
This document downloaded from 
vulcanhammer.net			   vulcanhammer.info 

Chet Aero Marine

Don’t forget to visit our companion site 
http://www.vulcanhammer.org

Use subject to the terms and conditions of the respective websites.

http://www.vulcanhammer.net
http://www.chet-aero.com
http://www.vulcanhammer.org
http://www.vulcanhammer.info














AN ELEMENTARY TREATISE ON

COORDINATE GEOMETRY OF THREE DIMENSIONS



MACMILLAN AND CO., Limited

LONDON • BOMBAY • CALCUTTA • MADRAS
MELBOURNE

THE MACMILLAN COMPANY
MEW YORK • BOSTON • CHICAGO

DALLAS • SAN FRAN'CISCO

THE MACMILLAN CO. OF CANADA, Ltd

TORONTO



AN ELEMENTARY TREATISE

ON

COORDmATE GEOMETRY
OF THREE DIMENSIONS

BY

ROBERT J. T. BELL, M.A., D.Sc.

LECTURER IN IIATHEMATICS AND ASSISTANT TO THE I'UOFESSOR OF MATHEMATICS

AN THE UNIVERSITT OK GLASGOW

MACMILLAN AND CO, LIMITED

ST. MARTIN'S STREET, LONDON
1923



Vk

COPYRIGHT

First Edition 1910.

Second Edition 1912. 1914, 1918, 1920, 1923

PRINTED IN (JREAT BRITAIN



PREFACE

The present elementary text-book embodies the course in

Solid Coordinate Geometry which, for several j^ears, it has

been part of ray duties as Lecturer in Mathematics at the

University of Glasgow to give to two classes of students.

For the student whose interests lie in the direction of

Applied Mathematics, the book aims at providing a fairly

complete exposition of the properties of the plane, the

straight line, and the conicoids. It is also intended to

furnish him with a book of reference which he may consult

when his reading on Applied Mathematics demands a know-

ledge, say, of the properties of curves or of geodesies. At the

same time it is hoped that the student of Pure Mathematics

ma}^ find here a suitable introduction to the larger treatises

on the subject and to works on Differential Geometry and

the Theory of Surfaces.

Tlie matter has been arranged so that the first ten

chapters contain a first course which includes the properties

of conicoids as far as coufocals. Certain sections of a less

elementary character, and all sections and examples that

involve the angle- or distance-formuiae for oblique axes

have been marked with an asterisk, and may be omitted.

Chapter XL has been devoted to the discussion of the

General Equation of the Second Degree. This order of

arrangement entails some repetition, but it has compensat-

ing advantages. The student who has studied the special

forms of the equation finds less difficulty and vagueness in

dealing with the general.

I have omitted all account of Homogeneous Coordinates,

Tangential Equations, and the method of Reciprocal Polars,

30387



vi PREBACE

and have included sections on Ruled Surfaces, Curvilinear

Coordinates, Asymptotic Lines and Geodesies. It seemed

to be more advantageous to make the student acquainted

with the new ideas wliich these sections involve than to

exercise him in the application of principles with which his

reading in the geometry of two dimensions must have made
him to some extent familiar.

In teaching the,subject constant recourse has been had to

the treatises ofC^mith, Frost and Salmon, and the works of

Carnoy, de Longchamps and Niewenglowski have been

occasionally consulted. My obligations to these authors,

which are probably much greater than I am aware of, are

gratefully acknowledged. I am specially indebted to Resal,

whose methods, given in his Theorie des Surfaces, I have

found very suitable for an elementary course, and have
followed in the work of the last two chapters.

The examples are very numerous. Those attached to the

sections are for the most part easy applications of the theory

or results of the section. Many of these have been con-

structed to illustrate particular theorems and others have

been selected from university examination papers. Some
have been taken from the collections of de Longchamps,
Koehler, and Mosnat, to whom the author desires to acknow-
ledge his indebtedness.

I have to thank Profs. Jack and Gibson for their kindly

interest and encouragement. Prof. Gibson lias read part of

the work in manuscript and all the proofs, and it owes much
to his shrewd criticisms and valuable suggestions. My
colleague, Mr. Neil M'Arthur, has read all the proofs and
verified nearly all the examples

;
part of that tedious task

was performed by Mr. Tliomas M. ]\IacRobert. I tender ni}^

cordial thanks to these two gentlemen for their most efficient

help. I desire also to tliank Messrs. MacLehose for the

Bxcellence of their printing work.

ROBT. J. T. BELL.

Glasgow, September, 1910.



PREFACE TO THE SECOND EDITION

In this edition a few alterations have been made, chieHy in

the earlier part ot* the book. One or two sections have been

rewritten and additional figures and illustrative examples

have been inserted.

R J. T. B.

June, 1912
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CHAP'IEK 1.

SYSTEMS OF COORDINATES. THE EQUATION
TO A SURFACE.

1. Segments. Two .segments AB and CD are said to

have the same direction when they are colhnear or parallel,

and when B is on the same side of A as D is of C If AB
and CD have the same direction, BA and CD have opposite

directions. If AB and CD are of the .same length and in

the same direction they are said to be equivalent segments.

2. If A, B, C, ... N, P are any points on a straight

line X'OX, and the convention is made that a segment of

the straight line is positive or negative according as its

direction is that of OX or OX', then we have the following

relations

:

AB=-BA; OA+ AB = OB, or AB = OB-OA,
or OA+ AB+ BO = 0;

OA + AB + BC+... NP=:OP.

If .i\, .«., are the measures of OA and OB, ie. the ratios of

OA and OB to any positive segment of unit length, L, then

OA = ii:^L, OB = a\,L,

and AB = (a'.3-.»\)L,

or the measure of AB is .r., — x^

.

3. Coordinates. Let X'OX, Y'OY, Z'OZ be any three

fixed intersecting lines which are not coplanar, and whose

positive directions are chosen to be X'OX, Y'OY, Z'OZ ; and let

planes through any point in space, P, parallel respectively

to the planes YOZ, ZOX, XOY, cut X'X, Y'Y, Z'Z in A, B, C,

(tig. 1), then the position of P is known when the segments
E.G. A 9
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OA, OB, OC are given in magnitude and sign. A con-

struction for P would be : cut off from OX the segment OA,

draw AN, through A, equivalent to the segment OB, and

draw NP, through N, equivalent to the segment OC. OA,

OB, OC are known when their measures are known, and

these measures are called the Cartesian coordinates of P

with reference to the coordinate axes X'OX, Y'OY, Z'OZ.

The point O is called the origin and the planes YOZ, ZOX,

XOY, the coordinate planes. The measure of OA. the

segment cut off from OX or OX' by the plane through P

parallel to YOZ, is called the a;-coordinate of P ;
the measures

of OB and OC are the y and ^-coordinates, and the symbol

P, {x, y, z) is used to denote, " the point P whose coordinates

are x, y, z." The coordinate planes divide space into eight

parts called octants, and the signs of the coordinates of a

point determine the octant in which it lies. The following

table shews the signs for the eight octants

:

Octant
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It is generally most convenient to choose mutually

perpendicular lines as coordinate axes. Tlie axes are then
" rectangular," otherwise they are " oblicjue."

Ex. 1. SIsetch ill a figure the positions of tlie points :

(H, 0, 3), (-2,-1, 5), (-4,-2, 0), (0, 0, -6).

Ex, 2. What is the locus of the point, (i) whose .i--cooi-dinate is 3,

(ii) whose .r-coordinate is 2 and whose _?/-coordinate is — 4 ?

Ex. 3. What is the locus of a ])()int whose coordinates satisfy
(i) ,r= and ij=

; (ii) x= a and ^ = ; (iii) x= a and if
= h

;
(iv) z=c

iiwA j/ = h'l

Ex. 4. If OA = a, OB = /;, OC = c, (fig. 1), what are the equations to
the planes PNBM, PMCL, PNAL? What equatii^is are satisfied by
the coordinates of any point on the line PN ]

4. Sign of direction of rotation. By assigning positive

directions to a system of rectangular axes X'X, Y'Y, Z'Z, we
have tixed the positive directions of the normals to the

coordinate planes YOZ, ZOX, XOY. Retaining the usual

convention made in plane geometry, the positive direction

of rotation for a ray revolving about O in the plane XOY
is that given by XYX'Y', that is, is counter-clockwise, if the

clock dial be supposed to coincide with the plane and front

in the positive direction of the normal. Hence to fix the

positive direction of rotation for a ray in amj plane, we
have the rule : if a clock dial is considered to coincide

- ivith the plane and front in the positive direction of the

normcd to the plane, the positive direction of rotcdion

fyr a ray revolving in the plane is counter-clockwise.

Applying this rule to the other coordinate planes the

positive directions of rotation for the planes YOZ, ZOX
are seen to be YZY'Z', ZXZ'X'.

The positive direction of rotation for a plane can also be found by
considering that it is the direction in which a right-handed gimlet or
corkscrew has to be turned so that it may move forward in the positive
direction of the normal to the plane.

Ex. A plane ABC meets the axes OX, OY, OZ in A, B, C, and
ON is the normal from O. If ON is chosen as the positive direction
of the normal, and a point P moves round the perimeter of the
triangle ABC in the directicui ABC, what is the sign of the direction
of rotation of NP when OA, OB, CO are (i) all positive, (ii) one
negative, (iii) two negative, (iv) all negative?
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5. Cylindrical coordinates. If x'ox, y'oy, z'oz, are

rectangular axes, and PN is the perpendicular from any

point P to the plane XOY, the position of P is determined

if ON, the angle XON, and NP are known. The measures

of these (quantities, u, 0, z, are the cylindrical coordinates

of P. The positive direction of rotation for the plane XOY
lias been defined, and the direction of a ray originally

coincident with OX, and then turned through the given

angle 0, is the positive direction of ON. In the figure,

u, (j>, z are all positive.

If the Cartesian coordinates of P are x, y, z, those of N

are x, y, 0. If we consider only points in the plane XOY,

the Cartesian coordinates of N are x, y, and the polar, u, (j>.

Therefore

x = u cos 0, y = u sin
; u? = x^-{- y-, tan = yjx.

6. Polar coordinates. Suppose that the position of the

plane OZPN, (fig. 2), has been determined by a given value

of 0, then we may define the positive direction of the

normal through O to the plane to be that which makes an

angle + 7r/2 with X'OX. Our convention, (§ 4), then fixes

the positive direction of rotation for a ray revolving in the

plane OZPN. The position of P is evidently determined

when, in addition to 0, we are given r and d, the measures
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oL' OP and £.ZOP. The (juantitics r, 6, arc the polar

coordinates of P. The positive direction of OP is tliat of a

ray ori<^inally coincident with OZ and then turned in the

phme OZPN through tlie given angle 6. In the figure, OM
is the positive direction of the normal to the plane OZPN,

and r, 6, <p are all positive.

If we consider P as belonging to the plane OZPN and OZ

and ON as rectangular axes in that plane, P has Cartesian

coordinates z, u, and polar coordinates r, 0. Therefore

= 7'cos0, u = r sin 9; r^ = z^-\-ii", tan6 = ~.

But if P is (.x-, y, z), a;= ucos0, y = UH\n(p.

Whence ;» = r sin cos 0, i/ = r sin sin 0, s = rcos0;

r- = X-+ 2/^+ 2 , tan Q = ^-
, tan (/> = -.

Cor. If the axes are rectangular the distance of {x, y, z)

from the origin is given by Jx'^+ y'^+ zi

Ex. 1. Draw figures shewing the positions of the points

(^.-I'l> ^•T>-|>(-^--|'-|)- (^-I'-t)
What are the Cartesian coordinates of the points ?

Ex. 2. Find the polar coordinates of the points (3, 4, 5), ( - 2, 1, - 2),

so that r may be positive.

Ans. (5V2, J tan-'l), (.3, J
+ tan-i^, | + tan-i2),

where tan"i-, tan"'^:^

—

'-, tan"i2 are acute angles.
3 5

Ex. 3. Shew that the distances of the point (1, 2, 3) from the

coordinate axes are Vl3, \/l6, ^5.

Ex. 4. Find (i) the Cartesian, (ii) the cylindrical, (iii) the polar

equation of the sphere whose centre is the origin and radius 4.

/Ih.s. (i) .r-+,?/-^+ 22= 16, (ii) u'^ + z^=l(i, (iii) r= 4.

Ex. 5. Find (i) the polar, (ii) the cylindrical, (iii) the Cartesian

e([uation of the right cii'cular cone whose vortex is O, axis OZ, and
seniivertical angle a.

Ans. ([) $= a, {n)u= ztiiuu, (iii) .>;'-^+y- = 3-tan-a.

Ex. 6. Find (i) the cylindrical, (ii) the Cartesian, (iii) the polar

equation of the right circular cylinder whose axis is OZ and radius a.

Ans. (i) u= a, {u) .v-+/r = a'\ (iii) r sin ^= «.



COORDINATE GEOMETRY [en. 1.

Ex. 7. Find (i) the polar, (ii) the Cartesian equation to the ])lane

through OZ which makes an angle a with the plane ZOX.

Ans. (i) <^= a, (ii) .?/=.r tan a.

7. Change of origin. Let x'ox, y'oy, z'oz ; ol'cool, fi'w^,

y'(oy, (tig. 3), be two sets of parallel axes, and let any point P

be {x, y, z) referred to the first and (^, ?/, ^) referred to the

second set. Let w have coordinates a, h, c, referred to

OX, OY, OZ. NM is the line of intersection of the planes

/3(oy, XOY, and the plane through P parallel to /Swy cuts

OLcoh in GH and XOY in KL.

Then OL = OM + ML = OM + a)H,

therefore x = a+ ^. Similarly, y = h+ )], z = c+ ^;

whence ^=x — a, i] = y — b, ^=z— c.

Ex. 1. The coordinates of (3, 4, 5), ( - 1 - 5, 0), referred to par,

axes through (-2,-3, -7), are (5, 7, 12), (1, -2, 7).

Ex. 2. Find the distance between P, {x^, y^, z^) and Q, {.v^, y^
the axes being rectangular.

Change the origin to P, and the coordinates of Q become x^-

y<i-yx, z^-z^; and the distance is given by

{{x^-x,)'^Hy,-ihYHH-H^'Y-

Ex. 3. The axes are rectangular and A, B are the points (3, A

(-1, 3, -7). A variable point P has coordinates .r, ?/, z. Find

equations satisfied by .r, y, z, if (i)PA = PB, (ii) PA2+PB2 =

(iii) PA--PB^ = 2F.

Am. (i) 8,^ + 2^ + 242+ 9 = 0,

(ii) 2.7;2+ 2y2+ 2i-2-4.r-14y + 42+ 109= 2A;2,

(iii) 8,r + 2//+ 24: + 9 + 2/(-2 = 0.

illel

a

, r.),

the

2F,
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Ex. 4. Find the centre of the s))heie through the four points

(0, 0, 0), (0, -1, U), (1, 0, 0), (0, 0, 4). Ans. {\, 1, 2).

Ex. 5. Find the ecjuation to the sphere whose centre is (0, 1, - 1)

and radius 2. Ans. x-+y--[-z^-'i)/+ 'Zz= '2.

Ex. 6. Trove that .(,--y + s'-- 4j;+ 2/y + 6i:+ 12 = represents a
right circuhir cone whose vertex is the point (2, 1, -3), whose axis

is parallel to OY and whose semivertical angle is 45°.

Ex. 7. Prove that x^+y'+ z- -2x+ \ij -Qz-2 = represents a
sphere whose centre is at (1, —2, 3) and radius 4.

8. To find the coordinates of the 'point which divides the

-join, of P, (.t-p y^, z^) and Q, (x^, ?/.,, Zo) in a given ratio,

X:l.

Let R, {.v, y, z), (%. 4), be tlie point, and lot planes through

Pj Q> R; parallel to the plane YOZ, meet OX in P', Q', R'.

Then, since three parallel planes divide an^^ two straight

lines proportionally, P'R' : PQ' = PR : PQ = X : A + 1. Therefore

x— x. X , \x^-\-x,
^= r—-rr, and x= ..^ T

•

x^-x^ X+ 1 X+ 1

Similarly,
^-"Y+T' ^- X+ 1

These give the coordinates of R for all real values of X,

positive or negative. If X is positive, R lies between P and

Q : if negative, R is on the same side of both P and Q.

Cor. The mid-point of PQ is (^^', '^^^~, -'4^-).
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Ex. 1, Find the coordinates of the points that divide the join of

(2, - 3, 1), (3, 4, - 5) in the ratios 1 : 3, - 1 : 3, 3 : - 2.

^"-(M-D^ (I -¥.4 <^. -.-")

Ex. 2. Given that P, (3, 2, -4) ; Q, (5, 4, -6) ; R, (9, 8, -10) are

coUinear, find the ratio in which Q divides PR. Why can the ratio be

found by considering tlie ^.--coordinates only ? Ans. 1 : 2.

Ex. 3. A, (.i'l, ?/i, ?,) ; B, (^-2, ?/2, 22) ; C, (.V3,
7/s, 23) ; D, {.v^, y^, z^

are the vertices of a tetrahedron. Prove that A', the centroid of the

triangle BCD, has coordinates

3 ' 3 ' 3

If B', C, D' are the centroids of the triangles CDA, DAB, ABC, prove

that AA', BB', CC, DD' divide one another in the ratio 3 : 1.

Ex. 4. Shew that the lines joining the mid-points of opposite

edges of a tetrahedron bisect one anothei', and that if they be taken

for coordinate axes, the coordinates of the vertices can be written

(a, 6, c), (fl, - 6, - c), ( - a, 6, - c), ( - a, - i, c).

Ex. 5. Shew that the coordinates of any three points can be put
in the form (a, i, 0), (a, 0, c), (0, 6, c), a fourth given point being taken

as origin.

Ex. 6. The centres of gravity of the tetrahedra ABCD, AB'C'D',
(Ex. 3), coincide.

Ex. 7. Find the ratios in which the coordinate planes divide the

line joining the points ( - 2, 4, 7), (3, - 5, 8). Am. 2:3, 4:5, -7:8.

Ex. 8. Find the ratios in vi'hich the sphere A-^Tf ?/+2;2= 504 divides

the line joining the jDoints (12, - 4, 8), (27, -9, 18).' Ans. 2:3, -2:3.

Ex. 9. The sphere .r2+^2+22-2.^+ 6?/+ 14^+3= meets the line

joining A, (2, -1,-4); B, (5, 5, 5) in the points P and Q. Prove
that AP:PB=-AQ:QB = 1:2.

Ex. 10. A is the point (-2, 2, 3) and B the point (13, -3, 13).

A point P moves so that 3PA = 2PB. Prove that the locus of P is

the sphere given by

x'^^-y- + 2'- + 28,r - ] 2y+ 10^ - 247 = 0,

and verify that this s])here divides AB internally and externally in

the ratio 2 : 3.

Ex. 11. From the point (1, -2,3) lines ai'o drawn to meet the
sphere ./•-'+ //--!-.: '- = 4, and they arc divided in the ratio 2:3. Prove
that the ])(>ints of section lie on the sphere

n.,'- + 5vHn---C,r + 12y-18-+22 = 0.

9. The equation to a surface. A\)ij cquniion iiivolviru/

one or more of tJte current coordinates of a variable

point represents a surface or system of surfaces which

is the locus of the variable point.
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The locu.s of all points whose ;t;-coorcli nates are ecjual

to a constant a, is a plane parallel to the plane YOZ, and

the equation x — a. represents that plane. If the equation

/(a;) = has roots o.^, oc,, 0C3, ... oc,,, it is equivalent to the

equations x = cl^, x = (X.,, ... x = a.,,, and therefore represents

a system of planes, real or imaginary, parallel to the plane

YOZ.

Similarly, /(/y) = 0, f(z) = represent sj^stems of planes

parallel to ZOX, XOY. In the same way, if polar coordinates

be taken, f(r) = represents a system of spheres with a

common centre at the origin, /(^) = 0, a system of coaxal

right circular cones whose axis is OZ, /((/>) = 0, a sj'stem of

planes passing through OZ.

Consider now^ the equation f{x, y) = 0. This equation is

satisfied by the coordinates of all points of the curve in the

plane XOY whose two-dimensional equation is f{x, y)= 0.

Let P, (tig. •")), any point of the curve, have coordinates

Xq, 7/0, 0. Draw tinough P a parallel to OZ, and let Q be

any point on it. Then the coordinates of Q are .^'^, y^^, r„,

and since P is on the curve, /(Xq, y^) = (), thus the coordinates

of Q satisfy the equation f(x, //) = (). Therefore the co-

ordinates of every point on PQ satisfy the equation and

every point on PQlies on the locus of the equation. But

P is any point of the curve, tlierefore the locus of the

equation is the c^dindgr generated by straight lines drawn



10 COOEDINATE GEOMETRY LCH. !.

parallel to OZ through points of the curve. Similarly,

f{y, 0) = O, f{z, a;) = represent cylinders generated by
parallels to OX and OY respectively.

Ex. What surfaces are represented by (i) x'^+y^= a'^^ {\\) i/"= 4(u\
the axes being rectangular ?

Two equations are necessary to determine the curve in

the plane XOY. The curve is on the cylinder whose equa-

tion is/(x, y) = and on the plane whose equation is s = 0,

and hence " the equations to the curve " are f(x, y) = (),z = 0.

Ex. What curves are represented by

(i) x'^+f= d", 2= 0; (ii) x"-+f = d",z= b; (iii) z^= 4ax, y=^G%

f(x,y,^) = o

(The surface shewn is represented by the equation

Consider now the equation /(.«, y, c) = 0. I'he equation

z = h represents a plane parallel to XOY, and the equation

fix, y, k) = represents, as we have just proved, a C3'linder
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oenerated by lines parallel to OZ. The equation /(«, y, k) =
is satisfied at all points where f{x, y, z) = and z = k are

simultaneously satisfied, i.e. at all points common to the

plane and the locus of the equation /(cc, y, s) = 0, and hence

/{.'•, y, k) = represents the cylinder generated by lines

parallel to OZ which pass through the common points, (tig. 6).

The two ecjuations f(x, y, Jc) = 0, z = k represent the curve

of section of the cylinder by the plane z = k, which is the

curve of section of the locus by the plane z = k. If, now,

all real values from — x to +oo be given to k, the curve

fix, y, k) = 0, z = h, varies continuously and generates a

surface. The coordinates of every point on this surface

satisfy the equation f{x, y, z) = 0, for they satisfy, for some

value of k, f{x, y, k)= 0, z=^k; and any point (x^, y.^, z^

whose coordinates satisfy f{x, y, z) = lies on the surface,

for the coordinates satisfy f{x, y, z^ = 0, z= z^, and there-

fore the point is on one of the curves which generate the

surface. Hence the equation f{x, y, z) = Q represents a

surface, and the surface is the locus of a variable point

whose coordinates satisfy the equation.

Ex. 1. Discuss the form of the surface represented by

.r2/a2 \-)fi'h'^+ z'^jc^= 1

.

The section by the plane z= k has equations

.-= k, x'^la? ^f'l})^= 1 - F/f2

The section is therefore a real ellipse if /-<c-, is iiuaij;iuary if /•->f-,

and reduces to a point if /(,•'' = c-. The surface is therefore generated
by a variable ellipse whose plane is parallel to XOY and whose centre

is on OZ. The ellipse increases from a point in the plane z= -c to

the ellipse in the plane XOY which is given by x-lcfi+ iflh'^=\, and
then decreases to a point in the plane z= c. Tlie surface is the
ellipsoid, (fig. 29).

Ex. 2. What surfaces are repiesented l)y the equations, referred

to rectangular axes,

(i) .r2+ ?/2+ 22= a2^ (ii) ,r2+ ?/= 2as?

Ex. 3. Discuss the forms of the surfaces

' a- h' c- ' ^ '' a' b- c^

(i) The hyperboloid of one sheet (fig. 30).

(ii) The hy})eiboloid of two sheets (lig. 31).
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Ex. 4. What loci are represented by

(i) f{n) = 0, (ii) J\z)= 0, (iii) f{r, 6)= 0,

(iv)m ^)= 0, (v) /{r, (^)= 0, (vi) f{u, ct>)=0 1

Ans. (i) A system of coaxial right cylinders
;

(ii) a system of planes

parallel to XOY
;

(iii) the surface of revolution generated by rotating

the curve in the plane ZOX whose polar equation is /(r, 0) = about

the 2-axis
;
(iv) a cone whose vertex is at O

;
(v) a surface generated

by circles whose planes pass through OZ and whose dimensions vary

as the planes rotate about OZ ;
(vi) a cylinder whose generators are

parallel to OZ, and whose section by the plane z= is the curve

f{u, c^)= 0.

10. The equations to a curve. The two equations

f^{x, y, s) = 0, f.2{x, y, z) = Q represent the curve of inter-

section of the two surfaces given by f^{x, y, z) = and

f.,{x, y, z) = 0. If we eliminate one of the variables, z,

Fig. 7 shews part of the curve of intersection of the sphere

x'^ + y'^ + z'^ = a? and the right circular cylinder x" + y- = ax. The

cylinder which projects the curve on the plane .t= is also shewn.

Its equation is n?('if-z'^)^-z^^O. The projection of the curve

on the plane ZOX is the parabola whose equations are 7/= 0,

z- = a{a-x).

say, between the two equations, we obtain an e([uatioii.

(f>{x, y) = 0, which represents a cylinder whose generators are

parallel to OZ. If any values of x, y, z satisfy f^(x, y, z) =

and f,{x,y,z) = 0, they satisfy </>(«, ?/) = 0, and hence the

cylinder passes through the curve of intci'sectlon of the
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surfaces. If the axes are rectangular ^(.'•, y) = represents

tlie cylinder which projects orthogonal ly the curve of

intersection on the plane XOY, and the (M|U;iti()ns to the

ju-qjection are 0(a), ^) = 0, s — 0.

Ex. 1. If the axes are rectaii,ii;ul;ir, whut lori ;iic lepi'esciitcd by

{\) x~+ f = u:\ s- = /;2; (ii) .r-'+y-^ + .-;-^«-, '//-= -iaz; (iii) .'-+//- = «-,

.,••2= 62, («2>62)V

Ex. 2. Find tlie equations to the cylinders with generators parallel

to OX, OY, OZ, which pass through the curve of intersection of the

surfaces represented by x^+ i/-+ 2z^ = '\2, :c-y+ z=\.

