0. (7 .3) 

Substituting (7 .2) and (7 .3) in the differential equations of equili­
brium (2.25}, when body forces are absent, we see that the first two 
of them are satisfied identically, and the third equation gives 

(7.4) 

The last relation shows that the function cp (x1 , x2}, known as Saint 
Venant's torsion function, must be a harmonic function of the va­
riables x1 and x 2 in the region S occupied by the cross section of the 
body. It follows from the third formula of (7.1) that the displacement 
u3 must also be a harmonic function. 

Noting that the outward normal n to the contour of any cross 
section is perpendicular to the ox3 axis, we have n 3 = 0. The first 
two conditions of (2.22), in view of the absence of external forces 
on the lateral surface and by condition (7.3}, are then satisfied iden;_ 
tically; the third condition of (2.22) on L, with (7 .2), becomes 

( :x~ -X2} ni + ( :x: +xi) n2 = 0, 
where L denotes the boundary of the region S. 

Taking into account that 

a~ a~ a~ -a-ni+-a-n2==-a ' x1 x2 n 

instead of (7.5) on L we obtain 

a~ a;;:= x2ni-xin2, 

where :: is the derivative of cp along the normal n. 

(7.5) 

(7.6) 

The problem of determining the function cp (x1 , x2) is thus the 
Neumann problem for Laplace's equation. It is easy to show that 
in our case the condition for the existence of the solution to the Neu-
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mann problem is fulfilled. Indeed, 

J !! dl = .\ (x2n1 -xtn2) dl = J ( x2 ~2 + x1 ~~ ) dl = 
L L L 

= J d ~ (x:+x:)=O. 
L 

If this condition is fulfilled, the solution of the Neumann problem 
is determined, apart from an arbitrary additive constant. This con­
stant is unimportant since the replacement of the function cp by 
cp + c does not change the state of stress, a result which follows from 
formulas (7.2), but produces, as the third formula of (7.1) shows, 
only a rigid-body translation of the body along the ox3 axis. 

The following identity is valid for the harmonic function cp. 

a!1 [xt(:x~ -x2)]+ a!2 [xt(:x: +xt)J= :x~ -x2; (7.7) 

on the basis of this identity, with the boundary condition (7.6), we 
find that the resultant vector of the shearing stresses applied at the 
cross section is zero. Indeed, 

Vt = J <Tts dro = 1.1:r J ( :x~ -x2 ) dro = 
ro ro 

=we J { a!1 L Xt ( :x~ -x2) J + a!2 [ Xt ( :x: +xt) ]} dro. 
ro 

From the Gauss-Ostrogradsky formula and the last equality we obtain 

V 1 = flT J Xt [ ( :x~ -x2) n1 + ( ::2 + Xt) n2 J dl. 
L 

In the last formula, using the boundary condition (7.6), we have 
V1 = 0; in a similar way it is proved that V 2 = 0. Hence, the shear­
ing stresses applied at the cross section reduce to a couple of mo­
ment (Fig. 28) 

M = J (xt<r32 -x2cr31) dro. (7.8) 
ro 

Inserting in this formula the values of cr32, <r31 from formulas (7 .2). 
we obtain, finally, 

M=DT. 
In this formula 

(7.9) 
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From the equilibrium condition we have, at the bases, Mt = M = 
=D-r:, from which 

where Mt is called the twisting moment or torque, and D is the tor­
sional rigidity. 

From the Gauss-Ostrogradsky formula, with formula (7.6), we find 

l (xi acp -Xz aqJ ) dro = l (a (-x2qJ) +a (xlqJ)) dro =- l ljl~ dl. 
J ax2 ax! J ax! ax2 J an 
ro ro L 

On the other hand, by Green's first formula, 

J ljl :! dl = J [ ( :x~ r + ( :x: ) 2] dro. 
L ro 

Consequently, 

l [(~) 2 + (~) 2 +x1 ~-x2~] dro=O. J ax! ax2 ax2 ax! 
(J) 

By multiplying both sides of the last relation by f.l, and adding: 
to (7 .9), we obtain 

D=f.l J [( :x~ -xz) 2 + ( :x: +x1) 2]dro. 
(J) 

It follows that D is always positive. 
We introduce a harmonic function 'ljl (x1 , x2) conjugate to the func­

tion IJl (x1 , x2); by the Cauchy-Riemann conditions we then have 
aqJ _ a'ljJ • aqJ a'IJJ 

axl - ax2 ' ax2 =- axl • (7.10} 

The boundary condition that is satisfied by the function 'ljl (x1 , x2} 

is obtained from (7.6) by inserting conditions (7.10) in (7.6), and 
using (6.27). The result is 

a1jJ dx2 + a'ljJ dx1 _ ( dx2 + dx1 ) = 0 
ax2 dl ax1 dl Xz dl Xt dl . 

By integrating both sides of this equality along the contour of the­
cross section, we have 

2+ 2 
lJ? !L = xl 2 x2 +C. (7 .11) 

By (7.2), with conditions (7.10), the components of the stress tensor 
are obtained as 

(7 .12) 
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It is well seen from these formulas that the solution of the problem 
will not change if a constant is added to the function 'IJ' (Xt, x2}. 

Consequently, the determination of the function is reduced to the 
Dirichlet problem for Laplace's equation. 

Instead of the function 'IJ' (x1, x2} another function, 11> (x1, x2}, 
is often introduced, called the stress function in torsion or Prandtl's 
·stress function. This function is defined by the formula 

11> (xtt x2) = 'IJ' (xtt x2)- ; (x~ + x:). (7 .13) 

In this case, from (7.12) we have 

(7 .14) 

From {7.13}, noting that 

we obtain 
82(1> 82(1> 
8x2 + 8xz = -2 (7.15) 

1 2 

:By (7 .11}, the boundary condition for the function 11> becomes · 

(7.16) 

_ Thus, the problem of determining 11> {x1 , x2} is the Dirichlet prob­
lem for Poisson's equation (7.15) subject to the boundary condition 
(7.16). From formula (7.8}, with (7.14}, the twisting moment is 
determined as 

(7 .17) 

This formula shows that the magnitude of the moment Mt does not 
.change if any constant is added to the function 11>. By writing (7 .17) as 

M r [8(xl<D)+8(x2<D)Ja +2 ~ ,.,.,.d-t = - f.L't \ -- -- ro f.L't -v ro, 
.J 8xl 8x2 
ro ro 

and applying the Gauss-Ostrogradsky formula to the first integral, 
we obtain 

Mt= -f.L't<I> ~ (x1n1 +x2n2) dl+2wr J <I>dro. (7.18) 
L ro 

Assuming the constant C in (7.16) to be zero, which is permissible 
since changing 11> (x1, x2) by a constant leaves the solution of the 
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problem unaltered, as seen from (7.14) and (7.17), instead of for­
mula (7 .18) we have 

(7.19) 

This important formula is due to L. Prandtl. 

60. SOME PROPERTIES OF SHEARING STRESSES 

We now show that the shearing stress vector T3 = i10'31 + i 20'32 

at an arbitrary point M of the cross section of a prismatic body is 
directed along the tangent to the curve ([> (x1, x2) = constant pas­
sing through the point M. Indeed, along the curve ([> (x1 , x2) = 
= constant we have 

8<1> - 8<1> dxl + olD dx2 - 0 
Tz- 8x1 dL 8x2 7- · 

Taking into account formulas (6.27) and (7.14), we find 

0'3lnl + O's2n2 = T3 ·n = 0, 

from which T 3 ..L n. 
Based on what has been proved above, the curves ([> (x1, x2) = 

= constant are called trajectories or lines of shearing stress. Since 
([> (x1 , x'2) = constant on the contour of the cross section, it is a 
shearing stress trajectory. 

It can easily be proved that both 0'31 and 0'32 are harmonic functions 
in the cross section. Indeed, by applying the harmonic operator fi 
to both sides of formulas (7 .14), and assuming the legitimacy of in­
terchanging the differential operators, we have, by (7 .15), 

fia31 = J.Ltfi aa> = J.L't - 8-fi$ = 0, 
8x2 8x2 

ficr32 = - J.L't - 0- fi([> == 0. 
oxl 

It follows that 0' 31 and 0' 32 attain maximum values on the contour of 
the cross section of a prismatic body. 

We now prove that the shearing stress vector T3 also attains its 
maximum value on the contour; for this we start from the contrary: 
suppose that the shearing stress vector attains a maximum value 
inside the contour of the cross section at a point M. We choose a·new 
rectangular Cartesian co-ordinate system ox~x~ at the cross section so 
that one of its axes, say the ox~ axis, is directed parallel to the vector 
T 3 applied at the point M. In this co-ordinate system, at the point M 
we have a stress tensor with components 0';1 = 0, 0'~ =!= 0, and these 
are also harmonic with respect to the new co-ordinate system. In con-
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sequence, 0'32 attains its maximum value on the contour, and not 
inside the contour, as was supposed at the beginning of the reasoning. 

Hence, the shearing stress vector attains its maximum value on 
the contour of the cross section of a prismatic body. 

61. TORSION OF HOLLOW PRISMATIC BODIES 

Let a prismatic body be bounded by several cylindrical surfaces 
whose axes are parallel. Every cross section of such a bar represents 
a multiply connected region. In this case the boundary conditions 
(7 .11) take the form 

where C v are constants assuming definite values on each of the con­
tours Lv the set of which forms the contour of the section. 

The torsion function <p must be single valued; otherwise, the 
displacement u3 = 't<p would be multiple valued (we are interested 
in single-valued displacements). The function 'ljl, conjugate to the 
single-valued harmonic function and determined from the Cauchy­
Riemann conditions (7 .10), may, in general, be multiple valued; 
in our case this must not be so because the function 'ljJ reverts to its 
original value on passing once round any of the contours Lv, as 
seen from the boundary condition for it. Hence, the constants Cv 
cannot be fixed in an arbitrary way. Indeed, if they are fixed arbi­
trarily, and then the function 'ljJ is determined (for this it is necessary 
to solve the Dirichlet problem, which, as is known, always has a 
unique solution), the function <p found from the Cauchy-Riemann 
conditions by means of the function 'ljJ may be multiple valued. 

In the present case the function <I> (x1 , x2) must, by (7.16), be 
constant on all contours bounding the section. Thus, the boundary 
condition for the function <I> (x1 , x 2) on the contour Lv is of the form 

<I> (x1 , x 2) = Cv. (7.20) 

As we have seen, the formulas for strains, stresses, and displacements 
involve partial derivatives of the function <D. It is therefore suffi­
cient to determine the function <I> (x1 , x2) to within an arbitrary 
constant. This circumstance allows one to set one of the constants C v 
equal to zero. 

Let us show that the tangential stresses 0'31 and 0'32 at the ends of 
a prismatic body satisfy the conditions 

J aa1~dw = J aa2 dw = 0 (7 .21) 
(J) (J) 

(otherwise, in addition to the applied torque there would be trans­
verse forces at the ends tending to bend the prismatic body). 
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Inserting expressions (7 .14) in the integrals of (7 .21), and trans­
forming them into integrals round the contour L = L0 + L1 + L 2 + 
+ ... + Lm, we obtain 

Vt = f..t"t" ~ <Dn2 dl, V2= -we J <Dn1 dl. (7.22) 
L L 

These integrals may be written as 

Vt=f..tT J <Dn2dl+f..t't J <Dn2dl+ .•. +f..tT J <Dn2dl, 
L 0 L 1 Lm 

- V2= f..t"t" J <Dn1 dl+ f..t't J <Dn1 dl + ... + f..tT J <Dn1 dl. 
L 0 L, Lm 

With (7.20), we have 

V1 = f..t"t"C0 J n2 dl+f..tTCt J n2dl+ ... +f..tTCm J n2 dl, 
L 0 L 1 Lm 

-V2=f..tTCoJ n1dl+f..tTCtj ntdl+···+f..tTCm J ntdl; 
L0 L, Lm 

since 

~ n2dl= -J dx1=0, ~ n 1 dl= ~ dx2= 0, 
L'll L'll L'll L'll 

it follows that vl = v2 = 0, which was to be proved. 
Referring to formulas (7 .14) and Fig. 28, we have 

(7.23) 

By transforming the first integral into a contour one, we have 

Mt= -f..tT~ (xtnt+x2n2)<1>dl+2f..tT J <l>dro, (7.24) 
L ro 

or, noting that L = L0 + L1 + •.• + Lm, we obtain, finally, 

Mt= -f..tTCo J (xtn1+x2n2)dl-f..tTC1 J (x1n1+x2~)dl- ..• 
Lo L, 

••• - f..tTCn J (x1n1 + x2n2) dl + 2f..tT J <1> dro. (7 .25) 
Lm ro 
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We transform the contour integrals into surface ones and, remem­
bering that the outer contour of the section must be described in the 
counter-clockwise direction, and all inner contours in the clockwise 
direction, rearrange formula (7.25) in the form 

m 

Mt = 2f.t't ( ~ Cvffiv- C offio) + 2f.l't ) <I> dffi, 
'1'=1 w 

(7 .26) 

where ffiv is the area bounded by the contour Lv (v = 0, 1, 2, .•• ). 
In the case of a simply connected region we obtain formula (7.19). 

62. SHEAR CIRCULATION THEOREM 

The circulation of the stress vector i1cr31 + i 2cr32 along a closed 
line Zlying entirely inside the section is 

r = ~ (iia31 + i2a32). dr. (7 .27) 
l 

Inserting (7.2) and (7.1) in the integrand, we have 

r = f.t't ~(xi dx2 -x2 dxt) + fl ~ ( ::: dxi + ::: dx2) = 
l l 

= 2f.t'tffi + fl ~ a:zs dl. (7 .28) 
l 

Since the displacement u3 must be a single-valued function in the 
cross section, it follows that 

~ aa~s dl=O. 
l 

By reason of the last circumstance, we find, from (7 .28), that 

r = 2f.l'tffi. (7.29) 

Here ffi is the area bounded by the line of integration. 
Formula (7 .29) is valid for both simply connected and multiply 

connected sections, and the line of integration may enclose one, 
several or none of the inner contours of the section. This formula re­
presents the shear circulation theorem. 

The shear circulation may be expressed in terms of the function 
<D (x1 , x2); for this purpose, we substitute (7.14) in the integrand 
of (7.27), so that 

.c. ( acD acD ) ~ acr> r = - f.t't qJ -a-ni +-a- n2 dl = - fl't' -a- dl, 
t.' x1 x 2 ,_ n 
l l 

(7.30) 

where ni is the cosine of the angle between the outward normal to the 
line of integration and the ox1 axis (j = 1, 2). 



63. Analogies in Torsion 

On comparing formulas (7.29) and (7.30), we obtain 
... a<D 

-~--andl=2ffi. 
l 

19t 

(7.31)· 

If the line of integration is taken to be an inner contour L..17 then 

(v=1, 2, ... , m), (7.32} 
Lv 

where nv is the outward normal to the contour Lv, ffiv is the area· 
bounded by the closed contour Lv. Formulas (7 .32) can be used to. 
determine the unknown cons­
tants C v entering into the 
boundary conditions (7.20). 

63. ANALOGIES IN TORSION 

(a) Membrane analogy. By 
a membrane is meant a thin 
film offering no resistance to 
bending, but acting only in 
tension. 

Suppose that a homogeneous 
membrane of constant thick-
ness is equally stretched in 
all directions by a force T 
over a plane contour of the 

Xt 

Xz 

Fig. 29 

same shape as the contour of the cross section of a twisted pris­
matic body, and loaded by a normal uniformly distribued load q 
per unit area. Let the co-ordinate axes ox1 and ox2 lie in the plane 
of the membrane, which sags under the load q by an amount u0 (x17 x2). 

Let us derive the differential equation of equilibrium; to do this 
we cut out an element having the shape of a rectangle of sides dxlt 
dx 2 (Fig. 29). Equating to zero the sum of the projections on the oxa 
axis of all forces acting on the element gives 

- T auo dx2 + [r auo dx2 +-8- ( T auo ) dx1 dx2]- T Bun dxt + 
axl axl axl axl ax2 

+ [ T ;;; dx1 + a:2 { T ;;; ) dx2 dxt J + q dx1 dx2 = 0 

From this we obtain an equation for the deflection u0 of a uniformly 
loaded membrane 

(7.33) 
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:Since the deflection u0 on the contour of the membrane is zero, the 
.contour condition is 

u 0 = 0. (7.34) 

Thus, the contour condition (7 .34) coincides identically with the 
·contour condition for the function <1>. 

On putting u0 = k<l>, the differential equation (7 .15) coincides 
-with (7.33). Inserting u0 = k<l> in Eq. (7.33), there results 

( a2<D a2<D ) q 
k ax~ + ax~ = --y. 

•On the other hand, we have 
a2<D a2<D 
-a 2 +~a 2 = -2. 

xl x2 

From the last two equations, k = 2~ . Then 

Uo= 2~ <!>. (7 .35) 

Consequently, the torsion problem for a prismatic body can be solved 
by measuring the deflections of a uniformly loaded membrane. 

If the membrane is cut by planes u0 = constant, the resulting lines 
of equal displacement in the torsion problem coincide with the tra­
jectories of shearing stress <l> = constant. The slope of the membrane 

~:o in the direction of the outward normal n to the line of equal 

·displacement at some point determines the shearing stress t at the 

-corresponding point of the section, i.e., T = ~-r :~0 • Indeed, 

auo = ak<D == k ( aa> n1 + aa> n2) = - _..!!.._ (aa2n1- <Yatn2) = _..!!.._ t, 
an an~ axl ax2 !!'t !..IT 

from which 

According to this formula, the maximum angle of inclination of 
the membrane determines the maximum shearing stress. 

The torsional rigidity of a prismatic body is determined by the 
volume v enclosed by the surface of the deformed membrane and 

2~-t the plane of the membrane before deformation, i.e., D = k v. Indeed, 

V=~u0 dffi= 2~ ~<Ddffi; 
(J) (J) 
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noting that 

we ftnd v= 4;T D, from which 

D= 2k v. (7 .36) 

The value of the membrane analogy resides not only in the fact 
that it furnishes an experimental means of investigating the torsion 
problem, but also in the fact that without any experiment the use 
of this analogy in each specific problem of the torsion of a prismatic 
body makes it possible to get a qualitative idea of the pattern of 
shearing stress trajectories and of the maximum tangential stress. 

The membrane analogy is easily extended to the case of hollow 
prismatic bodies. In this case1 as is apparent from the relation u0 = 
= k<l>, which has been derived by comparing Eqs. (7 .15) and (7 .33), 
the following conditions must be fulfilled: 

(1) the outer contour of the membrane must be similar to the outer 
contour L 0 of the section of a prismatic body, and must be rigidly 
fixed; 

(2) all inner contours of the section of the prismatic body must be 
simulated by absolutely rigid plane weightless disks parallel to each 
other, and must receive translational displacements u..., = kC..., (C..., 
are the constants entering into the boundary conditions on the inner 
contours of the section of the prismatic body); 

(8) these disks must be stressed by the same uniformly distributed 
normal pressure q as the membrane itself. The last consideration fol­
lows from the shear circulation theorem in the torsion problem; 
the truth of the statement will presently be demonstrated. 

Substituting <D = ! u0 in (7 .32), we obtain 

- ~ !~: dl = 2kffi..., = i ffi...,. (7 .37) 

Here 8
8u0 is the slope of the membrane in the direction of the outward 

n..., 
normal n..., to the inner co,ntour L...,, ffiv is the area bounded by the 
inner contour L...,. 

By multiplying both sides of (7.37) by the amount of uniform ten­
sion in the membrane T, we have 

- ~ T :~: dl = qffi...,. (7 .38) 

Obviously, the left-hand side of this equality is the sum of the pro­
jections of the forces of tension in the membrane at the section through 
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the given contour Lv on a direction perpendicular to the plane of the 
contour Lv· 

Thus, (7 .38) gives a condition for the equilibrium of each disk 
under the uniformly distributed pressure and the tension in the 
membrane at the section through the contour of this disk. If this 
kind of membrane together with a disk is stressed by a uniform pres­
sure, we obtain the membrane analogy of the torsion problem for a 
prismatic body of multiply connected section (Fig. 30), i.e., the 

Fig. 30 

displacement of the membrane is proportional to the function <I> (x1 , 

x 2), and the lines of equal displacement are similar to the shearing 
stress trajectories. 

The realization of the membrane analogy experiment in the case 
of the torsion problem for a prismatic body of multiply connected 
section presents great difficulties. However, for a qualitative study 
of a specific problem of the torsion of a hollow prismatic body, as has 
already been mentioned in the case of simply connected regions, the 
membrane analogy is of great value. 
. As an example let us consider the problem of the torsion of thin­
walled tubes. 