A ns. 2f - 2tfz+ 3^2+ 2^ - 2i - 11 = 0, 2,i-- + 2xz + 3j2 - 2,r - 2^ - 1 1 = 0,

3.r2 - 4.ry 4- 3?/2"- Ax+ Ay -10= 0.

11. Surfaces of revolution. Let p.((),y^,z^), (fig. 8),

be any point on the curve in the plane YOZ ^yhose Cartesian

equation is j\y, z) = 0. Then

/(2/i,^i)
= (1)

The rotation of the curve about OZ produces a surface

of revolution. As P moves round the surface, z^, the

s-coordinate of P remains unaltered, and ii, the distance

of P from the 2;-axis, is always equal to y^. 'J'herefore,

by (1), the cylindrical coordinates of P satisfy the equation

f{u, z) = Q. But P is any point on the curve, or surface,

and therefore the' cylindrical equation to the surface is

f{u, z) = 0. Hence the Cartesian equation to the surface

''i^f{sl^if+y\z) = 0.



14 COORDINATE GEOMETEY [ch. i.

Since the distance of tlie point {.v, y, z) from the ^/-axis

is Jz'^+ X', it follows as before tliat the equation to the

surface formed by rotating the curve f{y, z) = 0, x = Q about

OY is/(7/, v/sH^) = 0, and similarly f{sjy'^+ :^\ x) = repre-

sents a surface of revolution whose axis is OX.

Ex. 1. The equation x^+y'^+z^= a? represents the sphere formed
by the revolution of the circle x^+y^= a^, 2= 0, aljout OX or OY.

Ex. 2. The surface generated by the revolution of the parabola
y^= Aax, s= 0, about its axis has equation ]f^+ z^= Aax ; about the

tangent at the vertex, equation y*= \Qa'^{z^+ x'^).

Ex. 3. The surfaces generated by rotating the ellipse x'la^+y^/b'^=l,

= 0, about its axes are given by -r+ '^ ,„ =1, '--—n^ +'/7,= l.^ •' a^ b^ ^ a^ b^

Ex. 4. Find the equations to the cones formed by rotating the

line z — 0,y= 2x about OX and OY.

Ans. 4x^~f-z^= 0, 4x^-f + 4z^= 0.

Ex. 5. Find the equation to the surface generated by the revolu-

tion of the circle x^+y'^+ 2ax+¥=0, 2= 0, about the //-axis.

Ans. (x^+f+ z^+ 62)2= 4^2 (^-2+ ^2).

Ex. 6. Sketch the forms of the surfaces :

(i) (f + z^)(2a-x)= A-3, (ii) r^= a^ cos 2 6, (iii) ^l?= 2cz.

The surfaces are generated by rotating (i) the curve ?y2(2a-^;)=.r3

about OX
;

(ii) the lemniscate in the plane ZOX, 7-2= a2cos2^, about

OZ
;

(iii) the parabola in the plane YOZ, ?/-= 2c2, about OZ.

Ex. 7. Prove that the locus of a point, the sum of whose distances

from the points («, 0, 0), (-a, 0, 0) is constant, {2k\ is the ellipsoid

^2 y2 + -2

of revolution j^+'h 2= ^-
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CHAPTER IL

PROJECTIONS.

12. The angle that a oiveu directed line OP makes with

a second directed line OX we shall take to be the smallest

angle generated by a variable radius turning in the plane

XOP from the position OX to the position OP. The sign of

the angle is determined by the usual convention. Thus, in

fio-ures 9 and 10, 6^ is the positive angle, and O^the negative

angle that OP makes witli OX.

13. Projection of a segment. // ab i.v a given segment

and A', B' are tJte feet of the 'perpeiidiculavs from A, B to a

f/iven line X'X, the segment A'b' is the projection of the

segment AB on X'X.

From the definition it follows that the projection of BA

is B'a', and therefore that the projections of AB and BA

ditier only in sign.

It is evident that A'B' is the intercept made on X'X by

the planes through A and B normal to X'X, and hence the

projections of equivalent segments are equivalent segments.

14. If AB is a given segment of a directed line MN
ivhose positive direction, MN, makes an angle ivith a
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given line X'X, tJie projection of AB on X'X is eqrial to

AB . cos 0.

In figures 11 and 12, AB is positive, in figures 13 and 14,

AB is negative.

Fig. 13. Fig. 14.

Draw OQ from O in the same direction as MN. //" AB is

positive, cut off OP, the segment equivalent to AB ; then

the projection of AB = the projection of OP,

= OP . cos d, (by the definition

= AB . cos 6. of cosine),

// AB is negative, BA is positive, and therefore

the projection of BA = BA . cos 6,

i.e. — (the projection of AB) = — AB . cos 6,

i.e. the projection of AB = AB . cos d.

15. If A, B, C, ... M, N are any n points in space, tlie

sum. of the 2^rojections of AB, BO, ... MN, on any given line

X'X is equal to the projection of the straight line AN on X'x.

Let the feet of the perpendiculars from A, B, ... M, N, to

X'X be A', B', . . . M', N'. Then, (i^ 2),

a'b'+b'c'+...m'n' = a'n',

which proves the proposition.
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16. The anolc between two planes we shall take to be

the angle that the positive direction of a normal to one

makes with the posjtiNc direction of a normal to th*; other.

17. Projection of a closed plane figure. // the pro-

jections of three jxti iifs A, B, C on o (/I ren ptduc (ire A', B', C',

then. AA'B'C' = C()sO •ABC, (rliere is the oiKjIe liefween the

planes ABC, A'B'C'.

(consider first the areas ABC. A'b'C' without re(,^ard to

(i) If the planes ABC, A'b'C' are parallel, the equation

AA'b'C' = cos0 a ABC is obviously true.

(ii) If one side of the triano^le ABC, say BC, is parallel to

the plane A'b'C', let AA' meet the phmc throu<^h BC parallel

to the plane A'B'C' in A^, (fio-. 15). Draw A.^D at right

angles to BC, and join AD. Then BC i.s at right angles to

A„D and AA2, and therefore BC is normal to the plane AA^D,

and therefore at right angles to AD. Hence the angle A.^DA

is equal to 6, or its supplement.

But AA'B'C'^AA.BC,

and A A.^BC : A ABC = A.p : AD = cos _ A.pA
;

therefore A A'b'C' = cos l\ ABC.

(iii) If none of the sides of the triangle ABC is parallel

to the plane A'B'C', draw lines through A, B, C parallel to

the line of intersection of the planes ABC, A'B'c'. These

lines lie in the plane ABC and are parallel to the plane

A'B'C', and one of them, that through A, say, will cut the

P.G. !•
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opposite side, BC, of the triangle ABC, internally. And

therefore the triangle ABC can always be divided by a line

through a vertex into two triangles, with a common side

parallel to the given plane A'b'C', and hence, by (ii),

AA'B'C'= cos0 AABC
Suppose now that the areas ABC, A'b'C' are considered

positive or negative according as the directions of rotation

given by ABC, A'B'C' are positive or negative. Then,

applying the convention of §4 to figures 16 and 17, we

see that if cos is positive, the directions of rotation ABC,

A'B'C' have the same sign, and that if cos0 is negative,

they have opposite signs. That is, the areas have the

same sign if cos is positive, and opposite signs if cosO

is negative. Hence the equation A A'B'C' = cos A ABC is

true for the signs as well as the magnitudes of the areas.

18. // A, B, C, ... N are any coplanar 'points and

a', B', C', ... N' are their projections on any given plane,

then area A'B'C' . . . N' : area ABC ... N = cos 0,

where 6 is the angle between the phmes.

Let O be any point of the plane ABC ... N, and O' be its

projection on the plane A'B'C' . . N'.

Then area ABC . . . N = A CAB+ A OBC+ . . . A ONA,

and area A'B'C' . . . N' = a O'A'B'+ A O'B'C'+ . . .
A O'N'A'.

But ao'a'b' = cosO AGAB, etc., and therefore the result

follows.
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19. If Aq is the area of any plane curve and A is the

area of its projection on any given plane, A= cosO.Ao,

where is the angle between the planes.

For Aq is the limit, as n tends to infinity, of tho area of

an inscribed n-gon, and A is the limit of the area of the

projection of the ?i-£fon, and, by § 18, the ratio of these

areas is cos 6.

Ex, 1. AA' is a diaineter of a given circle, and P is a plane through
AA' making an angle 6 with the plane of the circle. If B is any
point on the circle and B' is its projection on the plane P, the

perpendiculars from B and B' to AA' are in the constant ratio 1 : cos ^,

and the projection is therefore a curve such that its ordinate to AA' is

in a constant ratio to the corresponding ordinate of the circle ; that

is, the projection is an ellipse whose major axis is AA' and whose
auxiliary circle is equal to the given circle. The minor axis is

cos^. AA'; therefore if AA' = 2a and cosd= b/a, the minor axis is-2ft.

By § 19, the area of the ellipse = cos 0. ira?= Trab.

Ex. 2. Find the area of the section of the cylinder 16.r- + 9// = 144

by a plane whose normal makes an angle of 60° with OZ. Ans. Mir,

DIRECTION-COSINES.

20. If a, /3, y are the angles thata given directed line

makes with the positive directions X'OX, Y'OY, Z'OZ of the

coordinate axes, cos a, cos /3, cos y are the direction-cosines

of the lin3.

A2 AZ

21. Direction-cosines referred to rectangular axes.

Let A'OA be the line through O which has direction-cosines

cos a, cos/3, cosy. Let P, (,/', y, s) be any point on A'OA,
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and OP have measure r. In %. 18, r is positive ; in fig. 19,

r is negative. Draw PN perpendicular to the plane XOY,

and NM in the plane XOY, perpendicular to OX. Then the

measures of OM, MN, NP are x, y, z respectively. Since

OM is the projection of OP on OX,

X = T cos a, and similarly, '^ = r cos /3, 2; = r cos y (1)

Again the projection af OP on any line is equal to the sum

of the projections of OM, MN, NP, and therefore, projecting

on OP, we obtain

7^ = a; cos a+ 2/ cos |8+ 2; cos y (2)

But a;/r= cosot., y/r = cosl3, 5;/r= cosy; therefore

1 = cos^a+ cos^/3+ cos^y (3)

This is the formula in three dimensions which corresponds to

cos2^+ sin2^= l in plane trigonometry.

Cor. 1. By substituting for cos oc, cos /3, cos y in (2) or (8),

w e obtain r^ = x- + y-+ z^, (cf . § 6, Cor.).

Cor. 2. If (x, y, z) is any point on the line through O

whose direction-cosines are cos oc, cos ,8, cos y, we have,

by (IX
_i^ = _J^=_^_ (^r)
cos a cos^ cosy'

Cor. 3. If {x, y, z) is any point on the line through

(x-^, 2/1, Sj) whose direction-cosines are cos a, cos /3, cosy, by

changing the origin we obtain

x— x^_y — y-i _ z — z-i

cos a cos^ cosy

Ex.1. Prove that sin'rx-l-sin2^ + sin2y = 2.

Ex. 2. If P is the point (^1, 1/1, Zy), prove that the projection of OP
on a line whose direction-cosines are l^, mj, n^ is li-Vi + m^i/^ + niZ^.

The projection of OP = projn. of OM-|-projn. of MN
+ projn. of NP, (figs. 18, 19),

= l^.Vi + m^r/i + niZi.

Ex. 3. If P, Q are the points (.v^, ?/,, z{), (.«g, ?/.,> ^2)' pi'^^'*? ^^at the

projection of PQ on a line whose direction-cosines are I^, m^, '>iy is

?i(,y2-.ri)-f-?Wi(?/2-2/i)+ «iC52-«i)-

(Change the origin to P and apply Ex. 2.)
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Ex. 4. The pi'ojections of a line on the axes are 2, 3, 6. What is

the length of the line ? Ans. 7.

Ex. 5. A plane makes intercepts OA, OB, OC, whose measures are

'/, b, c, on the axes OX, OY, OZ. Find tlie area of the triangle ABC.
Let tlic positive direction of the normal from O to tlie plane

ABC have direction-cosines cosrx, cos^, cosy, and let A denote the

area ABC. Then since AOBC is the projection of AABC on the

plane YOZ, coscx.. A = y>r, and siinilarly, cos^. A = ira, cosy .A = ^('b.

Therefore, since

cos'^a.+ cos2/5 4- cos-'y = 1 , A = i { b-c"- + c-a^+ a^b'^}K

Ex. 6. Find the areas of the projections of the cnrve x^+i/'^ + z'^= 2r'>,

,v+ 2i/ + 2z= 9 on the coordinate planes, and having given that the

curve is plane, find its area.

(Cf. Ex. 2, i^ 10.) Ans. 167r/3, 327r/3, 327r/3 ; IGtt.

22. If a, h, c are given proportionals to the direction-

cosines of a line, the actual direction-cosines are found

from the relations

cos OC _ cos /3 _ cos y _ y/cos^a+ cos-^ -f cos'^y _ +1
it

~~1j
c

~
N/a2+ 6Hc- ~JaF+¥+7^

If P is the point (a, h, c) and the direction-cosines of the

directed line OP are cos a, cos/3, cosy, then, since OP is

positive and ecjual to sja^+ 1)~+ c^,

a a o b
-, cosp-

OP Ja^+ b'^+ c^-' >J(r-+ b^+ c^

_ c

The direction-cosines of PO are

— ((, —b —c

Ex. 1. Find the direction-cosines of a line that makes equal angles

with the axes.

Ans. cosa.= cos j8= cos y= ±l/v3
; (whence the acute angles wliicli

'the line makes with the axes are equal to 54° 44').

Ex. 2. P and Q are (2, 3, -6), (3, -4, 5). Find the direction-

cosines of OP, OQ, PO.

, . 2 ,3 -6. _3_ j-4 J^. -2 -3
^'"'-

7' 7' "7
' r,N/2' 5V2' V2' 7 ' 7 ' "f

Ex. 3. If P, Q are (,»',, ?/,, z^\ (,»•.,, i/.,, z.^ the direction-cosines

of PQ are proportional to x.^-,i\^ .'/>~.'/ii ^i~-\-
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Ex. 4. If P, Q are (2, 3, 5), (- 1, 3, 2), find the direction-cosines of PQ.

Ans. -^, 0, —..

V2 \'2

Ex. 5. If P, Q, R, S are the points (3, 4, 5), (4, 6, 3), (-1, 2, 4),

(I, 0, n), find the jjrojection of RS on PQ. Ans. -
f..

Ex. 6. If P, Q, R, S are the 2X)ints (2, 3, -1), (3, 5, -3), (1, 2, 3),

(3, .5, 7), prove by projections that PQ is at right angles to RS.

23. The angle between two lines. // op and OQ have

direction-cosines cos a, cos/3, cosy; cos (/.', cos j8', cosy',

and 6 is the angle that OP makes with OQ,

cos 6 = cos (/. cos cjL -f cos /3 cos ft'+ cos y cos y'.

If, as in {5 2 1
, P is (x, y, z) and the measure of OP is r,

projecting OP and OM, MN, NP on OQ, we obtain

r cos Q = x cos OL-\-y cos (3'+ z cos y'.

But x = rcosrx, y = r cos /3, z = r cosy

;

therefore |_cos 6= cos a cos rx'+ cos /3 cos /5'+ cos y cos y'.

Co?'. 1. We have the identity

=
( mn — m'n)-+ (i^r— n'lf+ (/7».' — Vnif.

(This identit}^ is known as Lagranges identity. We
shall frequently hnd it advantageous to apply it.)

Hence

sin'^0 = (cos-a+ cos^^+ cos^y)(cos2a'+ cos-(3'+ cos-y')

— (cos a cos OL + cos ft cos ft'+ cos y cos y')^,

= (cos ft COS y'— cos y cos |8')^+ (cos y cos a'— cos a. cos y')^

4- (cos a cos
ft'
— cos

ft
cos a')-.

Cor. 2. If is an angle between the lines wl

direction-cosines are proportional to a, h, c ; a', h', c,

^ -h(a.a'-j-hh'-}-cc')
cos 6= -y —^ — — - '

,

\la~+ h^+ c^\la""+ 6'-+ c''2

and sni =^ , -^
'-

,

^——— ^•

(7or. .3. If the lines are at right angles,

cosa cosa'+ cos/3 cos,/3'+ cosy cosy' = 0, or aa'+ hV+ cc = 0.
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Cut. 4. If the lines are parallel,

cos /3 cos y — cos y cos ^' = 0, cos y c<j.s a' — cos (x cos y' = 0,

and cos a cos ^' — cos y3 cos rx' = 0,

whence cos a = cos a', cos ,8 = cos /3', and cos y = cosy' (as is

evident from the definition of direction-cosines); or

^ (t _ /> _ e

a b' c'

Ex. 1. If P, Q are (2, 3, -6), (3, -4, 5), iiiid the angle that OP
makes with OQ.

, ^, -18v'2
A vs. cos^=—^- .

Ex. 2. P, Q, R are (2, 3, n), (-1,3, 2), (3, 5, - 2). Find the angles

of the triangle PQR.
^,,^^^ 9^^, ^^^.,^ v/3

3' 3"

Ex. 3. Find the angles between the lines whose direction-

are proportional to (i) 2, 3, 4 ; 3, 4, 5
;

(ii) 2, 3, 4 ; 1, - 2, 1.

Ans. (i) cos-i -^, (ii) 90°.

.'iVoS

Ex. 4. The lines whose direction-cosines are proportional to 2, 1, 1

;

4, \^3-l, -\/3-l ; 4, -V3-1, Vs - 1 are inclined to one another

at an angle 7r/3.

Ex. 5. If ?i, w^i, Hi ; l-i, m.2, '>h ! ^3) ™3' "3 '^^^ ^.he dii-ection -cosines

of three mutually perpendicular lines, the line whose direction-cosines

are proportional" to li + li + l^, 111^ + 7)12+ ra^, n^ + ihj.+ n.^ makes equal

angles with them.

Ex. 6. Find the angle Ijetween two diagonals of a cube.

Ans. cos-* 1/3.

Ex. 7. Prove by direction-cosines tliat the points (3, 2, 4), (4, 5, 2),

(5, 8, 0), (2,-1, 6) are colli near.

Ex. 8. A line makes angles «., /i, y, S with the four diagonals of

a cube
;
prove that

cos^o. -I- cos^^ -\- cos-y -t- cos'^S = 4/3.

Ex. 9. If the edges of a rectangular parallelepiped are «, 6, c,

shew that tlie angles between tlie four diagonals are given by

\a;i+¥+ c^)

Ex. 10. If a variable line in two adjacent positions has direction-

cosines I, m, H ; /-f-S/, »i.-|-8«i, n+ hi, sliew that the small angle, 86,

between the two positions is given by W'= U'^+ (^m^ -'r ^n'^.

We have 172= 1 and ^{l + Uf=\, therefore ^{Uf= -22181.

But co»8e^2l(l+ Sl) = l+2l8l.

Therefore 2 si n^ ^^= -21 81= ^2 (8lf.

That is, since sin~ = ~, 8&^= 2{8lf.
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Ex. 11. Lines OA, OB ;iie drawn from O witli direction-cowines

propurtional to (1, --2, -1), (.3, -2, .3). Find the direction-cosines of

the normal to tlie ijlaiie AOB. ,43-2
\/29 n/29 \/29

Ex. 12. Prove that the thiee lines diawn from O with direction-

cosines proportional fo (1, - 1, ]), (2, -3, 0), (1, 0, .3) lie in one plane.

Ex. 13. Prove that the three lines drawn from O with direction-

cosines ^1, )«!, n^ ; L^, m.2, 112 ; ^3, m^, n^, are coplanar if

^1, Wlj, 111

Ex. 14. Find the direction-cosines of the axis of the right circular

cone which passes through the lines drawn from O with direction-

cosines proportional to (3, 6, —2), (2, 2, —1), (-1, 2, 2), and prove
that the cone also passes through the cooixlinate axes.

Ans. I/V3, l/v/3, 1/^3-

Ex. 15. Lines are drawn from O with direction-cosines proportional

to (1, 2, 2), (2, 3, 6), (3, 4, 12). Prove that the axis of the right circular

cone through them has direction-cosines -'[j-J'i, l/'v/3, 1/^3, and that

the semivertical angle of the cone is cos~^ l/VS-

24. Distance of a point from a line. To find ike

distance' of P, («', y', z') from tlte line through A, {a, h, c),

ivhose direction-cosines are cos oc, cos /3, cos y.

Let PN, the perpendicular from P to the line, have

measure S. Then AN is the projection of AP on the line,

and its measure is, (Ex. 3, § 21),

(«' — a) cos iL-\-{y'— h) cos /3+ (s'— c) cos y.

But PN'- = AP'-AN-,

therefore

<52 ={{jc'- af+ (y' ~ bf+ {z'- c )'
} ( cos-a+ cos-/3+ cosV)

—
{
{X — <( ) cos (JL -f ( //' — h) cos 8+ (Z — C) COS y } 2,

which, by Lagrange's identity, gives

8^ =
{ iy'_ 6) cos y- (

r' - r) cos ft }
^

+ {(z— c) cos a— (,'•' — d) cos y }
-

+ { (:/ — a) cos
ft
—

i if — h ) cos a )

•'.

Cor. If {,<:', y',z') is any point on the line, <) = (), and

X — a y'— h

cos oc cos ft cos y'
(Cf.i:}21,Cor. 3.)
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Ex. 1. Find the distance of (-1, 2, 5) fioiu tlif line tluougii

(3, 4, f)) whose directioi'i-cosines are proportional tn 2, -3, (J.

Ex. 2. Find tlic distance of A, (1, -2, 3) from the line, PQ,
through P, (2, -3, ;">), which makes equal angles with the axes.

,„,,. V?.

Ex. 3. iShew tliat the equation to the Vight ciicnlar cone whose
vci'tex is at the origin, whose axis has direction-cosines cosfx., cos fS,

cosy, and whose seniivertical angle is 0, is

(>/ cos y — z cos (3)" + {z cos a. - x cos y)'^ -f {.v cos f3 - .y cos r/,)'^

= sin-'^(.i;-'4-.yHs-).

Ex. 4. Find the equation to tlie right circular cone whose vertex
is P, axis PQ (Ex. 2), and seniivertical angle is 30°.

A ns. 4 1 (//
- z + 8)- + (z - .v - 3)-' + (.r -// - 5)-

1

= 3{(.r-2)^ + (.y + 3)H(--5)n.

Ex. 5. Find the equation to the right circular cone whose vertex

is P, axis PQ, and which passes through A (Ex. 2).

A71S. •m>/-z+8y+{z-.v-:iy+{.v-//-5y}

= 7{(.r-2f + {^ + Sy + {z-5f}.

Ex. 6. The axis of a right cone, vertex O, makes equal angles with
the coordinate axes, and the cone passes througli the line drawn from
O with direction-cosines proportional to (1, - 2, 2). Find the equation «

to the cone. A vs. 4.v'+ 4f+ 4 -:'+ 9yr -I- %zx -t- 9,ct/= 0.

Ex. 7. Find the e(|iiatiiin to the right circular cylinder of radius 2

whose axis passes through (I, 2, 3) and has direction-cosines pro-

portional to (2, - 3, (i).

Ans. 9(2y-|-5 - 7)2+ 4(,j - 3..;)-' + (3.r + 2// - 7)'^ = 1 96.

*25. Direction-cosines referred to oblique axes. Let

X'OX, Y'OY, Z'OZ, (lio' 20), 1h' ()])li([U('. axes, the angles

YOZ, ZOX, XOY 1»('iiio- A, /x, I' rtispectively. Let A'OA be the

line throuo-h O whose directiou-cosinos are cos a, cos
fj,

cosy. 'J'ake P, (.», y, z) any point on A'OA, and let the

measure of OP be r. Di-aw PN parallel to OZ to meet

the plane XOY in N, and NM parallel to OY to meet OX
in-M. 'J'hen, since the pi-ojcciion of OP is eipial to the
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sum of the projections of OM, MN, NP, projecting on OX,

OY. OZ, OP in turn, we obtain

r cos cL = x-{-y cos v+ s cos fx, ( 1

)

r cos /3 = .^! cos J/+ ?/+ 2: cos A, (2)

r cos y= xcos fx+ ycosX+ z, (3)

r = x cos a+ 1/ cos |8+ s cos y (4)

(z

Fio. 2U.

Therefore, eliminating r, x, y, z, we have the relation

satisfied by the direction-cosines of any line

1, cost/, cos/x, cos a =0,

COS)/, 1, cosX, cos/3

cos yd, cos A, 1, cosy

cos a, cos (3, cosy, 1

which may be written,

2 sin-A cos'a- 22 (cos A - cos ^ cos i/)cos ^ cos y

= 1 _ cos^ A — cos'V — cos- v+ 2 cos A cos /m. cos i/.

Cor. 1. Multiply (1), (2), (3) by x, y, z respectively, and

add, then

X-+ y-+ z-+ 2 !/s cos A + 2sa- cos /a+ Ixy cos i;

= r(x cos a -f 2/ cos ,8+ z cos y),

= r^[by(4)] (A)

Got. 2. If P, Q are (.r^, ^1,51), Ci'o, y... s.,), PQ" is given by

2(.r,- .r^y^+ 2S(y,- .j,)(-2- %)co« X.
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Ex. 1. If P, {.>; I/, z) is any jjoiiit tm tlu; plane through O at right
angles to OX, the projection of OP on OX is zero, and therefore

.r+y cos I' + 3^ cos //,
•-- 0.

Ex. 2. If P, (.V, 7/, z) is any point on the normal tlirougli O to the
phme XOY, j+ycos v + s cos/x= 0=.};cos v+// + i cos A.

*26. It' ((., I), c are given proportionals fco the direction-

cosines of a line, the actual direction-cosines are given by

cos (X. _ cos (8 _ cos y
a b c

_ + { S sin-X cos-a — 22(cos A — cos /x cos r)cos (5 cos y)^

{ 2 sin-A . 0,2— 22(cos X — cos /x cos v)hc]^

_ + { 1 — cos^X — cos" jj. — cos^i^+ 2 cos X cos /j. cos vy

{ 2 sin'-^X . a^ — 22(cos X — cos ^ cos v)hcY

*27. The angle between two lines. II" oq has direction-

cosines cos a', cos/3', cosy', and makes an ang-Je (9 with OP,

projecting on OQ, we obtain

r cos Q= x cos a'+ y cos ,8'+ z cos y (5

)

Therefore eliminating x, y, z^ r between equations (1),

(2), (:i) of § 25, and (.5), we have

1, cos I', cos/x, cos a =0, or

cosi^, 1, cosX, cos /3

COS JUL, cosX, 1, cosy

cos a', cos /3', cos y', cos

2(sin'^X cos a cos a')— 2 {
(cos X — cos /x cos i^)

X (cos /3 cos y' -f- cos j8' cos y)

}

= cos 0( 1 — cos-X — cos-y(x — cos- r+ 2 cos X cos jm cos v).

Cor. The angles between the lines whose direction-

cosines are proportional to a, b, c ; a', b', c are given by

^ + I 2(aa' sin'^X)— ^{be -f 6'c)(cos X — cos u cos i^)}

cos =—=-5^—^ ^^ ^^

Y —

•

{ 2a-sin-X — 226c(cos X— cos /x cos i^) }
-

X { 2a"^sin2X — 22//c''(co8 X — cos /x cos v) }
-

Ex. 1. If A= /x= v= 7r/3, find the angles between the lines whose
direction-coaines are proportional to

(i) 2, 3, 4; 3, 4, 5; (ii) 2, 3, 4 ; 1, -2, 1.

Am. (i) cos-' ",_
; (ii) 7r/2.

7n/10
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Ex. 2, Prove that the lines whose direction-cosines are propor-
tional to /, m, n ; m-n, n-l, l-m are at right angles if A= /x=i/.

Ex. 3. The edges OA, OB, OC of a tetrahedron are of lengths
((., b, c, and the angles BOG, COA, AOB are A, /x, v ; find the volivme.
Take OA, OB, OC as axes, and draw CN at right angles to the

plane AOB. Then if CN is of length p, and V denotes the volume,

V= -
p, and /) = c'cos /.OCN. Bat the direction-cosines of

CN are 0, 0, cosZ.OCN, therefore, by § 25,

sin^v cos^Z. OCN = 1 — cos^A - cos^/li - cos-v+ 2 cos A cos fx cos v,

.-. V =

aba
{1 - cos-A - cos^/jt - cos-V-l- 2 cos A cos [M cos v}'-.

DIRECTION-RATIOS.

28. Let OL be drawn from O in the same direction as a

given directed line PQ and of unit lengtli. Then the co-

ordinates of L evidently depend only on tiie direction of

PQ, and when given, determine that direction. They are

therefore called the direction-ratios of PQ.

If tlie axes are rectangular tlie direction-ratios are the

same as the direction-cosines.

29. // P, (x, y, z) is any point on a given line A'OA

whose direction-ratios are I, m, n, and the measure of OP
is r, then ^

1 = '', m

In hg. 21, r is positive, in tig. 22 r is negative. LK, PN

arc parallel to OZ ; KH, NM are parallel to OY. Then since

the parallel planes PNM, LKH cut x'OX, A'OA proportionally,

OP:OL = OIVI:OH,

where OP, OL, CM, OH are directed segments.
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But the measures ol" OM ami OH are ,/ and / i-espce(ively,

and tliereTore l = .i'!i: Similarly. m = ylr, n =zji'.

Coi'. 1. ir P, (.', y, z) is any point on liie line tlii-oui;Ii O
whose directicni-ratios are /, m, ii,

'j=l^^. (Cr. «21,Cor. 2.)

Cor. 2. If (,'•, y, s) is any point on tlie line throuoli

(,'', ?/', :') wliose direction-ratios are I, m, n,

^lZ^==yiZ]L=i:Z±. (Cf. {< 21 ,
(
'or. 3.)

Cor. 8. Ii' P, Q are (.v^, y^, z^), (.'.,, i/o, Co), and tlie

measure of PQ is r, the direction-ratios of PQ are

^2-^1 Ibzli ^2-%
.

Ex. 1. Find the direction -ratios of the lines bisecting the angles

l)et\veen the lines whose direction-ratios are /,, '/»,, n-^ ; I.,, 7u.,, )i.,.

If L, L' are (?i, m^, «i), {I2, '»2» '^2)) then OL and OL' are the lines

from O with the given direction-ratios, and OL iind OL' are of unit

length.

r^i -1 • . .. /• . I ' 1 T i. ^1+^0 m, + mo v.+Ti.)
Tlie niid-point, M, of LL has coordinates, - ' - ,

—!—

—

~, ' -
,

and OM =cos , where L LOL'= ^, therefore the direction-ratios of OM
are ^

M + 'j m^ + m., 7ii+v.2

2 cos 612" 2 cos ^/2' 2 cos Sh'

Similarly, the direction-ratios of the other bisector are ^^-4—^, etc.

Ex. 2. OX, OY, OZ are given rectangular axes
;

0X1, OYi, OZj bisect the angles YOZ, ZOX, XOY ;

OX.,, OY.,, OZ,, bisect the angles Y,OZ,, ZiOX,, XjOYj.

Prove that .1 YiOZi = zlZiOX, =_ XiOYi = 7r/3, and that

L Y.,OZ. = L ZpX., = L X.,OY2 = cos-i 5/6.

Ex. 3. A, B, C, are the points (1. 2, 3), (3, 5, -3), (-2, 6. 15),

and the axes are rectangular. Find the direction -cosines of the

interior bisector of the angle BAG. Avx. 1/n'18^2, 67/5\'T82, 6/5N'r82.

*30. The direction-ratios of any line satisfy tl\e equation

(§25, Cor. 1, (A)),

P-\-m'-{-n-+ 2mv cos X+ 2}) I cof^ jut.-{-2lm cosr=l,

which it is convenient to write, ^(^, on, 1?) = !.
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*31. 2'o jind the direction-cosines of the line whose

direction-ratios are I, ni, n.

Project OL, (figs. 21 and 22), on the axes and on itself,

and we obtain, as in § 25 (
1 ), (2), (3), (4),

cosa = fc+ mcos j/+ wcoSya =-x ^,

cos B = l cos J/+m + 71 cos \ =k ^ '

2 ?)m

cos y = l cos ij.-\-m cos \-\-n =
^ ^

,

1 = ^ cos a+m cos ^+ n cos y. (Cf. § 21 (3).)

*32. Tofind the angles between the lines whose direction-

ratios are I, ni, n ; V, m!, n'.

Let OL', the unit ray from O which has direction-ratios

V, m', n, make an angle Q with OL. Then projecting OL'

on OL, we obtain,

cos = /' cos a+ m' cos /3+ n cos y,

=W+mm'+ nn -f {nin '+ ^jm*-) cos X

+ {n\^+ "ill) cos /x+ (^7)i'+ l^'ni) cos I/,

Cor. If the lines are at right angles,

9^ 3771 ^')^

which may be written in the forms,

V cos a+ -^i' cos j8+ 'J? ' cos y =

or I cos a'+w cos ^8'+n cos y' = 0,

where cos rx', cos /3', cos y' are the direction-cosines of OL'.

Ex. 1. If A = /x = i'= 7r/3, find the direction-nitios of the line joining

the origin to the point (1, 2, - 1). Find also the direction-coaines.

Ans -L A ^1 • J? ? ^
^ " Vs' \/5' VS ' 2\/5' ^5 2v/.f)"
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Ex. 2. Sliew that the direction-ratios of a nonual to the plane XOY
are given by

I m n 1

cos I' cos A - cos /x cos )Li cos v - cos A sin'-^i' sinvA-

where A s 1 - cos'-'A — cos'^ix — cos''^i' + 2 cos A cos n cos v.

Ex. 3. Prove that the lines which bisect the angles YOZ, ZOX,
XOY, internally, have direction-cosines

cos /.-f cosy ^^^A ^^^A g^

2 cos A/2 2' 2 '
'

and that the angles between them ai^e

oos-i (
l + cosA-fcos/x-f-cos

j^Y ^^^
\ 4 cos JU./2 cos i/2 /
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CHAPTER III

THE PLANE.

33. Let ABC, (fig. 23), a given plane, make intercepts OA,

OB, OC on the axes, measured by a, b, c ; and let ON, the

normal from O to the plane, have direction- cosines cos a,

cos 0, cos y, and have measure p, (p is a positive number).

Equation to a plane, (i) To find the equation to the

plane ABC in terins of cos «., cos B, cos y, p.

Fio. 23.

Let P, {x, II,
z) be any point on the plane. Draw PK

parallel to OZ to meet the plane XOY in K, and KM parallel

to OY to meet OX in M. Then the measures of CM, MK, KP

are x, y, z respectively, and since ON is the projection oi'

OP on ON, and therefore equal to the sum of the projections

of CM, MK, KP on ON,

p = X cos OC+ 2/ cos ft+ z cos y.

This ecjuation, satisfied b}^ the coordinates of every point

on the plane, represents the plane.
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(ii) To find the equation to the j^lane in terms of a, h,c.

ON = projection of OA on ON = OA cos fx

;

.-. p = a cos OL. Similarly, h cos /3 = c; cos y =2^.

Hence, by (i), the equation to the plane is

X cosoL.y cos ^ ;:; cos y _ .

V V P ~ '

^.e. ^+ ^ + -=1.
a h ' G

Ex. Find the intercepts made on the coordinate axes by the plane

A'+2y — 2^= 9. Find also the direction-cosines of the normal to the

plane if the axes are rectangular. A, is. 9, 9/2, -9/2 ; I, % - §.

34. General equation to a plane. TJte general equation

of the fird degree in x, y, z represents a plane.

For A:«+ B^+ C: + D = can bo written

X
, y ,

z ,

- D/A - D/B - D/C

and therefore represents a plane making intercepts — D/A,

— D/B, — D/C on the axes.

35. If A:e-|-B7/-f Cs+ D = 0and_29 = a:;cosrx-f .|/cos/3+ 2;cosy

represent the same plane,

cosa._cos /3_cos y_ p , .

-A ~~-3 ~ -C ~D" ^

'

therefore the direction-cosines of the normal to the plane

Ax-\-By + Cz+D = are proportional to A, B, C. If the

axes are rectangular, each of the ratios in ( 1) = -7==^^===,.

But p is a positive number ; therefore if D is positive,

D -A
p = -j=-— ^ cosoc=- -

,^ J fi:'+ B-'+ C2 J A-+ B--^-i- C2

COS B = -p r
-

, and cos y ^ -7
, .^

,-

If D is negative, we must change the sign of n/a'^+ B-+ C-.

B.C. c
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Cor. If the axes are rectangular, the angle between the

P^*^®^ ax-\-hij + cz+ d = Q, a'x+ h'y + cz+d' =

±(aa'+ bb' -{-cc')

IS cos

"

Ja^+ 62+ c2 Va'2^ 5'2 _j_ g4
Ex. 1. If the axes are rectangular, find the angle between the

(ii) 3.^+ 4^-52= 9, 2.x+ 6t/+ 6z= 7.

Ans. (i) 7r/3, (ii) 7r/2.

Ex. 2. If the axes are rectangular, find the distance of the origin

from the plane 6x-Zi/+2z-U= 0. Ans. 2. .

Ex. 3. Shew that the equations bi/+ cz+ d=0, cz+ ax+ d=0,
ax + bi/+ d= represent planes parallel to OX, OY, OZ respectively.

Find the equations to the planes through the points (2, 3, 1), (4, - 5, 3)

parallel to the coordinate axes.

Ans. ?/+ 4s-7 = 0, x-z-l=0, 4.r+;/-ll=0.

Ex. 4. Find the equation to the plane through (1, 2, 3) parallel

to 3^; + 4?/ -52 = 0. Ans. 3j?+ 4j/- 52+ 4= 0.

Ex. 5. Prove that the equation to the plane through («., f3, y)
parallel to ax+ hy-\-cz= is ax+ by->ircz= aa.+ hl3+ cy.

Ex. 6. If the axes are rectangular and P is the point (2, 3, -1),

find the equation to the plane through P at right angles to OP.

Ans. 207+ 3^-2=14.

Ex. 7. Prove that the equation 2x'^-Qf-\'2z^+ \Sijz+ 2zx-\-xij^0

represents a pair of planes, and find the angle between them.

Ans. cos-i 16/21.

Ex. 8. Prove that the equation

ax''-+ hy- + cz"-+ 2/^2+ 2gzx+ 2hx^=

represents a pair of planes if ahc-\-2fgh-ap-hg'^-ch-= 0.

Prove that the angle between the planes is

tan-'f
^^-^''+^'+^'~^'~^'^~''^^"

^
V a-^b + c )

Ex. 9. A variable plane is at a constant distance p from the origin

and meets the axes, which are rectangular, in A, B, C. Through A,

B, C planes are drawn parallel to the coordinate planes. Shew that

the locus of their point of intersection is given by x-'^+y-^+z-'^=p-K

36. Plane through three given points. The general

equation to a plane contains three arbitrary constants, and

therefore a plane can be found to satisfy three conditions

which each involve one relation between the constants;
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e.g. a plane can be found to pass tli rough any three nou-

col linear points.

To find the equation to the plane tltrougli {x^
, y^ , z^)

{x.„ y.„ z.^, {x.„ 1/3, z.,).

Let the equation to the plane be ax+ by+ cz+ d = 0.

Then ax^^ + hy.^^+ cz^+ cZ = 0,

ax.2^+ by2+ cz2+ d = 0,

ax^-\-by.^+ cz^+ d = 0.

Therefore, eliminating a, b, c, d, we obtain the required

equation,
z, 1

^1, 1

Z., 1

Ex. 1. Find the

(1,

Ans. 2.«,-+ 3^-3^ =

(juation to the plane tluongh the three points

1,0), (1,2,1), (-2,2,-1).

Ex. 2. Shew that the four points (0,

(3, 3, 0) are coplanar.
1,0), (2, 1, -1), (1,1,1),

37. Distance from a point to a plane. To find the

distance of tlie point P, (.v/, //', z) from the plane

p= XQOS a.+ 7/cos/3+ scosy.

Suppose that p is a positive number so that cos a, cos /3,

cos y are the direction-cosines of tlie normal from the origin

to the plane. Change the origin to {x', y', z), and the

equation to the plane becomes

p — {x+ .'/) cos a+ (7/+ y') cos /3+ (c -f z) cos y,

or p' — X cos «.+ 1/ cos /8+ 5; cos y,

where p' =p — x cos CL— y' cos ^— z cos y.

Hence the distance of («', y, z'), the new origin, from the

ph p =p—x GoscL— y' cos /3— s' cos y.

If P is on the same side of the plane as the original

origin O, cos oc, cos ^, cos y are still the direction-cosines of

the normal from the new origin, P, to the plane, and there-

foi-e p' or ^9 — a?' cos a— ?/' cos ^ — 2:' cos y is positive. If P
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and O are on opposite sides of the plane, cos a, cos^, cosy

are the direction-cosines of the normal from the plane to

P, and therefore ^y or j9 — a?' cos a— i/' cos ^—/ cos y is

negative. Hence, if p is positive,

p — X cos CL—y' cos /3 — z' cos

y

is positive if {x, y', z) is any point on the same side of the

plane as the origin, and negative if {x\ y', z) is any point

on the side of the plane remote from the origin.

Cor. 1. The distance of {x, y', z) from the plane

ax-\-hy-^cz-\-d = 0,

.£ ,,
J. 1 • • 1 ax' -\-h\i' -{-cz' -{-d

II the axes are rectangular, is given by ,

•=^.

If d is positive the positive sign is to be taken, as it gives

a positive value for the perpendicular from the origin.

Cor. 2. If d is positive, the expression ax -{-hy \- cz \-

d

is positive if {x\ y', z) and the origin are on the same side

of the plane ax-\-hy-{-cz-\-d= 0, and negative if they are

on opposite sides.

Ex. 1. If P is (,)/, y', z'\ sliew that the projection of OP on the
normal to the plane

p = .r cos ot, + _y cos 13 -hz cos y is x' cos a.+ ?/' cos (i + z' cos y,

and deduce the resiilts of § 37.

Ex. 2. Find the distances of the points (2, 3, -5), (3, 4, 7) from
the plane .v+ 2y -22= 9. Are the points on the same side of the plane ?

Ans. 3, 4, No.

Ex. 3. Find the locus of a point whose distance from the origin

is 7 times its distance from the plane 2.r+ 3_y - G^ = 2.

A m. 3j;2+ 8/+ 35^2 - 36^2 -Mzx-\-\ 2xy - Sx - 1 2^ + 244-+ 4 = 0.

Ex. 4. Find the locus of a point the, sum of the squares of whose
distances from the planes x+y + z= Q, x — z= 0, x-2y+ z= 0, is 9.

Ans. x''+y'^ + z^ = 9.

Ex. 5. The sum of the squares of the distances of a point from the
planes x+y+z = 0, x-2// + z = is equal to the square of its distance'

from the plane x= z. Prove that the equation to the locus of the point
is i/^ + 2xz= 0. 'By turning the axes of x and z in their plane through
angles of 45°, prove that the locus is a right circular cone whose semi-""'

vertical angle is 45°.
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38. Planes bisecting the angles between given planes.

To find the 'planes bisecting the angles between the given

•planes ax-\-by-\-cz-\-d = Q, ax+ b'y + c'z+ d' = 0, the axes

being rectangidar.

We can always write the equations so that d and d' are

positive. Then tlie equation

ax+ by-\-cz+ d_ ax -\-b'y-\-c'z-\- d'

represents the locus of points equidistant from the given

planes, and since the expressions

ax -\-by+ cz-\-d, ax + b'y + c'z+ d'

in the equation have the same sign, the points are on the

origin side of both planes or on the non-origin side of both.

The locus is therefore the plane bisecting that angle

between the given planes which contains the origin.

Similarly,

ax+ by+ cz+ d_ ax+ b'y + c'z+ d'

Ja^+ b'-+c^~ Va'2+ 6'2+ c'2

represents the plane bisecting the other angle between the

given planes.

Ex. 1. Shew that the origin lies in the acute angle between the

planes x+ 2j/+ 2s= 9, 4x - Zy+ I2z {- \3 = 0. Find the 'planes bisecting

the angles between them, and point out which bisects the acute angle.

A71S. Acute, •25.v + '\7,>/ + 62z-78 = ; obtuse, .r+35j/- 102-156= 0.

*Ex. 2. Shew that the plane cu-+ b// + cs +d=0 divides the join of

(^•i, >/i, h), (•^2. >/•>, h) in the ratio

aA'2+ b^2 + ^^2 + d'

[The point f^fdj^J, M±li, A22+a) lies on the plane if
\ A + 1 A+ 1 A+ 1 /

A (ax.^+ %2+ ^^-2+ f^) + '^•*'i + k'/\ +czi + d=0.]

*Ex. 3. Hence shew that the planes 2i = ax+b>/+ cz + d=0,
v = a'.'- + b'j/ + c'z + d' = 0, u + Xv=0, u-Xr = divide any transversal

harmonically.

Let P,{xi,^i,Zy) be on the plane 2«= 0, then ?<, = rt,r, + /;//, + eri+f/= 0.

Let Q, (.i'2, i/o, ^2) be on the plane i'= 0, then v.^ = a'x\2 + b'i/.2 + c'z^ + d' =
The planes u±Xv=0 divide PQ in the ratios

i.e. divide PQ iiarmonically.
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*Ex. 4, If A, P, B, Q are any four collinear points, the anharmonic
ratio, or cross-ratio of the range APBQ, is defined to be

AP^AQ AP.QB
PB • QB °^' AQ . PB'

Prove that four given planes that pass through one line cut any
transversal in a range of constant cross-ratio.

If ?t= 0, v= are two planes through the line, the equations to the

four given planes can be written, u+ XrV= 0, r=l, 2, 3, 4. Let A, B,

(xi, ?/i, ^j), (^2, y2) ^2) li^ ^" ^^^^ planes u-irXiV= 0, u+ k^v^O
respectively. Then ?ij + Ai?'i = and w, + -^s^'a

= ^- I^ P) Q ^i^ on
the planes u + \.^v= 0, u+ kiV = 0, then by Ex. 2,

and therefore

AP_ U1 + X2V1 AQ_ M^+ XjVi

PB~~w^+V^' QB~ u^+X^2

AP.QB Jk,-X,){X,-Xi)
AQ.PB {\,-X,){X,~\,)-

This constant cross-ratio is called the cross-ratio of the four planes.

*Ex. 5. P, Q, R, S ai^e four coplanar points on the sides AB, BC,
CD, DA of a skew quadrilateral. Prove that

AP BQ CR DS
PBQCRDSA"

THE STRAIGHT LINE.

39. The equations to a line. Every equation of the

first degree represents a plane. Two equations of the first

degree are satisfied by the coordinates of any point on the

line of intersection of the planes which they represent, and

therefore the two equations together represent that line.

Thus ax+ hy + cz-\-d= 0, a'x+ b'y + c'z+ d'^O represent a

straight line.

40. Symmetrical form of equations. Tlie equations to

a straight line can be found in a more symmetrical form.

If the line passes through a given point P, (x', y', z') and has

direction-ratios I, m, n,

,

J x— x v — y' z— z'
^ 1= , m = -—'—> n = ;

r r r

where Q, (x, y, z) is any point on it, and the measure of

PQ is r, (§21, Cor. 3; §29, Cor. 3). And therefore the
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coordinates of any point on the line sati.sl'y the eciuations

x — x'_y — y'_z — z'
. _ x

I ~ m ~ n ^~ ''

Tliese c(jiiations enable us to express the coordinates of a

variable point on the line in terms of one parameter r, for

x'^x -\-lr, y = y'+ mr, z = z'+ nr.

Conversely, im^ equations of the form

x—a_y—h_z—c
I m n

represent a strai<j^ht line passing through the point (a, h, c)

and having direction-ratios proportional to I, in, n.

Ex. 1. Find where the line '!lz^^}Lzji^^_JL_ meets the phine

2.r+ 4y - 2+ 1 = 0.
2 - 3 4 ^, ^^^ ^ j^^ _ 3^ ^

^

Ex. 2. Find the points in which the line ''—!i^ ==.^LL^=lzl cuts

the «„.face n.^-5/+.'= 0.
^;j ^,_ l^^^ ^^f^^^ ,^

Ex. 3. If the axes are rectangular, find the distance from the point

(3, 4, 5) to the point where the line .^—^='i!!^— =^-^ meets the plane

Ex. 4. Find the distance of the point (1, -2, 3) from the plane

x—i/+ z= 5 measured parallel to the line ^=-^=—-, (rectangular axes).II 2 3—6
Ans. 1.

Ex. 5. Shew that if the axes are rectangulai', the equations to the

perpendicular from the point (a, (3, y) to the plane ax+ b>/ + cz + d-=0

are '^LL^ =,-LZjl ^^JZJ and deduce the perpendicular distance of the
a he

point (fx.,
ft, y) from the plane.

Ex. 6. If the axes are rectangular, the equations to the line

through (f^, [i, y) at right angles to the lines

x _y _z X _ .y __f_

are
^-ol _ y-ft _ z-y

m^n^-m^yii niL^ — nJi liVio — f-^iih

Ex. 7. If the axes are rectangular, shew that the equations to tlie

planes through the lines which bisect the angles between

.r/^i = 7//mi= 2/?i, and .v/l2=ylni2= z/n2,

and at right angles to the plane containing them, are

((', ± l.,).v+ (')ni ± m.,)i/ + {ni ± 7i2)z=0.
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Ex. 8. A line through the origin makes angles a., (3, y with its

projections on the coordinate planes, which are rectangular. The
distances of any point (.r, i/, z) from the line and its projections are

d, a, h, c. Prove that

c^2= („2 _ ,.2) cos^o. + {¥- y"-) cos'^fS+ (c2 - s2) cos^y.

41. Line through two points. If p, q are (x^,'yi, z^),

(x.^, 2/2, 2;,), the direction-ratios of PQ are proportional to

x.^— Xj^, y.2~2/i> %— %' ^^^ therefore the equations to PQ

are x— x-^ _ y— yi _ z—Zi

By §8, the coordinates of a variable point of the line in

terms of one parameter, A, are

'*^~'x+i ' ^^ x+1 ' " x+1

Ex. 1. Find the point where the line joining (2, I, 3), (4, -2, 5)

cuts the plane 2a'+ ?/-s= 3.
' Ans. (0, 4, 1).

Ex. 2. Prove that the line joining the points (4, — 5, - 2), ( - 1, 5, 3)
meets the surface 2.^- + 3y- - 4s-= 1 in coincident points.

42. Direction-ratios from equations. The planes through

the origin parallel to

ax+ by + cz+ d = 0, afx+ h'y+ c's -\-(l' =

are given by

ax+ hy + cz --= 0, ax+ //// + c'z = 0.

Hence the equations

ax -\- 1)1/+ cz = = a'x+ h'y + c'z

together represent the straight line through the origin

parallel to the line given by

ax + by + cz -\-d = = a/x+ //// + c'z + d'.

They may be written

and therefore the direction-ratios of the two lines are

proportional to he —b'c, ca'— c'a, ah' — a'b. Again the second'

line meets the plane z = in the point

f
bd'-b'd da'-d'a \.

\ah' — a'b' ah' — a'b' J
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therefore the equations to the second line in the .synnnetriciil

form are
i v t i i > vbd —ha da —da
ab' — a'b ' iib' — a'b z

bc—b'c ca' — ca ab' — a'b'

o a line througli

-ct_y-h_z-c

Ex. 1. The equationifi to a line through («, 6, c) parallel to the
plane XOY an

•(1)
I m '

since the direction-ratios are I, m, 0. Again the line lies in the plane

z= c, and therefore its ecjuations can be written

m{.r-a)^l{,,-h\ z= r, (2)

and (1) is to be considered tlie symmetrical form of (2).

Ex. 2. Find the equations to the line joining (2, 4, 3), ( - 3, 5, 3).

The equations are
'^~ =•1^^= "-^^. Tlierefore the line is parallel

to the plane XOY, as is evident, since the ^-coordinates of two points

on it are equal to 3. The equations can also be written

Ex. 3. The equations to the straight line through (c<, 6, c) jmrallel

to OZ are -'Izl!:JLlk =iZ^ or .>;=«, y = h.

1
'-^

Ex. 4. Prove that the equations to the line of intersection of the
planes 4.»;-t-4//-.5.- = 12, 8.>.--f-12^-1.32=.32 can be written

.v-\_i/~2_z
2 ~ 3 ~4'

Ex. 5. Shew that the line 2j';-t-2^-2-6= = 2.r-f 3y-3-8 is

parallel to the plane ^=0, and find the coordinates of the point where
it meets the plane .v= 0. Avs. (0, 2, -2)

Ex. 6. Prove that the lines

2,i,- -t- .3^?/ - 45= = 3.*- - 4//

+

z, bx - ?/

-

3j -fl 2 = = x

-

7y -h 5r -

6

are parallel.