To investigate the torsion of thin-walled tubes using the membrane 
analogy, it is necessary to fix the membrane along its contour, which 
must be similar to the outer contour of the section, and superimpose 
an absolutely rigid plane disk having the shape of the inner contour. 
Next, the membrane and disk must be stressed by a uniformly dis­
tributed pressure giving the disk a translational motion in a direction 
perpendicular to its plane (Fig. 30). Since we are considering the 
case when the wall thiGkness of the tube is small, the deformation of 
the membrane is determined mainly by the load exerted on the disk; 
as regards the load acting directly on the membrane, it may be neglect­
ed. It appears from the above that the surface of the deformed mem­
brane coincides closely with a conic surface connecting both contours. 
This conclusion allows an approximate analysis to be made in the 
study of the torsion of thin-walled tubes of arbitrary cross section. 

Inside a ring section draw a line L equidistant from both its boun­
daries (Fig. 31) and take some point A on this line as the origin of 
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arc length l. The ring section is specified ifthe line Land the thickn~ 
6 = 6 (l) are known. The value of the shearing stress T at a given 
point can be approximately estimated from the mean slope of the 
membrane at this point; hence, the approximate value of the tangen,~ 
tial stress at the point B is deter-
mined by the formula A t B(t) 

T Ct-Co 
=f.L't(f(i)· 

Assuming that C 0 = 0 on the 
contour, we have 

T cl 
= f.L'tli(i). 

As seen from this formula, 

T c, 
max= f.L't-.,-. 

umln 

outer 

(7.39) 

(7 .40) 

From formula (7 .26) we have 

Mt = 2f.L't ( C 1ro1 + J <D dro) ·, 
(J) 

Fig. 31 

where ro1 is the area bounded by the inner contour, C1 is the constant 
value of the function <1> on the inner contour. 

Noting that the mean value of the fuilction <I> on the line L is 
approximately equal to 1/2 C17 the last formula is rearranged in the 
form 

Mt=2f.L't'Ct(rot+-} Jdro)=2f.L'tCt{ro1+ ~! 6(l).dl). (7.41) 
ro . L 

The expression within the parenthes~s on tfi~ right-hand side of (7:41) 
represents the area bounded by the mean contour L; hence, formu­
la (7.41) is rewritten as 

.\ 

(7.42) 

where 

ro = ro1 +,{- J 6 (l):az. 
L 

On the other hand, we have, by (7 .32), 
t_ 0-C1 . 

- 'j' -nzr dl--,-.2w. 
. ' 

(7.~--
L 



(96 Ch. VII. Torsion and Bending of Prismatic Bodies 

By·eliminating C1 from formulas (7.42) and (7.43), we obtain 

where 

Mt = 4f.tTro2 

I ' 

r dl 
I= J ~ (l) . 

L 

Formula (7.44) is given by R. Bredt. 
On comparing formulas (7 .39) and (7 .42), we find 

T Mt 
= 2ro~ (l) • 

This formula is also due to R. Bredt. 

(7 .44) 

(b) Boussinesq's hydrodynamic analogy. Consider the laminar 
motion of a viscous fluid through a prismatic tube with a cross sec­
tion coinciding with the cross section of a prismatic body whose 
torsion is under investigation. Let the axis of the tube be denoted 
by ox3 • The velocity v (x1 , x2) of the fluid flowing through the tube 
must satisfy Poisson's equation 

82v 82v 1 8p 
iJx2 + iJx2 =-;\ax' (7 .45) 

1 2 ro 3 

where :~ is the drop of hydrodynamic pressyre along the axis of the 
tube; which is taken to be constant. 

On the walls of the tube we have the Reynolds condition 
v = 0. (7.46) 

Thus, the contour condition (7.46) coincides identically with the 
contour condition for the function <I>. 
· On putting v = k<I>, the differential equation (7 .1S) coincides with 
(7.45). Inserting v = k<I> in Eq. (7 .45), and comparing the resulting 
~quation with Eq. (7.15), we obtain 

·G ~ 

and 
k =- 8xa 

2f.to 

64. COMPLEX TORSION FUNCTION 

It is often convenient in the solution of the torsion problem to 
introduce a function F (z) of the complex variable z = x1 + ix2 , 

related to the torsion function <p (x1 , x2) and its conjugate 'II' (x1 , x2), 
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in the form 
iF (z) = cp + i1jl. (7.47) 

The function F (z) is obviously holomorphic in the region occupied by 
any cross section of the body. 

By (7.11), for a multiply connected region the boundary conditions 
that must be satisfied by the function F (z) become 

(7 .48.> 

where t is the affix of a point; C v are constants, one of which may 'ba 
fixed arbitrarily, and the others are to be determined. 

In the case of a simply connected region we have 

F (t) +F (t) = tt+C. (7.49) 

On the basis of formulas (7.2), 

. ( iJqJ . iJqJ . ) 0'31 -ur32 =ft't ----~--x2 -~x1 , 
dx 1 iJx 2 

from which, remembering that ~qJ = - ~'ljl , we obtain, finally, 
uX2 ux1 

O'al - ia32 = f-1-Ti [F' (z) - zl. (7 .50) 

The torsional rigidity of a prismatic body is determined by for­
mula (7.9), which is rearranged in the form 

D=ft ~ (xi+x:)dffi-ft ~ la~;1qJ)_a~;2qJ)Jaffi. 
(i) (i) 

By applying the Gauss-Ostrogradsky formula to the second integral, 

and introducing the notation I 0 = J (x~ + x~) dffi, we obtain 

D = f1 [ I 0 - ~ cp (x1 dx1 + x2 dx2) J . 
L 

Here I 0 is the polar moment of inertia of the cross-sectional area. 
By using formula (7.47), and taking into account that x1dx1 + 

1 - ' + x 2dx 2 = '[d (tt), the last formula may be put into the form: 

D=f1[I0 -+) (F(t)-F(t))d(tt) _]. 
L 

If the cross section of a prismatic body represents a multiply con­
nected region, the last formula becomes 

m 

D=ftr io-~ ~ ~ (F(t)-F(t))d(tt)] 
J=O Lj 

(7 .5i) 
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Here the integration is carried out along all contours L0 , L1 , ... , Lm, 
the sense of desaription of which is such that the region remains on 
the left. 

65. SOLUTION OF SPEGIAL TORSION PROBLEMS 

Below are given several examples of the solution of special torsion 
problems for prismatic bars. 

(a) Prismatic bar of elliptical section. Prandtl 's stress function 
<D (x1 , x2) must be constant on 

Xz the ellipse 

Fig. 32 

2 2 
.2.+~=1 a2 b2 . 

The function <D (x1 , x 2) satis­
fying the boundary condition 
may be represented as 

( 
x2 x2 ) 

<D (Xt, x2) =A a~ + b; , (7 .52) 

where A is an unknown cons­
tant. Moreover, the function 
<D (x1 , x2) must satisfy Poisson's 

equation inside the ellipse; hence, for the determination of the · 
value of A we obtain the relation 

2A ( : 2 + *) = - 2, 

from which we find 

Then 

(7 .53) 

Substituting (7.53) in relations (7.14), the stresses a31 and a 32 are 
obtained as 

2a2J-l't' 
0'31 =- a2+b2 X2, 

2b2J-ll' 
O'aa=a2+b2x1. 

(h) Prismatic bar whose section is an equilateral triangle (Fig. 32). 
The equations of the sides of an equilateral triangle of height h are: 

'I 

Xz = 0, x2 = - V3x1 + h, x 2 = V 3x1 + h. 
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The function <D (x1 , x2) must be constant on these sides. This, as in 
the first problem, suggests that the function should be represented 
in the form: 

<D (x1 , x 2) = Ax2 [(x2 - h) + V3x1] [(x2- h) - V3x1l. 
(7 .54) 

This function is zero on the sides of the triangle. Moreover, the func­
tion <D (x1 , x 2) must satisfy Poisson's equation inside the triang]e. 

6Jz=-Zj.t..-b(t-aj2b) 

Fig. 33 

1 
From this we find that A = 2h. We obtain, finally_, 

<1> (xi! x2) = in x2 [(x2 -h)2- 3x~J. 

From formulas (7 .14) we find 

(c) Circular prismatic bar with a semicircular longitudinal groove 
(Fig. 33). The equation of the contour of the section is 

(x1 - b) 2 + x~ - b1 = 0, x: + x! - a1 = 0. 

The stress function, whieh must be zero on the contour, is sought iR 
the fQrm 

or 
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In addition, the function <D (x17 x2) must satisfy Eq. (7.15) inside 
the above contour. Hence, we find that A = -1/2. Consequently, 

<1> (xl,~x2) = -+ [X~ +x~-a2 -2bxl c~~x~- 1) J. 
According to formulas (7.14), we have 

[ 1 2ba2x1 J 
<Jal=-1-tT -(x~+x~)2 x2, 

a32 =~-tT [ (x1- b)+ x~~x~ ( 1- xl~fx~) J. 
(d) Prismatic bar with a section in the form of a rectangle. In order 

to find the solution of the torsion problem for the indicated bar, we 
determine a harmonic function '\j) (x1 , x2) that assumes the valne 

~ (x~ + x~) on the boundaries xJ. = ±a, x 2 = ±b of the rectangle. 

The unknown function '\j) (x1 , x 2J is represented as the sum of two 
harmonic functions: 

a2 + 21 (x22 - x21) and q (xt. x2), 

i.e.' 

(7 .55) 

The newly introduced harmonic function q (x1 , x2) must satisfy on 
the boundary of the rectangle the conditions 

(7.56) 

The harmonic function q (x1 , x2) is taken in the form of a series 
00 

q (x~o x 2) = ~ CX.n cosh (~nx2) cos (~nxl), (7 .57) 
n=O 

By using (7 .57) in the boundary conditions (7 .56), we obtain 

~n = ( n+f) ~, 
00 

x~- a2 = .2j CX.n cosh (~nb) cos (~nxl)• 
n=o 

From the second relation we find 
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The result is 

'\j)(xt, x2)=a2 +f<x:-x~)-

The components of the stress tensor can now be calculated by for­
mulas (7 .12). 

(e) Prismatic body of circular section with a circular eccentric hole. 
Denote by S the region occupied by any one cross section of the 
body, bounded from the outside by 
a circumference L0 of radius R, and 
from the inside by a circumference L 1 

of radius r; the affix of the centre of 
the latter circumference is designated 
as e (Fig. 34). For the present case the 
boundary conditions (7 .48) become x, 

F(t)+F(t)=tt+Co on L0 , (7.58) 

F(t)+F(t)=tt+C1 on L 1• (7.59) 

Since tt = R 2 on L0 and the constant 
C0 can be chosen equal to -R2, con­

dition (7 .58) is written as 
F (t) + F (t). = 0 on L 0 ; (7.60) 

Fig. 34 

the expression for it on L1 may be written as follows: 

tt = (e + rei6) (e+ re-ie) = er f r e + t_:_e} + e2 + r2; 

hence, we have, on L1 , 

F (t) + F (t) = er e .r e + t r e} + d0 • 

Here d0 ·. e~ + r 2 + C1 • 

The solution of the problem is sought in the form 
00 00 

F (z) = ~ ak (~ r + ~ bk (z r er, 
k=O k=1 

(7.61) 

(7 .62) 

where the first series represents a holomorphic function inside L 0 , 

and the second series represents a holomorphic function outside L1 • 

The coefficients ak and bk are assumed to be real. 
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Substituting the boundary values of the function F (z) in condi­
tions (7 .58) and (7 .59), we obtain 

00 00 

~ ak ( ~ r + ~ bk C~e r + 
k=O k=1 

00 00 

+~ ak(~)"+~ bk(t_:_et=o, 
k=O 1<=1 

(7.63) 

00 

+ ~ bk (t-=-er = er e-;:-e + t~e} +do. (7.64) 
1<=1 

We now transform the second term in condition (7.63) 

; b ( r )k _ ~ ( r }k (~R )k 1 
1<~1 k t=-; - ~1 bk R . T ( 1-+ r 

coo 00 

= ~ bk (; r ( ~ r ~ < -1)"C~k ( + r = 
1<=1 V=O 

00 00 

= ~ bk ( ; r ~ ( -f)V C~k ( ~ r ( ~) k+V, 
1<=1 V=O 

Where C~k = ( -f)V C~+V-1• 
Introducing a new index n = k + v instead of the index v gives 

00 00 00 

~ b"c_:_J~< = ~ b"( ~ r ~ ( -1)n-~<lc~;;]~< ( ~ r-~< ( ~ r. 
k=l 1<=1 n=k 

Here the double summation is carried out over the whole-numbered 
points of the angle ABC (Fig. 35). 

By interchanging the order of summation in the last double sum, 
we find 

00 00 

~ b~< (t r er = ~ Bn ( ~ r' (7.65) 
1<=1 n=1 

where 
n 

Bn= ~ (-1)n-~< (~ r ( ~ r-k~ikbk. (7.66) 
11=1 



65. Solution of Special Torsion Problems 203 

Obviously, 
~ ~ ~ 

~ b~t (/ er = ~ b~t (/e)"=~ Bn ( ~ r. 
k=1 k=1 n=1 

(7 .67) 

Inserting expansion (7.65) in condition (7.63), we obtain a0 = 0 
and an infinite system of linear equations 

an + Bn = 0 (n = 1, 2, ••• ). (7.68) 

To obtain a second infinite system of linear equations, we transform 
the first term in condition (7.64): 
~ ~ 

~ ak ( ~ r = ~ ak c R e + ~ r = 
k=O k=O 

~ k 

= ~ ak ~ c~ ( ~ r ( ~ r-n c r er. 
k=O n=O 

Here the double summation is carried out over the whole-numbered 

K 

A 

11 

Fig. 35 Fig. 36 

points of the angle AOB (Fig. 36). By interchanging the order of 
summation, we have 

~ ~ 

"" (.!_)k _ ~ A (t-e)n LJ ak R - LJ n -r- ' 
k=O n=O 

(7.69) 

where 
~ 

A =(..!....)n~ cn(.!...)k-n n R LJ k R alt. (7 .70) 

Obviously, 
k=O 

~ - 00 

~ ak ( ~ ) A = ~ An { t r e) n • (7. 71) 
k=O n=O 
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Condition (7.64) then becomes 
00 

~ {(An +bn) [ c~er + L~erJ} +2Ao = er e~e + t~e} +do. 
n=l 

Hence, 
00 

A d0 " ( e ) h. d0 o=zor LJ If aR.=z· (7 .72) 
h.= I 

An+bn=eren (n=1, 2, 3, ... ), (7 .73) 

where e1 = 1 and Bn = 0 for n = 2, 3, 4, .... 
On the basis of the theorem of existence and uniqueness of solu­

tion of elasticity problems we may draw a conclusion that the set 
of two infinite systems of linear equations (7.68) and (7.73) has a 
solution, and, moreover, the solution is unique and bounded; its 
approximate solution is the solution of two finite systems, and the 
number of these equations must be fixed according to the parameter 
defining the closeness of the contours of the section to one another and 
the required accuracy of the analysis. After determining the roots of 
Eqs. (7.68) and (7.73), the constant C1 is found from relation (7.72). 

As an illustration of the solution, consider a numerical example. 
We take the first three equations of (7.68) and (7.73): 

r 2 r e 3 r ( e ) 2 b _ e r RZ 
[fat+ lflfa2+ If R a3+ 1-RR ' 

( ; ) 
2 a2 + 3 ( ; r ~ a3 + b2 = 0 ' 

( ; ) 
3 a3 + b3 = 0 . 

From the first three equations of this system we have 

bt = - ~ aft b2 = - ( ~ ) 2 ( a2 - ~ a1 ) , 

b3 = - ( ~ ) 3 { a3- ( ~ ) 2 a1- 2 ~ ( a2- ~ a1) }; 

(7.74) 
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the last three equations of system (7. 7 4) then become 

(..!__.!!:_) at+2..!..~a2 +3..!.. (~) 2 a3 =~..!..Ra R r RR R R RR 1 

~ ( ~ ) 
2 at+ [ ( ~ ) 2 - ( ~ ) 

2
] a2 + 3 ( ~ ) 2 ~ aa = 0, 

- ( ~ ) 
3 

( ~ ) 
2 at + 2 ( ~ ) 3 ~ a2 + [ ( ~ ) 3 

- ( ~ ) 
3 J a a= 0. 

For the relative dimensions r/R = 0.2, e/R = 0.6 the roots are: 
a1 = -0.262167 X 10-1R 2, a2 = -0.157831 X 10-1R2 , 

a 3 = -0.250176 X 10-2R2 , b1 = 0.131084R2 , 

b2 = 0.125 X 10-2R2 , b3 = 0.125 X 10-4R2• 

In the example under consideration, from (7.72) we have 
cl = - o.446929.RS. 

The values of 

L\ = F ~)+F{t) 100% 
tt+Co 

for the points t = R, t = iR, 
t = - R of the circumference L 0 , 

and the values of 

L\ = F (t)+F]t}-(t"t+C1) 100% 
tt+C1 

for the points t = e + r and 
t = e - r of the circumference L 1 

Xz 

are, respectively, 1.490%, 1.012%, Fig. 37 
-0.249%, 0.132%, -6.7%. It 

x, 

appears from these figures that the boundary conditions are ful­
filled with reasonable accuracy; hence, the solution is quite efficient. 

On the basis of formula (7.50) the values of shearing stresses are 
calculated at points of the x1 axis, and the shearing stress diagram is 
constructed (Fig. 37). As seen from the diagram, the disturbance 
introduced by the hole is of a local nature. 

We now determine the rigidity. Taking into account that d (tt) = 

= dR 2 = 0, d (tt) =red c_::_e + t-;e), respectively, on L 0 and L1 , 

from formula (7.51) we obtain 

D = Jl n:• [ 1_ ( ~ ) 4 + 2 ( ~ ) 2 ( ~ ) 2] _ 

- ~ Jl ~ ~ { ak [ ( ~ r- (; tJ + bk [ c_::_e t- ( t~e tJ} X 
L 1 k=1 
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By using formula (7 .69) and Cauchy's theorem, we obtain, finally, 

nR4 [ ( r ) 4 ( e ) 2 ( r ) 2] r e D=!l-2- 1- 7f +2 7f + R +n(A1 -b1) RRR2f.t. 

In the example under consideration D = 1.559f.tR4; hence, 

1:= ~t =0.641 ~~. 

Here Mt is the given twisting moment. 

66. BENDING OF A PRISMATIC BODY FIXED AT ONE END 

Suppose that a prismatic body of length l is fixed at one end and 
carries at the free end a load statically equivalent to a force P per­
pendicular to the axis of the body. Body forces and forces on the late­
ral surface of the body are absent. Let the origin be placed at an arbi­
trary point of any one section, with the ox3 axis directed parallel to 

Fig; 38. 

the axis of the body, and the ox1 axis parallel to the force P (Fig. 38). 
The section is assumed to be simply connected. 

The solution of the problem is given in terms of stresses by Saint 
Venant's semi-inverse method. From physical considerations we as­
sume 

'J11 = 0'22 = 0'12 = 0, 
0'33 = P (ax1 + bx2 + e) (l- x3); 

(7.75) 

(7.76) 

the components 0'31 and 0'32 of the stress tensor are to be determined. 
It will be shown below that the coefficients a, b, e are uniquely de­
termined by t,he shape and dimensions of the cross section of the 
body and by the choice of co-ordinate system. 

The components of the stress tensor 0'33, 0'31 , and 0'32 at any sec­
tion x3 in the present problem must satisfy the equilibr urn condi-
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tions: 

J Ostdw- P = 0, J Os2dw = 0, J (Xt032 - X20at) dw = 0, (7. 77) 
w w ro 

J Oa3dw=0, j U3ax2dw=0, J a33xtdw+P(l-xa)=0. (7.78) 
w w w 

Substituting expression (7. 76) in conditions (7. 78}, we obtain a system 
of three linear equations for the coefficients a, b, and e: 

a8 2 + b81 + ew = 0, 
a/12 + b/11 + e81 = 0, 

a/ 22 + b/12 + e8 2 = -1, 

(7.79) 

where / 11 , I 22, / 12 , 817 and 8 2 are the moments of inertia and the static 
moments of the cross-sectional area of the body with respect to the x1 
and x2 axes, and w is the cross-sectional area. 