Ex. 7. Find the anglf between the lines

x-^ll/-\-z = 0=.v+y-z, .»--|-2y-l-2= = 8.*--f 12//+ r)-,

(rectangular axes). Ana. cos~'8'N'4()f).

Ex. 8. Find the equations to the line through the point (1, 2, 3)
parallel to the line x - y -\- 2: = 5, 3,'; +y + z— Q.

. x-\ y-2 :-3



•(1)

(2)
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43. Constants in the equations to a line. The equations

x—a_y—h_z—c
I ~ m ~ n

may be written x =— y + a
•^ m"^ m

I

'111
, J

one i

-^ n ^ n
]

which are of the form x = t^ij+ 3\

2/ = Cs+ dJ'

and therefore the general equations to a straight line con-

tain four arbitrary constants. The equations (1) represent

the planes passing through the line and parallel to OZ and

OX respectively, and by a choice of such planes to define any

given line its equations can be put in the form (2), which

is the form with tlie smallest possible number of arbitrary

constants.

Ex. 1. Prove that the symmetrical foiiii of tlie equations to tlie

r • 1 ,7 , J • '^'-^ .'/ '^~'^
line given by ,v= av + o, z= ci/ + a is = - =

Ex. 2. Prove that the lines

x= ay-^h, z= cij + d, x= a'i/ + h\ z = c'i/+ d',

are perpendicular if aa'+ cc' + 1=0.

Ex. 3. Find c/, b, c, d, so that the line .v= ca/+ b, z = ci/+ d may pass

through the points (3, 2, -4), (5, 4, -6), and hence shew that the

given points and (9, 8, - 10) are collinear.

Alls. a = l, 6= 1, c= —1, d= —2.

Ex. 4. Prove that the line x=pz+ q, y= rz+ s, intersects the conic

2=0, a.v^+ b?/'^=l, if aq^ + bs^= l.

Hence shew that the coordinates of any point on a line which
intersects the conic and passes through the point (a, /?, y) satisfy the

equation a(yx — a.zy + b {yy — (^zf — {z- y)-.

Ex. 5. Prove that a line which passes through the point (rx,
ft, y)

and intersects the parabola ;/= 0, z'^= Aax, lies on the surface

Ex. 6. Find the equations to the planes through the lines

(i)'^=-?^ = i:i^, (ii)2..+%-5.-4 = = 3.t-4y-|-5.-6,

parallel to tlie coordinate axes.

Ans. (i) f)// - 4.- + 1 = 0, 2^ - 5.^+ 2 = 0, 2.r - _y
- 1 = ;

(ii) 17^-25i = 0, rK-17.(,-+ 34 = 0, S.r-y- 10 = 0.'
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*Ex. 7. If the axes are oblique the distance of the point (.*•', _y', z')

from the plane a.v+ b^+ cz+d=0 is given by

dr (cu;'+ bi/'+ c/ + c/)( 1 - cos^A - cos^/a - cos'^i/+ 2 cos A cos /I. cos v)

{
Sa^sin^V - 226c(cos A - cos /a cos v) }

^

*Ex. 8. The distance of (.r', y', /) from the line xla=ylb=zlc
is given by

.., _ S(fc - cy)^ sin-A+ 2^(r-.r - az)(ai/ - ht) (cos /x cos v - cos A)
~"

a^+ 6-+ c-+ 26ccos A + 2crtcos ju,+ 2a6cos 1/

*Ex. 9. Prove that the direction-cosines of the normal to tho

plane OXY are 0, 0, -^,
sin V

where A = 1 - cos^A - cos^/x - cos^v+ 2 cos A cos /x cos v.

If the angles that OX, OY, OZ make with the planes YOZ, ZOX,
XOY are «., f3, y, prove that

sinoL _ sin /? _ sin y _ . ^

cosec A cosec /x cosec i'

If the angles between the planes ZOX, XOY, etc., are A, 3, C,

prove that
^j^ ^^^^ ^ _ ^^jg ^ ^^g j,= gj„ /x sin v cos A,

,..^ sin A_sin B

_

sin C
sin A sin /x sin i'

44. The plane and the straight line. Let the equations

ax+ hy + ez+ d = 0, ^^11^ = ^^-11^? =?^^ represent a given

plane and straight line. Their point of intersection is

(oL+ lr, 13+ mr, y+ 7ir),

where r is given by

r(al+ hm+ en)+ mx.+ 6/3+ cy\-d = 0.

But 7" is proportional to the distance of the point from

(a, /3, y). Therefore the hne is parallel to the plane if

al+ hm-\-cn= and aa+ ^jS+ cy+ f/H-O.

If the axes are rectangular, the direction-cosines of the

normal to the plane and of the line are proportional to

a, h, c; /, m., n; and therefore if the line is normal to

the plane, I _m_n
a h (

Cor. The conditions that tlie line should lie in the

plane are al+ hm -{-cn=0

and afX+ 6/3+ cy-f (^ = 0.
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X — 3 ?/ — 4 " — 5
Ex. 1. Prove that the line —-_ =•/__ = ! is parallel to the

plane Ax+ Ai/ -bz= 0.

Ex. 2. Prove that the planes 2^-3^-72=0, 3a-- 14y-13s= 0,

8.r — 31?/ — 33j= pass through one line.

Ex. 3. Find the equation to the plane through (2, -.3, 1) normal
to the line joining (.3, 4, - 1), (2, - 1, 5), (axes rectangular).

Ans. .r+5j/-6s+ 19= 0.

Ex. 4. Find the equation to the plane through the points

(2, -1, 0), (.3, -4, 5) parallel to the line 2x=3i/= 4z.

Ans. 29x - 27^ - 22s= 85.

Ex. 5. Prove that the join of (2, 3, 4), (3, 4, .5) is normal to the

plane through (-2, -.3, 6), (4, 0, -3), (0, -1, 2), the axes being
rectangular.

Ex. 6. Find the distance of the point ( — 1, —5, —10) from the
9'_9 w+1 ~ — 2

point of intersection of the line
~' =^U—=1-— and the plane

,v-^ + z= t), (rectangular axes)r Ans. 13.

Ex. 7. Find the equations to the planes through the point

(- 1, 0, 1) and the lines

4x'-3?/+l=0= i/-4z+ l3', 2x-i/-2= 0=z-5,

and shew that the equations to the line through the given point

which intersects the two given lines can be written

x=)/ - 1 =z — 2.

Ex. 8. Find the equation to the plane through the line

x-fj-_>/- f3_ z-y
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Ex. 11. The axes being rectangular, find tlie equations to the
perpendicular from the origin to the line

.V + -2// + 3s+ 4= 0, 2.V+ 'Si/+ 4z + 5 = 0.

Find also the coordinates of tlie foot of the perpendicular.

(The perpendicular is the line of intersection of the phuu; through
the origin and the line and the plane through the origin perpendicular
to the line.)

. ,v y z /2 -1 -4\
2 - 1 - 4 ' VS' .3

' 3 /

Ex. 12. The equations to AB referred to rectangular axes are

I
="^=5- Through a point P, (1, 2, 5) PN is drawn perpendicular

to AB, and PQ is drawn parallel to the plane 3.^+ 4?/+ 52= to meet
AB in Q. Find the equations to PN and PQ and the coordinates of

N and Q.

J.
.v-l _ 7/-2 _z-5

.
.r-l_y-2_2-5

.

-3"T76"~T9 ' ~^~^T3~ 8 '

/52 -78 156\. / -9 q\
\49' 49 ' 49 /

'

V ' 2 ' /'

Ex. 13. Through a point P, {x\ y\ z) a plane is drawn at right
angles to OP to meet the axes (rectangular) in A, B, C. Prove that

the area of the triangle ABC is——-, where r is the measure of OP.
2, >_?/'/

Ex. 14. The axes are rectangular and the plane .v/a+ 7/jb + z/c=\
meets them in A, B, C. Prove that the equations to BO are

-=•{=
; that the equation to the plane through OX at right

angles to BC is bi/ = cz ; that the three planes through OX, OY, OZ,
at right angles to BC, CA, AB respectively, pass through the line

a.v=b>/ = cc ; and that the coordinates of the orthocentre of the

triangle ABC are :

«~^ b~^ c~^

rt"'-+ 6~-+ c~"' a~- + b~'^+ c~'^ a~-+ b"-+ c~-'

Ex. 15. If the axes are rectangular, the distance of the point

(a'u, }/(^, Zq) from the line

u= a.v+ by+ cz+ d=0, v = a'x -\-b'y-\-c'z-\-d'= y)

is .riven hv / {a'^ta - av^f + {h'Up - bv^f+ {c\i^ - cv^fY

where nQ = axQ+ bi/Q+ czQ+ d, and VQ= a'.V(,+ b'i/(j + c'zQ + d'.

Ex. 16. Find the equation to the plane through the line

u = ax+ by 'rcz+ d—O^ 'V = a'x+ h'y + c'z+ d'= 0,

parallel to the line x/l=y/m = zln.

Ans, u {a'l+ b'm+ c'n)= v{al-\- bm + en).
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Ex. 17. Find the equation to the plane through the lines

ax + hi/+ cz=Q= ax + h'y+ c'z, clx+ [iy+ yz = = a.'x+ [i'y+ y'z

Ans. X, y, z

be' —b'c, ca! —c'a, ah' —ah

Py'-(^'y^ ycL'-y'cL, cLp'-a.'^

Ex. 18. Prove that the plane through the point (a, /5, y) and the

line x=pi/ + q = rz+ s is given by

pf3 + q,

1,

rz+s
ry + s

|1, 1, 1

Ex. 19. The distance of the point (^, rj, () from the line

2'. measured parallel to the plane ax+b>/+ cz= 0, is
x-cx._y —

i:

I m 11

given b}'

^^o_ {a'' + h^+ c-):i{m{y-0-n{(i-'q)f-{^{c,.-^){bn-cm))

{al+ hm-\-c.n)"

Deduce the perpendicular distance of the point from the line.

y-B z- y
*Ex. 20. If the axes are oblique, the line

'-

normal to the plane a.r+% + cz+ o?=0, if
'' "' '"

9<^ 3<^ S(^

'T-
= "r-= -r-

(See §31.)
a c

*Ex. 21. Shew that the equation to the plane through OZ at

right angles to the plane XOY is

.^'(cos/xcos I' -cos A)=j/(cos vcos A-cos/x).

*Ex. 22. Shew that the planes through OX, OY, OZ, at right

angles to the planes YOZ, ZOX, XOY, pass through the line

x{coii ji cos 1' - cos A) =y(cos v cos A - cos /x) = ^(cos A cos ji - cos i').

*Ex. 23. The planes through O normal to OX, OY, OZ cut the

planes YOZ, ZOX, XOY in lines which lie in the plane

cos A cos
fj,

cos V

is at riijht anE^les to the*Ex. 24. Shew that the line in Ex.

plane in Ex. 23.

*Ex. 25. If P is the point (.»', y', z') and the perpendiculars from
P to the coordinate planes are^^, jo.2, p^, prove that

Pi sin A _ p., sin fi _p3 sin v_ A
x ~ y' ~ z'

Deduce that the planes bisecting the interior angles between the

coordinate planes pass through the line

sin A sin /x sin v
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*Ex. 26. Shew that the squares of the distances of P, (.*•', ?/, 2')

fi'oiii the coordinate axes are

i/"- sin- V + /- sin^/i,+ 2// (cos k - cos /x cos i-), etc.

*Ex. 27. Trove that the equation to the plane through O normal to

X _ if z

sin A sin //, sin v

-X+ a+ v A-u + i/
,

X+ U.-V ^
IS .r cos 2^— + 1/ cos 1 1- z cos ^- = 0.

45. The intersection of three planes. Before proceeding

to the general discussion of the intersection of three given

phines we will consider three typical numerical cases.

Solving the equations

2x- y+ z= 3,

x-S]/+ 2z= 1,

we obtain «• = !, y = 2, z = o, and hence the three planes

represented by the given equations pass through the point

(1, 2, 8).

Let us now attempt to solve the equations

(i) 2x-4>y + 2z= 5,

(ii) 5x— y— = 8,

(iii) x+ y- c = 7.

Eliminate z from (ii) and (iii), then from (i) and (ii), and

we get 4r»- 2 ?/ = 1 , 4v - 2 ?/ = 7.

Whence subtracting, .x+ .y = Q.

Similarly, eliminating y from (i) and (ii), then from (ii)

and (iii), we get

Gx-2z = 9, Q>x-2z = \b,

whence . x+ . s = 6.

There are, therefore, no finite values of x, y, z, which

satisfy all the given equations. The equations . a-+ . 2/ = 6,

. a)+ . s = G, are limiting forms of ?+ ? = 6, 'j^,+ ^', = (i, as /.•

tends to infinity, and hence we may say that any point

whose coordinates satisfy the three given equations is at an
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infinite distance. We easily find that the fines of inter-

section of any two of the planes are parallel to the line

12 3'

and it is evident that no two of the planes are parallel, so

that the three planes form a triangular prism. Thus if we
are given the three equations to the faces of a triangular

prism, and we attempt to solve them, we obtain a para-

doxical equation of the form k = (), where k is a number
different from zero.

Consider, in the third place, the equations

(i) 12«- y+ 2z = S5,

(ii) Sx-^ y-\- z^ 7,

(iii) x+ ly^ 0- 0.

Eliminating z between (i) and (ii), and then between (ii)

and (iii), we obtain

6a;-3?/-21, 2x-y^7.
Similarly, if we eliminate x in any waj^ between the

equations, we get 5y + 2z+ 7^ 0.

Thus all points whose coordinates satisfy the given equa-

tions lie upon both of the planes 2x— y = 7, oy + 2z+ 7 = 0,

or the common points of the three planes lie upon a straight

line, that is, the three planes intersect in a straight line.

Ex. 1. Examine the nature of the intersection of the sets of planes :

(i) 2.r-5^+ ? = 3, x+ 9/+ 4z= 5, .v+ S^+ Q2= l

(ii) 3,r+ 4^ + 6e = 5, 6.v+ 5f/+ 9z=\0, 3.v+ 3i/+ 5z= 5

(iii) .v+ y+ 2= 6, 2.r + 3v+ 4j= 20, x- y-V 2= 2

;iv) .r+ 23/+ 32= 6, 3.r + 4^ + 5i= 2, 5a;-t-42/+ 32-h 18= ;

(v) 2jf+ 33/+ 42= 6, 3.r+ 4^+ 5i = 20, .?;-|-2y+ 32= 2
;

(vi) "ix- ?/+ 2= 4, bx^-1y-\-1z = Q, 3.^+ 4^-22+ 3= 0;
(vii) 3.r- ?/+ 2 = 5, 2.r+ 4y+ 2+10= 0, 6A--2?/ + 2e + 9= 0.

Ans. (i) Planes form prism
;

(ii) planes pass through line

3.r-5_,y z_^
.

2"~'l~~T'
(iii) planes intersect at (1, 2, 3) ;

(i^^) planes pass through line

./+ 10 _ ;/-8_2.
1 ~'-2~i'

(v) planes form prism; (vi) planes intersect at (1, -1, 1); (vii) two
planes parallel, third intersects them.
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Ex. 2. Prove that the three phines 2j: + 7/+ z= S, .v-9/ + 2z = 4,

.r+ : = 2, form a trianguhar prism, and tind the area of a normal section

of tlie i)rism. At>s. s^S/\H.

Wc shall now consider the »;cnercil chho.

Let the equations to the planes be

u^ = a^x+ bJ^y + c^z+ (l^ = {), (1)

(2)

(3)

U2 = a.^+b2y + c^z+ cL = 0,

u.^ = a.^x+ h^y + c^i+ d., =

Solving the e(|uations (1), (2), (8), we obtain :

X _ -y _ ^ _ -1

&1.
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and ]\ence, by (5), are parallel. If two or more of the

quantities A^, A^, A. are different from zero, no two of

the given planes are parallel, and the planes therefore form

a triangular prism. If one onljr, a^ say, of the three

quantities is different from zero, the planes u-^= 0, u^ =

may be parallel, and if so, ^3= meets them in parallel

lines. We have then a limiting case of a triangular prism

when one of the edges is at an infinite distance. Thus, if

A = and \b^, c^, d.^\^0, the three planes are parallel to

one line.

It is to be noted that in this case

AjU^ + A.,u.2+ A3W3 =
! 6p Co, d-i |:f 0,

that is, when three planes are parallel to one line their

equations can be combined so as to form a paradoxical

equation 7c = 0, where k is a quantity different from zero,

Conversely, if three numbers I, m, v can be found so that

lu^+ mu.-^+ nu.^ = k,

where k is independent of x, y, z, and is not zero, then the

three planes are parallel to one line, and if no two of them

are parallel, form a triangular prism. For

a^l+ a.^m+ a^n= 0, bj.+ b^m+ b.^n = 0,

c-J.+ c^m+ c^n = 0, dj,+ d.^m+ d^n^O.

Therefore la^, 62.^31 = and \b^, c,, d.^\=l=0.

Suppose now that A = 0, |6j, c^,d.^\ = and A^=^0, (A^ is

one of the common minors of A and
|
6^ Cg, d^\). As in the

last case, the three planes are parallel to one line. But

since |6^, c,, ^^1 = 0, the three lines in which the planes

cut the plane YOZ, viz.,

x= 0, b^y+ c.j,z-]-d^ = 0;

x= 0, b2y+ C2Z-{-d.2 = 0;

03 = 0, b.^y-}-c^z+d^ =

are concurrent. Their common point is given by x = 0,

y ^ ^ ^\
c^d^— c^d^ d.^b.^— d.Jb.^ \'

and since A^=/=0, it is at a finite distance. Hence, since the
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three planes are parallel to one line and pass tlirou^^h a

point in the plane YOZ, they pass through one line.

It follows now that \a^, c.,, d.^\ and \a^, b^, d^\, the

remaining two determinants in (4), are zero. For since

the planes pass through one line, their lines of hitersection

with the plane ZOX, viz.,

2/ = 0, a^x+ c^z+ d^ = (); y = 0, a.^a;+ c^s+ c?.^ = ;

y = 0, a.^x+ c.^z+ d^ =

are concurrent. Therefore {a^, c^, d.^\ = 0, and similarly,

!«!, 62, (^3l
= 0.

Again, if \a^, K, d.^\ = 0, {ciy, c^, d._^\ = and cu/l^- a/l^,

(any one of the common minors), is not zero, the lines

of intersection of the given planes with the planes ZOX

and XOY are concurrent. The points of concurrence are

given by

^
' Cod^— c^do d.^a^— dju a./^— ax^

z = 0,
y

h./l^— h^d^ d.,a^— d^a.^ ajj^— h^a^

and since d.^a^— d^a^^O, they are not coincident. 'J'he

planes have therefore two common points and thus pass

through one line. It follows then that \a^, 63, c^\ and

I

h^, C2, d.^\ are both zero.

If, therefore, any two of the determinants

\b^,c^,d^\,
I
ctp 02,(^3!, \a^,b2,d^\, |ai, ^g'^sl

are zero, and one of their common minors is not zero, the

remaining two determinants are zero,* and the three planes

have a line of intersection at a finite distance.

*This is easilyproved algebraically. If A=0, |&i, Cg, ds\-0, and Aj ^ 0,

then, since A = a,A, + a.Ao + aA3= 0,

and
I

h^ , c, , cZg
|
= c^iA, + (LA., + d^i= 0,

A, ^ A, ^ A,
^^ ^ ^ (mIj - a^d^ ra^di - ajdj a^do - a^di

_ /ji
A) + ?>oA2 + 6;,A., _ C1A1 + C0A3 + C3A3

_~
-jctj, 62,^3! ~ - !«!, Co, (/3I

"

Therefore, since 2^A = 0. 2ciAi = 0, and k^i-O,

|«i, ^o, (^31 = and |a,, c.,, ^31 = 0.
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The conditions for a line of intersection are often written

in the form,

^1' 0,

^3 , ^3 , u

the notation signifying that any two of the four third-order

determinants are zero. They may also be obtained as

follows. Any plane through the line of intersection of

11^ = 0, ^(-2 = is given by \u^-\-\u.2 = 0. If the planes

Ui = 0, u., = 0, '?<'o = pass through one line,

\u^+ \c/it.2 = and Ug =

must, for some values of \, Xo, represent the same plane,

and therefore

or \u.^+ XoUo+ Ag-Jtg = 0.

Conversely, if A^, A.,, A3 can be found so that

then \u^ + Ao-^'o = — A3U3

,

and therefore the plane ti.^ = passes through the line

of intersection of u^ = and u., = 0. Considering the co-

efficients in- A^'?t^+ A2'?<'.2+ A3U3 = 0, we have

a^Ai+ f^Ao+ a3A3 = 0, ^^A^ + ^^A..+ 63A3 = 0,

c^Ai+ c^Ag+ t'sAg^O, and d{\^ + dn\2+ d^\=^0.

Therefore, eliminating A^, Ao, A3, we obtain

0.
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Ex. 5. The planes «.(-+%+,7-^ = 0, /LV+ b>/+ fz= 0, gx+fy + cz=0

jKiss through one line if A = «, k, </ =0, and the direction-ratios

!/: y; ^-^

of the line satisfy the equations

3a 36 3c

Ex, 6. If the axes are rectangular, the equations to the jjlanes

through the line of intersection of two of the given planes

ar.v+ b,^/ + CrZ+ d,=^0, r=I, 2, 3,

perpendicular to the third, are

(«!.'• + h^y+ r, : + di)(aoa3+ Kh, + c.jC^) - {a.^.v+ b.^+ c^z+ d^)

y.{a^ai + bjbi + c^c^=0., etc.

Shew that the three planes pass through one line.

Ex. 7. The plane -+"t + - = 1 meets the axes OX, OY, OZ, which

are rectangular, in A, B, C. Prove that the planes through the axes

and the internal bisectors of the angles of the triangle ABC pass

through the line ^
.'/

a s'V'+ c2 b slc^ + d^ c\/a^+ h^

46. Line intersecting two given lines. The equations to

any line intersecting two given lines, u^ = = t'^ ; Ug = = u,

,

are u^+ \v^ = 0, w^+ X^-o^O.

For the third line lies in the plane u^-^\{V^ = 0, and

therefore it is coplanar with u^z=() = v.^, and similarly it

is coplanar with u.^ = = v.^.

Ex. 1. Find the equations to the straight line drawn from the

origin to intersect the lines

3.r+ 2y + 4j-5 = = 2.);-3y + 4i + l,

2.v-4j/ + 2 + 6= = .3.t--4j/+ 2-3.

Ex. 2. Find the equations to the line that intersects the lines

,f+//+ .j = l, 2.';-.y-s= 2; x-y-z^?,, 2.r+4^-2 = 4, and passes

through the point (1, 1,1). j
x-\

^

y-\ ^z-\
1 3

Ex. 3. Find the equations to the line drawn parallel to
5='y=i

so as to meet the lines 2= 5.J7-6 = 4y + 3, 2= 2.r-4 = 3_y+ r).

Am. 44; = n,i; + 1693, lL- = ll.y + 34r,.
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Ex. 4. Find the surface generated by a line which intersects the
lines y=z—a ; .r+ 32— a, y-\-z=a, and is parallel to the plane A-+y= 0.

Ans. (.r+y)(?/ + 2)==2a(j + a').

Ex. 5. Find the surface generated by a straight line which intersects

the lines x+y=z = ; .v-i/= z, x-+?/ = 2a, and the parabola ?/= 0,

x'^=2az. Ans. x^- —y^= 2az.

Ex. 6. A variable line intersects OX, and the curve oj= i/,y'^= cz,

and is parallel to the plane YOZ. Prove that it generates the
paraboloid xy = cz.

Ex. 7. Prove that the locus of a variable line which intersects the
three given lines _^y

= m.>-", z = c
;
y— —mx, z= -c ; y = z, mx= -c ; is the

surface y^ -^ m^x-=^z'^ — c^.

47. Lines intersecting three given lines. If the equa-

tions to three given lines are u^ = = v^, u^ = = V2,

u^ = = v.^, and the three planes

(1) u^-\v^ = 0, (2) ii.2-X.-^^= 0, (3) U3-X3V3 =

have a line of intersection, that line is coplanar with each

of the three given lines, and therefore intersects all three.

There are two independent conditions for a line of inter-

section, (§ 45), which may be written,

A(A„ \„ \,) = 0, (4) M\„ \,., \,)= (5)

If \, X.,, Xg be chosen to satisfy (4) and (5), any two of

the equations (1), (2), (3) represent a line which intersects

the three given lines. Suppose that (1) and (2) are taken,

then eliminating Xg between (4) and (5), we obtain

0(Ai, A,) = (6)

An infinite number of values of X^, Xo can be found to

satisfy (6), and therefore an infinite number of lines can

be found to intersect three given lines. If we eliminate

X^, X^ between (1), (2), (6) we obtain

h:^-I)=« <^)

This equation is satisfied by the coordinates of any point

on any line which intersects the three given lines, and

therefore represents a surface generated by such lines.

Hence the lines which intersect three given lines lie on a

surfaceT^
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It is to be noted that if X^, A2, X3 satisfy (4) and (o),

(3) is of the form u^— \i\-i-k{ii^— \v2) = 0, and therefore

that (1), (2), (8), (4), (5) are really equivalent to four

independent equations. The ecjuation to the surface is

obtained by eliminating A^, A2, A3 between these four

equations, and this can be done in only one way. Hence

the surface is also given by fA—' —
> —^) = 0, or by

V^ V^ t'3 /

Ex. 1. Find the locus oi lines which intersect the three lines

y= h, z= —c\ z= c ; x= —a ; .v= «,?/=— 6.

If the three planes

i/-h + \^{z+ c)= 0, z-c+ X.,{.v+ a)=0, .v- a+ X3Q/+ b)=

have a line of intersection, it meets the three given lines. That
"•^'^^^

0, 1, X,,-b + X,c

X.,, 0, 1, -c + X.,(t

1, A3, 0, -a + X^b

i.e. a (1) AiA.A, + l=0 and {-2) X^X.X^^a-'IcXiX-i+ ^bXs-a^O.

Therefore the coordinates of any point on a line which meets the
three given lines satisfy

7/-b + Xi{z+ c) = 0, z-c+X2(-v+ a)=0, ,»;-« + A3(y+ ?;)= 0,

where AiA2/\3+l=0. Therefore eliminating A,, A2, A3, we obtain

the locus of the lines, viz. :

>/-b z-c ^-ct_..

z + c .v + a .y+ & '

or a>/z + bzx+ c.iy + abc = 0.

(Shew that the same result is obtained from (2).)

Ex, 2, If the planes through a point P and the tliree given lines

//=1, i=-I ; z= l, x=-l; x=l, i/= -\ pass through one line, P
lies on the Hwii-AGQ yz+ zx+.vi/+ \=0.

Ex. 3. Prove that all lines which intersect the lines y= mx,z = c
;

y= -mx, z= -c ; and the x axis, lie on the surface m.vz= cy.

Ex. 4. Prove that the locus of lines which intersect the three lines

y-z-l., x = ; i — .r=l, _v = ; .?-— _y= l, 2= is

.r^+ )/- -\-z'- iyz - 'izx - 2.ry= 1

.

Ex. 5. Find the locus of the straight lines which meet the lines

X

=

2, 4)/ = 3z ; x + 2 = 0, 4 y+ 3^ ==
; ?/ = 3, 2x+ z= 0.

A ns. 36.1-2 + 16/ - 9^2= 1 44.
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Ex. 6. Shew that the equations to any line which intersects the

three given lines .y = &, 2= -c, z= c, .v=-a; x= a, y= -h may be
written ?/-6+ A(e+r')= 0, (,fc--a) + /x(2/ + Z>) = 0, where A and /x are

connected by the equation A/xc - /x6+ a= 0. Hence shew that the two

lines which intersect the three given lines and also -=^^^— = —7—rrs;
c c -{a+ b)

.V i/ + c__z-b x — c_y_z — a

a c~h b-c c-a 6 a — c'

Ex. 7. Shew that the two lines that can be drawn to intersect the

four given lines

_?/ = l,s=-l; 3 = l,,v=-l; x= \,y——\; x= Q^y-\-z=

are given by j = l, ?/ + l = 0; z-\-2x+\=0, y -z-% = 0.

48. Coplanar lines. Tofind the condition that two given

lines should be coplanar.

Let their equations Ije

I m n

y- y

.(1)

•(2)
// ni' n

The equation to a plane througli the lirst line is

a{x-cj.)+ h{y-l3)+ c{z-y) = 0, (3)

where al+ hm+ ch = (4)

If it contains the line (2),

,,(a-a')+ /H/3-/3') + fKy-y') = 0, (5)

and (d' + bm'+ c)-)! = (6)

Therefore eliminating a, h, c between (4), (5), (6), we

obtain the required condition,

a— a,

I, 111,

y 1
= 0.

I

.(7)

The elimination of a, A, c Ijctwcen (8), (4), ((i) gives th(>

e([uation to the plane containiiig the linos, viz.,

.r. — (x., y—ft, z — y
I, on, n

r, m, n'

= 0. .(S)
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Generally, the equation (8) represents the plane through

the line (1) parallel to the line (2), and (7) is the condition

that this plane should contain the point (a', ^', y) on (2).

li-

z-4
5

Ex. 1. Deduce the result (7) by equating tlie coordinates cL+ lr, etc.,

(jl' + 1'/, etc., of variable points on the given lines.

Ex. 2. Prove that the lines •''-^=•^=1^ ;
'lZ^=''LZ^ =

are coplanar. ^6464
Ex. 3, Prove that the lines

x-a-\-d_i/-a_z-a-d .

«. —

S

a. «.+ 5

X — b+ c_ !/ — b _z - h — c

'ITy 1^ fi+7

are coplanar, and tiiid the equation to the plane in which they lie.

/Ivw. 2// = .v + z.

Ex. 4. Prove that the lines .v= a>/ + b = cz + d, .v= a.7/+ ft=y: + i

coplanar if (y - c){af3 - b(jL) - {ft. - a)(c8 - dy) = 0.

Ex. 5. Prove that the lines

n
"-—^, ax+ bij + cz + f/= =ax+ //_>/ + c'z+ d'

are coplanar if
^^'^+ h(i+ cy + d^au^+ b'f^+ c'y + d'

^

al+ bin + cn a'i+ b'm + c'n

Ex. 6. Prove that the lines ax+b>/+ cz + d= = ax+ b'^+ c'z+ d'

;

CLX + ^i/+ yz+8=0= ol'x+ (3'//+ y'z+ S' are coplanar if

k b'.

d, ,1',

Ex. 7. A, A' ; B, B' ; C, C are points on the axes ; shew tliat

tiie lines of intersection of the planes A'BC, AB'C ; B'CA, BC'A' ;

CAB, CA'B' are coplanar.

'^'1
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Suppose that X, fx, v are the direction-cosines of such a

line, then l\+ mfx+ nv = and U\+ m'lj.+nv = ;

X _ 1^ _ V

inn'—mn nl' — n'l Im' — l'm

Therefore the projection

= A(a-a')+ /x(/3-/3')-t-Ky-y'), (§21, Ex. 8),

_ (a- a.')(mn - m'n)+ (/3

-

B') {nV- n'l)+ (y

-

y'Xlm'- I'm)

\l^{inn'— tn'nf

y -^ Jl,{mn'— m'nf-ol-ol', 13-^',



§49] SHORTEST DISTANCE BETWEEN TWO LINKS 59

Ex. 3. Shew that the shortest distance between the lines

.c-l _y-2 .£-3. a?-2^;y-4^ g-5
~2~~

3 ~ 4' 3 ~ 4 ~ 5

is -r_, and that its equations are

> vG
n.v+ 2//-1z+ G = 0, 7.1- +.?/- 5^+ 7 = 0.

Ex. 4. Find the shortest distance between the lines

.r-3 _y-8

_

g-3
. .r+3

_

y+ 7 _ 5-6
"~3~~"-l ~

1 ' -3 ~'
2 " 4

The following method of solution may be adopted : Let the s.d.

meet the lines in P and P' I'espectively. Then the coordinates of P
and P' may be written (3 + 3r, 8-r, 3 + r), (-3-3/, -7 + 2/, G + 4;-'),

where r is proportional to the distance of P from the point (3, 8, 3)

and / to the distance of P' from ( - 3, - 7, C). Whence the direction-

cosines of PP' are proportional to 6 + 3/-+ 3/, 15 -r- 2/, -3+ r -4/.

Since PP' is at right angles to both lines, we have

3(6 + 3?-+ 3/)-(15-?--2/)+ (-3 + r-4r') = 0,

-3(6 + 3r+ 3r') + 2(15-r-2r') + 4(-3 + ;--4/) = 0.

Whence, solving for r and ?•', we get ?-= r' = 0.

Therefore P and P' are the points (3, 8, 3), (-3,-7, 6), PP' = 3V30, ^^^-

and the equations to PP' are

r-3_ ?/-8 _2;-3
^"~'~5~~^-^r

Ex. 5= Find the same results for the lines

.r-3 _.?/-5_5-7. r+l^ ?/+ l _2 + l

1
"' -2 ~

1 ' 7 ~ -6 ~"
1

Ans.2'j29, 'J-^-JI^='J^^-, (3,5,7), (-],-!,-]).

Ex. 6. Find the length and equations of the s.d. between

3a' - 9y+ 5^= = X + ?/ - 2,

6a.-+ 8j/ + 3s-]3 = = .>: + 2^ + 2-3.

Ans. -IL:, lO.v - 29y+ 1 fii= = 13,);+ 82y+ 55^-109.
v^342

Ex. 7. A line with direction-cosines propnitioiial to 2, 7, -5 is

drawn to intersect the lines

.r-5_ ?/-7 _g+ 2 . r+3_y-3^2-G
3 ~'^1'" "

I ' -3 ~'
2 ~ 4

Find the coordinates of the jioints of intersection and the length

intercepted on it. Am. (2, 8, -3), (0, 1, 2), n/78.
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Ex. 8. Find the s.d. between the axis of z and the line

ax+ 6y +c^+ f^= 0, ax+ h'y+ dz+ rf' = 0.

(The plane passing through the line and parallel to OZ is

c' {ax+%+ C2+ rf)= c {a!x+ h'y+ cz+ d!\

and the perpendicular from the origin to this plane is equal to the s.d.)

Ans.
cd' — c'd

\l {ad - a'df+ {hd - b'df

Ex. 9. If the axes are rectangular, the s.d. between the lines

>/= az + b, z= oiX+l3 ; 7/= a'z+ b\ z=a.'x+ (i' is

{0L-a.'){b-b')+ {a.'fS-OLl3'){a-a')

\a?a."^{a - a')-+ (a. - ol')-+ {aa. — a'a!)'^)'^

Prove that the s.d. between the lines

ax \-bi/-\-cz+ d==0= a'x+ b'y+ dz+ d',

aJC + fiy-\-yz+ ^= Q= a!x+ (i'y+ y'z+ h'

Ex. 10.

{2(BC'-B'C)2}r, h, c, d
'/, b\ d, d'

^ 13, y, 8

^', P', Y, S'

where A = bd - b'c, etc., A' = (3y' - (3'y, etc.

Ex. 11. Shew that the s.d. between the lines

x-x-^ _y-y-^ _ z-z^
_

x - x^_^ _ y - y^ _z-Zi
cos o-j cos /?! cos yj

' cos a2 cos /iJ., cos y.,

meets the first line at a point whose distance from (/•,, _?/j, 2,) is

v(.r,-.r.,)(cosoci-cos^cosa.,)
^^^^^^,^ ^ -^ ^^^ ^ j^ ,^^^^^^^^ ^^^^ j.^^^_

sin2 Q

Ex. 12. Shew that the s.d. between any two opposite edges of

the tetrahedron formed by the planes ?/+ 2= 0, 2+.r=0, .v + ?/= 0,

x-\-y-\-z= a is 2al\'^, and that the three lines of shortest distance
intersect at the point x=y = z= a.

Ex. 13. Shew that the s.d. between the line

ax ^hy^rCz^-d=Q= a'x+ b'y+ dz+ d
and the s-axis meets the ^-axis at a point whose distance from the
origin is

(lb' - d'b) {hd - b'c)+ {ca' - da) {ad' - a'd)

{{bd — b'c)~ + {cd — da)''\

Ex. 14. Shew that the ecpiation to the plane containing the line

y/b + z/c= 1, x= 0; and parallel to the line x/a-zlc=], y = is

xja-ylb-zjc-\-\=0, and if 2n? is the s.d. prove that
-ji
= ^i + jT^-\—2'
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Ex. 15. Two straight lines

.)• - fjL _>/ - fi _'z - y -<<-' _i/-/3'

;iic cut by a third who.se direction-cosines arc. A, fx, v. Show tli;it the
length intercepted on the third line is given by

a. - a.', /3 - /3', y - y' \-^\ I, vi, n
I, m, n

j
j

^', m\ n'

I', m', n'
I I

A, /7, V

and deduce the length of the s.D.

*Ex. 16. The axes are oblique and the plane ABC has equation
.r/a+ ?//6+2/c=l. Prove that if the tetrahedron OABC has two pairs

of opposite edges at right angles, —^—= ^_?„/^=S!!^'
( = /•), and that

1 'ddi 7 9(/> 'd4i
id a~=b-7^ = c-^

the equations to the four perpendiculars are

'deb ^ 3<i) „^= 2a cos I', -^ = 2a cos u, etc., ..w^. «„— _>,^=— — v^^.
oy oz Ox d>/ oz

Hence shew that the perpendiculars pass through the point given by

7^= Ihck. -^ — 2cak, ^= 'iabk. Prove also that the eq nations to the
ox ' o>j oz ^

s.D. of AB and OC are -^= 2abk, a7^ =b~ ; and that the s.D.
oz da 01/

passes through the point of concurrence of the perpendiculars.

50. Problems relating to two non-intersecting lines.

When two non-intersecting lines are given, tlie following

S3^stems of coordinate axe.s allow their equations to be

Avritten in simple forms, and are therefore of use in problems

relating to the lines.

I. Rectangular axes. Let AB, A'B', (tig. 25), be the lines,

and let CC', length 2c, be the shortest distance between

them. Take the axis of s along cC, and O the mid-point
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of CC' as origin. Draw OP, OQ parallel to AB, A'b', and
take the plane POQ as the plane z= 0. As x- and y-axes

take the bisectors of the angles between OP and OQ. Then
if the angle between the given lines is 2a, the equations

to the planes POZ, QOZ are y^xtaua., y= — a^tanoc; and

hence the equations to AB and A'b' are

y = x tan OL, z = c; y=-.—x tan a, z= —c.

These may be written in the symmetrical forms

X _ y _z— c_ * _ 2/ _z+ c

cos a sin a ' cos a — sinoc

Ex. 1. P and P' are variable points on two given non-intersecting
lines AB and A'B', and Q is a variable point so that QP, QP' are at
right angles to one another and at right angles to AB and A'B'
respectively. Find the locus of Q.

"Take as the equations to AB, A'B', y= inx^ z = c ; i/= —mx, z= -c.
Then the coordinates of P, P' are a, met., c

; /3, -mfS,'-c, where a. and

fi are variables. Let Q be (^, rj, C), then since PQ is perpendicular
^^^^'

(^-0L)+m(7;-m(x.)= 0; (1)

since P'Q is perpendicular to A'B',

($-f3)-vii,j +mP) = 0; (2)

since PQ is 2:)erpendicular to P'Q,

(^"-'^)a'-/^)+ (>/-'««-)(>/ + '«/3)+ (t-c)(f+c)=0 (3)

To find the equation to the locus we have to eliminate a. and j3

between (1), (2), (3).

The result is easily found to be —^^

—

r->= >> which represents

a hyperboloid. (1+m-J^ 1-m-

II. Axes partly rectangular. If we take OP and OQ as

axes of X and y, instead of the bisectors of the angles

between them, we have a system of axes in which the

angles ZOX, YOZ are right angles and the angle XOY is the

angle between the lines. The equations to AB, A'B' referred

to this system are

y = 0^ z = c; x = 0, z= —c.

Ex. 2. P, P' are variable points on two given non-intersecting

lines and PP' is of constant length 2L Find the surface generated

by PP'.

Take as the equations to the lines 7/ = 0, z= c ; x= Q, z= -c ; then

P and P' are (a., 0, c), (0, (3,
- c), where a. and fS are variables. The

equations to PP' are
.v y~f3 z + c
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If Q, Q' arc the projections of P, P' on tlie plane OXY, PQ = Q'P'=-r,

OQ=•r^, OQ' = /J and QQ"- = o(.-+ /i--2r/./ic(.s f), wlieie is the angle

l)et\veon the lines. 'Therefore

PP'2= a.2 + /3^-2(xj8cos^+ 4c2 = 4F (2)

To obtain the equation to the locus of PP' we have to eliniinate

OL and /:> between the et^uations (1) and (2). From (1),

z+ r ' z-c

and therefore the surface is given by

.y2 y'l 2aycos^_F

Ex. 3. Find the surface generated by a straight line which inter-

sects two given lines and is parallel to a given plane.

If the axes be chosen as in Ex. 2, and the given plane be
Ix 71XU

Lv + my+ )is^O, the locus is —^—

I

— + n = 0.
•^ '

z+ c z-c

III. Axes oblique. li" a point on each of the given lines

is specitied and a rectangulai- system is not necessary, the Hne

joining the given points may be taken as s-axis, its mid-

point as origin, and the parallels through the origin to the

given lines as x- and y-sixes. The equations to the lines

are then y^Q^ q^^,. .^^q ,2;=_c;

where 2c is the distance between the given points.

Ex. 4. AP, A'P' are two given lines, A and A' being fixed, and

P and P' variable points such that AP.A'P' is constant. Find the

locus of PP'.

Take AA' as z-axis, etc. Then P, P' are («., 0, c), (0, fS, - c), where

a/iJ = constant = 4F, say. The equations to PP' are

X _9/ - f^ _z -\-

c

0L~ -/3" 2c'

and eliminating a. and /3 between these and a.(i= AP, we obtain the

equation to the locus, c-xy + k"{z'^ - c'^)= (i.

Ex. 5. Find the locus of PP' when (i) AP+ A'P', (ii) AP A'P',

(iii) AP2-i-A'P'2 is constant. Find also the locus of the mid-point

of PP'.

Ex. 6. Find the locus of the mid-points of lines wliose extremities

are on two given lines and which are parallel to a given plane.

Ex. 7. Find the locus of a straight line that intersects two given

lines and makes a right angle with one of them.

Ex. 8. Find the locus of a point which is equidistant from two
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Ex. 9. Shew that the locus of the niid-points of lines of constant

lengtii which have their extremities on two given lines is an ellipse

whose centime l)isect,s the s.d.. and whose axes are equally inclined to

the lines.

Ex, 10. A point moves so that the line joining the feet of the

perpendiculars from it to two given lines subtends a right angle at

the mid-point of their s.d. Shew that its locus is a hyperbolic

cylinder.

Ex. 11. Prove that the locus of a line which meets the lines

y= ±mx, z~ ±c; and the circle .»''-^+y-= a'-, s= is

THE VOLUME OF A TETRAHEDRON.

51. 'To find the volume in terms of the coordinates of the

vertices, the axes being rectangular.

If A, B, C are {x^, y^, -%), (^'o

equation to the plane ABC is x,

2/2.

y>

Vv

2/2'

2/3'

s,), {x„

z, 1

1

1

1

02,

^3'

2/3. ^3). the

= 0, or

X
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Hence, using the .similar expressions for cos/3.A and

cosy. A, equation (1) may be written

2A{x cos oL-\-y cos j3+z cos y) 2i>A, by (2).

Now the absohite measure oi" J^^A is the volume of the

tetrahedron OABC, and we can introduce positive and

negative volume by defining the volume OABC to be ijjA

which is positive or negative according as the direction of

rotation determined by ABC is positive or negative for the

plane ABC, {p is positive as in § 37). We may then write

Vol. OABC = Vol. OCAB = Vol. OBCA =

Vol. OBAC x.„
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Agam, since
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the coordinates of A, are given by

^=^, wiiere Ai = ,. , etc.
B. C, Di da^

and therefoi'e the vohiiiie is given by

-JjAi/D„ Bi/Di, Ci/Di, 11 _

1 A2/D^, etc.
1

etc.

__i |A,. B,

6DiD.D,D.,
I

A„

6D1D2D3D;

(C. Smith, Algebra, p. 544.)

"Ex. 9. The lengths of the edges OA, OB, OC of a tetrahedron

OABC are «, 6, c, and the angles BOG, COA, AOB are A, ft., v ; find

the volume.
Suppose that the direction-cosines of OA, OB, OC, referred to

rectangular axe.s through O, are I,, m,, n, ; I,, m.,, n, ; ^3, m,, n, ; then

the coordinates of A are l,a, m,a, n,a, etc.

Therefore



[CH. IV.

CHAPTER IV.

CHANGE OF AXES.

52. OX, OY, OZ ; O^, Ot], O^ are two sets of rectangular

axes through a common origin O, and the direction-cosines

of O^, O)], O^, referred to OX, OY, OZ, are l-^^, on-^, n-^^; l^, w^, n^',

Zg, mg, %. P, any point, has coordinates x, y, z referred to

OX, OY, OZ and ^, 37, ^ referred to Of, Orj, O^. We have to

Z A.V

fK

-^^^e-^

express x, y, z in terms of ^, »], ^ and the direction-cosines,

and vice-versa.

In the accompanying figure, ON, NM, MP represent
f, tj, ^,

and OK, KL, LP represent x, y, z. Projecting OP and ON,

NM, MP on OX, OY, OZ in turn, we obtain

•(1)
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And projecting; OP and OK, KL, LP on O^, Or], O^ in (nrn

we obtain c=^,^,,;+ ,n,y + ;/^:,l

(2)
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From the second and third equations of (b), we derive

and each
^iHrn^HV

h>
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the direction of rotation given by LMN is the positive

direction of rotation for the plane LMN, the system of axes

O^, O*;, O^ can be brought by rotation about O into coin-

cidence with the system OX, OY, OZ. If the direction of

rotation is negative, and O^, O;; arc brouglit to coincide

with OX, OY respectively, then O^ coincides with OZ'.

H

Now Vol. OLMN: h,
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54. Section of a surface by a given plane. The follow-

ing method of transformation can be applied with advantage
when the section of a given surface by a given plane

passing through the origin is to be considered.

Let the equation to the plane be lx+ my-\-nz = 0, where
l^+ m^+ n'^=l, and n is positive.

Take as O^, the new axis of z, the normal to the plane

which passes through O and makes an acute angle with

OZ. Then the equations to O^, referred to OX, OY, OZ, are

x/l = y/m = z/n. Take as Otj, the new y-axis, the line in

the plane ZO^ which is at right angles to O^ and makes an
acute angle with OZ. Then choose 08, the new «-axis, at

right angles to Oij and O^, and so that the system O^, Oij, O^
can be brought to coincidence with OX, OY, OZ. The given

plane is ^0)j, and since O^ is at right angles to O^ and 0>;,

it is at right angles to OZ which lies in the plane ^O)].

Hence O^ lies in the plane XOY, and therefore is the line

of intersection of the given plane and the plane XOY. The

equation to the plane ^0>] is xll = y/7n', therefore if \, fx, %

are the, direction-cosines of O;/,

l\-\-mfx + 'nv = {),

m\ — lju = 0,

Am V _ ±1whence - =
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But Oi] makes an acute angle with OZ, and tlierci'ore v is

positive, and therefore the negative sign must be taken in

the ambiguity.

— In —nin rrr-,
—

-,

s/l--\-m^ sJl-'+ m-

And since O^ is at right angles to O?; and O^', by § 53 (e>.

the direction-cosines of O^^ are

nfx-niv, lv— n\, ni\ — lii;

— 7>l /

Jl'^+ nir' Jl^^+m^
Hence we have the scheme

:

0.
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Ex. 2. All plane sections of a surface represented by an equation

of the second degree are conies.

Take coordinate axes so that a plane section is s= ; the equation to

the surface is, after transformation, of the form

ax"- + hi/+ cz"^+ 2/}/s+ 'igzx+ 2hxy+ 'S.ux+ 2vy+ 2wz+ d=0.

The section by the plane XOY is the conic whose equations are

.:= 0, ax-+ Ihxy+ hf+ 2?<.r+ 2v?/ + f/= 0.

The surfaces represented by equations of the second degree are the

conicoids.

Ex. 3. All parallel plane sections of a conicoid are similar and

similarly situated conies.

Take the coordinate plane z= parallel to a system of parallel

plane sections. The equations to the sections by the planes 0=^,

2= ^-' are then,

z= k, ax'+ 2hxy+ by^+ 2x (gk+ u)+ 2 y {fk+ v)+ cl^+ 2 »-A-+ cZ= 0,

z= k', ax"^+ 2kxy+ bf+ 2x{gk' + u) + 2y{fk'+ v)+ ck"^+ 2ivk'+ d=0.

Hence the sections are similar and similarly situated conies.

Ex. 4. Find the conditions that the section of the surface

ax'+ 'hif'-\-cz-= \ by the plane lx+my+ nz=p should be (i) a parabola,

(ii) an ellipse, (iii) a hyperbola.

(It is sufficient to examine the section by the plane lx+my+nz= 0,

which, by Ex. 3, is a similar conic. The equation to the projection of

this section on the plane 2=0 is obtained by eliminating z between

the equations lx+ my+ nz= Q, ax^+ by'^+ cz^= l, and the projection is a

conic of the same species.)

A71S. For a parabola P/a + m^/b + 7i^/c= 0, etc.

Ex. 5. Find the condition that the section of ax-+ by^= 2z by

lv+my+ nz=^p should be a rectangular hyperbola.

(Since rectangular hyperbolas do not, in general, project into

rectangular hyperbolas, it will, in this case, be necessary to examine

the actual section of the surface by the plane (x+my+nz=0 by the

method of § 54.) Ans. {a + b)n^+ am'+ bl'= 0.

Ex. 6. Find the conditions that the section of ax''-+ by^+cz^= l by

Ix+ my -hnz=p should be a circle.

Am. 1= 0, m^c-a)= 7i\a-b); or m=0, n'{a-b) = P{b-c); or

n=-Oj\b-c) = m'^{c-a).

Ex. 7. If lx+ my = is a circular section of

A;(;2+ By^+ Cz"+ 2Dxy= 1

,

prove that (B -C)^2_2D^m+ (A-C)m2= 0.

Ex. 8. Prove that the eccentricity of the section of xy=z by

lx+ 'iny^nz= 0, {P + m-+ n^= l\ is given by

2 Ini
-^ = 1±-

Explain the result when «= 0.
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Ex. 9. Shew that if

a.r2

+

by"-+ czr'+ Ifyz+ 'igzx + ^hxy+ 2 M.r+ 2y^ + "twz + o?

be trausforTued by change of coordinates from one set of rectangular
axes to another with the same origin, the expressions a + 6+ c,

iC--\-v''--\-v?' remain unaltered in value.

Ex. 10. Two sets of rectangular axes tlirough a common origin O
meet a sfihere whose centre is O in P, Q, R ; P', Q', R'. Prove that
Vol. OPQR'= ± Vol. OP'Q'R.

Ex. 11. The equations, referred to rectangular axes, of three
uiutually perpendicular planes, are ^v - ^r'' - "' r.'/ - 'i;-2 = 0, ;•=!, 2, 3.

Prove that if (^, ?/, C) is at a distance d from each of them,

I1+ I2+ I3 mj^ + jUo+ mg

Hi + %2+ '^3

Ex. 12, If the axes of x, y, z are rectangular, prove that the

substitutions

i 2S ._ J ,. f

\/3 ^/2 Ve' \/3 \'6' \/3 V2 Ve

give a transformation to another set of rectangular axes in which the

plane .r+ ?/+ ^ = becomes the plane ^= 0, and hence prove that

the section of the surface yz-Vzx-\-xy-\-d'-= Q by the plane .r + v/ + i =
is a circle of radius n/2 . a.