The roots of system (7. 79) are 

where 

/11ro-S~ b- 112ro-S1S 2 
a=- B ' - B ' 

/22 lu 82 

B= /12 lu 8t 

82 8t w 

(7.80) 

On the basis of the formulas 81 = wx2r, 8 2 = wx1c the formula for 
the coefficient e is transformed into 

(7.81) 

Here x1c, x2c are the r.o-ordinates of the centroid of the cross-sectional 
area. · 

Substituting (7.75) and (7.76) in the differential equations of equi­
librium, with Fi = 0, we obtain 

c'lasl = 0 · · iJa82 = 0 (7 .82) 
iJx8 ·' iJx3 ' 

:aa., + 00as? -P(a3"1 +bx2 +e)=0. (7.83) 
"' xl x2 

It follows from (7.82) that cr3·1 and cr32 are independent of the x3 co­
ordinate; hence, they are di'stributed in the same manner at all cross 
sections. 
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Equation (7 .83) is given a new representation 

0~1 [Oat- ~ P (ax~ +ext) J + 0~2 [ a32 - ~ P (bx: + ex2) J = 0. (7 .84) 

It follows from this equation that there exists a function X (x 11 x2) 

related to <131 and <132 by the equalities 

P(ox 2 ) Oat =T ox2 +ax1 + exl ' 

P ( iJX b 2 ) Oa2=T - oxt + x2 +ex2 . 
(7.85) 

Indeed, on substituting (7.85) in equality (7.84) the latter is satis­
fied identically. 

We now derive the conditions that must be satisfied by the func­
tion x (x1, x2). For this, let (7.75), (7.76), and (7.85) be subject to 
the Beltrami-Michell relations and the boundary condition on the 
lateral surface of the body. 

Of the six Beltrami-Michell relations four relations are satisfied 
identically, and two relations lead to the equations 

iJ A ) 2v 
ox2 (ux =- 1+v a, 

iJ 2v 
ox1 (Llx) = 1+v b, 

from which 

( 2v ) 2v 
d(Llx)= - i+v a dx2 + i+v bdx1• 

Then 

(7.86) 

Here C is an integration constant to be determined. 
The conditions of zero load on the lateral surface of the body give, 

in the present case, 

<1ai~ + <1a 2n 2 = 0 on L. (7.87) 

Taking into account formulas (7.85), with (6.27), from (7.87) we have 
the boundary condition for the function X (x1, x2) on L 

(7 .88) 

Next, we replace problem (7.86), (7.88) by two problems; for this, 
the function x (x1 , x2) is represented as follows: 

X = 'I' + C<t>, (7.89) 
where 'I' and <1> are some new functions to he determined. 
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Substituting the last relation in (7.86) and (7.88), problem (7.86), 
(7 .88) is broken down into the following two problems: 

~<D= -2, 
(7.90) a a> 

az=O on L, 

2v 
~ \f = 1 + v (bx1- ax2) , 

o'l' (b z ) dxl ( 1 ) dx2 7if = x2 + ex2 dl- ax1 + ex1 dz on L. 
(7.91) 

Consequently, the function <D is Prandtl 's stress function. 
Thus, problem (7.86), (7.88) of the transverse bending of a pris­

matic body is divided into the torsion problem (7.90) and problem 
(7.91) of finding an auxiliary function \f called the flexure function. 

For simply connected cross sections the boundary conditions on L 
reduce to 

<D=O, (7 .92) 
l 

1¥= J [(bx~ +ex2) d;/ -(ax~ +ex1) ~~2 J dl. (7 .93) 
0 

It can easily be verified that on passing once round the contour L 
the value of integral (7.93) is zero. Indeed, by taking integral (7.93) 
round the closed contour of the cross section, and applying the 
Gauss-Ostrogradsky formula to it, with the first equation of system 
(7. 79) taken into account, we obtain 

\f = J {[(bx! +ex2)] dx1 + [-(ax~ +ex1)] dx~} = 

L 

= -2 .\ (ax 1 +bx2 +e)dw= -2(aS2 +bS1 +ew)=0 
(i) 

(7.94) 

In a similar way it can also be verified that on passing once round 
the contour L the value of integral (7.88) is zero. This circumstance 
and equality (7.94) will be used in what follows. 

It is not difficult to check that the values found for the components 
of the stress tensor cr31 and cr32 at the end x3 = l identically satisfy 
the first two conditions of (7.77). Indeed, 

J O'a1dw = J ~ ( :;2 +ax~ + ex1) dw = J { ~ ( :;2 + ax1 + ex1 ) + 
(i} (i) (i) 

14-0884 



210 Ch. VI I. Torsion and Bending of Prismatic Bodies 

or 

J CJ31dffi = ; J { a~1 [ Xt ( aa:: +ax~ +ext} J + 
(i) (i) 

+ a~2 [xt!(- :x~ +bx!+ex2)]}dffi-P(al22 +bl12 +eS2). 

By applying the Gauss-Ostrogradsky formula, and using condition 
(7 .88) and the third equation of (7. 79), we obtain 

J 03tdffi = p. 

Similarly, 
(i) 

The third condition of (7. 77) enables one to determine the constant C 
entering into (7 .89). Substituting in this condition the values of 
0 31 and CJ32 according to (7.85), we obtain 

M3= J (Xt032 -X203t) dffi=; J [- ( X1 :x~ +x2 :x~} + 
(i) (i) 

+ p J "l.,dffi + ~ J (bx2- axt) X1X2dffi 
(i) (i) 

or 

M3=- ~ J [xtdX2-x2dxt)xdl+P J xd(J)+ ~ J (bx2-axt)XtX2d(J). 
L ffi ffi 

We introduce the notation 

then 

l 

ffiz= ~ J (xtdx2 -x2dx1); 
0 

J droz I' p r ) 
M3 = - p X dl dl + p J xd(J) + 2 J (bx2- axi XtX2d(J). 

L ffi ffi 

On performing the integration by parts, we find 

M3=P J (J)l ~ dl+P J xd(J)+ ~ J (bx2-axt)XtX2d(J). 
L ffi ffi 

(7 .95) 
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By using formulas (7.88) and (7.89) in (7.95), we have 