*55, If OX, OY, OZ are rectangular axes, and O^, 0>/, O^

are oblique axes whose direction-cosines, referred to

OX, OY, OZ, are l^, m^, n^ ; I.,, ii\, n.^, l^, m^, n^, then pro-

jecting on OX, OY, OZ ; O^, O//, O^, as in § 52, we obtain

y = m^i+m.2r,+ m^^,^ - (a)

z= n^^+ n^ti+ i?3^.J

^+ rj cos r+ ^ cos /n = l^x+ m^y+ n ^z^

(B)^cos jy+ ^/+ ^cosX =l^x-\-

^cos ^+ »; COS X + ^= l^x-\-m^y+n^z,]

where the angles >/0^, ^^O^, ^Or are X, jj., v. The equations

(b) can also be deduced from (a) bj'- multiplying in turn by

tj, 77ij, -jjp etc., and adding. Again, from (a),

i- X,
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By means of (a) and (c) we can transform from rect-

angular to oblique axes and vice versa.

Cor. Since x, y, z are linear functions of ^, >;, ^ and

vice versa, the degree of any equation is unaltered by

transformation from rectangular to oblique axes or from

oblique to rectangular axes. The transformation from one

set of oblique axes to another can be performed, by in-

troducing a set of rectangular axes, in the above two steps,

and hence in this most general case the degree of the

equation is unaltered by the transformation.

Ex. 1. The equation ,t'''+ 4(v/- + i,") = 2 is transformed by change
from rectangular axes, the new axes being oblique, and having
direction-cosines proportional to

2,1,1; 4, \/3-l, -\/3-l ; 4, -VS- 1, v/S- 1.

Shew that the new equation is .v^ + ?/'^+ z^ = l.

Ex. 2. If P, Q, R are (^^, rjr, C\ r='\, 2, 3, referred to a set of

oblique axes through an origin O, prove that

1. Vol. OPQR =

is, Vsi Cs

1, COST, cos jU,

cos V, 1, cos A

COS jjL, cos A, T

(Use § 55 (b) ; cf. § 51, Ex. 9.)

*Examples I.

1. The gnomon of a sundial is in the meridian at an elevation A
(equal to the latitude), and the sun is due east at an elevation a.

Find the angle 6 that the shadow makes with the N. and S. line of

the dial.

2. Find the equations to the line through (1, 1, I) M'hich meets
j^. _ X ?/ + 1 z — 2

both the lines '—
s""^'^^^^'

4 > x= 2?/ = Sz, and shew that its inter-

/15 15 5 \
section with the second line is (

— , —r, — )•

\2b 52 2b/

3. If OA, OB, OC have direction-ratios I,., Wr, «r, »'= 1, 2, 3;
and OA', OB', OC bisect the angles BOO, COA, AOB, the planes

AOA', BOB', COC pass through the line

^ _ )/ _ z

li + li+ lz m^ + m^ + m^ n^+ n.^^+ n^

4. P is a given point and PM, PN are the perpendiculars from P
to the planes ZOX, XOY. OP makes angles B, a., /3, y with the

planes OMN aud the (rectangular) coordinate planes. Prove tliat

coscc''^ = cosec" a.+ cosec-/3+ cosec-v.
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5. Shew that the locus of linos which meet the lines

ii±if= y ._
^

sin «. dbcoso.

at the same angle is

(.(// cos oL-az sin «.)(.;,* sin a. — a// cos a.)= 0.

6. Find the Uk'US of a straight line which meets OX and the

circle .v-+ i/'^= c\ z=/i, so that the distance between the points of

section is v c^+ h^.

7. If three rectangular axes be rotated about the line -.=- = -

into new positions, and the direction-cosines of the new axes referred

to the old are li, Wp n^, etc.; then if

l^=+ (m^n^ - wi3?i2), A («'3+ ?^')= m("i + h) = ^'{^2 + '"1)

;

also if is the angle through which the system is rotated,

8. If the shortest distances between lines 1, 2, 3 are parallel to

lines 4, 5, 6, then the shortest distances between the lines 4, 5, G are

parallel to the lines 1, 2, 3.

9. Any thi'ee non-intersecting lines can be made the edges of a

parallelepiped, and if the lines are —^— = -—'^= —, r=l, 2, 3,

the leni^ths of the edges are ' "'• ''''

•a.3> /^2-/^3, 72-73
I,, ruo, «2

^3, WI3, n.^

h, »"2,

etc.

Consider the case where the denominator is zero.

10. OA, OB, OC are edges of a parallelepiped and R is the corner

opposite to O. OP and RQ are perpendiculars to the plane ABC.
Compare the lengths of OP and RQ. If the figure is rectangular and

O is taken as origin, and the plane ABC is given by lx+ 7)i^+ 7iz=p,

PQ has direction-cosines proportional to /~^-3/, ?>i~i-3wi, ?t~^ — 3h,

and PQ2= OR--9.0P^.

11. OS is the diagonal of the cube of which OP, OQ, OR are edges.

OU is the diagonal of the parallelepiped of which OQ, OR, OS are

edges, and OV and OW are formed similarly. Find the coordinates

(.f "U, V, W, and if OT is the diagonal of the parallelepiped of which

OU, OV, OW are edges, shew that OT coincides witli OS and that

o r = 5 . OS.

12. Find the equations to the straight line through the origin

which, meets at right angles the line whose equations are

{b+ c)x+{c+ a)i/+(a+ b)z= k= (b-c).T+ {c-a)>/ + {a-b)z,

and find the coordinates of the points of section.

13. Find the locus of a point which moves so that the ratio of its

distances from two given lines is constant.
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14. A line is parallel to the plane i/+ z= and intersects the circles

x^+ i/'^= a'^, z=0 ; x^+z'^= a% 7/= ; find the surface it generates.

15. Find the equation to the surface generated by a straight line

which is parallel to the line ?/— m.r;, z= ')ix, and intersects the ellipse

A->2+//62=l, 2= 0.

16. A plane triangle, sides a, b, c, is placed so that the mid-points

of the sides are on the axes (rectangular). Shew that the lengths

intercepted on the axes are given by

and that the coordinates of the vertices are {-I, m, n), {I, -in, n),

{/, m, - 7i).

17. Lines are drawn to meet two given lines and touch the right

circular cylinder whose axis is the s.d. (length 2c), and radius c.

Find the surface generated.

18. The section of ax^+h/+ cz' = \ by the plane Lv+ m7/ +nz=p is

a parabola of latus rectum 2L. Prove that

19. A line moves so as to intersect the line z=0, x=y ; and the

circles .r= 0, y2 + 2^= J'^
; y = 0, z'-\-x'= r'^. Prove that the equation to

the locus is {,^^yf{f^^{x-yf\ =r\x-y)\

20. Prove that ——1 1-—^ = represents a pair of planes
y-z z-x x-y

whose line of intersection is equally inclined to the axes.

21. Find the surface generated by a straight line which revolves

about a given straight line at a constant distance from it and makes

a given angle with it.

22. Shew that x'+y"^ + z'^- 3xy - '3zx - 3yz= 1 represents a surface of

revolution about the line x=y=z, and find the equations to the

generating curve.

23. Lj, L^, Lg are three given straight lines and the directions of

Li and L2 are at right angles. Find the locus of the line joining the

feet of the perpendiculars from any point on L3 to Lj and Lg.

24. The ends of diameters of the ellipse z= c,_x^-/a^+y^/P-=l are

joined to the corresponding ends of the conjugates of parallel

diameters of the ellipse .r>2+ ^2/^2= j ^ z=-c. Find the equation to

the surface generated by the joining lines.

25. A and B are two points on a given plane and AP, BQ are

two lines in given directions at right angles to AB. Shew that for all

lines PQ, parallel to the plane, AP : BQ is constant, and that all such

lines lie on a conicoid.

26. The vertex A of a triangle ABC lies on a given line ; AB and

AC ])ass through given points ; B and C lie on given planes ; shew

that the locus of BC is a conicoid.



cii. IV.] EXAMPLES I. 79

27. Prove that the equation to the two i)Ianes inclined at an angle a
to the .ry/-plane and containing the line y= 0, z cos fS = .v s'm [3, is

(.' - +//-') tan'/i + i'^ - iz.v tan (3 -=f tan^oc.

28. A line moves so as to meet the lines =

—

'-l—= ^ in A
cos a. isino.

and B and pass throiigh the curve i/z= k^, .v= 0. Prove that the locus
of the mid-point of AB is a curve of the third degree, two of whose
asymptotes are parallel to the given lines.

29. Ciiven two non-intersecting lines whose directions are at I'ight

angles and wliose s.d. is AB, and a circle whose centre C is on AB
and plane parallel to the lines. Shew that the locus of a variable line

which intersects the given lines and circle is a surface wliose sections

by planes parallel to the lines are ellipses whose centres lie on AB,
and that the section by the plane through C, another point of AB, is

a circle, if C, C are harmonic conjugates with respect to A and B.

30. If the axes are rectangular the locus of the centre of a circle of

radius a which always intersects them is

.Vsjd^ -1/^-z^+yJa^- z^ -o:^+ zslcfi — x^— 2/^= 0^.

31. A line is drawn to meet ?/=.rtana., z= c; y= -.rtana, z— -c,

so that the length intercepted on it is constant. Shew that its efjua-

tions may be written in the form

x — ksin d cot CL _9/ - k cos ^tan a._z

kcosB X-sin^ c'

'vhere k is a constant and 6 a parameter. Deduce the equation to the

.ocus of the line.

32. Find the equation to the surface generated by a straight line

which is parallel to the plane 2 = and intersects the line .v=i/=z, and
the curve .v + 2i/= 4z, x-+y'^= a^.

33. Thi'ough a fixed line L, which lies in the .?v/-plane but does not
pass through the origin, is drawn a plane which intersects the planes

x=0 and j/ = in lines M and N respectively. Through M and a fixed

point A, and through N and another fixed point B, planes are drawn.
Find the locus of their line of intersection.

34. The axes are rectangular and a point P moves on the fixed

plane xja + i/jhJrzIc^^. The yjlane through P perpendicular to OP
meets the axes in A, B, C. The planes through A, B, C paialiel to

YOZ, ZOX, XOY intersect in Q. Shew that the locus of Q is

X- y z- ax by cz

35. AB and CD are given non-intersecting lines. Any plane
tludugh AB cuts CD in P, and PQ is normal to it at P. Find the

locus of PQ.

36. Find the equation to a plane which touches each of the circles

,r = 0, .?/--!- 2'-^= a2 ; ?/ = 0, s^-F.f-= 6- ; 2= 0, .r--|-,v-= c^. How many such

planes are theie ?

37. Find the locus of the position of the eye at which two given

non-intersecting lines appear to cut at right angles.
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38. Four given points of a variable line lie on the faces of a

tiuadrilateral prism. Shew that any other point of the line describes

a line which is parallel to the edges of the prism.

39. The locus of the harmonic conjugates of P with respect to the

two points in which any secant through P cuts a pair of planes is

the ])olar of P with respect to the planes. Prove that the equation

to the polar of (.rj, ^j, z{) with respect to t(,= 0, v= 0, is — + - =0, where

«i is the result of substituting ^i, 2/ii h foi" ^; ^i ^ ^^ "> ^^^- Shew
also that the polars of P with respect to the pairs of planes that form

a trihedral angle cut those planes in three coplanar lines.

40. Any line meets the faces BCD, CDA, DAB, ABC of a tetra-

hedron ABCD in A', B', C, D'. Prove that the mid-points of

AA', BB', CC, DD' are coplanar.

41. If the axes are rectangular, and X, jx, v are the angles between
the lines of intersection of the planes a^r+ 6^_y + c^s= 0, r=\, 2, 3,

prove that

rt3, 63 j C3

_ (2a,2 . 1a^ . 2a3^) -(1 - cos^A - cos'^x - cos^i/+ 2 cos A cos /x cos v)~
sin X sin [x sin v

42. The equations x= Xz + ij.,
i/= {X^-2Xix)z + [ji(X^- [i), where X

and jx are parameters, determine a system of lines. Find the locus of

those which intersect the 2-axis. Prove that two lines of the system

pass through any given point unless the given point lies on a certain

curve, when an infinite number of lines pass through it, and find the

equations to the curve.
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CHAPTER V,

THE SPHERE.

56. Equation to a sphere. li' the axes are rectangular

the square of the distance between the points P, (x^, y^, z^
and Q, (.'^2, y.,, z.^ is given by {x^-Xif+ iy^-yif+ iz.i-z^f,

and therefore the equation to tlie spliere whose centre is

P and whose radius is of length r, is

(x - x^f+ (y - y,f+ {z- z^f = r\

Any equation of the form

ax^ -\-(n/+ az"-+ 2ux + 2ry + 2wz+ r/ =

can be written

and therefore represents a sphere whose centre is

"Ju^+v'^+ w' — ad
( , — ,

) and radius
\ a a a/

Ex. 1. Find the equation to the sphere whose centi'e is (2, -.3, 4)

and radius 5. Am. j;"+f+ z--4.>-+ Cyi/-8z + 4 = 0.

Ex. 2. Find the centime and radius of tlie spliere given by

.r'^+ >/' + z" - 2.r + 4// - 6j= 1 1, A n-i. (1 , - 2, .3), 5.

Ex. 3. Shew that the equation

(.'• - -^iX^' - ^^2)+ 0/ - .yi)0/ - .V2)

+

(^ - h )(-' - -j) =

represents the sphere on the join of (.<•,, ;/,, z^), {x.,, >/.,, z.>) as diameter.

Ex. 4. Find the equation to the sphei'e through tlie points

(0, 0, 0), (0, 1, -]), (-1, 2, 0), (1, 2, ;?)•

.1 »s. 7 {.'-

+

//•- + z-)-\ 5,?,' - 25 y - n ; =-- 0.
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Ex. 5. Find the equation to the sphere which passes through the

point (a., 13, y) and the circle z= 0, x'^+if= ar.

A ns. y{x^ +;/ + z"" - a'^)=z{a:^ + /8H y^ - «-).

Ex. 6. Find the equations to the spheres through the circle

^;2+3/2+ 5-= 9, 2x+ ^ij+ Az = b;

and (i) the origin, (ii) the point (1, 2, 3).

A ns. (i) 5 {.v^+f + z^)-l8x- 27y - 36^= ;

(ii) 3{.v^-+f + z^)-2x-3^- 4:Z- 22 = 0.

Ex. 7. The plane ABC, whose equation is .v/a+ i//b + zlc= l, meets

the axes in A, B, C. Find equations to determine the circumcircle of

the triangle ABC, and obtain the coordinates of its centre.

Ans. .v/a+ i//b + z/c= l, x^+ i/^+ z"^ -ax~bi/-cz=0

;

a(6-2+ c--) 6(c-2+ a-^) c(a-^-+ b-^l

2(a-2+ 6-^+ c-2)' 2(a-2 + 6-2+ c-2)' 2{a--^+ b-'-+ c--^y

*Ex. 8. If the axes are oblique, find the equation to the sphere

whose centre is (.v^, i/i, Zj), and radius r.

Ans. 2{.v - .ri)2+ 22(3/ -.Vi)(s - ^i) cos A= ?-2.

*Ex. 9. Prove that the necessary and sufhcient conditions that

the equation

aj;2+ %2+ c -2^ 2fi/z + 2gzx+ 2hxy + 2ux+ 2 vy+ 2wz-\-d= 0,

referred to oblique axes, should represent a sphere, are

-b-c--- ^ = ^ = ^^

~ ~~ cos A cos u cos V

1 / — S\^
Prove that the radius is —, ( -^-

j , M'hen

a, a cos V, a cos /x, u

a cos V, a, a cos A, v

acosju,, a cos A, a, to

u, V, w, d

and A; 1, COSVj COSjU.

cos I', 1, COS A

cos/x, cos A, 1

57. Tangents and tangent planes. If p, (a-^, y^, z^ and

Q, (a,'2, i/o, z.^ are points on the sphere x^+ y'^-\-z^ = a", then

and therefore

(a^i - x.^{x^ + .x'.,)+ (1/, - y.;){y, + ?/,)+ {z, - z.^{z^+ ^2) = 0.

Now tlie direction-cosines of PQ are proportional to

Xy — x^, y^ — y^, ^x
— z.2\ and if M is the mid-point of PQ and

O is the origin, the direction-cosines of DM are proportional

to Xy^ + x.^, y^+yy, z-i + z,^. Therefore PQ is at right angles
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to OM. Suppose tluit OM meets tlie sphere in A and tliat

PQ moves parallel to itself with its mid-point, M, on OA.

Then when M is at A, PQ is a tangent to the sphere at A,

and hence a tanoent at A is at right angles to OA, and the

locus of the tangents at A is the plane through A at right

angles to OA. This plane is the tangent plane at A. The

equation to the tangent plane at A, (a, (3, y), is

(.r-a)a+(^-/3)i8 + (0-y)y = O,

or x(X+ y(3+ zy = (jJ'+ j3''+ y- = a-.

Ex. 1. Find the equation to the tangent plane at

{n cos 6 sin
(f>,

a sin 6 sin cj>, a cos <^)

to the sphere x^+ i/'^+ z'^= n^.

Ans. ^'cos sin (f}+i/ sin Mn f/i + ^ cos (/>= «•.

Ex. 2. Find the equation to the tangent plane at (r', i/, /) to tlie

sphere .v'^+ 7/^+z'^ + 2^ix+ '2v^+ 2ivz+d=0.

Ans. xx +i/i/'+ zz'+ u(x+ .v') + v(;!^+^')+ t(;(z + z')+ d=0.

Ex. 3. Find the condition that the plane lx + m}/+nz=p should

touch the sphere x^ + i/^ + z-+ 2ux+ 2vi/ + 2wz+ d= 0.

A ns. {ul+ vm^-wn+pf= (P+ m^+ n^) (u"^+ v'^+ \o^ - d).

Ex. 4. Find the equations to the spheres which .pass through the

nrcle .^2+^2+2:2=5^ x+ 2y+ 'Az= 2, and touch the plane 4?;+ 3y= 15.

A ns. ,r2 +y2 + j2 -j- 2.v + 4^+ 62 - 1 1 = 0,

5x-2 + bf + 5^2 _ 4.^; - 8 y - 1 2z - 1 .3= 0.

Ex. 5. Pl'ove that the tangent planes to the spheres

x"^ +y'^ -\- z"^+ 2ux+2vy \-2icz-\-d= 0,

,r2 +y2 + ^2+ 2?«j.r+ 2v^y 4- 2W]Z+ f/j =

at any common point are at right angles if

2uU]^ + 2vv^-ir2ivw^=d+d^.

*58. Radical plane of two spheres. // cmy secant

through a given "point O meets a given spliere in P and Q,

OP . OQ is constant.

The equations to the line through O, (a, B, y), whose

direction-cosines are I, m, n, are

X-CL^ y-fi^Z-y
I m n
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The point on this line, whose distance from O is r, has

coordinates a.-i-lr, ^+ mr, y+ nr, and lies on the sphere

F(xyz) = a(x^+ if+ s^)+ 9 ux+ 2vy + 2ivz+ d=

if „,..+r(/* +™|+«|) + F(rx,/?,y) = 0.

This equation gives the lengths of OP and OQ, and hence

OP . OQ is given by F(a, ^, y)/a, which is the same for all

secants throng] i O.

Definition. The measure of OP . OQ is the power of O
with respect to the sphere.

If Si = x^+ 2/-+ s'+ 2u^x+ 2v^y + 2iv^z+ d^ = 0,

S^ = x^+ 2/H ^-+ Sugo;+ 2v^/ + 2w.,s+ d^^=

are the equations to two spheres, the locus of points whose

powers with respect to the spheres are equal is the plane

given by

S^ = S., , or 2(u-^ -u^)x+ 2(v^ -Vz)y + ^^^i - w.^^+ d^-4 = 0.

This plane is called the radical plane of the two spheres.

It is evidently at right angles to the line joining the

centres.

Tlie radical planes of three spheres taken two by tivo

'pass through one line.

(The equations to the line are 51 = 80 = 83.)

The radical planes of four splieres taken two hy tu'o

pass through one point.

(The point is given by 81 = 8.2= 83= 84.)

Tlie equations to any two spheres can he put in tlie form

«2+ 2/2+ 02 4. 2A^a; + d = 0, x^+ ?/2+ z^+ 2\x + cZ = 0.

(Take the line joining the centres as a;-axis and the

radical plane as a; = 0.)

The equation x^-\-y'^+ z^-\-2\x+ d^0, where X is a para-

meter, represents a system of spheres any two of which

have the same radical plane. The spheres are said to be

coaxal.
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Ex. 1. Prove that the uieiubers of tlie coaxal system intersect one

another, touch one another, or do not intersect one another, according

as d = 0.

Ex. 2. 81i©w tliat the centres of the two spliures of the system
which have zero-iadiiis are at the points ( ± y,Ul, 0, 0). (These are the

limiting-points of the s3'steni.)

Ex. 3. Shew that the equation .v-+ 7/'+ z-+ 2iJ.//+ 2vz-d=0, whore
[J. and V are parameters, represents a system of spheres passing through
the Umiting points of the system x^+ i/" + z^+ 2\x+ d=0, and cutting

every number of that system at right angles.

Ex. 4. The locus of points whose powers with respect to two
given spheres are in a constant ratio is a sphere coaxal with the

two given spheres.

Ex. 5. Shew that the spheres which cut two given spheres along

great circles all pass through two fixed points.

* Examples II.

1. A sphere of constant radius r passes through the origin, O, and
cuts the axes (rectangular) in A, B, C. Prove that the locus of the

foot of the perpendicular from O to the plane ABC is given by

(,,;2 +^2+ 22)2(.,;-2 +_^-2+ ^-2)^ 4,.2.

2. P is a variable point on a given line and A, B, C are its

projections on the axes. Shew that the sphere OABC passes through
a fixed circle.

3. A plane passes through a fixed point {«, h, c) and cuts the axes

in A, B, C. Shew that the locus of the centre of the sphere OABC is

X y z

4. If the three diagonals of an octahedron mteisect at right

angles, the feet of the perpendiculars from the point of intersection

to the faces of the octahedron lie on a spheie. If «, «. ; 6, /? ; f, y
are the measures of the segments of the diagonals, the centie (^, )/, {)

of the sphere is given by

2^ _ 2r/ _ 2t ^ 1

«-i+ a.-i 6-1 + ^-1 c-i + y-i (aoL)-i + (6/:J)-i + (t7)->'

the diagonals being taken as coordinate axes. Prove that the points

where the perpendiculars meet the opposite faces also lie on the sphere.

5. Prove that the locus of the centies of spheres which pass

through a given point and touch a given plane is a conicoid.

6. Find the locus of the centres of spheres that pass through a
given point and intercept a fixed length on a given straight line.

7. Find the locus of the centres of spheres of constant radius
which pass through a given point and touch a given line.
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8. Prove tbat the centres of spheres which touch the lines y= mx,
s—c; y— —WW, 3= — c, lie upon the conicoid 7Ha;^+ c0(l + »i^)= O.

9. If the opposite edges of a tetrahedron are at right angles the

centre of gravity is the mid-point of the line joining the point of

concurrence of the perpendiculars and the centre of the circumscribing

sphere.

10. If the opposite edges of a tetrahedron are at right angles the

mid-points of the edges and the feet of the perpendiculars lie upon
a sphei-e whose centre is the centre of gravity of the tetrahedron.

11. The sum of the squares of the intercepts made by a given

sphere on any three mutually perpendicular lines through a fixed

point is constant.

12. With any point P of a given plane as centre a sphei'e is

described whose radius is equal to the tangent from P to a given

sphere. Pi'ove that all such spheres pass through two fixed points.

13. If k= [x= v= 7rj3, the plane and surface given by

X+ ?/+ z= 0, yz+ zx -j- .?_?/ -I- a^— 0,

intersect in a circle of radius a.

14. If r is the radius of the circle

.^.2^^2^22-j-2Mj;-f-2i;i/-h2<';2-f-(i?^0, lx-^my-\-nz=%
prove that

{i-^ -h d) {V- -f Hi2+ ,^2)= {jnw - nvf -f {mi - Iwf -f {Iv - muf.

15. Prove that the equations to the spheres that pass through the

points (4, 1, 0), (2,-3, 4), (1, 0, 0), and touch the plane 2.r-f 2^-5= 11,

are
r2+.y2+ s2-6.r-f2y- 45-1- 5 = 0,

1 6.»;2+mf+ 16^2 - 102.r+ 50y - 49^ -h 86 = 0.

16. Prove that the equation to a sphere, which lies in the octant

OXYZ and touches the coordinate planes, is of the form

^2+y2+ 22_2X(.r-H^+ 2)+ 2A2= 0.

Prove that in general two spheres can be drawn through a given

point to touch the coordinate planes, and find for what positions of

the point the spheres are (i) real ;
(ii) coincident.

17. A is a point on OX and B on OY so that the angle OAB is

constant (= «.). On AB as diameter a circle is described whose plane is

parallel to OZ. Prove that as AB varies the circle generates the cone

2.r//-s2sin 2a.=0.

18. POP' is a variable diameter of the ellipse ^=0, x-la'^+y^/h"= l,

and a circle is described in the plane PP'ZZ' on PP' as diameter.

Prove that as PP' varies, the circle generates the surface

(,,;2 ^ yj + ^2) (,^,2/„2+ _y2//,2)^ .,.2+ _y2_
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19. Prove that the equation to the spliere circuniscrilMiig the

tetrahedron wliose sides are

f+f=o, ^+^=0, U^=o, ^+U^=i,be c a a b a b c

ja gr+y^+ z^ x y z

a^+ ^a + c''^ a b c

20. A variable phine is parallel to the given plane .rla+ylb+zjc = 0,

and meets the axes in A, B, C. Prove that the circle ABC lies on the

21. Find the locus of the centre of a variable sphere which passes

through the origin O and meets the axes in A, B, C, so that the

volume of the tetrahedron OABC is constant.

22. A sphere of constant radius k passes through the origin and
meets the axes in A, B, C. Prove that the centroid of the triangle

ABC lies on the sphere Q{x''+y^+ z-)= Ak'K

23. The tangents drawn from a point P to a sphere are all equal to

the distance of P from a fixed tangent plane to the sphere. Prove
that the locus of P is a paraboloid of revolution.

24. Prove that the circles

x" + >/+ 2- - 2,»;+ 3y + 43-5 = 0, 5 // + Gi + 1 = ;

;f2+y-+ i''^-3.r- 4^+ 52 -6= 0, x-\-2y-lz= ;

He on the same sphere, and find its equation.