M 3 = P { C J <Ddro + J 'l'dro + ~ J (bx2-axt) x1x2dro + 
ro ro ro 

+ J [ (bx~ +ex2). a;,1 - (ax:+ ex1} dd~~ J ro1dl}. 
L 

It follows from the condition M 3 = 0 that 

i 'l'dc.o+ i (bx2 -ax1) x1x2dc.o+ S QdZ 
C--ro ro L 

- ~~~ ' 
ro 

where 
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(7 .96) 

(7.97) 

(7.98) 

If the co-ordinate axes are taken to be the principal centroidal axes, 
then S1 = S 2 = / 12 = 0. Consequently, from formulas (7.80) we 
obtain a= -1//22 , b = e = 0. In this case the above formulas are 
appreciably simplifie<L 

67. THE CENTRE OF FLEXURE 

By the formulas of Hooke's law (4.50}, the components of the 
strain tensor corresponding to the components of the stress tensor 
(7.75}, (7.76}, and (7.85) are 

Ct2=0, 

(7 .99) 

On the basis of formulas (3.27) the angle of rotation of an element 
of the body about the ox3 axis is 

(1)3 = .!_ ( au? - au, ) 
2 axl ax2 • 

From this formula and formulas (3.26) we find 
ac.os _ ae1? iie11 iic.o8 = ae?2 _ iieu aro8 ae23 ae81 
iixl - axl - iix2 ' iix2 iixLj iix2 ' ~ OXa = iixl . - ax2 • • 

In the same way we can derive similar formulas for partial deriva­
tives of the other angles of rotation, ro1 and ro2 , with respect to 
14* 
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the co-ordinates xk. The quantity 8
8roa represents the twist of fibres 

xa 
of a prismatic body parallel to the ox3 axis. 

The mean value of the twist for the whole cross section, denoted 
by 1:, is determined by the formula 

(7 .100) 

Thus, it appears that under the action of a transverse force applied 
to a free end of a prismatic body the bending is accompanied by twist­
ing. As seen from formula (7.100), for the prismatic body to undergo 
only bending, without any twisting, under the action of the indicated 
force, the constant C must be determined by the formula 

v 
C= i+v (bXtc-aX2c)· (7.101) 

Substituting (7.101) in formula (7.96), the twisting moment M 3 

is found to be 

M 3 = p { 1 ~ v (bXtc- ax2c) r <l>dw + r qr dw + 
(J) (J) 

+ { r (bx2- axt) X1X2dW + J Qdl}. (7 .102) 
ro L 

In order to avoid twisting during the bending of the body, it is 
necessary, in addition to the force P acting at the point o of the 
cross section, to apply to this section the twisting moment M3 

calculated by formula (7.102). By adding the force P and the twist­
ing moment M3 , we obtain a force P equal to tbe given force, directed 
parallel to it, and located at a distance x~, which is determined by 
the formula 

X~ = - ~ 3 = i ~ v ( - b.r:lc + ax2c) J <l>dw - r lf dw-
(J) (J) 

- { J (bx2 - ax1) x 1x2dw- J Q dl. (7.103) 
ro L 

Suppose, now, that the transverse force P applied at the origin is 
directed along the ox2 axis. Reasoning in the same manner, we 
obtain a force P equal to the given force, directed parallel to it, 
and located at a distance x~, which is determined by the formula 

x1 = - 1 ~ v ( a,..xzc- b*Xtc) J <Ddw + J 'Y ,..dw + 
(J) (J) 

+ ~ r (b,..x2- a,..xt) XtXzdW + J Q dl, (7.104) 
ro L 
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where 

Q = [ (b.xi + e*x2) d~1 - (a.x: + e.x1) d~2 J Wz. 

In formula (7.104) the function "If* satisfies the equation 
2v 

f.. 1f * = 1 + v (b.xt- a.xz) 

and the boundary condition 
l 

w.= J [<b.x: +e.xz) d:zl -(a.x: +e.xi) a:z2 J dl. 
0 

In these formulas 

b = S~-ro/22 
* B 
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(7.105) 

(7.106) 

(7 .107) 

The point of intersection of the straight lines x1 = x~, x 2 = x~ is 
called the centre of flexure. 

Any transverse force applied to the section at the free end and 
passing through the centre of flexure produces bending without caus­
ing twisting. In order to determine the location of the centre of 
flexure, it is not at all necessary to solve the problem of bending 
of a prismatic body, it is sufficient to solve the torsion problem. 
Following V. V. N ovozhilov, let us show that the expressions enter­
ing into (7 .104) and (7 .103) can be calculated with the aid of the 
function <D (x1 , x2). To prove this, we apply the well-known Green 
formula for the functions <D and 1¥; the contour of integration is 
taken to be the contour of the cross section of the body: 

j. (<Dfl1f- 1f MD) dw = J ( <D ~: - 1f ~~ ) dl. (7 .108) 
w L 

By using the first equations of (7 .90) and (7 .91), with condition 
(7.92), instead of (7.108) we have 

i~v J (bx1- ax2) <Ddw+ 2 J "IJFdw =- J 1f ~~ dl. (7 .109) 
w w L 

On the basis of relations (7.13) and (7.10) we have 
i.l<p i.l<D i.l<p i.l$ 
Dxl = x2 + i.lx2 • i.lx2 = - Xt- i.lxl • (7 .110) 

Taking into account formulas (6.27), we find 
i.l<D = i.l<D n i.l<D n =- i.l<p -2 droz 
On OX1 i + OX2 z ol dl • (7.111) 
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Substituting (7.111) in the right-hand side of (7.109), and integrat­
ing by parts, with the use of the second relation of (7.91), we obtain 

r 'I'~ dl = - r 'I' ( il<p + 2 droz ) dl = J an J az dl 
L L 

= J (cp+2w1) 8
8'; dl=I+2 J Qdl, 

L L 
where 

I= J {[(bx: + ex2) cp] dx1 + [-(ax: + ex1) cp] dx2}.! 
L 

On the basis of the Gauss-Ostrogradsky formula we have 

I= - J { 0~1 [(ax~+ ex1) cp] + 8: 2 [bx: + ex2) cp)} dw 
(J) 

or 

I= -2 J (ax1 +bx2 +e) cpdw-
ro 

(7 .112) 

- J [(ax~ + ex1) ::1 + (bx: + ex2) :~ J dw. 
(J) 

Substituting the values of !<p and !<p from (7.110) in this for-
ux1 ux2 

mula, we obtain 

I= -2 J (ax1 +bx2 +e) cpdw+ J (bx2 -ax1)x1x2dw+ 
(J) (J) 

+ r {a ((bx~+ex2) <I>] - a [(axf+exl) <I> I } dw. 
J axl ax2 
(J) 

On integtating the third term by parts, and remembering that <D = 0 
on the contour L, we see that it vanishes. Consequently, 

I = -2 J (ax1 + bx2 +e) cp dw + J (bx2 - ax1 ) x1x2 dw. (7.113) 
(J) (J) 

Inserting (7.112) and (7.113) in (7.109), and then substituting the 
result in (7.103), we finally obtain a formula for the coordinate of 
the centre of flexure: 

x~ = - J (ax1 + bx2 +e) cpdw + 1 ~v J (b (Xt- Xtc)-
(J) (J) 

-a (x2- Xzc)l <I>dw. (7 .114) 
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In a similar way, from (7.104) we obtain a formula for the other co-
ordinate of the centre of flexure · 

x~ = ) (a.x1 + b*x2 + e*) <p dw-
(I) 

- 1 ~v) [b*(x1-X1c)-a*(x2-X2c)l <I>dw. (7.115) 
(I) 

As seen, the formulas for the determination of the centre of flexure 
of a prismatic body with a simply connected section involve the 
functions <p and <l> related only to the solution of the torsion problem. 
It should be noted that if either of the functions <p, <I> is known, the 
other is determined by quadrature from (7.110). 

In the work* of the author and Bubuteishvili formulas have been 
derived for the determination of the co-ordinates of the centre of 
flexure (x~, xg) in the case of a multiply connected region: 

X~=-) (a*x1+b*x2+e*)ImF(z)dw- v~i {J [b*(x1-x1c)-
ro 0 

n 

- [b* (x~c -Xic) -a* (x~c -X2c)] Cowo + ~ [b* (xtc -Xic)-
1<==1 

-a* (x~c- X2c)] C,.w,.}, 
X~= J (ax1+bx2+e)ImF(z)dw+ v~i {) [b(xi-Xic)-

ro ro 

n 

-a (xge -X2c)l Cowo + ~ [b (xtc -Xic) -a (x~c -X2c)] c,.wh.}. 
1<=1 

where F (z) is the complex torsion: function; x~c• x~c are the co-ordi­
nates of the centroid of the area enclosed by the contour Lk; x1c, x 2c 
are the co-ordinates of the centroid of the cross-sectional area; 
wh. is the area enclosed by the contour Lh.; Ch. are some constants 
introduced in (7.20). The constants (a, b, e), (a., b*, e*) are deter­
mined, respectively, by formulas (7.80) and (7.107). 

* Yu. A. Amenzade, 0. L. Bubuteishvili, The Centre of Flexure of a Canti­
lever with a Multiply Connected Cross Section, Doklady Akad Nauk Azerb. SSR, 
29 (10), 3-6 (1973) (in Russian). · 
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Consider the problem of determining the centre of flexure when 
the section of a cantilever represents a region bounded externally 
by a circumference L 0 of radius R, and internally by a circumference 
L1 of radius r (Fig. 34). The approximate expression for the complex 
torsion function F (z) in this problem is determined by formula (7 .62). 

For the adopted co-ordinate system, e = a = 0, b = 1.288 R-4• 

For the relative dimensions indicated in the problem (e), x~ = 
= -0.34789 R, X~= 0. 

68. BENDING OF A PRISMATIC BODY OF ELLIPTICAL 
CROSS SECTION 

Let the planes x1ox3 and X 2@x3 be planes of symmetry of a prismatic 
body, and let the load acting on its end be statically equivalent to 
a force P, which is directed along the x1 axis and applied at the 
centre of the end. In these conditions the body will obviously act 
in bending, without any twisting. 

On the basis of formulas (7.80) we have 

1 
a--- b=e=O. - I22 • 

Inserting these relations in (7.91), we have 

A 2v 
u'l'= (1+v)J22 x2, 

a'l' _ 1 2 ax2 L 
Tz- I22 xi Tl on . 

(7 .116) 

(7 .117) 

Following the procedure of Timoshenko, we introduce, instead of 
the flexure function 'I', a new function: 

(7.118) 

where I (x2 ) is an arbitrary function of x2 only. 
Substituting (7.118) in (7.117), we obtain the boundary conditions 

on L 
8Q = (-1-x2+f') dx2 (7.119) 
iJl I 22 1 dl • 

In a particular case the function I (x2) may be chosen so as to make 
the bracketed expression zero; the boundary condition on L then 
simplifies to 

8Q m=o. (7 .120) 

Since the cross section is simply connected, (7.120) on L may be 
written as 

(7.121) 
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For example, in the case when the cross section is an ellipse equali­
ty (7.120) can be satisfied by setting 

a2 1 x2 
f(x2)=-1 x2 (--2 -1). I 22 3 bf (7.122} 

Here a1 and b1 are the semiaxes of the ellipse. 
Consider the problem of the bending of an elliptical cylinder. For 

the given problem, with (7.122}, the function Q becomes 

(7 .123). 

Inserting (7.123) in (7.116}, we obtain an equation of the form 

!1Q = nx2 , (7.124) 
where 

2 ( v af ) 
n= 122 1+v +bf . (7 .125) 

The solution of Eq. (7.124) is sought in the form 

x 2 x? 
Q=K ( -f +-f-1) x2 • 

~~ b1 
(7 .126) 

This solution satisfies the boundary condition (7 .121). 
Substituting (7.126) in Eq. (7.124), we have 

2K (~+~) =n, 
ai bi 

from which 
2b2 2 

K =-1- a1 1 (-"- ~) 
l22 b2 +3a2 1+v + b2 • 1 1 1 

(7 .127) 

Knowing the function Q, we can determine the function "'I',from (7.123): 
2 2 2 2 

( xi x2 ) al ( 1 x2 ) "'I'=K 2+--1 x2--x2 ---1 . 
a 1 bT I 22 3 bf (7 .128) 

By using formulas (7.85), and noting that 'X. ="'¥for the given prob­
lem, we have 

(7 .129) 
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from formula (7.76}, 
p 

O'aa = --1 - Xt (l-x3). 
n 

(7.130) 

The last formula for the normal stress is completely coincident 
with the formula of the elementary theory of bending, but this can­
not be said about the formulas for the tangential stresses a13 and 
0'28 • According to the elementary theory of bending, in the problem 
considered 0'28 = 0 and 0'13 depends only on x1 • 

On the axis x1 = 0 we have 

Par 2 2 2 
0 ts = 2122 (1+v) (br+3ar> {bt +2 (1 +v) a1-x2 (1-2v)}, (7.131) 

0'23 = 0, 

whereas, by Zhuravskii 's formula, on this axis 

Par 
O'ta =~31 . 

2Z 

If the material is incompressible, i.e., 
and (7 .132) are identical. 

(7.132) 

v = 0.5, formulas (7 .131) 

In the present chapter we have considered the theory of torsion 
and bending of prismatic bodies, which is of great importance in 
engineering. Here we leave detailed discussion of a large number 
of special problems examined by many authors. 



CHAPTER VIII 

General theorems 
of the theory of elasticity. 

Variational methods 

In the present chapter we shall consider some well-known princip­
les of the theory of elasticity, which are of great importance in the 
development of a variety of very effective methods for the numerical 
solution of boundary value problems in elasticity. In Chap. IV we 
have become acquainted with one of the general theorems of the 
theory of elasticity, namely Clapeyron's theorem. 

69. BETTI'S RECIPROCAL THEOREM 

Let O'~r. uit, eitr and O'kr• u;, e;r denote, respectively, the compo­
nents of the stress tensor, the displacement vector, and the strain 
tensor, which are produced in an elastic body by external forces 
pF', T~ and pF", T~. 

The work done by the forces pF', P~, including the inertia 
asu• 

forces -p atsk , during the displacements uk is 

A1s = J [ ( FitJ- a;t:k ) ui J p d-e+ J (T~ui)"dro. 
~ w 

Inserting T~,. = O'~r nr in the last expression, and remembering 
that the stress tensor is symmetrical, after transforming the surface 
integral into a volume one, we have 

ocr' asu• J 
A12 = J [ lJx~ + p (Fit- lJtZk) J ui d-e+ aitrekr d-e. 

By'(2.24), 
~ ~ 

A1z = J aitrekr d-e. 
~ 

(8.1) 

o2u" The work done by the forces pF", T~, - p {jt2 during the 
displacements uit is 

Au= J [ ( Fk- ~t~'k ) uic J p d-e+ J (rn~tuit) dro. 
~ w 



220 Ch. VIII. General Theorems 

On carrying out transformations for A 21 similar to those for A12, 

we obtain 

A21 = J oitrekr d't. 
't 

By Betti's identity (4.61), from (8.1) and (8.2) we obtain 

A 21 = A 12 • (8.3) 

This is Betti's reciprocal theorem. It states that the work done by 
the first system of external forces during the displacements of an 
elastic body produced by the second system of external forces is 
equal to the work done by the second system of external forces during 
the displacements of the same body produced by the first force system. 

70. PRINCIPLE OF MINIMUM POTENTIAL ENERGY 

Let the actual displacement vector be denoted by u, and the 
corresponding stress tensor by a mk. This stress tensor satisfies the 
differential equations of equilibrium 

(8.4) 

and the surface conditions 

T nm = 0 mknk. (8.5) 

If the displacement vector is given a variation flu, then from the 
equality u* = u + flu and formulas (3.26) we have 

e + fle = ..!._ ( aum + auk ) + ..!._ ( fl aum + fl auk ) (8.6) 
mk mk 2 axk axm 2 axk axm · 

From this we find the change in the strain tensor 

fle = ..!._ ( fl aum + fl auk ) 
mk 2 axk axm · (8.7) 

Denoting the deformation work per unit volume for the varied state 
of equilibrium by A (emk + flemk), and expanding its expression in 
a Taylor series, we obtain 

A (emk + flemk) =A (emk) + ( :A fleu + ... + :A fle31) + 
ueu ueal 

1 ( a2A 2 a2A a2A 2 ) +2 - 2- fle11 + ... + 2 a a fleufle22 + ... +-2- fle 3 1 • (8.8) 
ae 11 en en ae 31 

Here A (emk) is the value of the deformation work per unit volume 
in the actual state of equilibrium. Taking into account that 

a2 A , aarr a2A a (2akr) (k =/= r), 
oekk aerr = aekk ' ae2 = aekr kr 



70. Principle of Minimum Potential Energy 221 

and using Hooke's law, the last term in (8.8) may be put into the 
form 

(8.9) 

Expression (8.9), as is known from (4.36), represents the deformation 
work per unit volume corresponding to the variation of the displa­
cement vector 6u, and is always positive definite. 

By using (4.20) and (8.7), the second term in (8.8) is transformed 
into 

il iJu1 il ( iJu1 iJua ) iJllum 
O'uu -0 - + · · · + 0'31u -0 - + -0 - = O'mk - 0--. x1 x3 x1 Xk 

(8.10) 

Let the stress vectors on· the co-ordinate planes be denoted by T mi 
instead of (8.10) we then have 

iJllum T il 
O'mk - 0 - = m • Vuum, 

Xk 

where Vis the Hamiltonian operator, V = ik -0° . XJt 

From (8.8), with (8.9) and (8.11), we find 

6R = J T m • Vl'5um d-r: + J ~ (M82 + 2f.tl'5emk6ekm) d-r:; 

" " 

(8.11) 

(8.12) 

this represents the increment of the work of deformation. It can 
easily be found by direct checking that 

div 6umT m = 6um div T m +Tm ·VI'5um (8.13) 

(here the index m is not summed), from which 

J Tm·VI'5umd1:= J divl'5umPmd1:- J 1'5umdivTmd1:. (8.14) 

" " " 
With the use of the Gauss-Ostrogradsky formula we obtain 

J di V 1'5umT m d-r: = .\ 1'5umamknk dro. 

" 00 

(8.15) 

The integrand on the right-hand side of the last equality is summed 
with respect to the index k; nk are the cosines of the angles between 
the normal n and the co-ordinate axes xk. 

From (8.5) and (8.15) we find 

J div 6umT m d-r: = J T nmi'5Um dro. 

" 00 

Also, by the equilibrium equation (2.27), 

J 1'5umdivTmd1:= J -pFm6Umdt:. 

" ~ 
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Consequently, from (8.12), with (8.14), we have 

fJR = ) pF m6Um dr: + ) T nm6Um dro + ) ~ (M82 + 2f.t6emk6ekm) d-r:. 
'f (I) 'f 

(8.16) 

Let rou be the sum of parts of the surface over which the displace­
ment vector assumes given values, and let roT be the remaining part 
of the surface over which the forces Tnm are given. Taking into ac­
count that 6um = 0 over ffiu, where the surface forces are not known, 
and that the surface forces T nk over roT, as well as the body forces, 
are not subject to the variation, from (8.16) we find 

6 ( R- J pF mum'd-r:- J T nmUm dro) = ~ ) [M82 + 2f.t6emk6ekm] d't 
'f ~ 'f 

(8.17) 

or 
6Il=e, 

where 

n = R- J pF mUm d-r:- J T nmUm dro, 
'f roT 

1 
B = 2 [M82 + 2f.t6emk6ekm1 d,;. 

Here R is the work of deformation corresponding to the actual 

displacements; ) pF mUmd-r: is the work done by the volume forces 
'f 

during the actual displacements; J TnmUmdro is the work done by 
roT 

the given surface forces over roT during the displacements um; II is the 
potential energy of the body; B is a positive definite quantity. 

Equality (8.17) enables one to formulate the following theorem: 
the potential energy of an elastic body, considered as a functional 
of an arbitrary system of displacements satisfying the kinematic 
boundary conditions, takes a minimum value for the system of 
displacements actually realized in the elastic body. 

71 PRINCIPLE OF MINIMUM COMPLEMENTARY 
WORK-CASTIGLIANO'S PRINCIPLE 

Consider, now, equilibrium in which the displacements u 11 and 
the corresponding stress tensor a mk are given. In passing from the 
actual state of stress O'mk to a .neighbouring state of stress O'mk + 
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+ l3<1mk• the change in the deformation work per unit volume is 

l3A =A (amk + l3amk) -A (amk)· 

223 

The varied stress tensor <1mk + l3a mk• just as the actual stress ten­
sor a mk• must satisfy the differential equations of equilibrium, i.e .• 

aamk + F = 0 a (amk +llamk) + F = 0 axm p k ' axm p k ' 

from which it follows that 

(8.18) 

By expanding the expression for the deformation work per unit. 
volume A (amk + l3amk) in a Taylor series, we obtain 

BA =A (amk + l3amk)- A (amk) = ( aaA l3a11 + ... + aaA l3a81 ) + 
IJu IJs1 

1 ( a2 A a2 A a2 A ) +z- - 2-l3ai1+ ... +2 a a l3aul3a22 +···+-2-l3ai1 . aa11 au 1J22 acr31 
(8.19) 

The second term on the right-hand side of the second equality of 
(8.19), as in the case of (8.9), represents the deformation work per 
unit volume corresponding to the variation of the stress tensor 
l3amk• and is always positive definite. 

By using formulas (4.27), we transform the fi.rst term on the right­
hand side of the second equality of (8.19) into 

aum ~ 
-a-uamk 

Xk 

OJ' 

l)Tm·'VUm· 

Also, similarly to (8.13), we have 

l3 T m ·VUm = div (um/3 T m) - Um div l3 T m· 

With (8.18) ta·ken into account in (8.20), we obtain 

l3 T m ·Vum = div (um/3 T m)· 

Consequently, from (8.19) we have 

6R = ) div (uml)T m) d,; + 
,; 

(8.20) 

r 1 ( a2A ~ 2 2 a2A ~ ~ a2A 2 ) 
+ l 2 -2- ua11 + ... + a a uauua22+ ... +-2-l3o31 d't. 

~ aa11 au cr22 acr31 
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If (4.27) and the fol'mulas of Hooke's law (4.50) are taken into ac­
count in the integrand of the second integral, we obtain the work 
.of deformation expressed in terms of the variations of the stress 
tensor flGn.r· 

By applying the Gauss-Ostrogradsky formula to the first term, 
and denoting the second integral by e, we have 

flR = ) Umflamn.nn. dw + e = J Umt!T nm dw + e (8.21) 
00 w 

We impose on the varied stress tensor a mh. + flcr mR. the condition 
that it should be balanced by the given surface forces. Then fJ Tn = 0 
on parts of the surface where the forces are prescribed. Hence, (8.21) 
becomes 

flR = ) UmflT nm dw + 8. 

wu 

Here Wu is the sum of parts of the surface over which the displacements 
.are prescribed. Noting that the displacements Um on Wu are not 
subject to the variation, the last formula is rearranged in the form 

·where 

fJR*= e, 

R*=R- J UmTnmdw. 
wu 

(8.22) 

Here J umTnm dw is the work done by the surface forces during 
wu 

the given displacements on wu; R* is called the complementary work. 
Remembering that e is always a positive definite quantity, we 

·come to the conclusion that R* assumes a minimum value. 
Equality (8.22) enables one to formulate the following theorem: 

the complementary work of an elastic body, considered as a func­
tional of an arbitrary stress system satisfying the equilibrium equa­
tions within the body and on its surface, takes a minimum value for 
the stress system actually realized in the elastic body. 

12. RA YLEIGH·RITZ METHOD 

The solution of an elasticity-problem often involves great mathe­
matical difficulties. In these cases recourse is made to the principles 
-of minimum potential or complementary energy. The application 
-of these principles consists in finding functions satisfying the boun-
-dary conditions of the problem and in minimizing the potential 
.energy II or the complementary energy R*. 
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One of the most efficient variational methods is the Rayleigh­
Ritz method. In this method the solution is represented in the form 
of an expression satisfying the boundary conditions and containing 
unknown coefficients ck, where k = 1, 2, 3, 4, .... Next, the 
value of the potential or complementary energy is calculated. The 
expressions thus obtained are functions of the coefficients ck. These 
coefficients for the actual equilibrium state can be determined from 
the conditions for minimizing the potential or complementary ener­
gy, i.e., 

arr = 0 or 
ack 

(k= 1, 2, 3, 4 ... oo). 

arr aR* 
If k = 1, 2, 3, ... , n, then -a- or -a = 0 lead to a system 

Ck Ck 
of n linear equations in the coefficients ck. Substituting the values 
of these coefficients in the above expression, we obtain an approxi­
mate solution of the problem. It should be noted that the solution of 
the problem obtained in this way is exact if the assumed expression 
includes a complete sequence of functions, i.e., a sequence of measu­
rable functions of class C, where an arbitrary function from this 
class can be approximated with the required accuracy by means 
of a linear combination of a finite number of these functions. In most 
cases, however, it is possible to take into account only a finite num­
ber of coefficients ck. 

As an example let us consider the unconstrained torsion of pris­
matic bars. Noting that in torsion e11 = e22 = e33 = a = e12 = 0, 
e31 = 0"3112!-L, and e32 = <T3212,_.., from formula (4.36) we obtain the 
amount of strain energy stored in a bar of length a: 

R = 2: ) (cr~ 1 +a~) dx1 dx2 , 

(J) 

where ro is the cross-sectional area of the bar. 
By (7.14}, the last formula becomes 

R= fl~2a ) [ ( ;~ ) 2 + ( ;~ )2 ] dx1dx2• 
(J) 

The given surface forces on the lateral surface of the bar are zero; 
hence, the work on this surface vanishes, and at both ends the work is 

I [utT ni + u2T n2l dx1 dx2lx,=O +) [utT ni + u2T d dx1 dx2lx.=a• (8.23) 
m ro 

Here, by formulas (7.1), we have u1 = u 2 = 0 when x3 = 0; when 
Xa = a, we have u1 = -1:x2a, u 2 = 1:x1a, and by formulas (2.22), 
with <Tu = 0"22 = O"aa = O"t2=0, we have Tnl = <Tal• Tn2 = 0"32 

15-088~ 
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when x3 =a. Instead of (8.23) we then have 

r ( BID BID ) J.l:t2a J -Xs OXg -Xi axl d:xt dx,. 
(I) 

The last expression is rearranged in the form 

2J.t't'2a r <I> d:Xt dxs- J.l.'t'2a r ( a (xliD) + a (xgiD) ) d~, J J Bx1 ox2 
(I) (I) 

from which, with the aid of the Gauss-Ostrogradsky formula, we 
obtain 

2J.t't'2a J <I>dxtdx2 -J.L't'2a J <I>(xtdxs+xsdxt), 
(I) l 

where l is the contour of the region occupied by the cross section 
of the bar. 

Thus, the complementary energy is, by definition, 

f.L'tza r [ ( BID ) 2 ( BID ) 2 4 J R* = -2- J axl + Bxs - <I> dxt dxs + 
(I) 

+ J.t't'2a J <I> (xt dxs + x2 dxt), 
l 

By (7.16), <I> = constant on the contour l; on the other hand, this 
constant may be taken equal to zero; we then have, finally, 

f.L'tza J [ ( O<D ) 2 ( olD ) 2 J R* = -2- axl + axz - 411> d:xt dxz. (8.24) 

Take a bar of rectangular section of sides 2b and 2c. Noting that 
Prandtl's stress function <I> on the sides x1 = ±b and x2 = ±c 
must be zero and symmetrical in x1 and x2 , we include in its expres­
sion only terms with even powers of x1 and x2, i.e., 

<I> = (x: - b2) (x~ - c2) (c1 + c2x~ + c3x: + c~r,x:x: + ••• ). 
As a first approximation we take the expression 

<I> = c1 (x~ - b2) (x~ - c2). 

Substituting (8.25) in formula (8.24), we find 
b c 

R*= ll~~a J J {4ci[xr(x~-c2)2 +(xr-b2)2 x~]-
-b -c 

from which 

(8.25) 
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Since the complementary energy for the actual equilibrium state 
must assume a minimum value, it follows that 

oR* --=0, 
{)cl 

from which 
5 (8.26) 

By means of formula (7.19) we determine the twisting moment 
b c 

Mt=2J.L"f I <l>dx1 dx8 - 2c1J.ff J J (xi-:-b2)(x~-c2)dxtdx2 = 
ro -b -c 

32 
= 9 b3c3c1J.L't. (8.27) 

The maximum shearing stress T max occurring at the middle of the 
longer side (b > c) is 

(8.28) 

Substituting the value of c1 from (8.27) in formula (8.28), we find 

9 c Mt 
T max =w "bcs. 

By formulas (8.26) and (8.27), the torsional rigidity of the bar is 

(~r 
( c}2lf. 

1+ b 

In the case of a bar of square section the approximate solution gives 
the value of the rigidity D = 2.222J.Lb4 and T max = 0.563Mtlb3• 

whereas the exact values are D = 2.250J.Lb4 and T max = 0.600Mtfb3; 
the errors are -1.2 and -6.2 per cent, respectively. 

We now take the stress function <D in the form 

<D = (x: - b2) (x~ - c2) (c1 + c2X: + c3x~). 
!flien 

R* = fJ:t•a ~ b3c3 [ 210 (b2 + c2) c2 + b"' (66c2 + 1 Ob2) c2 + 
2 4725 1 . 2 

+c"' (66b2+ 10c2) c~ +b2 (84c2+ 60b2) c1c2 +c2 (84b2 +60c2) c1c3 + 

+ 12b2c2 (b2 +c2) c2c3 -525c1 -105b2c~, -105e2c3] 

15* 
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From the condition for minimizing the complementary energy 

8R* =O 8R* =O ~=O 
acl ' ac2 ' 8ca 

we arrive at a linear system of three equations: 

140 (b 2 + c2) c1 + b2 (28c2 + 20b2) c2 + c2 (28b2 + 20c2) c3 - 175, 

(84c2 + 60b2) c1 + b2 (132c2 + 20b2) c2 + 12c2 (b 2 + c2) c3 105, 

(84b2 + 60c2) c1 + 12b2 (b 2 + c2) c2 + c2 (132b2 + 20c2) c3 105· 

For the case clb = 1 we find 

Then 

1295 525 
Ct = 22f6ij2' c2 = ca = 4432b2 • 

Mt = 2f-t't f <D dx1 dx2 = 2.246b~f-t't, 
82 

T max= f-t't aa<D I = 0.626 Mb3t • 
x 1 x1=b 

x.=o 
The errors are now -0.18 and +4.3 per cent, respectively. 

It appears from the foregoing numerical examples that as the 
number of unknown coefficients is increased, the accuracy of the 
·solution is improved. If the exact solution of the problem is not 
.known, the only way of getting an approximate idea of the ac­
.curacy of the solution is to increase successively the number of 
unknown coefficients and compare the final results. If the results 
.converge rapidly, the approximation may be regarded as good. 

73. REISSNER'S VARIATIONAL PRINCIPLE 

In Sees. 71 and 72 we have presented two well-known variational 
principles in elasticity: the principle of minimum potential energy, 
also called the principle of virtual displacements, and the principle 
of minimum complementary work referred to as Castigliano's prin­
ciple. 

E. Reissner proposed a variational principle that also furnishes 
the means of finding approximate solutions of elasticity problems. 
In this principle both the stress tensor and the displacements are 
varied independently of each other. 

Reissner's variational principle is that the variational equation 
M = 0, (8.29) 

where I is Reissner's functional, 

I= i r _!_ ( auk + aaur ) akr -A 1 d't- i, Tnkuk dro, J l 2 8Xr Xk _l , 
(8.30) 

~ ffi 
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is equivalent to a system of six relations-,between the components 
of the stress tensor and the strain tensor 

_!_ ( auk + aur } _ ~ (8.31) 
2 ilxr axk - acr:r 

(O':r = O'kr when k = r, O':r :;= 20'kr when k =I= r), 

to three equilibrium equations (for simplicity, body forces are dis­
regarded) 

and the boundary conditions 

T nk= T nk on roT, 

(8.32) 

(8.33) 

(8.34) 

Here roT is the sum of parts of the surface over which the forces Tn,. 
are given, and rou is the remaining part of the surface over which 
the displacements ii11. are given.· 

To prove this principle, we use the well-known relations 

From (8.29) and (8.30) we then obtain 

r [.!. ( al)uk + a6ur ) (}' + J 2 axr axk kr 
T 

+ 21 ( aau" + aaur ) oo11r- a~ oo~~.r] d-r:- I T nk6u11 dro = 0. 
Xr XJt acr11r J 

roT 

By using the Gauss-Ostrogradsky formula, we have 

\ 
acrllr .c: d ... 

- --UUJt •• 
• ax7 
T 

Here the index k is summed in the first and second integrands, and 
the indices k and rare summed in the third integrand. 
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By virtue of the last relation we have 

r {I..!. ( auk + !.:::..r._) - a~ J 6akr- aakr {)uk} d't + J 2 OXr axk OCJkr OXr 

"' 
+ J (T nk-T nk) 6uk dw + J T nk{)uk dw = U. 

WT Wu 

The last integral is zero because, by condition, 6uk = 0 on Wu· 
Since the variations of displacements and stresses are arbitrary 

and independent, on the basis of the fundamental lemma of the 
calculus of variations we infer from the foregoing condition that 
the factors of the corresponding variations are zero both in the vol-
1,1me and surface integrals, giving Eqs. (8.31), (8.32) and the boundary 
conditions (8.33), (8.34). 

74. EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS 
FOR A GEOMETRICALLY NON-LINEAR BODY 

In solving some problems of the theory of elasticity, such as sta­
bility problems, it is necessary to take into account the components 
of the finite strain tensor defined by formulas (3 .17). Here we shall 
restrict ourselves to the derivation of the equilibrium equations 
and boundary conditions for this case. 

From the variational equation of equilibrium we derive the equilib­
rium equations and boundary conditions for the case when the 
components of the strain tensor are given in the Cartesian co-ordinate 
system (3.24): 

(8.35) 

Suppose that a body is in equilibrium under the action of a surface 
force Tv and a volume force pF. The variational equation is then 
of the form 

J ank{)enk d't- J pF k{)uk- J T nk{)uk dw = O. (8.36) 

"' "' w 

By varying expression (8.35), we obtain 

6e = ..!_ ( {) Bun + {) auk + OUa {) Bua + aua {) au a ) • 
kn 2 axk OXn axk OXn OXn axk 

By direct calculation it is easily found that this expression may 
be put into the form: 

{) _..!_ [(6 +~) {) ~+ (6 +~) {) ~] Bkn- 2 ak axk OXn an OXn axk • (8.37) 

Here 6ak are the Kronecker symbols. 
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By (8.37), the variational equation becomes 

1 r ( ~ au a ) ~ aua d 1 r ( ~ aua ) ~ aua d 
2JO'nk Uak+,axk Uaxn 't+2JO'nk Uan+OXn Uaxk 't-

~ ~ 

- j pF kl)uk- j T vklluk dro = 0. (8.38) 
~ w 

We introduce a non-symmetrical tensor of the form 

San= O'nk (flak+ ~~~ ) . (8.39) 

Taking this into account, the variational equation of equilibrium 
is transformed into 

~ ~ Sanfl ~~: d't + ~ J Sakfl :~: d't- J pFkfluk- J Tvkfluk dro = 0. 
~ ~ ~ w 

The last equality is represented as 

~ ) a:n (sanflua) d-r- ~ J a;:: flua d-r + ~ J a!k (sakflua) d't-
~ ~ ~ 

- ~ J ~:: flu a d-r- j pF kfluk d-r- J T vkfluk dro = 0. 
~ ~ (I) 

By applying the Gauss-Ostrogradsky formula, we find 

j (san Vn- Tva) flu a dro- J ( a;:: + pF") flua d't = 0. 
(l) ~ 

On the basis of the fundamental lemma of the calculus of variations 
we have 

asan + F =0 T 0 axn P a , SanVn- va = • 

With (8.39), we obtain the equilibrium equations 

a:n [ 0nk (flak+ :~: ) J + pF a= 0 (8.40) 

and the boundary conditions 

SanVn = Tva• (8.41) 



CHAPTER IX 

Three-dimensional 

static problems 

For the solution of three-dimensional static problems of the 
theory of elasticity we have no such efficient analytic techniques 
as in the plane theory of elasticity. Here we shall consider certain 
particular solutions of the equilibrium equation in the absence 
of body forces, for which the displacement increases indefinitely near 
specific points. These points must lie outside the body or must be 
contained in special cavities within it. It should be noted that the 
simplest type of isolated singular point is the point of application 
of a concentrated force. 

75. KELVIN'S AND BOUSSINESQ·PAPKOVICH SOLUTIONS 

If a body is acted on by mass· forces, the vector equilibrium equa­
tion is of the form of (5.7). Suppose that the region occupied by the 
body extends to infinity in all directions and the mass force F is 
different from zero in a region ,;1 coinciding either with the whole 
of the region 't or with a part of it. 

We present the general form of the particular solution given by 
Kelvin (W. Thomson). The displacement vector is expressed in 
terms of the scalar potential cp and the vector potential 'lj) by the 
formula 

u = VIP + rot 'lj). (9.1) 

Here V is the Hamiltonian operator. 
Suppose further that the mass forces may be represented as 

F = Vel> + rot 'f. (9. 2) 

By using the vector identity 

rot rot u = V div u- f"..u 

n the equilibrium equation (5. 7), we come to the equation 

(A. + 2f-t) V div u - f.l rot rot u + p F = 0. (9.3) 

From (9.1) we calculate 

V div u = Vf"..cp, 
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rot rot " = rot rot (Vq> + rot 'I') = rot (rot rot 'I') = 
= rot (V div 'I' - t\"i') = -rot t\"i'. 

Substituting these relations and (9.2) in the equilibrium equation 
(9.3), we find 

V [(A. + 2f.L) t\q> + p<l>] + rot [flt\"i' + p'l!'] = 0. 
This equation is satisfied if we assume 

t\q> = - ~..-:2!1 <I>, t\"i' = - ~ '1". (9.4) 

Thus, a particular solution of Eq. (9.3) can be obtained from par­
ticular solutions of Poisson's equations (9.4), which, as is known 
from potential theory, are of the 
fu~ ~ 

p r <D (r') 
q> (r) = 4n (1..+211) J -l- d-c 11 

~ ~ 
(9.5) 

p r 'Y (r') 'I' (r) = 4n 11 J -l- d-c1o (9.6) 
'~"• 

where l = [(x1 - x;)2 + (x2 - x;)2+ 
+ (x3 - x;)2]112 is the distance 
from a point r' (x;, x;, x;) of the Fig. 39 
region T1 to the point r (x1 , x 2, x3) 

for which the functions q> and 'I' are calculated; the integrals are­
extended over the region -r1 outside whose boundary the mass forces­
are zero (Fig. 39); the functions <I> (r) and 'I!' (r) are determined by 
the formulas 

1 r -<I> (r) = - 4n J F · Vl 1 d-r11 (9.7)· 
't, 

'I" (r) =- 4~ J F x vz-t d-c11 (9.8)· 

which follow from the condition that the mass force F may be repre­
sented in the form of (9.2). Indeed, with div rot 'I!' = 0, from (9.2) 
we find 

div F = div v<I>, rot F = rot rot '1!', 
or with div 'I!' = 0, 
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The particular solutions of these equations may be written as 

<D (r)=- 4~ J ( ~~i +~~+a:;~) {-dT1, 
,;, 

(9.9) 

By applying the Gauss-Ostrogradsky formula to the first equality 
-of (9.9), we find 

(9.10) 

·where ro is the surface of the region T1• 
Assuming that the mass force is continuous in the region 't' up 

to its boundary (then on this boundary F h = 0 and also az~1 = 
axh 

= - ~:~) , instead of (9.10) we obtain (9. 7). Likewise, from the 
<three remaining equations of (9. 9) we find 

1 r ( , az-1 az-1 ) 
'I'i (r) = 4n J Ji3 ax2 -F2 axa dTb 

1:, 

'These three scalar equalities are equivalent to one vector equali-
cty (9.8). . 

To obtain the Boussinesq-Papkovich solution, we represent the 
,general solution of the equilibrium equation (9.3) as 

rt = AV (cp + r·'¢) + B¢, (9.11) 

where r is the radius vector of a point of the body, A and B are 
-unknown constants, cp and '¢ are unknown functions of position. 

By applying the operator rot rot to both sides of equality (9.11), 
.and taking intoj account the vector identities rot rot = V div -~. 
•rot V = 0, we find 
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rot rot u = B (V' div '¢ - ~'¢). 
Since 

div Y' = ~. ~ (r ·'¢) = r· ~'¢ + 2 div ¢, 

from (9.11) we have 

div u = A~cp + Ar· ~'¢ + (2A + B) div '¢. 

(9.12) 

(9.13) 

Inserting (9.12), (9.13), and rot rot u = B (Y' div ¢ - ~'¢) in 
Eq. (9.3), we have 

(A.+ 2!-1) AV (~cp + r· ~'¢) + [(A.+ 2!-1) (B + 2A) -

- 1-1Bl Y' div¢ + 1-1B~¢ + pF = 0. 

This equation is satisfied if we assume 

~cp + r· ~'¢ = 0, 

(A.+ 2!-1) (B + 2A) - 1-1B = 0, (9.14) 

B~'¢ +.E. F = 0. 
fl. 

From the second equation of (9.14) we find 

B= - 2 ~::J..t) A= -4(1-v)A. 

On putting A = 1, from the third equation we have 

~¢= 4 (f~V)J.l.F. (9.15) 

Substituting (9.15) in the first equation of (9.14), we obtain 

~cp=- 4 (i~v)J.!.r.F. (9.16) 

Thus, the solution of the equilibrium equation (9.3) can be found 
in the form of (9.11) if the vector function'¢ and the scalar function cp 
satisfy, respectively, Poisson's equations (9.15) and (9.16). The 
Boussinesq-Papkovich solution involves four scalar functions, 
namely the scalar function cp and three projections of the vector '¢. 
The representation in which cp is not a harmonic, but a biharmonic 
function was given by J. Boussinesq, and independently by B. G. Ga­
ler kin. 

Some problems can be solved without using so many functions. 
By taking, for example,¢ = 0 in solution (9.11), we obtain a simple 
sol uti on of the form 

u = Avcp. (9.17) 

By the first equation of (9.14), the function cp is harmonic; moreover, 
from the third equation of (9.14) it follows that solution (9.17) is 
suitable for the case when body forces are absent. 
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From (9.17) we find that 

div u = A div V<p = A ~<p = 0. 

Thus, for the simple solution of the form of (9.17) the volume strain 
is identically zero. 

By formulas (4.35), for the solution of the form of (9.17) the for­
mulas of the stress tensor become 

76. BOUSSINESQ'S ELEMENTARY SOLUTIONS 
OF THE FIRST AND SECOND KIND 

(9.18) 

In this section Kelvin's solution will be used to obtain a solution 
for the case of a concentrated force F 3 applied to a solid at the origin 
of co-ordinates and acting in the x3 direction. 

We take an arbitrarily small neighbourhood of the point of ap­
plication of the force (the simplest singular point) bounded by the 

1 F 
planes xk =+ 2 e, and assume that F = pe; ; from (9. 7) and (9.8) 
we then find 

CD (r)-.!2~ -4np rs' 
ur ( ) Fa ( • X2 + · xi ) Y T = 4--'-- - 'tt -s 'l-2 -3 . np r r (9.19) 

Substituting (9.19) in (9.4), we obtain 

~··- +.!2_ (- i ..:£.. + i ..:.t.) = 0. 't' 4nr.t 1 rs 2 rs 

Since ~ (..:.!!:...) = - 2xk the last equations may be written as r rs • 

~ ( <p-8n(:r~f.t) r) = 0• 

" [••' + F3 ( • x 2 • xi ) J O Ll. 't' - '~-t--'l-2- = . 
8nr.t r r 

These equations are satisfied if 

( ) Faxa 
<p T = 8n(A.+2r.t)r' 

from which 
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Substituting these expressions in formula (9.1), we find 

_ (A.+JA.) F3 [. x1x3 +. x2x3 + . (xi + A.+3JA. J....)J (9.20) 
U- 8nJ.1. (A.+2JA.) _"'1 ril 1-2 r3 'l-3 r3 A.+JA. r • 

Formula (9.20), obtained from Kelvin's solution as a special exam­
ple, was first derived by J. Boussinesq and designated as an elemen­
tary solution of the first kind. 

From (9.20) and the formulas of Hooke's law we have the follow­
ing relations for six components of the stress tensor: 

O'u = B _!!_ [3 ( .=.t_) 2- _J.l._J 0'12 = 3Bxlxr:x3 ' 
7a r A.+J.L ' 

(]22=B ;: [3(:2 r-A~J.l.], 0'2a=B;: [3(:3 r+A~J.l.]. 
(9.21) 

O'aa = B ;: [ 3 ( : 3 
) 

2 + A.~ J.l. J , 0'31 = B ~~ [ 3 ( : 3 
) 

2 + A.~ J.l. J , 
(A.+JA.)Fa 

where B=- 4n(A.+ 2JA.). 

By an elementary solution of the second kind is meant solution 
(9.1.7) in which the harmonic function q> is equal to 

cp =A In (r +x3). 

Then 

u -A Xt U =A x2 
1 - r(x3+r)' 2 r(x3+r)' 

1 U3=A-. r 

On the basis of formulas (9.18) we find 

0' - 2 A ( X~+ X~ X~ ) 
22- ~ r3(x3+r) r2(xa+r)2 ' 

2 A x3 0' __ 2 A x1x2 (x3 +2r) 
0'33 =- ~ -;:a, 12- ~ r3 (xa+r)2 ' 

0'2a= -2~A ;: , O'a1 = -2~A ;; . 

(9.22) 

(9.23) 

The components of the stress vector acting on a plane passing 
through a given point perpendicular to the radius vector r are, by 
formulas (9.22), with (9.23), and also with the use of the fact that 
cos (r, xk) = xk, , 

Tr1=-2~A 2 (x1+ )' r x3 r 

Tr2 = -2~A r2 (~2+r)' Tra = -2~A r12 • 

(9.24) 
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From the singular point (the origin of co-ordinates) describe a sphere 
of radius e.> 0, and consider its part situated in the region x3 > 0. 
On the basis of formulas (9.24) it may be stated, without calculations. 
that the resultant moment of all forces acting on the surface of the 
hemisphere and the projections of the resultant vector of these forces 
on the x1 and x 2 axes are zero, and the projection of the resultant 
vector on the x8 axis is 

Ra= J Tr3 dro= -2~-tA 8