25. Find the conditions that the circles

^^+y^+ «^+ 2w.r + 2yy+ 2w2+ c?=0, lx-\-my-\-nz=p
;

x^ -if.y'i j^ z^ -\-2u'x+'2,v'y+ '2,w'z-{-
d' =0, I'x+ m'y-^-n'z^}/

;

should lie on the same sphere.

26. OA, OB, OC are mutually perpendicular lines through the

origin, and their direction-cosines are ^,, m^, «, ; l.^-, ni.,, n.^ ; ^3, «);;, n-^.

If OA = (^ OB = h, OC = c, ]irove that the equation to the spliere

OABC is

.1'- +y-+ 2- - X {idi + bl.^ + f^j) -y {am^+ bm^+ cwij) - i (« Hj + bn.^ + cn-^= 0.



CHAPTER VI

THE CONE.

59. Equation to a cone. A cone is a surface generated

by a straight line which passes through a fixed point and

intersects a given curve. If the given point O, say, be

chosen as origin, the equation to the cone is homogeneous.

For if P, {x', y', z') is any point on the cone, x', y', z satisfy

the equation. And since any point on OP is on the

cone, and has coordinates Qzx , ky', kz'\ the equation is also

satisfied by hx, ky', kz' for all values of k, and therefore

must be homogeneous.

Cor. If x/l = y/in = z/n is a generator of the cone re-

presented by the homogeneous equation f(x, y, z) = 0, then

f{l, m, 71)= 0. Conversely, if the direction-ratios of a

straight line which always passes through a fixed point

satisfy a homogeneous equation, the line is a generator of

a cone whose vertex is at the point.

Ex. 1. The line xjl^ylm^zln, where '2l'- + Zm'^-bn^= 0^ is a

generator of the cone 'ix^-\-iy'^-bz'^= 0.

Ex. 2. Lines drawn through the point (a., /i, y) whose direction-

ratios satisfy al'^+ bm'^ + cn^= generate the cone

Ex. 3. Shew that the equation to the right circular cone whose

vertex is O, axis OZ, and semi-vertical angle rx., is .*- + ?/-= ,:- tan-oc.

Ex. 4. Tlie general equation to the cone of the second degree

which passes through the axes is f>/z+ffz.>;+ h.n/= 0.

The general equation to the cone of the second degree is

a.v^+ hf + cz^ -1- 2/;i/2+ Igzx+ ^lixji = 0,

and this is to be Satisfied by the direction-ratios of the axes, i.e. by

1, 0, 0; 0, 1, 0; 0, 0, 1.
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Ex. 5. A cone of the second degree can be found to pass through
any five concurrent lines.

Ex. 6. A cone of the second degree can be found to pass through
any two sets of rectangular axes through the same origin.

Take one set as coordinate axes, and let the direction-cosines of the
others be ly, wij, n^ ; l.,, m.^, n^ ; l^, m-^, n^. The equation to a cone
containing the coordinate axes isfyz+yzx+ hxy^O. If this cone also

contains the first two axes of the second set,

fm.^n^+ f/n./o + hl^m., = 0.

Therefore, since m-^n^ + vi.^n.j.-\-m^n^=Q, etc.,

fm^n.^ +gn-jl^+ hl^m^ = ;

so that the cone contains the remaining axis.

Ex. 7. The equation to the cone whose vertex is the origin
and which passes through the curve of intersection of the plane
lx+ m// + nz= p and the sui-faee ax''+ bf/" + cz'^—l is

ax^ + bf+ ez^=={
^-''+ '''''^+ "'

y.

Ex. 8. Find the equations to the cones with vertex at the origin

which pass through the curves given by

(i) x^+y^+z^+ 2ax+ b= 0, lx+mi/+ nz=p ;

(i i) ax'^+ h-ip'= 22, Ix+ my + nz=p ;

(iii) x-la-+f/b' + z'^/c- = 1, x^!r^ + >fi(^= ii.

Alls, (i) {x-+y^+z'^)p-+ -2<ipx{lx + mi/ + nz) + b{lx+ mij-\-nzf=0
;

(ii) {iuf^+ by-)p = 2z{lx+ my + nz)
;

(iii) 42%r2/a^ +yVb-' + z'h-) = (.r^/oc^ +y'l(^'f.

Ex. 9. Tlie plane xia+ylb+ ZjC=l meets tlie coordinate axes in

A, B, C. Prove that the equation to the cone generated by lines

drawn from O to meet the circle ABC is

-(^:)--(;>")-:'(^^)-

Ex. 10. Find the equation to the cone who.se vertex is the origin

and base the circle, x=n, _?/-+ .;-= ?/', and shew that the section of the
cone by a plane parallel to the plane XOY is a hyperbola.

Ans. a^(y^-hz^)= b'.i-^.

Ex. 11. Shew that the equation to the cone whose vertex is the

origin and base the curve z = i; f(x, y)= is/("— , —]=().
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60. Angle between lines in which a plane cuts a cone.

We find it convenient to introduce liere the following

notation, to whicli we shall adhere throughout the book.

D =
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C(j[uafcioii (8). Therefore if they are ly, m^, n^; I.;,, in.^, );,;

hiu'+ cv"— 2fv'W cu'^+ aw^— 2gwu

— /i^n2 +h''^h
~ —2 {hw-+ CUV —fmu — <jvw)

^ h'^h-k'^i
^^ (4^

±2{{h'ufi+ cuv...f-{hw\..){enr...))^-

_ ljm.2— l^n^i
~ ±2wP

From the symmetry, eacli of the expressions in (4) is

seen to be equal to

av^+ bu^-2huv~ ±2uP +2'yP

But if 6 is the angle between the lines,

cos _ sin (•}

l-J^^+ m^m.^+ ii^n^ { I^iriiyn.^— iu.^n-J^}-

cos 6 sin 6

" (a+ b+ o){u'+ V-+ w^) -f{^i, V, lu) ± 2 (u-+ v^+ iv'-f P

Ex. 1. Find the e<]uati()ns to the lines in which the phme
2x-+ ?/-2= cuts the cone Ax'-if+ Zz''= 0.

Ans. -^=1 = '-; -l^JL^l.
-1 4 2' 1 -2

Ex. 2. Find the angles between the lines of section of the follow-

ing planes and cones :

(i) 6.f - 10// - Iz= 0, 108./. ••^ - 2Qif - 72-= ;

(ii) 3.i-+.?/ + 5s=0, Qyz-2zx-{-bxi/= 0;

(iii) ±v-% +z= 0, 3j?2 - 5^/2 - Iz^+ 36^s - iOzx - 2xf/= 0,

A)is. (i) cos"' -, (ii) C0S-1-, (iii) cos~' '

Ex. 3. Prove that the ]jlanc ax+ hi/ + ci= cuts the cone
i/z + zx+ x//= in 2)erpendiiMilar lines if

a c
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61. Condition of tangency of plane and cone. If p = 0,

or Aii;-+ Bv--{-Civ^+2Fuiv + 2GiVii+ 2HiLV = 0, .(1)

then sin = 0, and therefore the lines of section coincide, or

the plane touches the cone. Equation (1) shews that the

line - = - = — i.e. the normal through O to the plane, is a

generator of the cone

Ax^-]-By'+ Cz''+ 2Fijz+ 2Gzx+ 2Hxy = 0. .........(2)

Similarly, since we have BC — F2= aD, and the corre-

sponding equations at the head of paragraph 60, it follows

that a normal through the origin to a tangent plane to the

cone (2) is a generator of the cone

ax^+ hif+ cz^+ 2fyz+ -Igzx + 2hxy = 0,

i.e, of the given cone. The two cones are therefore such

that each is the locus of the normals drawn through the

orio-in to the tangent planes to the other, and they are on

that account said to be reciprocal.

Ex. 1. Prove that the cones ax^+ hy'^->rCZ-= Q) and ~+""^ + 7=^
are reciprocal.

Ex. 2. Prove that tangent planes to the cone h/z + mz.v+n.v?/=
are at right angles to generators of the cone

P.v"+my+ nh^ - 2??i?y/2 - 2»?.- r - 2lm.ri/= 0.

Ex. 3. Prove that perpendiculars drawn from the origin to tangent

planes to the cone
.3.r- + 4/+ 5^2+ 2^2+ 4,nr+ e.r// =

lie on the cone 19,'' + 11//- + 3z^+ 6i/z - lOzx - 26.»v/ = 0.

Ex. 4. Shew that the general equation to a cone which touches

the coordinate planes is ah;'^+bY + ch^-2bci/z-2caz.v-2abx?/= 0.

62. Condition that the cone has three mutually per-

pendicular generators. The condition that the plane should

cut the cone in perpendicular generators is

{a+ h+ c)(u^-+ V"+ tu-)=f(u, V, w) (1)

If also the normal to the plane lies on the cone, we have

/(u, V, w) = 0,

and therefore a-{-h + <; = 0.
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In this case the cone lias three mutually perpendicular

generators, viz., the normal to the plane and the two per-

pendicular lines in which the plane cuts the cone.

If (i-j-b-\-c = 0, the cone has an infinite number of sets of

nnitnally perpendicular generators. For if ux+ vy + wz=
be any plane whose normal lies on the cone, then

f{u, V, w) = 0,

and therefore (a-\-h + c)(ii'+ v- -\- iv^) =f(u, v, w),

since a+h+ c = 0.

Hence, by (1), the plane cuts the cone in perpendicular

generators. Thus any plane through the origin which is

normal to a generator of the cone cuts the cone in perpen-

dicular lines, or there are two generators of the cone at

right angles to one another, and at right angles to any

given generator.

Ex. 1. If a right circular cone has three mutually perpendicular

generator.^, the senii-veitical angle is tan~V2. (Cf. Ex. 3, § 59.)

Ex. 2. Shew that the cone whose vertex is at the origin and
which passes through the curve of intersection of the sphere
x;'^+ i/-+ z- = 3(i', and any plane at a distance a from the origin, has
three mutually perpendicular generators.

. Ex. 3. Prove that the cone a.v^ + bi/^+.cz' + 2fi/z+ 2gz.r+2/Lrt/=
has three mutually perpendicular tangent planes if

be+ ca + a6 =/2+5^H A".

Ex. 4. If "^=1=1 represent one of a set of three mutually per-

pendicular generators of the cone 5?/^-8i.r-3.ry = 0, find the equations
to the other two.

A ns. X=y= — z. Ax= — 5 ?/ = 2O2.

Ex. 5. Prove that the plane /.r + w?/ -I- «2= cuts the cone

(6 - c)x-+ ic- a)f + {a - h) z^+ ^fiiz 4- 'liizx+ ^lixy =

in perpendicular lines if

(6 - c) l-+ {c- (t)m- + (a - h))f- + ^fmn + 2rinl+ 2hhn = 0.

63. Equation to cone with given conic for base. To

find the equdtkni to the cove 'icitose vertex Is the _^)o?7?/

(a, /5, y) and base the eovic

J{x, y) = ax'+ 2hxy + hy''+ 2f/x -f 2///+ c = 0, z = 0.
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The equations to any line through (rx, ^, y) are

x — a. t/ — B
-ir=m ='->'

and the hne meets the plane = in the point

{Ui — ly, /3— my, 0).

This point is on the given conic if /(rx— Zy, ^— my) = 0,

i.e. if /(a, /3)-y(^^+^^^)+yV(^> ^>0-o, (1)

where (p{x; y) = ax^+ 2hxy+ by^. If we eliminate I and on

between the equations to the line and (1), we obtain the

equation to the locus of lines which pass through (a, ^, y)

and intersect the conic, i.e. the equation to the cone. The

result is

i.e. {z-yfM> ^)-y(^-y){^^^^^+r^%)

+ y'^<p{x-cx,y-8) = 0.

This equation may be transformed as follows

:

• The coefficient of y^ is

/(rx, /3)+Or-a)^+(2/-^j^+ </>(a3-a, y-^)

=f(cx.+^^^^, B+y^)=f(x,y);

and the coefficient of — 5;y is

(^-^x)g+(2/-/3)|^+2/(a,/3).

If f{x, y) be made homogeneous by means of an auxiliary

variable t which is equated to unity after ditlerentiation,

Wft have, by Euler's theorem,

Therefore the coefficient of — sy becomes
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Hence the equation to the cone is

It is to be noted tliat by equating to zero the coefficient

of zy, we obtain the equation to the polar of (a, /3, 0) with

respect to the given conic.

(The above method is given by de Longclianq^s,

Problemes de Geometrie Analytique, vol. iii.)

Ex. 1. Find the equation to the cone whose vortex is (fx, /i, y)
and base (i) ax'+ by'^==l, z= 0; (ii) y'-= ^ax^ 2= 0.

Am. (i) ,-:''(aM.-+ 6/3-- 1) - 2iy(aou;+ 6/:??/ - 1) + 7- («.»;- + ?>/-- 1) = ;

(ii) ^2(/i2 - 4«a.) - 2iy
j
/iy - 2c< (.^ + (x) } + y-'O/-

- \ax)= 0.

Ex. 2. Find the hieus of points from which three mutually perpen-

dicular lines can be drawn to intersect the conic s = 0, axP'-\-h}i- = \.

(If (a., /3, y)is on the locus, the cone, Ex. 1 (i), has three mutually
perpendicular generators.)-

xhxs. «.r2+ %-+ o-(a + i)= l.

Ex. 3. Shew that the locus of points from which three mutually
perpendicular lines can be drawn to intersect a given circle is a

surface of revolution.

Ex. 4. A c(me has as base the ciixle 2= 0, ,7;-+y-+ 2a.'r+2%= 0,

and passes through the fixed point (0, 0, c) on the s-axis. If the

section of the cone by the plane ZOX is a rectangular hyperbola,-

prove that the vertex lies on a fixed circle.

Ex, 5. Prove that the locus of points from which three mutually
perpendicular planes can be drawn to touch the ellipse x''la^-\-i/'llfi=\.,

z= 0, is the sphere x^ \- f/"^ + z^= a^+ U^.

*Examples III.

1. Shew that the bisectors of the angles between the lines in which
the plane iix-\-v)i+ %oz= cuts the cone ax'^+ hy'^-\-cz'^= lie on the cone

%t{h-c)
^

v{c-a)
^

w{a-h)
^^^

X If z

[Five concurrent lines are necessary to determine a cone of the second
degree, and the form of the given result shews that the I'equired cone
is to pass through the coordinate axes and the two bisectors. Assume,
tlierefore, that tlie reriuired equation is

fyz+gzx+ hxi/=^0 (1)

The given cone is «.r2 4- 6?/+ cs^ = (2)

The necessary and sufficient conditions that the coiio (1) slmuld

contain the bisectors may be stated, (i) the ])Iane vx+v^-^vz= ()
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must cut the cone (1) in perpendicular lines
;

(ii) the lines of section

of the plane and the cones (1) and (2) must be harmonically conjugate.

•''^''^™ W' fino+gvm + huv= Q) (3)

Again, four lines are harmonically conjugate if their projections on
any plane are harmonically conjugate, and the equations to the pro-

jections on z= are obtained by eliminating z between the equations

to the plane and cones, and hence they are

x\aiiP'+ CM^)+ 2cuvxy +y\bw'^+ cv^)= 0, z= ;

gu3?+xy{fn+gv- wh) Vfvy'^= 0, /: = 0.

Therefore the condition (ii) gives

fv{aw- + cu'^)+gu{biv- + cv^)= cuv{fu +gv - toh)
;

(cf. Smith, Conic Sections, p. 55.)

i.e. afvw + hgivu+ chuv= (4)

From (3) and (4), we obtain

./-• ^ ff /^„ 1
u{b-c) v{c-a) w{a-b)J

2. Shew that the bisectors in Ex. 1 also lie on the cone

2,^2 ,;2
{ _ (6 - c) m2 + (c - a) y2+ (a - 6)w2

J
= 0.

3. Two cones pass through the curves ?/= 0, s-= 4«,r; .r= 0,

z^= 4:bi/, and they have a common vertex ; the plane 2= meets them
in two conies that intersect in four concyclic points. Shew tliat the

vertex lies on the surface z\xla+y/b)= A{x-+y'^).

4. Planes through OX and OY include an angle a.. Shew that

their line of intersection lies on the cone z^(x^+y'^ + z'')=.rh/''t?in'^a..

5. Any plane whose normal lies on the cone

(b+ c).r2 + (r + a)f+ (a + b)z''=

cuts the surface ax^+ by'^+ ez'^= l in a rectangular hyperbola

6. Find the angle between the lines given by

x + y+ z^O, ^ +-^ +^ = 0.
b-c c—a a—b

7. Shew that the angle between the lines given by

X+y+ z= 0, ayz + bzx+ cxy =

is -n-/2 if a+ 6+ c= 0, but 7r/3 if l/rt+ l/?) + l/c= 0.

8. Shew that the plane ax+ by-{-cz= Q cuts the cone

jiz+ z.v+xy=

in two lines inclined at an angle

^^j^_l r{(ff2+ ?)2^p2)(a2+ fc2^c2_25^_2m-2ff6)}n

L bc+ ca + ab J'

and by considering the value of this expression when a + b + c= 0,

shew that the cone is of revolution, and that its axis is .»= ?/= ,- and

vertical angle tan~^2\/2.
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9. The axes being rectangular, prove that the cone

contains an infinite number of sets of three generators mutually
inclined at an angle 7r/3.

10. Through a fixed point O a line is drawn to meet three fixed

intersecting planes in P, Q, R. If PQ : PR is constant, ))rove that the
locus of the line is a cone whose vertex is O.

11. The vertex of a cone is (a, b, e) and the ?/5-plane cuts it in the
curve F{i/, z)= 0, x= 0. Shew that the £>v-plane cuts it in the curve

w = 0, F 5 • =0-

12. OP and OQ are two straight lines that remain at right angles
and move so that the plane OPQ always passes through the s-axis.

If OP describes the cone F(v//a', zIx)=0, prove that OQ describes the
cone ( , 9\ -^

'% (-!-£)}=«•

13. Prove that a.r2+ 6y- + ce-+ 2?«.r+ 2i'y + 2iys + r?=0 represents a
cone if u-la-\-v^lb+w^lG= d.

14. Prove that if

F {xi/z) = ax-+ hif + cz^+ ifyz + 2gzx+ 2hxi/+ 2ux+ 2 yy+ 2 wz+ o?=

represents a cone, the coordinates of the vertex satisfy the equations

Fa;=0, F^= 0, Fj=0, F( = 0, where t is used to make F(x, t/, z) homo-
geneous and is equated to unity after diflerentiation.

15. Prove that the equations

2/ - %yz - Azx - Sxij + 6,r - 4// - ^z+ 5=0,

2,*,-2 + 2y2+ 7^2 _ 1 0//,s - 1Ozx + 2,i' + 2y+ 2Gj - 1 7 = 0,

represent cones %hose vertices are (-7/6, 1/3, 5/6), (2, 2, 1).

16. Find the conditions that the lines of section of the plane

lv-\-mji + nz= and the cones fyz+gzx+ Ax//=^0, o.r- + %- + 0*^= 0,

should be coincident.

(hfi + c-ni^ cl- + an" am^+ hl- \

\ fmn gnl him ' I

17. Find the equations to the planes through the 2-axis and the

lines of section of the plane %x^v]i-{-wz = ^ and cone/(.r, _?/, z) = 'd, and
prove that the plane touches the cone if P = 0. (The axes may be
oblique.)

18. Prove that the equation to the cone through the coordinate

axes and the lines of section of the cone ll.v--5y- + s-= and the

plane 7.r-5_y+ s= is 14?/2-30z.r+3.r?/= 0, and that the other

common generators of the two cones lie in the plane H.)' + 7// + 7i= 0,

B.G. CJ
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19. Prove that the common generators of the cones

(62c2 - a*) :p2 + (c-2a2 _ li)y2+ («2ft2 _ ^4) ^2= 0,

ax by cz
'

lie in the planes
{he ± a^)x+ (m ± h''-)y + {ah ±c^)z^ 0.

20. Prove that the equation to the cone through the coordinate

axes and the lines in which the plane lx+my-\-nz=0 cuts the cone

cuv^+ 63/2+ C22+ 2fyz+ 2gzx+ 2hxy= is

l{hn^+ cm? - ifmn)yz+ «i(c^2+ ^,^2 _ 2(j„i?) 3.^+ n {am^+ i^^ - ^hlm)xy= 0.

21. Prove that the equation s/fx+s/gy+ 'Jhz^O i^epresents a cone

that touches the coordinate planes, and that the equation to the

reciprocal cone is fyz+gzx+ hxy= 0.

22. Prove that the equation to the planes through the origin

perpendicular to the lines of section of the plane lx+my+ nz= and
the cone ax'^+ hy"^+ 0*2= is

sfi{hi^+ cm"^)+^2 (0^2+ an^^+ z^{am-+ bP) - 2amnyz - 2bnlzx - 2clmxy= 0.
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CHAPTER VII.

THE CENTRAL CONICOIDS.

64. The iocus of the equation

We have shewn in §9 that the equation (1) represents

the surface generated by the variable elhpse
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whose centre moves along Z'OZ , and passes in turn through

every point between (0, 0, — c) and (0, 0, -\-c). The surface

is the ellipsoid, and is represented in lig., 29. The section,

by any plane parallel to a coordinate plane is an ellipse.

Similarly, we might shew that the surface represented

by equation (2) is generated by a variable ellipse

k
^

a" b

whose centre moves on Z'OZ, passing in turn tlirough

every point on it. The surface is the hyperboloid of one

sheet, and is represented in hg. 30. Tlie section by any

plane parallel to one of the coordinate planes YOZ or ZOX,

is a hyperbola.

The surface given by e(|uation (3) is also generated by a

variable ellipse whose centre moves on Z'OZ. The ellipse

is given by

a- Ir c^
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and is imaginary if — c</.;<c; hence no part of tlio

surface lies between the planes z=+c.

The surface is the hyperboloid of two sheets, and is

represented in iig. 31. The section by any plane parallel

to one of the coordinate planes YOZ, ZOX is a hyperbola.

If (x, y', z) is any point on one of these surfaces,

{— X, —y', —z) is also on it; hence the origin bisects all

chords of the surface which pass through it.
' The origin is

the only point which possesses this property, and is called

the centre. The surfaces are called the central conicoids.

65. Diametral planes and conjugate diameters. An

equation of the form

ax'-\-hy''--\-cz^ — l

represents a central conicoid. The equations to any line

parallel to OX are y = \z= ix, and it meets the surface in

the points

+^^d-t^, . .),

and hence the plane YOZ bisects all chords parallel to OX.

Any chord of the conicoid which passes through the centre

is a diameter, and the plane wdiich bisects a system of

parallel chords is a diametral plane. Thus YOZ is the

diametral plane which bisects chords parallel to OX, or

shortly, is the diametral plane of OX. Similarly, the

diametral planes ZOX, XOY bisect chords parallel to OY

and OZ respectively. The three diametral planes YOZ,

ZOX, XOY are such that each bisects chords parallel to the

line of intersection of the other two. They are called

conjugate diametral planes. The diameters X'OX, Y'OY, Z'OZ

are such that the plane through any two bisects chords

parallel to the third. They are called conjugate diameters.

If the axes are rectangular, the diametral planes YOZ,

ZOX, XOY are at right angles to the chords which they

bisect. Diametral planes which are at right angles to the

chords which they bisect are principal planes. The lines of

intersection of principal planes are principal axes. Hence

if the axes are rectangulai- the e(iuation (ix'-\-hy"-^cz'= '\.
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represents a central conicoid referred to its principal axes

as coordinate axes.

66. A line through a given 'point A, (a, |8, y) meets a

central conicoid axr-\-hy'^-\-cz^ = 1 in P and Q; to find the

lengths of AP and AQ.

If I, m, n are the direction-ratios of a line through A, the

coordinates of the point on it whose distance from A is r

are OL+ lr, ^+mr, y+ Tir. If this point is on the conicoid,

r\aP+ hm-+ cn^)+ 2r(aoLl+ b/Sm+ cyn)

+ «a2+ 6^2+ cy2-l = (1)

This equation gives two values of r which are the

measures of AP and AQ.

Ex. 1. If OD is the diameter parallel to APQ, AP.AQ : OD^ is

constant.

Ex. 2. If DOD' is any diameter of the conicoid and OR and OR'

are the diameters parallel to AD and AD', -—^+ ,
is constant.

OR" OR "

Ex. 3. If AD, AD' meet the conicoid again in E and E', -r-^+xp?
is constant.

^^

67. Tangents and tangent planes. If aa^

+

b(3''+ cy^ = 1

,

the point A, (a, 3, y) is on the conicoid ; one of the values

of r given by the equation (1) of § 66 is zero, and A coin-

cides with one of the points P or Q, say P.

If, also, aoil+ b/Sm+ cyn = 0,

the two values of r given by the equation are zero, i.e. P

and Q coincide at the point (a, /3, y) on the surface, and

the line APQ is a tangent to the conicoid at A. Hence, if

A, (a, j8, y) is a point on the surface, the condition that Llie

line ,^_a._y-^_z^-y
I

~ m ~ n
"' •'••••V-;

should be a tangent at A, is

aa.l-{-bl3m+ cyn = (3)

If we eliminate I, m, n between (2) and (3), we obtain

the eijuation to the locus of all the tangent lines through

((/., ft, y), viz.,

(.K - a)aoc+ {!/-fi)b(3+ {:- y)cy = 0,

or aoLX+ bfty + eyz = 1

.
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Hence the tangent line.s at (a, /3, y) lie in the phme

acjLX+ h^ij + cyz = 1

,

which is the tangent plane at (a, ^, y).

68. To find the condition that the plane Ix+my + nz = p
should touch the conicoid ax^+ hy'^+ cz^ = l.

If the point of contact is (a, (3, y), the given plane is

represented by the two equations

aoLX-hh0y+ cyz=l,

lx+my+ nz=p.

Therefore a=— , p = -r-y y=—

»

a^) 0}) cp

and, since (a, 0, y) is on the conicoid,

I- , VI' , n^ „

-+-r + —=P'a c ^

Cor. The two tangent planes which are parallel to

Ix -\-my + nz = are given by

lx-{-inii + nz= +-

Ex. 1, Find the locus of tlie point of intersection of three mutually
perpendicular tangent planes to a central conicoid.