1
2 J dro= -4n~-tA• 

w w 

Consequently, the resultant of all forces acting on the surface of 
the hemisphere is directed along the x8 axis and is Qf magnitude 

R 8 = -4n~-tA. (9.25) 

Thus, the origin represents a simple type of isolated singular 
point at which is applied a concentrated force directed along the 
ox8 axis and of magnitude F 8 = 2R3 = -8n~-tA. 

77. PRESSURE ON THE SURFACE 
OF A SEMI-INFINITE BODY 

In order to find the field of the stress tensor in a body occupying 
the half-space x8 > 0 subjected to a concentrated force T applied 
normally to the plane boundary x1x 2 of this body, we make use of 
the results of the preceding sections. Transfer the origin to the 
point of application of this force. 

Take a solution of Eq. (9.3) as the sum of solutions (9.20) and 
(9.22). Then 

u _ (l .. +~tl Fa ~+A :c1 
1-8:rt(1 .. +2~t)/t r3 r(xa+r)' 

- (A.+~t) Fa x2xa +A x2 
U2- 8:rt (A.+2~t) It ra r (xa+r) ' (9.26) 

U _ (A.+~tl Fa [ x~ + A.+3~t __!_]+A__!_ 
3 - 8:rt (A.+2~t) It ra A.+~t r r • 

These relations represent a solution of Eq. (9.3) everywhere, except 
at the point of application of the force 'l'. · 

We shall try to determine F 3 and A so as to fulfil the conditions 
of zero external forces on the boundary x3 = 0, i.e., T33 = T31 = 
= T82 = 0; hence, · 

<iss = <is1 = <ia2 = 0; (9.27) 

by the laws of statics, at the point of application of the force 
'F 

T = T + 4nf-LA. (9.28) 
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By using formulas (9.21) and (9.23), from (9.27) we obtain 

O'st =- 2:a1 1..t [sn ({.+ 2/t) +A J = 0, ass= 0, 

O'a2=- 2r~2 !..t [ 8n (:+2j.t) +A J =0, 

from which 

(9.29} 

Thus, for the determination of F 3 and A we have obtained twG 
equations (9.28) and (9.29), from which we find 

F =2(A.+2~t)T A=_ T 
s A.+~t • 4n(A.+~t)" 

Substituting the values obtained for F 3 and A in formulas (9.26). 
we find Boussinesq's formulas 

T x1x 3 T x 1 

Ut=4nj.t--;:s- 4n(A.+~t) r(x3 +r)' 

T x 2x 3 T x2 

U2= 4nj.t --;:s-4n(A.+~.t) r(x3 +r)' (9.30) 

T x§ T (A.+2~t) 1 
Us= 4nj.t -;3 + 41tj.t (A.+j.t) r 

Solutions (9.30) give the values for displacements at all points of 
an elastic body sufficiently far from the point of application of the 
force T. 

At points of the boundary ox1x2 , wh~re x3 = 0, the displacements 
are determined by the formulas 

where r= V x~+x~. 

T x1 

Ut=-4n(A.+~t) r2' 

T x 2 u -- -2- 4n IA.+~t)~ r2 ' 

T (A.+2~t) 1 
Us= 41tj.t (A.+j.t) r' 

(9.31) 

Inserting the values of F 3 and A in formulas (9.21) and (9.23), 
the field of the stress tensor in the half-space under consideration is 
determined by 
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a = _Tx3 [ 3 (~)2 +-f.l.-]+ f.l.T ~ 
33 - 2nr3 r A.+ J.-t 2n (A.+J.-t) r3 ' 

a __ 3Tx1x2x 3 + J.-tT x1x2 (x3 +2r) 
12 -- 2nr5 2n(A.+J.-t) r3 (r+x3) 2 ' 

0 2a=- 2~~i [ 3 ( ~3 
)

2 
+ t,~f.l.]+znr:+J.-t) ;: ' 

Oat=- :::3 [ 3 (';3 ) 2 + A.~f.l. J + 2n ~T+J.-t) ~! . 
Let q (~, 't]) be the intensity of a force distributed over some area 

<il of the boundary plane ox1x2 of the hemisphere. The element of 
area d~ dtj is acted on by the force 

dT = q (~, tJ) d~ dt]; 

on the basis of solution (9.30) the displacements are 

1 l ( X1X3 f-t XI ) (t ) d~ d 
Ut=4nJ.-t J ---;:a- A+f.L r(x3 +r) q "'' 't] t], 

(J) 

(9.32) 

u - _1 \ ( xi /, + 2f.1. ___!_ ) (t ) dt d 
3 - 4nf.1. J r3 + A+J.-t r q "'' 't] "' t], 

(J) 

where 

r= V(xt-sF+ (x2-'t]) 2 +~. 
Here 6, t] are the co-ordinates of the point of application of the force 
dT; x1, x2, x8 are the co-ordinates of the point at which the dis­
placements u1, u2, u8 are sought. 

The displacement along the x3 axis of any point of the boundary 
ox1x2 is, according to (9.32), 

Ua = 8 l q (~, 1"]) ds dtj, (9.33) 
J V(xt-£l2+(x2-11)2 · 

(J) 

where 

78. HERTZ'S PROBLEM OF THE PRESSURE BETWEEN 
TWO BODIES IN CONTACT 

Suppose that two homogeneous isotropic bodies, 1 and 2, with 
different elastic constants are in contact at a point o, which is taken 
to be the origin of a rectangular Cartesian co-ordinate system x1x 2x 3 • 

Let the axes ox1 , ox2 be placed in a plane tangential to both bodies 
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at the point o,. and let the axes x!t, x!f> be taken coincident, respec­
tively, with the inward normals to the surfaces of these bodies 
(Fig. 40). Referred to these co-ordinate systems, the equations of 
the surfaces of the contacting bodies before deformation .are 

x~1) =It (xto x2), x~2> = /2 (X to x2). (9.34) 

Equations (9.34) of the surfaces of the bodies near their point of 

Xt 

hFig. 40 

contact o (the point o is suppos~d to be regular} may be represented 
with sufficient accuracy as 

(1) 1 iJ2x~1l I 2 + 1 iJ2x~i) I t + iJ2x~1) I 
Xa = 2--2- Xt 2 --2- Xz iJx 'ox XtX2, 

iJx1 0,0 iJx2 0,0 1' 2 0,0 

(2) 1 iJ2x~2) I 2 + 1 iJ2x~2) I 2 + iJ2x~2) I 
Xa = 2 -2- XJ 2 -2- Xz ox ox XtX2· 

iJx1 0,0 iJx2 0,0 1 2 0,0 

The distance between two points, M1 and M 2, of the contacting 
surfaces lying on the same normal to the tangential plane ox1xr 
is determined, according to the last relations, by the formula ) 

x~11 + x~•> = ~A1 + A 2) x~ + (B1 + B 2) x~ + (H1 + H2) x1x2 .. 
. (9.35) 

Here the following notation has been introduced: 

1 iJ2x~1) I . 1 iJ2x~2) I 
At=2--2- I A2=2--2- I 

iJx1 0,0 iJxi 0,0 

. iJ'~-xa<¥> 1 .. H . 
2 =ax ax . 

.. 1 2 0,0 

16-0884 



242 Ch. I X. Thru-dimensional Static Problems 

The quadratic form (A1 + A 2) x~2 > + (B1 + B 2) x~ + (H1 + H 2) x1x 2 

defining the distance between the indicated points M 1 and M 2 

must be positive for any choice of the x1 and x 2 axes, and we can 
choose the axes so as to make the coefficient H 1 + H 2 zero. Introduc­
ing the notation A = A1 + A 2 , B = B1 + B 2 , we have 

<t> <2> A 2 B 2 
X3 + X3 = Xi + X2. (9.36) 

Consequently, the coefficients A and B are positive. 
Let the principal radii of curvature at the point of contact for 

the first body be denoted by R~1> and R~1>, and for the second body 
by R~2 > and R~ 2 >. If they are considered to be positive, then 

1 1 1 1 
2A = R<t> + R<O , 2B = R<2> -t- R(2) • 

1 2 1 2 

From (9.36) we draw a conclusion that the curves of equal distance 
between two points of the contacting surfaces lying on the same 
normal to the tangential plane ox1x 2 are concentric ellipses. 

Suppose that the two bodies are pressed to each other by a force T 
directed along the normal to the tangential plane ox1x2 at the point o; 
near this point the bodies make contact over a small surface. This 
surface is called the pressure surface, and its contour is called the 
pressure contour. The projection of the pressure surface on the tan­
gential plane ox1x2 is termed the region of contact. It may be assumed, 
with sufficient accuracy, that in compression the bodies come into 
contact at points lying before deformation on the same normal to 
the ox1x 2 plane. It is seen from (9.36) that the pressure surface has 
an elliptical shape. 

As a result of the compression of two bodies any two points, lying 
on the x~u and x~2 > axes sufficiently far from the point o for the 
deformations at them to be neglected, come closer together by an 
amount a equal to the sum of the displacements u~~ and ua~ of 
the point o. 

Let u~u and u~2> denote, respectively, the displacements of points 
of the two contacting surfaces lying on the same normal to the ox1x2 

plane in the directions of the ox~u and ox~2 > axes. The distance between 
two such points decreases by an amount equal to a- (u~1> + u;2>). 
Thus, for all points of the pressure surface the following relation 
holds: 

x~1 > +u~1 > +x~2> +u~2> =a, 
and for the points outside the pressure surface we must have 

x~i) +u~i) +x~2> +u~2> >a. 
By using relation (9.36) in formula (9.37), we find 

u~i) +u~2> = a-Axt-Bx~. 

(9.37) 

(9.38) 
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To determine the elastic displacements and stresses in the region 
of contact between the two bodies, we assume that the pressure sur­
face is very small and that the bodies may be replaced by half­
spaces. These half-spaces are acted on by a normal pressure q (£, t'J) 
over the region of contact ro; the frictional forces on the pressure 
surface are neglected, i.e., we assume that there are no shearing stress­
es in the region of contact. 

By using formula (9.33) in (9.38), we obtain 

J q (~~ Tt) ds dfJ =(a- Ax~- Bx:) (Ot + 02t 1• (9.39) 

Here 

A-1 , f.L1 and .. A- 2, f.L 2 are Lame's elastic constants of the first and second 
bodies, respectively; A and B are known positive quantities deter­
mined from the shapes of the contacting surfaces. 

Thus, the solution of the Hertz contact problem is reduced to the 
determination of the pressure q (£, fJ), the approach of the bodies a, 
and the size and shape of the region of contact ro. In Eq. (9.39) 
the value of the convergent improper integral represents the poten­
tial for a simple layer distributed with density q (£, t'J) over the 
region of contact. This potential at points of the region of contact 
represents, according to (9.39), a quadratic function of position. 
On the other hand, it is known that the potential at interior points 
of the homogeneous ellipsoid 

2 2 2 
~+-2+~=1 at b2 c2 

is a quadratic function of the co-ordinates of the point and is ef 
the form · 

00 (' xi - x~ xi ) 
b i 1-aq:r-~-cq::-r df.. 

q>=na cp J [(a'+f..) (b'+"-) (c2+1..)]1/2 
0 

On comparing these facts, H. Hertz concludes that the right-hand 
side of formula (9.39) may be taken as the potential for a homoge­
neous ellipsoid whose thickness in the ox3 direction tends to zero 
(c -. 0), and the density p increases in proportion, so that the mass 
of the ellipsoid remains unchanged. The region of contact ro is then 
an ellipse into which the ellipsoid degenerates as c -. 0, and the 
following relation holds: 

oo xf x: 
1 ~ 1- a'+"- -b'+"-

6 +e (a-Ax:-Bx~)=nablim(cp) dA. (9.40) 
1 2 • [(a'+"-) (b'+"-) 1..}1/2 · 

0 

16* 
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The density of a sh;nple la.yer q (~, '11) is equal to the mass enclosed 
in a prism of unit base and of height 

r--.,-2-.......,.-2 
2c ]1/ 1 _..2__2_ . 

a2 b2 ' 

i.e., the contact pressure is obtained as 
---,-,---,-

q(s, '1'])=2lim(cp) y 1- !: - ~:. (9.41) 

Based on the laws of statics, the force T maintaining the bodies in 
contact can obviously be obtained as the resultant of all forces 
q (s, 'I']) over the region of contact ro. Consequently, it is equal in 
magnitude to the mass of the whole ellipsoid, i.e., 

T = ~ nab lim (cp). (9.42) 

Eliminating, now, lim (cp) from formulas (9.41) and (9.42), we 
obtain, finally, 

· _ 3T .. /' ;2 fJ2 
q (~. 'I'])- 2nab v 1-ll2-v· (9.43) 

From equality (9.40) we find 

(9.44) 

(9.45) 

00 

a - 2._ T (0 + 0 ) i d'J.. 
- 4 1 2 J [(a2+A.) (b2+J..) 1..]1/2 • 

0 

(9.46) 

After determining the semiaxes a and b from the first two equations, 
we find a from the third equation. In the general case the determina­
tion of a, b, and a involves the calculation of the elliptic integrals 
of the first and second kind. 

If the two bodies in contact are spheres, the calculations are simpli-

fied. In this case A = B = ~ ( ~1 + ~2 ) , where R1 and R 2 are 
the radii of the spheres. Taking into account that A = B, and using 
formulas (9.44) and (9.45), we have a = b (the pressure surface is 
a circle); consequently, formula (9.44) becomes 
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Denoting A. = a2 tan2 cp, we find 

or 

Hence, 

n/2 

A = 3T (~~~ 8~) J 2 cos2 cp dcp 
0 

a=v3 r 3((~1+8?1:t) ' 
4 "R;:"+ Rs 

245 

(9.47) 

i.e., the radius of the pressure circle is proportional to the cubic root 
of the force T. 

From formulas (9.43) and (9.46) we have, respectively, 

q (£, TJ) = 2:a V a2- (£2 + TJ2), (9.42) 

or 

(9.49) 

In the case of two identical spheres the following equalities hold: 

R1 = R 2 = R, fl1 = 02 =e. 
On the basis of formulas (9.47) and (9.49) we then have 

V.3 
a= -nOTR 4 , -v~ CX- 2R . 

If the second body is a half-space (R 2 = oo), then 

V 3 v 9:t2 a= 4 n (01 + 02) T R 1 , ex= 16R1 T2 (01 + 02) 2 • 

When an absolutely rigid plane (0 2 = 0) is indented by an elastic 
sphere with a force T, we have 

The pressure q (S,, TJ) is determined in all these cases by formu­
la (9.48). 
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79. SYMMETRICAL DEFORMATION 
OF A BODY OF REVOLUTION 

Let a body, representing a body of revolution about the x3 axis, 
be deformed under the action of surface forces (body forces are ab­
sent) symmetrically with respect to this axis of revolution. The 
displacement in a direction perpendicular to a plane passing through 
the x3 axis is zero, and the other two projections, Ur and u3 , are 
independent of the polar angle cp. For the solution of this problem it 
is convenient to use cylindrical co-ordinates r, cp, x3 • The compo­
nents of the symmetrical strain tensor in the cylindrical co-ordinate 
system are, by formulas (3.29), 

(9.50) 

Substituting (9.50) in the formulas of Hooke's law, and expressing 
Lame's coefficients A. and fJ. in terms of E and v, we have 

vE [1-v iJur Ur iJua] 
0 rr= (1+v)(1-2v) -v--;;;+-;:-+ iJxa ' 

vE [iJur 1-v Ur iJua] 
a~= (i+v) (1-2v) a;:+-'V- r + iJxa ' (9.51) 

vE [iJur Ur 1-viJuaJ 
Oa3= (1+v)(1-2v) -ar+-,.--+-v-iJx3 ' 

If we assume 
1 +v iJ2<ll u -------r- E iJr iJx3 ' 

u = 1 +v[(1-2v)~<D+ 02<ll +..!._ iJ<ll] 
3 E iJr2 r iJr ' 

(9.52) 

formulas (9.51) become 

(9.53) 

a [ a2<lll 
Or3=a;: (1-v)~<D-ax~ ' 
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where 
fJ2 1 a a2 

~ = ar2 + 7 Tr + ax~ ' 
<I> (r, xa) is the stress function. 

Functions (9.53) identically satisfy the first two differential 
equations of equilibrium of (2.30), and the third equation takes the 
form 

( a2 1 a 82)2 
~~<I>= ar2 + 7 Tr"" +ax~ <I>= 0. (9.54) 

Under this condition functions (9.53) identically satisfy the compa­
tibility equations (5.37). Thus, the problem of the symmetrical 
deformation of a body of revolution is reduced to that of finding 
a solution of the biharmonic equation satisfying the appropriate 
boundary conditions. 

We present the solution of the problem of the symmetrical defor­
mation of a solid circular cylinder produced by forces applied on 
its lateral surface and symmetrically distributed with respect to 
its axis. To solve this problem, we determine the stress function <I> 
from Eq. (9.54). Obviously, a solution of the equation 

0211> + _.!_ olD + 0211> = 0 (9.55) 
8r2 r 8r ax~ 

is also a solution of Eq. (9.54). This solution may be taken in the 
form 

<l>* = <1>1 (r) sin kx3 • (9.56) 

From Eq. (9.55) we then obtain an ordinary differential equation for 
the function <1>1 (r) 

d2<Dl + _.!_ d<Dl - k2<D - 0 
dr 2 r dr 1 - • (9.57) 

Noting that one of the fundamental solutions of Eq. (9 .57) becomes 
infinite when r = 0, our interest will be concentrated on the bounded 
solution, which is of the form 

(9.58) 

The series within the parentheses in expression (9.58) is called the 
Bessel function of zero order with imaginary argument (ikr) and 
represented by the symbol / 0 (ikr); instead of (9.56) we then have 

(9.59) 

The derivative of the Bessel function with respect to the imaginary 
argument (ikr) with a negative sign is called the Bessel function 
of the first order and represented by the symbol / 1 (ikr). By direct 
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checking it can easily be established that the following relation 
holds: 

if 

<D2 (r) = ~ ! 10 (ikr) =- ikrl1 (ikr). 

Noting that the function 10 (ikr) is a solution of Eq. (9.57), we 
come to the conclusion that the function <1>2 (r) is a solution of the 
equation 

Consequently, the solution of Eq. (9.54) may be represented as 

<I>** = c2 ikrl1 (ikr) sin kx3 • (9.60) 

Thus, on the basis of (9.59) and (9.60) the stress function may be 
expressed as 

(9.61) 

Substituting this stress function <I> in formulas (9.52), we find the 
components of the stress tensor; for example, for C177 and CJ73 we have 

C1rr = [ci¢1 (r) + C2'¢ 2 (r)l cos kx3 , 

(9.62) 
C1ra = [c1'¢3 (r) + c2'¢4 (r)l sin kx3 , 

where '¢1 (r), '¢2 (r), '¢3 (r), '¢4 (r) are completely determined functions 
expressed in terms of I 0 (ikr) and P1 (ikr), which are not presented 
here. 

By (9.62), the boundary conditions on the lateral surface of the 
cylinder are 

Trr = [c1'¢1 (R) + c2'¢ 2 (R)l cos kx 3 , 

T73 = [c1'¢3 (R) + c2'¢4 (R)l sin kx3·• 

(9.63) 

By a suitable choice of the constants k, c1 , c2 it is possible to study 
different kinds of loads symmetrical with respect to the axis of the 
cylinder and acting on its lateral surface. For example, in the case 
when the lateral surface of the cylinder is acted on by normal pres-

n:rtxa d . I f . n:rtxa d h sures Pn cos -L- an tangentia orces qn sm -y:- an w en 

k = n:rt (Lis the length of the cylinder), from formulas (9.63) we find 
L 

cl'¢1 (R) + C2 '¢2 (R) = -pn, 
(9.64) 
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From this we obtain the values of the constants c1 and c9. If the 
solution of Eq. (9.54) is t11ken in the form 

(9.65) 

by a suitable choice of the constants c3 , c4, k we obtain the solution 
of the problem when the lateral surface of the cylinder is acted on by 
normal pressures Pn sin n~xa and tangential forces qn cos n~xa. 

Thus, on combining solutions (9.61) and (9.65), and using the 
principle of superposition of the actions of forces, we can obtain 
any distribution, symmetrical with respect to the axis of the cylin­
der, of normal and tangential forces oii its lateral surface. At the 
ends of the cylinder there may be some forces symmetrically distri­
buted with respect to the axis of the cylinder. By superimposing an 
axial tensile or compressive force on these forces, it is always possib­
le to make the resultant of all forces zero. According to Saint Ve­
nant's .principle, the effect of these forces on the state of stress at 
some distance from the ends may be neglected. 

Consider, now, the problem of the bending of a circular plate of 
uniform thickness. 

It is known that in a spherical co-ordinate system in the case of 
axial symmetry the biharmonic equation is of the form 

( a2 2 a 1 a 1 a2 ) 2 
aR 2 +R aR + R2 cot'¢ a'IJl +]f2 a'IJl2 <D=O. (9.66) 

We first consider Laplace's equation 

( a2 2a 1 a 1a2 ) 

aR2+salf+lf2cot'¢ a'IJl +lf2 a'IJl2 <D=O (9.67) 

and try its particular solutions in the form 

<Dn (R, '¢} = RndJn (\jl}, (9.68) 

where n is a positive integer. 
Substituting (9.68) in (9.67) gives 

d2tDn d<Dn ~ 
d'IJl2 +cot \jJ d'IJl + n (n + 1) <Dn = 0. (9.69) 

The change of the independent variable 'I'] = cos 'ljJ reduces Eq. 
(9.69) to a Legendre equation: 

d2tD d<Ii ~ 
(1-'1']2) dTJ 2n-2'1'] dTJn +n(n+1)<Dn=0 (9. 70) 

whose solution is sought in the form of a polynomial: 

&n ('ljl) = a 1'1']n + a2'l']n-2 + a3'l']n-4 + ... + ar'l']n-2r+2 + ... 
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Substituting this expression in Eq. (9.70}, we find 

[n (n - 1) a1 + 2 (2n - 1) a 2] T)n-2 + ... 
. . . + {[n (n + 1) - (n - 2r + 2) (n - 2r + 3)] ar + 

+ (n - 2r + 4) (n - 2r + 3) a7 _ 1} T)n-2r+2 = 0. 
From this 

(n-2r+4) (n-2r+3) 
ar=- 2(r-1)(2n-2r+3) ar-i (r= 2, 3, ... ). 

Consequently, 

ii)n ("'} = a 1 [ T)n- 2n(~:=g T)n- 2 + n ~~~!~~D~~~':_~~) T)n-4 _ ••• J, 
We substitute this solution in (9.68). Noting that 

T) =cos"'= i , R = V r2 + x:, 
for n = 0, 1, 2, ... we obtain the following solutions of Eq. {9.67): 

<Do=Ao, 

<D1 = A1x3, 

<D2 = A2 [ X:-f (r2+ x:) J, 
<D3 = A3 [x~- ; x3 (r2 +x~) J, (9.71) 

<Dq = Aq [ x!- ~ x~ (r2 +x:) + 3~ (r2 +x~)2 J. 
Here A 0 , A 1 , ••• are unknown constant coefficients. These solution~ 
are obviously solutions also to Eq. (9.66). 

If Rn<Dn ('IJl) is a solution of Eq. (9.67), it can easily be established 
that Rn+2d5'n ('IJl) is a solution of Eq. (9.66). Indeed, 

( a2 2 a 1 i} 1 iJ2 ) n+ 2 ~ 
oRa+lf oR+ R2 cot"' o¢ + R2 o¢~ R <Dn("'}. 

= 2 (2n + 3) Rnd)n ('IJl}. 

Substituting the last relation in Eq. (9.66), and remembering that 
Rn d'>n ('IJl) is a solution of Eq. (9.67), we have 

( a2 2 a 1 i} 1 a2 ) 2 n+2 ~ 
oR2 + R 7fii + '"R2 cot "' a¢ + R2 iJ'Ijl2 R <Dn ("') = 

( a2 2 a 1 i} 1 iJ2 ) n~ 
= 2 (2n+ 3) oR2 + R aif + 7f2 cot"' o'ljl + Ji2 iJ¢2 R <Dn ("') = 0. 

Consequently, on multiplying solutions (9.71) by R 2 = r2 + x!, 
we obtain solutions of Eq. (9.66), which are no longer solutions of 
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Eq. (9.67), 

<D! = B0 (r2 + x~), 
<DT = B1x3 (r2+ x~), 

<D~ = B2 (2x:-r2) (r2 +x:), 

<~>:= B3 (2x:-3r2x3) (r2 +x:). 

(9. 72) 

By using the preceding solutions, we shall consider different 
cases of a symmetrically loaded circular plate (Fig. 41) . 

2h I l . I 

r 

a 
xJ 

Fig. 41 

(a) On the basis of (9.71) and (9.72) the stress function <D (r, x3} 

is represented as a third-degree polynomial: 

<I> (r, x3) = a3 (2x~- 3r2x3} + b3 (x~ + r2x3}. (9.73) 

Substituting this function in formulas (9.53), we obtain 

Orr= 6aa + (10v- 2) b3, 

a!ll'l' = 6a3 + (10v -2) b3, 

CJaa = -12aa+ (14-10v) b3, 

C1ra= 0. 

(9.74) 

Thus, for the stress function (9.73) the components of the stress 
tensor are constant throughout the plate. The constants a 3 and b3 

can be determined if uniformly distributed 0'33 = T 33 and 0'77 = 
= T rr are given, respectively, on the faces and lateral surface of 
the plate. 

(b) With the use of (9.71) and (9.72) the stress function is now 
represented as 

<D (r, x3) = a4 (8x:- 24r2x~ + 3r4) +b~o (2x~+ r2x~- r 4). 

On the basis of formulas (9.53) we obtain 

0'77 = 96a~ox3 + 4b~o (14v - 1) x3 , 

CJ33 = -192a~ox3 + 8b~o (8 - 7v) x3 , 

C1r 3 = 96a~r - 4b4 (8 - 7v) r. 

(9.74a) 
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If we assume 96a, - 4b4{8 - 7-v) = 0, then 

O'as = O'rs = O, O'rr = 28 (1 + v) b,x3 • 

The constant b,. can be determined if a constant value of the bending 
moment Mr is given on the lateral surface of the plate. Then 

h ', 

2 J f1rrXadxa=Mr• 
0 

This condition is integral, but according to Saint Venant's principle 
the state of stress so found will be sufficiently accurate at points 
remote from the lateral surface of the plate. 

From the last relation we find 

Then 

b 3Mr 
4 = 56 (1+v) hB • 

3Mr O 
(Jrr = 2h3 X3, fJ33 = f1ra = · 

This solution represents the pure bending of the plate by moments 
uniformly distributed over its lateral surface. 

{c) Based on (9.71) and (9.72), the stress function is taken in the 
form 

1 
C!l (r, x3) =;ras (16x~-120x~r2 +90x:r"-5r6) + 

+ b6 (8x~ -16x~r2- 21x:r" + 3r6) + a4 (8x:- 24r2x: + 3r4). 

For this function the stresses are as follows: 

arr= as (320x~-720r2x3) +b6 [64 (2 + 11-v) x~+ 
+ (504- 48 X 22-v) r2x3] + 96a4x3, 

cr33 =a6 ( -640x~+ 960r2x3) +bs{[ -960+320 X 22 (2-v)] x~ + 
+ [384- 48 X 22 (2- v)] r 2x3} -192a4x3, 

crrs = a6 (960rx:- 240r3) + bs [(- 672 +48 X 22v) X:r + 
+ ( 432 -12 X 22-v) r3] + 96a,r. 

To the stresses cr33 is added a uniform tension cr;3 = b in the ox3 

direction, so that the components of the stress tensor contain four 
constants, as, bs, a,, and b. 

Let the boundary conditions be 
0' 33 = 0 when x3 = h, 

cr33 = -p when x3 = -h, 

crr 3 = 0 when x3 = ±h, 
where p is the intensity of uniform load. 
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Substituting the expressions for the stress tensor in these boun­
dary conditions, we determine the constants a6 , b6 , a~, and b. Conse­
quenlty, 

( 
X~ 3 X 3 f ) 

a33 =p - 4ha+TT-2 • (9. 75) 

3pr (h2 2) 
O'ra= 8h3 -Xa• 

The stresses O'rr on the lateral surface of the plate give bending mo­
ments M 7 uniformly distributed along the contour. 

To obtain the solutionfor a simply supported plate, to the com­
ponents of the stress tensor (9.75) must be added the stresses due 
to pure bending, and the constant b~ must be determined so that 
on the lateral surface r = a 

Then 

h 

M 7 =) O'rXa dxa= 0. 
-h 

_ (2+v x~ _3(3+v)r2x3 _~2+v2+3(3+v)a2x3 ) 
a rr - p 8 h3 32 h3 8 5 h 32 h3 • 

(9.76) 

(9.77) 

The fulfilment of condition (9. 76) means that the application of 
pure bending eliminates the bending moments M 7 on the lateral 
surface of the plate, the stresses Cf 77 

being equal to 

Noting that the resultant vector 
and the resultant moment of the 
stresses 0'77 are zero, it may be stat­
ed on the basis of Saint Venant's 
principle that the field of the stress 
tensor is sufficiently accurate at 
points remote from the lateral 
surface. 

Consider the torsion of a body 
of revolution. Let to the bases of 

r 

0 

Fig. 42 

a body of revolution (Fig. 42) be applied given forces satisfying the 
conditions of equilibrium of an absolutely rigid body and reducing 
to twisting couples. Body forces are absent, and the lateral surface 
of the body is free from surface forces. 

This problem will be solvl:)d in terms of displacements in cylindri­
cal co-ordinates assuming that ur = u 3 -· 0, while u"', because of 
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the axial symmetry of the deformation of the body of revolution, 
is independent of the polar angle <p and is a function only of rand 
x3 • Since u 7 = u 3 = 0 and ucp = u'll (r, x3), from formulas (3.29) 
we fi.nd 

e,,. = ecpcp = e3a = ear = 0, 

1 au, 
ecpa=z ax3 • 

Substituting (9.78) in the formulas of Hooke's law, we have 

a,.,.= cr.,cp = cr33 = cr3r = 0, 

( 
OUcp Ucp ) OUcp 

crrcp= f.L a;---,.- ' f1cpa= f.L OXs • 

(9.78) 

(9.79) 

Noting that the components crr'P and crcp3 are also independent of 
the angle <p and that body forces are absent, from Eqs. (2.30) we 
obtain 

8CJ7 cp 8crcp8 2crrcp 
a;:-+ oxa +-r-=0. 

The last equation is rearranged in the form 

{J {J 
-8 (r2o'7 cp) + -8 - (r2crq~3) = 0. 

r x3 
(9.80) 

The solution of Eq. (9.80) is 

1 O<D 1 aiD 
f1cpa == 7 Tr' f1rcp = --,:s oxs • (9.81) 

Here the function ci> (r, x3), called the stress function, is determined 
from the compatibility equations. 

The strain compatibility conditions (3.40) for the given problem, 
with (9.79), take the form 

..!_ (.!. ...£... (rcr ) ) - 1 82 (r2C1rcp) - o· 
{Jr r {Jr cpS r 2 or OXs - ' 

ascrrcp - r ~ ( CJcpa ) = 0 
ox! {Jr OXs r . 

With (9.81), the second equation becomes 

{J ( {J2liJ 3 OlD {J2liJ ) 

oxa or8 - r Or + oxi = O. 

The latter is satisfied if 

o2lD _ ~ OlD + a•lD = 0 
{Jr'l. r 01' {J:z I • . 8 

(9.82) 
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By direct checking it can easily be verified that under condition 
(9.82) the first equation is satisfied identically. Thus, the strain 
compatibility condition for the given problem is of the form of (9.82). 

The boundary condition for the function <D may be established 
by the following argument. In view of the fact that the lateral 

r 

Fig. 43 

surface of the bar is free from surface forces, the sum of the projec­
tions of the shearing stresses O'cps and O'cpro acting at points of the 
boundary of an axial section, on the normal to the boundary 
(Fig. 42) must vanish, i.e., 

O'lllr cos (n, r) + O'cp3 cos (n, x3) = 0. (9.83) 

Referring to Fig. 42, we have 

( ) dz8 ) dr 
cos n, r =az, cos (n, x3 = -df· (9.84) 

where dl is an element of arc length of the boundary. 
Substituting (9.81) and ~9.84) in the boundary condition (9.83), 

we find 
aiD dzs 8(1) dr 0 
8x8 lll+ardf= ' 

from which ~~=0 or Cl>=C. 

The magnitude of the twisting moment is related to the function dl 
by the equation 

R(x1) R(x1 ) 

M = 2n J cr3cpr2 dr = 2n j ~~ dr = 2n {Cl> [R (x3), x3]- cD (0, x3)}. 

0 0 
(9.85) 

If the body of revolution has the shape of a cone (Fig. 43), the follow­
ing relation holds on its surface: 

(9.86) 
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Obviously,· any function of the argument representing the left­
hand side of (9.86) is a constant on the surface of the cone. We try 
to find the stress function in the form 

(9.87) 

where A, B, n are unknown constants. 
It appears from the above that this function satisfies the condi­

tion Cl> (r, x3) = constant on the surface of the cone. Function 
(9.87) satisfies Eq. (9.82) if we assume 

1 B= - 3 , n=3. 

Thus, 

<D(r, Xs)=A[ V r:~x~- ~ ( Vr:s+x~ )3]. 
The constant A is determined from (9.85): 

A=- 3M 
2n (2-3 cos ct+coss ct) • 

According to formulas (9.81), the shearing stresses are 

A rx, A r2 
a(j)3=- (r2+x~)6/2 ' O'r(j)=- (r2+xg)5/2. 

80. THERMAL STRESSES 

Let us determine stresses and strains in a hollow sphere due to a 
steady-state temperature field when a constant temperature Ta is 
maintained on the inner surface of the sphere and a constant tempeF­
ature T b on the outer surface. In this problem the distribution of 
all required quantities is symmetrical about the centre of the sphere, 
i.e., all required quantities depend only on the radius r. In a sphe­
rical co-ordinate system Eq. (5.13) and the boundary conditions 
(5.15) become therefore 

.3_ ( r 2 dT ) = 0 
dr dr ' 

T = Ta when r·= a, 

T=Tb when r=b. 

The solution of problem (9.88), (9.89) is 

T=~+B, 
r 

where 

(9.88) 

(9.89) 

(9. 90) 
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Because of the symmetry of the state of stress about the centre of 
the sphere we have 

acpcp (r) = a¢11l (r), arcp = ar.p = acpiJl = 0, ar = ar (r). 

By (2.31), the differential equation of equilibrium becomes 

darr +2 Orr-Ocpcp =O. (9.91) 
dr r 

For our problem u.p = u'il = 0 and Ur = Ur (r); hence, from (3.32) 
we :find 

(9.92) 

Inserting (9.92) in (4.56), we have 

arr = (1..+2~-t) ddur +21...!:.!:..-~T, 
r r 

acpq> = a.piJl =A. ddu: + 2 (1, + 1-t) u: - ~T' (9.93) 

aq;r = OIIJIP = ar¢ = 0. 
Substituting relations (9.93) in (9.91) gives 

d2ur + 2 dur 2ur _ dT 
"""dr2 7dr"_T_g Tr• 

1+v where g = -1- ex, or 
-'V 

.!!.._ [..!.. d (r2ur) J = dT 
dr r 2 dr g dr • 

By integrating this equation, we :find 
r 

Ur=+ r Tr2 dr+c1r+~. 
r J r 

(9.94) 
a 

Substituting the function T = T (r) from (9.90) in this expression, 
we obtain 

[ A r A a2 B as J c 
u =g -+B------- +c1r+--!.. 

r 2 3 2 r2 3 r2 r2 ' 
(9.95) 

Inserting expression (9.95) in (9.93), we :find 

a = (A. + 2 ) I.!!.!_ + Aga2 + 2Bgas -f- c _ 2c2 J + 
rr 1-t l 3 r3 3r3 1 r3 

+2t..[Ag +.!!.!_-~~-.!!L.!!!_+c +~]-RT 
2r 3 2r3 3rS 1 rs t'• 

[ Bg Aga2 2Bgas 2c2 J 
a w = a.piJl = A. - 3- + ---;:3 + ---g;:a + c1 - 7 + 

+2 (1..+~-t) [~ +.!!.!_-~~-.!!.!_.!!!._+c1 + ~] -~T. 
2r 3 2 rS 3 rs rs . 

The constants c1 and c2 are determined from the boundary condi­
tions arr = 0 when r =a and r = b. 



CHAPTER X 

Theory of propagation 

of elastic waves 

St. TWO TYPES OF WAVES 

The existence of two types of waves in a homogeneous isotropic 
medium was first proved by S.D. Poisson; one type of wave is known 
as compression-dilatation waves, the other as shear waves. Poisson 
showed that they are characterized by different velocities of wave 
front propagation, and also by the fact that compression-dilatation 
waves involve no rotation of particles, while shear waves are not 
accompanied by a change of volume. 

We proceed to the proof of the existence of two types of waves. Let 
us consider an infinite medium. The mass forces F acting on this 
medium and the displacement field u are represented as 

F = V<l> + rot '1', 
u = Vcp + rot '¢. 

(10.1) 

(10.2) 

Here <I> and cp are scalar functions of the co-ordinates (x1 , x2 , x3 ) 

and the time t, and 'Y and '¢ are vector functions of the co-ordinates 
and the time t. 

It follows from (10.2) that 
div u = 8cp. (10.3 

Substituting expressions (10.1) and (10.2) in the equation of motion 
of an elastic medium (5.5), taking into account (10.3), and inter­
changing the order of the differential operators, we obtain 

V' r c~8cp- ~:~ + (!> J +rot [ c~8'¢- ~;!' +'I' J = 0, (10.4) 
where 

c~ = /, ~ 2rt , c: = ~ .. (10.5) 

It is easy to see that (10.4) is satisfied if we assume 
2 82<p 

c18cp-a-t2= -<D, (10.6) 

2 82"' c28'¢-8!2=- 'Y. (10.7) 

Thus, it is proved that the vector field u defined by (10.2) is the 
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solution of Eq. (5.5) if the functions cp and'¢ satisfy (10.6) and (10.7); 
the function cp is called the longitudinal potential, and '¢ is the 
transverse potential. 

The question now arises as to whether these equations have solu­
tions that cannot be represented in the form indicated above. It may 
be shown that there are no such solutions. We shall mention some 
important consequences. 

(a) Let 'I'== 0 and let the initial conditions be '¢ = 0 when t = t 0 • 

The resulting equation for the determination of'¢ is then the homo­
geneous equation (10.7) with zero initial conditions. This means that 
'¢ is always zero; it follows from Eq. (10.2) that u = Vcp and 
rot u = 0. 

This shows that a wave described by the function cp involves no 
rotation of the particles of the medium, i.e., each of them has a mo­
tion of translation. Such waves are therefore called longitudinal. 
It must be emphasized once again that if 'I'== 0 and if at a cer­
tain instant the wave field is longitudinal in nature, it always re­
mains so, i.e., longitudinal waves propagating in an isotropic homo­
geneous infinite medium do not generate transverse waves. 

Equation (10.6) describing longitudinal waves is a non-homoge­
neous wave equation. It is known that if the function Cl> and the ini­
tial conditions in a finite part of space are different from zero, then 
the surface separating the disturbed from the undisturbed region 
(the wave front) is propagated in the direction of its normal towards 
the undisturbed region with a velocity c1 . 

(b) Let now Cl>==:O and let the initial conditions be cp = 0 when 
t = t 0 • Then cp = 0 and u = rot'¢. In this field the dilatation is 
zero. Indeed, div u = div rot'¢ = 0. 

Waves possessing this property are called transverse or shear waves. 
Transverse waves propagating in an infinite medium do not gen­
erate longitudinal waves. The velocity of propagation of the trans­
verse wave front is c2 • 

In a homogeneous medium with boundary the longitudinal and 
transverse waves travel independently only until the front inter­
sects the boundary. Waves (reflected waves, as they are called) of 
both types are then formed for it is usually impossible to satisfy 
the system of boundary conditions by introducing a reflected wave 
of any one type. 

Consider several examples. 
1. Plane longitudinal wave. Suppose that body forces are absent, 

the transverse potential '¢ is identically zero, and the longitudinal 
potential cp depends only on x1 and t. Equation (10.6) then transforms 
into the equation of vibration of a string. 

17* 
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and has a solution of the form 

ep = f (x1 - c1t) + g (x:~. + c1t), (10.8) 

where f and g are arbitrary twice differentiable functions. 
The first term in (10.8) represents a wave of constant shape moving 

with the velocity c1 in the positive direction of the x1 axis, and the 
second term represents a wave of constant shape moving in the oppo­
site direction. 

The displacement corresponding to solution (10.8) is, 

U1= ~cp =f' (x1-ctt)+g'·(xt+c1t). ux1 

by (10.2), 

(10.9) 

Expression (10.9) shows that for a fixed t the wave field on each 
plane perpendicular to the x1 axis does not change from point to 
point and is parallel to the x1 axis. If the direction of propagation of 
a plane wave does not coincide with the x1 axis, the displacement 
field is described by more complicated formulas, although the physi­
cal picture remains the same. Let us derive the corresponding for­
mulas. 

Let the direction of propagation of plane longitudinal waves n 
make with the co-ordinate axes angles whose cosines are nk. Denote 
by l the distance measured along a straight line parallel to the direc­
tion n. For simplicity, we consider a wave travelling in one direction. 
Substituting for l its expression l = xknk (k = 1, 2, 3), we obtain 

ep = f (l - c1t) = f (xknk - c1t). 

From (10.2), the components of the displacement vector are obtained 
as 

Uv = nvf' (xknk - c1t) (v = 1, 2, 3). 

2. Spherical longitudinal wave. Consider the case when the longi­
tudinal potential ep in a spherical co-ordinate system depends only 
on the radius r and the time t. The transverse potential 'IJ' is again 
identically zero. Body forces are absent. 

In this case Eq. (10.6) in spherical co-ordinates becomes 

iJ2cp +~~--1- iJ2cp -0 
iJr2 r or c~ iJt2 -

iJ2 1 iJ2 
7fr2 (rep) - 7 fit2 (rep)= 0. 

1 

or 

The solution of this equation is : 

rep = f (r - c1t) + g (r + c1t); 
hence, 

1 1 
ep=- f (r-c1t) +- g (r +c1t). r r 

(10.10) 
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The first term in (10.10) represents a wave diverging from the centre, 
and the second term represents a wave moving towards the centre. 

Consider a wave diverging from the centre. Since the longitudinal 
potential q> depends only on rand t, the only non-vanishing projection 
of the vector u in spherical coordinates (r, 'ljJ, q>) is 

ur= aaqJ =i.f'(r-ctt)-~l(r-ctt). (10.11) 
r r r 

Expression (10.11) indicates that the displacement Ur is directed 
strictly along the radius and does not change from point to point 
if the points lie on the same sphere (for a fixed time t). 

It is important to emphasize that as r tends to zero, Ur tends to 
infinity, and so do the strains and stresses. In general, Lame's equa­
tions are un~uitable to describe a medium undergoing large defor­
mations. But formally these equations admit such solutions and 
they are suitable, and convenient, for describing real processes 
when r is bounded from below. Suppose, for example, that an elastic 
wave is produced by a uniform pressure applied to the surface of 
a spherical cavity of radius r 0 • Formula (10.11) then describes the 
solution in the region r~r0 , and the singularity as r -+- 0 is found 
to be outside the region in which the solution is sought. In this exam­
ple the function I appearing in formula (10.11) is easily determined 
from the given pressure p = p (r0 , t) on the cavity. 

Thus, solution (10.11) has a singularity at r = 0. This singularity 
is called the centre of dilatation. Note that, in contrast to a plane 
wave which does not change its shape during propagation, a sphe-

rical wave does change its shape. Indeed, the coefficients.!. and .!..2 r r 
in formula (10.11) show that the wave amplitudes change with r. 

3. Plane transverse wave. Suppose that body forces are again ab­
sent; the longitudinal potential q> == 0, and the transverse potential 
'¢ has only one non-vanishing component 'ljJ3 , which depends on x1 
and t alone. From (10.7) we obtain 

2 a2'¢s - a2'¢s - 0 
c2 ax~ at2 - • 

Hence 
'll'a = I (x1 - c2t) +I g (x1 + c2t). 

For simplicity, we consider only a wave travelling in the positive 
direction of the x1 axis. The projections of the displacement vector 
are given by the formulas 

u1 = u 3 = 0, u 2 = -1' (x1 - c2t). 

Here the direction of the x1 axis is the direction of propagation of the 
wave. In contrast to a plane longitudinal wave, however, its velocity 
of propagation is c2 , and the direction of its displacement does not 
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coincide with the direction of wave propagation, but is perpendicular 
to it (in the present case the displacement is directed along the x 2 

axis). 
It can easily be verified that the dilatation in this wave, as in 

the general case of a transverse wave, is zero: 

d. f}u2 0 
lVU=-0-= • 

x2 

According to formulas (3.27), the components of the tensor of rota­
tion of particles are obtained as 

ro1 = ro2 = 0, ffia = ; f" (x1- c2t), 

i.e., the particles rotate along an axis parallel to the x3 axis. 

82. RAYLEIGH SURFACE WAVES 

Consider an elastic half-space. Let the ongm of coordinates be 
placed on its surface, with the x1 axis directed along the boundary 
and the x 2 axis into the medium (Fig. 44). It is assumed that body 
forces are absent. We seek a solution of Eqs. (10.6) and (10.7) that is 
independent of x3 (plane strain), varies in time according to a sine 
law, dies off with depth, and satisfies the conditions T 21 = T 22 = 0 

Xz 

.Fig. 44 

on the boundary x3 = 0. When 
X3 x2 = 0, we have 

(10.12) 

This is a problem of free vibrations 
of a half-space. 

The solution is sought in the 
form: 
cp=Ae-cc.x.+iq(x,-ct) (a>O), (10.13) 

lJla = Be- (3x2 +iq(x,- ct) (~ > 0), 
'IJli='¢2=0. 

Here q is a given frequency. The constants a, ~' c (c is the phase 
velocity), A, B must be chosen so that (10.13) will satisfy Eqs. (10.6), 
(10.7) and the boundary conditions (10.12). . . 

Substituting (10.13) in (10.6) and (10.7), we obtam, after stmple 
manipulation, 

/ c2 
a=q 11 1--2, 

cl (10.14) 
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On the basis of solution (10.13) and formula (10.2) we find 

Ut = (iqAe-ax,- PBe-llx.) efq(x,-ct), 

u2 = (-aAe-ax.- iqBe-llx•) eiq(x, -ct>. 
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Consequently, the displacement vector u is in planes perpendicular 
to the x3 axis. 

The displacements on the boundary x2 = 0 are 

u1 =(iqA-PB)e-iq(x,-ct>, u2 = -(aA+iqB)eiq(x,-ct). (10.15) 

By using the formulas for the displacement and Hooke's law, it is 
easy to obtain expressions for the components of the stress tensor 
on the boundary: 

a 22 = M2 { ( 2 - :; ) A + 2i VI' 1 - ~; B} eiq(x,- ct), 

<Tt 2 = llq2 {- 2i V 1 - :; A+ ( 2- :~ ) B} eiq(x,-ct>. 

In order to satisfy the boundary conditions (10.12), it is necessary to 
put 

( ell ) V ell 2--ll- A+2i 1--2-B=O, 
Ca ca 

-2iV1- :; A+(2- :; )B=O. 

(10.16) 

We have obtained a linear homogeneous system of equations in A 
and B. For A and B to be different from zero, the determinant R of 
this systep1 must be set equal to zero: 

or 

where 
R == (2-k)2 -4 V(1- k) (1-yk) = 0, 

ell 
k=-~-· cz 

(10.17) 

This equation determines the phase velocity c; it is important to 
emphasize that the latter is independent of the frequency q, but de­
pends only on the ratio c2/c1• 

Let us show that c2 < c~. Indeed, putting c = c2, we obtain R = 1. 
On the other hand, when c = 0, we have R = 0 and R' = -2 X 
X (1 - y) < 0. It follows from this that Eq. (10.17) has the root 
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c2 
k = 2 < 1 for all values of c2/c1 (Fig. 45). It may be shown that 

cs 
there are no other roots on the interval [0, 1] (the root c = 0 corres-

R ponding to the zero solution not being 
considered). In particular, when A.= fl, i.e., 

1 
when c2/c1 = V:3, 

c = V 2 ( 1- J3 ) c2 • 

From (10.16) we obtain 

I~ c2 D ( c2 ) D A=-2iV 1--- B= 2-- -
c~ q ' c~ q t 

Fig. 45 where D is an arbitrary constant. Then 

u1=DVq[2e-ax•-(2- :; ) e-13x,Jeiq(x,-ct), 

u 2 =iD[2j/(1- :; ) (1- ~;) e-ax•-(2- ~~ )e-13x•Jeiq(x,-ct). 

We have constructed the solution in complex form, but since the 
equations and the boundary conditions of the problem are linear, 
its solution is given by both the real and the imaginary part of the 
resulting expressions; for example, 

u 1=DVq[2e-ax•-(2- ~~) e-13x,]cosq(x1 -ct), (10.18) 

u 2 = - D [ 2 V ( 1 - ~; ) ( 1 - ~~ ) e-ax, -

- ( 2- ~~ ) e-13x. J sin q (x1 -ct). 

Since the coefficients a and ~ [formulas (10.14)1, characterizing 
the attenuation with depth, grow with increasing frequency q, we 
deduce from (10.18) that the longer the wave, the greater is the 
depth at which it has an effect. 

When x2 = 0, from (10.18) we obtain 

(10.19) 

u2=-D[2j/(1-~;) (1-~; )-(2-~; )]sinq(x1-ct). 

/ c2 c2 
u1 = D 11 1--2---2 cos q (x1 -ct), 

Jl c2 c2 

It follows from this that the points of the surface move in ellipses. 
The waves considered above were first studied by Rayleigh 

(J. W. Strutt). They are observed far from the disturbance source. 
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Since the energy carried by these waves is concentrated at the surface 
and is dissipated over the surface, its dissipation is slower than in. 
waves where the energy is dissipated over the volume of the disturbed 
region. During earthquakes, therefore, for an observer remote from 
the epicentre the Rayleigh waves represent the greatest danger. 

83. LOVE WAVES 

Consider an elastic layer of constant thickness H with elastic 
constants A., fl and density p, resting on an elastic half-space with. 

H 

Fig. 46 

parameters A.*, fl*' p*. Assume that the velocity of transverse waves 
in the layer c2 is less than the corresponding velocity c* 2 in the· 
half-space: 

(10.20)· 

Let the x1 axis be taken along the interface, with the x2 axis directed~ 
into the half-space (Fig. 46). 

Let the boundary of the layer x2 = -H be free from load, i.e.,. 

T21 = T 22 = T23 = 0. When x2 = -H, 

and at the interface 

u1 == u~, 
CJ22 = a;z, 

u2 =u;, 
(j12 = (j~2. 

u3 =u:, 
0'2a = a;a 

(10.21)• 

(10.22)' 

(10.23) 

(starred quantities refer to the half-space). In addition we require­
that as x2 tends to infinity the displacements should tend to zero. 
We shall try to find solutions of Eq. (5.5) for the layer and the half­
space such that the only non-zero components are u3 and u: and 
these are independent of x3 • Such a wave, if it exists, is a transverse­
one since div u = 0. 

From Eq. (5.5) (without considering body forces) we obtain 

(10.24} 
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In view of the above assumptions regarding the displacements the 
first pairs of conditions (10.21), (10.22), and (10.23) are automatical­
ly satisfied, and the last give the following results: when x2 = -H, 

(10.25) 

when x2 =0, 

(10.26) 

We shall seek solutions whose dependence on x1 and tis described 
hy a sine law, i.e., 

u3 =I (x2) elq(x,-ct), u: =I* (x2) eiq(x,-ct). (10.27) 

Here q is a given frequency, cis unknown phase velocity about which 
we assume c2 < c < c* 2 , this being consistent with (10.20). 

Substituting (10.27) in Eqs. (10.24), we obtain 

from which 

f" +q2r;.21= 0 ( rJ.= v %-1) I 

I; - q2~21 * = 0 ( ~ = -vr 1- c~22 ) ' 

I* (x2) = ce-r,qx. + Cieflqx •• 

(10.28) 

(10.29) 

For the solution I* (x2) to be bounded we must put C1 = 0, then 

I* (x2) = Ce-flqx.. (10.30) 

It follows from the boundary conditions (10.26) that 

B= C, A=- 11*~ C. (10.31) 
JlCX. 

Substituting (10.27) in (10.25), and using (10.29), we obtain 

A cos ( a.qH) + B sin ( a.qH) = 0 

or, with (10.31), 

tan (a.qH) = ~*! . (10.32) 

Since a. and ~ are expressed in terms of c, c2 , c* 2 by means of formu­
las (10.28), it follows that (10.32) is an equation for the determina­
tion of the ratio clc2 as a function of the parameters qH, c2/c* 2, 

p.*l"". 
Let us show that the roots of Eq. (10.32) exist. We assume the 

parameter 6 = qH to be unknown, and the remaining parameters 
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to be given. As ~ = qH varies from zero to 2:, tan (rxqH) varies from 

zero to infinity, and since the tangent is a continuous function, there 
is a value ~ = ~ 0 for which (10.32) is satisfied. This proves the ex­
istence of the root of Eq. (10.32). 

We write down the final formulas for displacements: 

u3 = C [cos (rxqx2)- ~~ sin (rxqx2) J eiq(x,-ct), 

u: = Ce-qf3x1+iq(x1 -ct). 

The solution obtained represents a wave running in the direction of 
the x1 axis with the velocity c. The displacements in the wave are 
in a plane perpendicular to the direction of propagation and parallel 
to the boundaries ofthe layer. It is essential to note that their phase 
velocity depends on frequency q (see 10.32), i.e., these waves have 
dispersion. 

These waves were first discovered by A. E. Love and therefore 
they are called after his name. Love waves, while differing from 
Rayleigh waves by the presence of dispersion, by their purely trans­
verse character, etc., have many features in common with them. 
As Rayleigh waves, they are usually observed during earthquakes 
at considerable distances from the epicentre. As in Rayleigh waves, 
the energy in Love waves is concentrated near the interface, and 
hence they are attenuated more slowly than other waves. 



CHAPTER XI 

Theory of thin plates 

84. DIFFERENTIAL EQUATION FOR BENDING 
OF THIN PLATES 

A body having the middle surface in the form of a plane and whose 
thickness is sufficiently small compared with its other two dimen­
sions is called a thin plate. Plates find wide application in engineer­
ing; as typical examples we may mention concrete and reinforced 

At x, 
Xz At 

.B, 
Bt 

IJJ 
w 

a: 

Uz 
Fig. 47 Fig. 48 

concrete plates used in structures, for ship hulls. A plane dividing 
the thickness of the plate in half is called its middle plane. We choose 
the axes of co-ordinates x1 and x2 in the middle plane, and the x3 axis 
perpendicular to it. 

If the deflection of the middle plane of a plate is small compared 
with the plate thickness, the following assumptions apply: (1) 
a normal to the middle plane before bending transforms into a nor­
mal to the middle plane after bending; (2) the component a 33 of the 
stress tensor is small compared with the other components of the 
stress tensor; (3) during bending the middle plane of the plate does 
not deform. 

Let the deflection of the middle plane be denoted by w, and the 
displacements parallel to thex1 and x2 axes by u1 and u2 , respectively. 

Consider sections of the plate parallel to the planes x1x3 and x2x3 • 

as shown in Figs. 47 and 48, respectively. Referring to these figures. 
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.and remembering the first assumption, for displacements of a point 
B lying on a normal to the middle plane of the plate we have 

u1 = -x3 tan a, u2 = -x3 tan ~· 

Since the deflection is considered to be small, it follows that 

aw aw 
a = tan a= axl ' ~ = tan ~ = ax2 • 

Taking into account the last relations, we find 
aw 

u1= -xa-a-' xl 

aw 
U2= -Xa-

8x2 · 

From formulas (3.26), with (11.1), we find 

82w 82w 
e22= -xa-

8xi ' 
e12= -xa-8 8 . 

xl Xz 

By virtue of the assumption (1) we have 

ela = e23 = 0. 

(11.1) 

(11.2) 

(11.3) 

On the basis of the assumption (2) we put cr33 = 0; by formulas 
(11.2), Hooke's law becomes 

Denote by M1 , M 2 the bending Fig. 49 
moments, by M 12 = M 21 the 
twisting moments, and by Q1 , Q2 the shearing forces per unit length 
of sections paralJRl to the planes x1x3 and x 2x3 (Fig. 49), i.e., 

h/2 

M 1 = ~ a11x3 dx3, 

-h/2 

h/2 

M 2 = ~ a22xa dxa, 
-h/2 

h/2 

M 12 = M 21 = ~ <J21Xa dxa, 
-h/2 

h/2 

01 = ~ <Ja1 dxa, 
-h/2 

h/2 

02 = ~ <Ja2 dx3• 

-h/2 

(11.5) 
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In spite of the fact that according to (11.3) it is necessary to put 
<1 31 = 2f.te31 = 0, <132 = 2f.te32 = 0, in setting up the equations of 
equilibrium we must take into account the resultant forces (shearing 
forces) Q1 and Q2 due to the shearing stresses <1 31 and <1 23 as quantities 
of the same order of magnitude as the intensity of transverse force p 
and the moments M1 , M 2 , and M 12 • 

Substituting the expressions for <111 , <122 , and a12 in the first three 
relations of (11.5), we find, for a homogeneous plate, 

(11.6) 

Eh3 
where D= 12 (i-v2) is the flexural rigidity of the plate. 

Qz 

Xz 

Fig. 50 

Consider an element cut from the plate by two pairs of planes 
parallel to the co-ordinate planes x1x3 and x2x3 (Fig. 50). For equi­
librium of this element it is necessary that the sum of the forces 
acting on this element and the sum of their moments about the x1 

and x2 axes separately should be equal to zero. Disregarding body 
forces, and neglecting small quantities of the third order, we have 

dx,Qt dx2 + dx,Q 2 dx1 + p dxt dx2 = 0, 

dx,Mt 2 dx2 - dx,M 2 dxt + Q2 dxt dx2 = 0, 

dx,M21 dx1 - dx,Mt dx2 +Qt dx2 dx1 = 0. 
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Here dxk is the partial differential of a function that follows it with 
respect to the xk co-ordinate. After some manipulation we find 

(11. 7) 

(11.8) 

(11.9) 

Inserting relations (11.6) in (11.8) and (11.9), we have, for a plate 
of constant thickness, 

a ( a2w a2w ) 
Q1 = -D ax ax2 + ax2 ' 

1 1 2 

a ( a2w a2w ) 
02 = - D ax ax2 + ax2 · 

2 1 2 

(11.10) 

Substituting the expressions for Q1 and Q 2 in Eq. (11. 7), we obtain 

a4w + 2 a4w + a4w p 
axt ax~ ax~ ax~ = 75 · 

This equation was first derived by Sophie Germain. 
Thus, the problem of a plate bent by a transverse force p 

uced to the integration of Eq. (11.11). 

85. BOUNDARY CONDITIONS 

(11.11) 

is red-

Let us establish the boundary conditions for a rectangular plate 
corresponding to several modes of fixing its edges; the x1 and x2 axes 
are directed parallel to the edges of the plate. 

(a) Clamped edge. If the edge x1 = 0 of the plate is clamped, the 
deflection at the points of this edge is zero and the plane tangential 
to the deflected middle surface coincides with the middle plane of 
the plate before bending: 

Wjx,=O = 0, aw I = 0. 
axl x1=0 

(11.12) 

(b) Simply supported edge. If the edge x1 = 0 of the plate is sup­
ported and is free to rotate, the deflection and the bending moment 
at this edge must be zero: 

Wjx,=o=O, 

Since along the edge x1 = 0 we have w = 0, it follows that 

aw I a2w I Wix,=o=- =--2 =0. ax2 Xj=O ax2 x,=O 
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.Consequently, the boundary conditions for a simply supported edge 

.are 

Wjx,=O = 0, (11.13) 

(c) Free edge. If the edge x1 = 0 is free, it is necessary, at first 
:glance, to require that the bending moment M1 , the twisting moment 
M12, and the shearing force Q1 along it should be zero 

Mtlx,=O = 0, M12lx,=O = 0, Otlx,=O = 0. (11.14) 

Thus, in this case there are three boundary conditions whereas 
;there were two of them in the other cases. Conditions (11.14) were 

I rtx. Mtz 

I 

Xz ~tz+dx2 Mt&a'~~ L.----4. '--1-

1 MtzdXz 
I dXz 

Fig. 51 

obtained by S. D. ,Poisson. 
Later G. Kirchhoff showed 
that two boundary conditions 
sufficed to determine com­
pletely the deflection w satis­
fying Eq. (11.11) because two 
Poisson's conditions relating 
to the twisting moment M12 

and the shearing force Q1 

may be combined into one 
boundary condition. Conse­
quently, Poisson's system of 
boundary conditions (11.14) for 
Sophie Germain's equation 
( 11.11) is overdetermined. 

Consider two adjacent elements of length dx2 at the edge x1 = 0 
~Fig. 51). The twisting moment per the element of length dx 2 is 
Mr!2dx2; it may be replaced by two shearing forces equal to M12 and 
acting at a distance dx2 apart; in Fig. 51 these forces are shown by 
.solid vectors. For the next element dx 2 the twisting moment 
(M12 + dx,M12) dx2 may also be replaced by two shearing forces, 
M12 + dx,M12 ; they are shown by dashed vectors. Thus, we find 
that the distribution of twisting moments M12 is statically equiva-

lent to the distribution of shearing forces of intensity Q; = - 8
8M 12 • 

x2 
·On the basis of Saint Venant's principle this replacement will have 
an effect on the state of stress in the immediate vicinity of the edge, 
but the state of stress in the remaining part of the plate will remain 
'Unchanged. 

Consequently, instead of the last two in the boundary conditions 
( 11.14) for a free edge of a plate we obtain one condition: 

(11.15) 



85. Boundary Conditions 273 

On the basis of relations (11.6) and (11.10) for a free edge the boun­
dary conditions (11.15) and M1 lx,=o = 0 may be expressed as 

aaw + (2 ) aaw" I -0 
iJxf -'V iJX1 ox~ x1=0- 1 

(11.16) 

In the case of a plate with a curved edge the co-ordinate axes at 
a point of the edge are taken to coincide with the normal n. and the 
tangent -r, as shown in Figs. 52 and 53. The relations between Mn, 

Mzt 

Mz x, 

~ 
x, 

f 

X 

Xz 
f' 

Fig. 52 Fig. 53 

Mn't• On and M17 M12, 01 , 02 a:re determined from the conditions 
for the equilibrium of an element of the plate, such as represented 
in Figs. 52 and 53: · 

Mn= M 1 cos2 a+M2 sin2 a-M12 sin 2a, 

M M 22 + M1-M2 . 2 n't= 12 cos a 2 Sin a, 

On= Ot cos a +02 sin a. 
When the curved edge of the plate is clamped, 

fJw W=O, a;=O; 

in the case of the simply supported edge 

W = 0, Mn = 0. 
If the edge of the plate is free, then 

Mn=O, 

Where the term iJMM • b . d . "I I t F" 51 - --a;r- IS 0 tame Simi ar y 0 Ig. . 

18-088'< 

(11.17) 

(11.18) 

(11.19) 
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86. BENDING EQUATION FOR A PLATE REFERRED 
TO POLAR CO-ORDINATES 

In studying the bending of a circular plate it is advantageous to 
use a polar system of co-ordinates (r, t:p). In this co-ordinate system, 
on the basis of the formulas expressing the relation between polar 
and Cartesian co-ordinates 

t:p = arc tan ~ 
XI ' 

the harmonic operator takes the form 

82 18 182 

~ = 8r2 + r a; + 7 8cp2 • 

(11.20) 

(11.21) 

Consequently, the bending equation for a plate (11.11) in a polar 
co-ordinate system is written as 

(11.22) 

If the load p is distributed symmetrically about the centre of the 

Fig. 54 

plate, the deflection w depends only on the polar radius. In this case 
Eq. (11.22) becomes 

( d2 1 d)(d2 1 d) p Tr2+r-ar d;:2+r-ar w=n· 
Let the b,()nding moments acting at sections with normals r and t:p 

be denoted by Mr and M <r• respectively, and the twisting moment by 
Mr<r· These moments, as usual, are calculated per unit length. Sup­
pose that the ox1 axis coincides with the polar radius r; then the 
moments Mr, M <r• and Mr<r have the same values as the moments 
M1 , M 2 , M12 (Fig. 54). Thus, transforming from Cartesian to polar 
co-ordinates by means of (11.20), and putting t:p = 0 in formulas 
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f) [ ( [)2 1 8 1 ()2 ) J 
Qr= -Da; iJr2 +-,:-a;:-+-;:2 iJq>2 W ' 

1 a [ ( a2 1 a 1 a2 ) J Q~ = -D-r 7ifi ""8r2 + 7 a;+'?"" acp2 w . 

If the edge of a circular plate of radius a is clamped, then 

wlr=a=O, ~~ =0; or r=a 

if it is simply supported, then 

wi r=a= Mr I r=a= 0; 

if it is free, then 

M I =0, 
r r=a 

( 1 aM~) Qr---- =0. r oq> r=a 

The general solution of Eq. (11.22) is 

W = W 0 + W11 

(11.24) 

(11.25) 

(11.26) 

(11.27) 

(11.28) 

where w0 is a particular solution of Eq. (11.22), w1 is the general solu­
tion of the homogeneous equation 

( 82 1 a 1 a2 ) ( a2 1 a 1 a2 ) """8r"2+;:-a;:-+-;:2 iJcp2 iJr2 +-,:-a;:-+-;:2 oq>2 W1=0. (11.29) 

The general solution of this equation is given by A. Clebsch in the 
form 

00 00 

w1 = R~01 (r) + 2J R~> (r) cos nt:p + 2j R~> (r) sin nt:p. (11.30) 
n=1 n=1 

The solution R~o> (r), which is independent of the angle t:p, repre­
sents the symmetrical bending of a circular plate. Substituting 
this solution in Eq. (11.29) gives 

( _!!__ i_ ..!£. _ ~) ( d2 R~"l i_ dR~"l _ .!!!.._ R<"l) = O 
dr2 + r dr r2 dr2 + r dr r2 n ' 

18* 
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where k = 0, 1, 2. The general solution of this equation for n = 0 is 

Rb0 > = A0 + B 0r2 + C0 ln r + D 0r 2 ln r; (11.31) 
for n= 1 

(11.32) 

for n~2 

R~k) = A~k)rn + B~k)r-n +C~k)rn+ 2 +D~>rn+ 2 • (11.33) 

The constants of integration A~~<>, B~>, c~~<>, and D~n> (k= 1, 2) 
are determinedrfrom the fixing conditions for the edge of the plate. 

87. SYMMETRICAL BENDING OF A CIRCULAR PLATE 

Consider the transverse bending of a circular plate of radius a under 
a uniformly distributed load p when the plate is (1) simply supported 
along the edge and (2) clamped along the edge. 

From the axial symmetry of the bending and from Clebsch's solu­
tion (11.30), the solution of the problem is sought in the form 

W= W 0 +R~o> (r), 

where w 0 is a particular solution of the equation 

( a2 1 a)(a2 1 a) p 8r2+-ra; 8r2+-ra; w=n· (11.34) 

which follows from (11.22); this solution is given by 

Wo= 6:D r". 

For the solution R~o> (r) determined by formula (11.31) to be bounded, 
we must take C 0 = 0; then 

w= A0 +B0r2 +D0r 2 ln r + 6fn r 4• 

On the basis of formula (11.24) we have, at any section r, 

Qr = - D [ 2~ r + 4D0 : J. 
On the other hand, Or=- ~ r. Hence, D0 = 0. Thus 

4 +B 2 ' p 4 w=- o or I 64D r . (11.35) 

. The coefficients A 0 , B 0 are determined from the fixing condition for 
the plate along the edge. For the case (1) we have, when r = a, 

w=O, 
02w 1 ow 
~+v--~-=0. ur r ur 

(11.36) 
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For the case (2), when r =a, 

w=O, 

277 

(11.37) 

Substituting (11.35) in conditions (11.36) and (11.37), we obtain 
a system of linear algebraic equations: 

for the case (1) 

A0 +B0a2 + 6fn a4 = 0, 

280 + 1~~ a2 + v ( 2B0 + i:D a2 ) = 0, 

for the case (2) 

A0 + B0a2 + 6-fn a"'= 0, 

2B0a + i:D a3 = 0. 

After determining the constants A 0 , B 0 , we finally obtain: 
for the case (1) 

W=-P- (a2- r2) (5+v a2-r2) 
64D 1+v • 

for the case (2) 

w= 6fn (a2-r2)2. 

From the first formula of (11.4) for the case (1) 

3 (3+v) px8 ( 2 2) 
C1rr = 32 ha a - r . 

This stress at the centre of the plate (r = 0) is 

C1 _ 3 (3+v) a2px3 
rr- 32 h8 

According to the exact solution, the stress at the centre of the plate 
is, by formula (9. 77), 

3(3+v) a2px3 +2+v { xJ _!!!.) 
C1rr 32 h8 8 p hB 5 h • 

Comparing the last two formulas, we notice that the additional 
term appearing in the exact solution is small if the thickness of the 
plate is small compared with the radius. Thus, when 'V = 0.25 and 

2h 1 2h 1 2h 1 . . 
Xs = h, for a = 20 , a = fO, a = 5 the additiOnal term is, 

respectively, 0.94, 3.8, and 15 per cent of the leading term. 
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