If the axes are rectangular and

l^x+ mrV+ n^^-. J^L+V^+'ll, r=l, 2, 3,
. 'a c

represent three mutually perpendicular tangent planes, squaring and
adding, we obtain 111

'''^^ +^= a + b + c-

Hence the common point of the planes lies on a sphere concentric

with the conicoid. (It is called the director sphere.)

Ex. 2. Prove that the equation to the two tangent planes to the

conicoid ax^+ hif + cz^ — l which pass through the line

u = Ix+my \-nz — p = 0, u' = l'x+ ')n\i/+ n'z-p'= 0, is

(Use the condition that i(+ A«' = should be a tangent plane.)
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Ex. 3. Find the equations to tlie tangent jjlanes to

which pass through the line a-+ 9^-3^= = 3.1"-% + 62 -5.

Ans. 2x-12i/+ 9z= ^, 4x+6i/+ Sz= d.

Ex. 4. A pair of perpendicular tangent planes to the ellipsoid

whose equation, referred to rectangular axes, is x--ja'^+^'-^/b'^+ z^Jc'^= ],

passes through the fixed point (0, 0, /c). Shew that their line of inter-

section lies on the cone

x^ (Z>2+ 6-2 - F)+f (c-+ cj? - F)+ (^ - /)'(«-+ &'^)= 0.

Ex. 5. Tangent planes are drawn to the conicoid a.v^+ hy"+ C4r=\

through the point (a., jB, y). Prove that the perpendiculars to them

from the origin generate the cone {cL.r+ Py+ yzf
='-+•--+ "—

Prove that the reciprocal of this cone is the cone

{ax'-+ hi/^-cz'^){aa:^+ b^-+ cf-\)-{acLX+bl^ij + cyzf=0,

and hence shew that the tangent planes envelope the cone

{ax'^+ hf+ cz^ - l)(rtrx-+ ?)/i2+ cy2- l)-(f/a..i'+ ?^/5^+ C7S- 1)2= 0.

69. The polar plane. We now proceed to define the

polar of a point with respect to a conicoid, and to find its

equation.

Definition. If any secant, APQ, through a given point A,

meets a conicoid in P and Q, then the locns of R, the har-

monic conjugate of A with respect to P and Q, is the polar

of A with respect to the conicoid.

Let A, R (tig. 82) be the points (a, (^, y), (^, ;;, ^), and let

APQ have direction-ratios I, in, n. Then the equations to

APQ are ^^

^

,j_^

^

._^
I ni n
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and, as in §()(), ')\, 'i\,, the nioayures oi" AP and AQ, arc the

roots of

r\alr-{-h))r+ cn-)+ 2r(aa.l-\-b^iiL + cyii)

Let p be the measure of AR. Then, since AP, AR, AQ are

in harmonic progression,

_ ?!V?^ _ aoC'+ hl^'+ cy'^- l

^ ~ r^+ 9'2
~

aoil+ b/3m+ cyn
'

And from the equations to the line

^-(A=lp, ,y-/3 = Wp, ^-y = Vp,

therefore

(^-a)««.+ (,;-/3)6/3 + (^-y)6-y=-(aa2+ ?^/32+ cy2-l).

Hence tlie locus of (^, >/, ^) is the plane given by

axjLV+ h^y + cyz = 1

,

which is called the polar plane of (a, (3, y).

Cor. If A is on the surface, the polar plane of A is the

tangent plane at A.

The student cannot have failed to notice the similarity between the

equations to corresponding loci in the plane and in space. There is a

close analogy between the equations to the line and the plane, tlie

circle and the sphere, the ellipse and the ellipsoid, the tangent or

polar and the tangent plane or polar plane. Examples of this

analogy will constantly I'ccur, and it is well to note these and make
use of the analogy as an aid to remember useful results.

70. Polar lines. It is evident that if the polar plane of

(a, /5, y) passes through (£, >/, ^), then the polar plane

of (^' '/' D passes through (a, /3, y). Hence if the polar

plane of any point oii a line AB passes through a line PQ,

then the polar plane of any point on PQ passes through

that point on AB, and therefore passes through AB. The

lines AB and PQ are then said to be polar lines with respect

to the conicoid.

The polar plane of ((jl+ It, ^i-vir, y + nr), any point on

the line x— €L_y —p_z— y
i in n

is acLV+ l>fil/ + (y'. — ^ -\- f{(iI.r-\-bmy + cnz)=^0,

(1)
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and, evidently, for all values of r, passes through the line

aoLx+ hjBy+ cy,i;- 1 = = alx+ bmy+ cnz.

This is therefore the polar of the line (1).

Ex. 1. If P, {.i\, yi, Zi), Q, (a-2, ?/2, '--a)
'"'e any points, the polar of

PQ with respect to ax' + bf+ cz^=\ is given by

axx^ + %i/i + c^Jj = 1 , axx.^+ hyt/^+ ^^^2= 1 •

(Hence if P aiid Q are on the conicoid the polar of PQ is the line of

intersection of the tangent planes at P and Q.)

Ex. 2. Prove that the polar of a given line is the chord of contact

of the two tangent planes through the line.

Ex. 3. Find the equations to the polar of the line

-2.K=25?/-1 = 22

with respect to the conicoid 2.^2 _ 25^2+ 2*2= 1. Prove that it meets

the conicoid in two real points P and Q, and verify that the tangent

planes at P and Q pas& through the given line.

, X ?/+ l 2+ 1

Ex. 4. Find the locus of straight lines drawn through a fixed

point (oL, (i, y) at right angles to their polars with respect to

ax^-\-hy'^ + cz^= \
;
(rectangular axes).

Ans. 2^^fJ-M=0.x-a.\h cj

Ex. 5. Prove that lines through (ol, (i, y) at right angles to their

polars with respect to ~TJ +^ + ^'=^ generate the cone

(_^-f3)(c^-yx)+ {z-y){a.>/-f3x)= 0.

What is the peculiarity of the case when a = hl

Ex. 6. Find the conditions that the lines

x-a._y- 13

_

z-y x - a! _y -
fi' ^z - y'

I ^ m ^ n '' l m n'

should be polar with respect to the conicoid ax'^+ by'^+ cz^=l.

Ans. :irtfx.rx' = l, ::Sa(x.7= 0, ^aoLl' = 0, 1aU' = 0.

Ex. 7. Find the condition that the line ^^=?l^= ^-^J^ should
c m 11

intersect the polar of the line 'Lz^. =-LlR. =zZSL with respect to the

conicoid a.r''^+ 6?/ + c^-^ = l.
'"" '^

Ans. {aal' + hfim' + cy,-i'){(i(t^l + hft'm + ry'n)

= {(iW + bmm' + cnn'){(icLa! + hfifi' + cyy' - 1).

Ex. 8. Prove that if AB intersects the polar of PQ, then PQ inter-

sects the ]}olar of AB. (AB and PQ are then said to be conjugate with
respect to the conicoid.)
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71. Section with a given centre. If (oc, ^, y) is the

mid-point of the chord wliose equations are

x-CL^y-l^^z-y
.J.

I m n '

the equation (1) of ^G6 is of the form r^ = k^, and therefore

aod+ b^m+ cyn = (2)

Hence all chords which are bisected at (a, (3, y) lie in

the plane
^^._^^^^^_^(^^_^y^^^(^_^^^^^()

This plane meets the surface in a conic of which (oc, /3, y)

is the centre.

Compare the equation to the chord of the conic ax^+ by- = '[ whose
mid-point is («., /3).

Ex. 1. Find the equation to the plane which cuts .v-+ 4i/'^ — oz"^ = \

in a conic whose centre is at the point (2, 3, 4).

A )is: .r -h 6^ - 1 02 -f 20= 0.

Ex. 2. The locus of the centres of parallel plane sections of a

conicoid is a diameter.

Ex. 3. The line joining a point P to the centre of a conicoid passes

through the centre of the section of tlie conicoid by the polar plane
of P.

Ex. 4. The centres of sections of a central conicoid that are

parallel to a given line lie on a fixed plane.

Ex, 5. The centres of sections that pass through a given line lie

on a conic.

Ex. 6. The centres of sections that pass through a given point lie

on a conicoid.
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Ex. 7. Find the locus of centres of sections of ax'^+ bi/'^+ cz'^= l

which touch a-r"- + ;8y-+ y-- = l-

, , o .)so
"'•*'"" b'l/' cV

Ans. (a.v-+ %-+ cs-)-=—- +-^+—

•

72. Locus of mid-points of a system of parallel chords.

It follows from equations (1) and (2) of §71 that the mid-

points of chords which are parallel to a fixed line

X_ y _z

lie in the plane alx+ hiny+ cnz = 0.

This is therefore the diametral plane which bisects the

parallel chords (fig. 34).

Compare the equation to the locus of the mid-points of parallel

chords of the ellipse ax'^+ bf= \.

Ex. 1. Find the locus of the mid-points of chords of the conicoid

ax^ + bi/'^+ cz"= l which pass through the point (/, g, h).

A vs. ax{x -/) -f lnj{y - g) + cz{z - h) = 0.

Ex. 2. Prove that the mid-points of chords of ax'^+ hy^^-cz'^=\

which are parallel to x=0 and touch x^+f+ z^= f- lie on the surface ,

bif\hx^+ bf -f- cz- - 6?--)

+

cz~{cx'^+ bif-+ cz' - cr-)^ 0.

73. The locus of the tangents drawn from a given

point. When the secant APQ, (fig. 32), becomes a tangent,

P, Q, R coincide at the point of contact, and hence the points

of contact of all the tangents from A lie on the polar plane

of A, and therefore on the conic in which that plane cuts the

surface. The locus of the tangents from A is therefore the

cone generated by lines which pass through A and intersect
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tlie conic in -which the polar plane ol' A cuts the conicoid.

This cone is the enveloping cone whose vertex is A. We
may find its equation as follows : If A is (a, ^, y), and the

line APQ, whose equations are

x— a. y— ^ _z — y
I ~ m ~ n

meets the surface in coincident points, the equation (1) of

§ 36 has equal roots, and therefore

{aP'+ hiii^+ C71-) (<(«.-+ 6/3^+ cy2— 1

)

= (r/rxZ+ h^m+ ey« f (1

)

The locus of APQ is therefore the cone whose equation is

[a(a;-oc)3+ 6(//-^)Hc(s-y)-][arx-+6/3-+ cy2_i]

= [aaix - a.)+ 6/3 (
y- /3)+ cy (s- y)]2.

If S = ax-+ bif+ cz~-l, S^ = a(L-+ 6/3-+ t'y^- 1

,

and P = aoux,-\-h^ii+ cyz — l,

this equation may be written

(S-2p+ Si)Si = (P-Si)2, i.e. SSi = P-, or

{ax^+hif^-cz"-- 1 ) (aa2

+

hj^^+ cy-- 1 )=(«oa;+ h^y+ cy^- 1 f.

CoHipare the equation to the pair of tangents from the point («., /i)

to the ellipse a.v^ + bij~= \.

Ex. 1. Find the locus of points from which three mutually per-

pendicular tangent lines can be drawn to the surface ax'-\-by' + cz^=\.

Ans. a{h+ c)x-+ h{c+ a)y^+ c{a+ b)z^= a+ h+ c.

Ex. 2. Lines drawn from the centime of a central conicoid parallel

to the generators of the enveloping cone whose vertex is A generate a

cone which intersects the conicoid in two conies whose planes are

parallel to the polar plane of A.

Ex. 3. Through a fixed point {k^ 0, 0) pairs of perpendicular
tangent lines are drawn to the surface ax-+ h'f-+ cz^=\. Shew that

the plane through any pair touches the cone

(x - kf w- 5^

Ex. 4. The plane z^a meets any enveloping cone of the sphere
x^-\-y'^+z'^= a'^ in a conic which has a focus at the point (0, 0, a).

Ex. 5. Find the locus of a luminous point if the ellipsoid

x^ja? +y^jb'^+ z^jc'' =\ casts a circular shadow on the plane z=Q.

Ans. x=-0, -p^, + "^.,= l
',

v^O, -,^,+~,= \,
b--a~ c-

' (i--b^ c^
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Ex. 6. If S = 0, ?f= 0, v= are the equations to a conicoid and two
planes, prove that S+ \nv=0 represents a conicoid which passes

through the conies in wliich the given planes cut the given conicoid,

and interpret the equation S+ Xu'^— O.

Ex. 7. Prove that if a straight line has three points on a conicoid,

it lies wholly on the conicoid.

(The equation (1), §66, is an identity.)

Ex. 8. A conicoid passes through a given point A and touches a

given conicoid S at all points of the conic in which it is met by the

polar plane of A. Prove that all the tangents from A to S lie on it.

Hence find the equation to the enveloping cone of S whose vertex is A.

Ex. 9. The section of the enveloping cone of the ellijjsoid

x'^/a'^ + i/'^/b'^ + z^/c^= l whose vertex is P by the plane 5 = is (i) a
Dla, (ii) a rectangular hyperbola. Find the locus of P.

Ans. (i)z=±c, (ii)'^-f5 + ^-i.

74. The locus of the tangents which are parallel to

a given line. Suppose tliat PQ is any chord and that M is

its mid-point. Then if the line PQ moves parallel to itself

till it meets the surface in coincident points, it becomes a

tangent and M coincides with tlie point of contact. There-

fore the point of contact of a tangent which is parallel

to a given line lies on the diametral plane which bisects all

chords parallel to the line. This plane cuts the surface in

a conic, and the locus of the tangents parallel to the given

line is therefore the cylinder generated by the parallels to

the given line which pass tln-ough the conic.
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Let (a, /5, y) (fig. 35) be any point on a tan,cfent parallel

to a given line xll = yjin = zln.

Then since, by §73 (1), the line

x— CL_
2/_2:

/S _z — y
I ~ m ~ n

touches the surface if

{al-+ hm'+ c n~){aa}+ bj3"+ cy'-- 1 ) = (aoil+ h^m+ cynf,

the locus of (a, ^, y) is given by

{aP+hm"+ cn"){ax^+ h}f-\-cz-— l) = {alx-\-hmy+cnzf.

This eijuation therefore represents the enveloping cylinder,

which is the locus of the tangents.

The enveloping cylinder may be considered to be a limiting case of

the enveloping cone whose vertex is the point P, {h\ mr, «r) on the

iine xjl=ylm= zjn^ as r tends to infinity. By §73, the equation to

the cone is

whence the equation to the cylinder can he at once deduced.

Ex. 1. Prove that the enveloping cylinders of the ellipsoid

x-Ja- +ji//b^ + z'^/C'= 1, whose generators are parallel to the lines

x_ y _z

meet the plane 3=0 in circles.

Ex. 2. Prove that the polar of a line AB is the line of inter-

section of the planes of contact of the enveloping cone whose vertex is

A and the enveloping cylinder whose generators are parallel to AB.

75. Normals. In discussing the properties of the normals

we shall confine our attention to the normals to the ellipsoid,

the most familiar of the central conicoids. •

Consider the ellipsoid whose equation, referred to rect-

angular axes, is x-la'^+ y-ih'^-[-z^lc^=\. If the plane

p = x cos (f.-\-y cos ,/3+ z cos y, ( 2?> 0),

is a tangent plane whose point of contact is {x\ y\ z'\ we

have, as in § 6<S,

r)x' r, VV' V^ .

cos oc ='^, cos ,o = ,y ' cos y= -g" -•
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that IS, the direction-cosmes of the outward-drawn normal

at {x', y\ z) are ^; ^> ^. where p is the perpendicular
ft"' C"

from the centre to the tangent plane at the point. The

equations to the normal at {x, y', z) are therefore

x-x _ y-y _z-z'
_^^

X>x' piL HI
a- 6- c-

Ex. 1. If the normal at P meets the principal planes in Gj, Go, Gg,

shew that pQ^ . pg^ . pQ^= ^2 : &2 ;
gS.

Putting for .r in the equations to the normal, we obtain

,.:=PG,= -— , etc.

Ex. 2. If PGiH PG,,2+ PG32 = F, tincl the locus of P.

A71S. The curve of intersection of the given ellipsoid and the

ellipsoid "|-I+|V|J=^i4m:^-

Ex. 3. Find the length of the normal chord through P, and prove

that if it is equal to 4PG3, P lies on the cone

Ex. 4. The normal at a variable point P meets the plane XOY in

A, and AQ is drawn parallel to OZ and equal to AP. Prove that the

locus of Q is given by

Find the locus of R if OR is drawn from the centre equal and

parallel to A P. Ans. a-.x^^ + b^-f'+ ch^^c*.

Ex. 5. If the normals at P and Q, points on the ellipsoid, intersect,

PQ is at right angles to its polar with respect to the ellipsoid.

76. The normals from a given point. If the normal

at {x', y', z) passes through a given ponit (a, /3, 7), then

^-^'
___
^-}]' _ y-f ^ (1)

X y zf_ '

and if each of these fractions is equal to X,

^'-i^, V = -"^'^. ;s'=~^ (2)
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Therefore, since (.<,•', y', z) i.s on the elhpsoid,

a^a- h^^^ cV
(aHXy^^(6HA)2^(cHA)'^~' ^'^^

This equation gives six values of A, to each of which

corresponds a point (;«', '\j\ c'), and therefore there are

six points on the eUipsoid the normals at which pass

through (rx., j8, y).

Ex. 1. Prove tliat equation (3) gives at least two real values of A.

(If F(A) = (A+ a-^)-(A+6'0"(A+ c-^)--2a2oL2(A+ 6''')2(A + c2)2, F(A) is

negative when A= — a'^ — 6^ — c^, and is positive when A= ±00.)

Ex. 2. Prove that four normals to the ellipsoid pass through any
point of the curve of intei-section of the ellipsoid and the conicoid

x\}fi+ (P)+ 3/-(c;2+ a2)+ ~i{a?+ IP') = }Pc^+ c^d'+ d'-U-.

It follows from equations (1) that the feet of the normals

from (a, /3, y) to the ellipsoid lie on the three cylinders

b^z{l3-y) = c''y{y-z), €^x{y-z)^(rz((x.-x),

c(ry(cL— x) = b^x(^— y).

Compare the equation to the rectangular hyperbola through the

feet of the normals fi-cmi the jDoint (a., (3) to the ellipse '-r,+'jj—l.

These cylinders have a common curve of intersection,

and equations (2) express the coordinates of any point on

it in terms of a parameter X. The points w^here the curve

meets a given plane

ux-\-vy-\-tuz+ d =

. lici^cL .
vly^B

,
wc'-y , , „

are given by ., ,
, +,9 . ^ +-3-7-C + of = 0,

and as this determines three values of X, the plane meets

the curve in three points, and the curve is therefore a

cubic cxirvc. The feet of the normals from 'Vx, /3, y) to the

ellipsoid are therefore the six points of intersection of

the ellipsoid and a certain cubic curve.

If the normal at {x'
,

y', z') passes through (fx, /?, y) and

has direction-cosines I, m, 7?,
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and therefore

I
^ ' m n

This shews that the normal whose equations are

x — a._y—^_ z— y
I 771 n

is a generator of the cone

X— CL y — (3 Z— y
Hence the six normals from (oc, j8, y) lie on a cone of the

second degree.

Ex. 3. If P is the point (a., /?, y), prove that the line PO, the

parallels through P to the axes, and the pcipendicular from P to its

polar plane, lie on the cone.

Ex. 4. Shew that the cubic curve lies on the cone.

Ex. 5. Prove that the feet of the six normals from (a, /5, y) lie on

the curve of intersection of the ellipsoid and the cone

X y z
'

Ex. 6. The generators of the cone which contains the normals

from a given point to an ellijjsoid are at right angles to their polars

with respect to the ellipsoid.

Ex. 7. A is a fixed point and P a variable point such that its

polar plane is at right angles to AP. Shew that the locus of P is the

cubic curve through the feet of the normals from A.

Ex. 8. If P, Q, R ; P', Q', R' are the feet of the six normals from

a point to the ellipsoid, and the plane PQR is given 'bylx+my-\-nz=p,

then the plane P'Q'R' is given by

a^l b^m c-)i p

(If P'Q'R' is given by l'x-\-m'y-\-n'z—p\ equation (3) of §76 is the

same as

U2+A+ /r+ A + c2+I PjKa^+ X^b-'+ k^c'^+ X P
J-"^-)

Ex. 9. If A, A' are the poles of the planes PQR, P'Q'R',

AA'2 - OA2 - OA'2= 2(«2 + ^2 + C-").

77. Conjugate diameters and conjugate diametral

planes of the ellipsoid. If the equation to tlie ellipsoid
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is cc^i(A^+ y'^llr+ 2rjc^=l, the axes are conjugate diameters

and tlie coordinate planes are conjugate diametral planes,

(v!} 65). If P, (a\, 2/1, z{) is any point on the ellipsoid, the

diametral plane of OP has for its equation, (§ 72),

a^
"^

b-'

"*
c--^

0.

Let Q, (x.,, 1/2, z.^) be any point on this plane and on the

ellipsoid, then

~a^^l)' ^ c'
~

'

Hence, if Q is on the diametral plane of OP, P is on the

diametral plane of OQ.

If the diametral planes of OP and OQ
intersect in the diameter OR, (tig. 8G),

R is on the diametral planes of OP and

OQ, and therefore P and Q are on the

diametral plane of OR ; that is, the dia-

metral plane of OR is the plane OPQ.

Thus the planes QOR, ROP, POQ are the

diametral planes of OP, OQ, OR respec-

tively, and they are therefore conjugate

diametral planes, and OP, OQ, OR are conjugate diameters.

If R is (x.^, 2/;v
S3), we have

^+^+^-1,
a'.,-

a' ^ 6^ ^ c-
(A')

a-

Ml
62

1
I
.VS^l

I

'

2 "T" 7,2 T^ 0,

«i^2 , M2 4.!n
„•' ^ Ir ^ c'

•dO

These correspond exactly to ecjuations (a) and (u) of §53,

lUid shew that

111 ?!
b' c

'

b' c

are the direction-cosines of three nuitually perpendicular
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lines refei-red to rectangular axes. Therefore, as in § 58,

we deduce,

i)

2/A+ ^/222+2/3%= 0,

(c') Z^X^ + Z.^X^+Z.^X^ = Q,

^1 +%'+v=c^

a ~ he ' b ~ ca ' c

.(D')

±
ah

"'

2_ +(M3L_Mi)^ etc., etc.; (e')
I — be

= +abc.

h' 2/3' %
If the axes to which the ellipsoid is referred are

rectangular, equations (c') give, on adding,

Op2+ oq2+ 0R2 = a-+ 62+ c\

Hence the sum of the squares on any three conjugate

semi-diameters is constant. From the last equation we
deduce that the volume of the parallelepiped which has

OP, OQ, OR for coterminous edges is constant and equal

to abc. Again, if A^, Ag, A3 are the areas QOR, ROP, POQ
and Ir, rtir, n,., (r=l, 2, 3), are the direction-cosine.s of the

normals to the planes QOR, ROP, POQ, projecting A^ on the

plane x = 0, we obtain

Thh
2 - 2a'

by (E'):

similarly.

hcx^
'"26^'

--
2b''

m.,A., =

n-,A
ahz.

i=±2,

cay^

, ,
bcXo

26
l^pA.,:

_^ahz^.

,
abzo

Therefore, squaring and adding, we have, by (C),

A^-+ A.3"+ A.,- = ] ( b'C"+ c\t^ + (^"6-).
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Ex. 1. Find the c(iuatioii to the plane PQR.

If the equation is lx+ imj+ nz=p, then lx\ + mij^+ nzi=py

L t'2+ «i^2+ '"'h~Py ^•^''3+ *"i/3 "* '*^3~ P-

Multiply by x\, x.^, x^ respectively, and add ; then by (c') and (i/),

ld'=p{xi+X2+ X2), etc.

The required equation is therefore

.>;(.fi+.f2+ .r',) y{>/i+y2+y'i)
I

^{h+h + h) _-^_

a- b'^ c-

Ex. 2, Shew that the plane PQR touches the ellipsoid :- +-^,+ - = -

at the centroid of the triangle PQR. ""'
''" ^"

Ex. 3. Prove that the pole of the plane PQR lies on the ellipsoid

x'l<x' + ,y^/6-+ z-lc"= 3.

Ex. 4. The loc-us of the foot of the perpendicular from the centre

to the plane thronii;h the extremities of three conjugate seaii-diauieters

Ex. 5. Prove that the sum of the squares of the projections of

OP, OQ, OR, (i) on any line, (ii) on any plane, is constant.

Ex. 6. Shew that any two sets of conjugate diameters lie on a

cone of the second degree. (Cf. § 59, Ex. 6.)

Ex. 7. Shew that any two sets of conjugate diametral planes

iouch a cone of the second degree. (Apply § 61, Ex. 4.)

Ex. 8. If the axes are rectangular, find the locus of the equal

conjugate diameters of the ellipsoid x^la^+^fjb- + z'lc- = l.

If /• is the length of one of the equal conjugate diameters,

;3r2 = a2+ 62+ c2,

, P+ m^+ 71-^ r^
,
ru^

,

«2
and 7,

= ~T, + 7v+~.'
r- a^ o^ c-

where I, m, n are the direction -cosines. Therefore the diameter is a

generator of the cone

x\y\z^ Hx-'^+f + z^

or ^J(2«2
- V' - c2) +'|-^(262 _ c2 - a2) +^2(2c^ - «^ - ^')=0.

Ex. 9. Shew that the plane through a pair of equal conjugate

diameters touches the cone S-^jtt,-.^—yy— -n
— '^•

Ex. 10. If A, //., I' are the angles between a set of ecjual conjugate

diameters, 3^(62_,.2\2
cosU + cosV + cosV= ^:^j^T-^--^z

Ex. 11. If OP, OQ, OR are equal conjugate diiimeters, and S is

the pole of the plane PQR, the tetrahedron SPQR has any pair of

opposite edges at right angles.
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Ex. 12. If OP, OQ, OR are conjugate diameters and
Pi-, p.^, p-^;

TTj, TTa, TTj are their projections on any two given lines, pyw^ +P-i!T2+p^Tr^

is constant.

Ex. 13. If, tlirough a given point, chords are drawn parallel to

OP, OQ, OR, the sum of the squares of the ratios of the respective

chords to OP, OQ, OR is constant.

Ex. 14. The locus of the point of intersection of three tangent

planes to -2+'t2 + 72
= 1> which are parallel to conjugate diametral

-^^2 .jjZ --2 'vi2 ^»2 5-2 /7-
fj^

yi2

planes of —,+ yTs+^= l, is — + ^,+ — = -t, + 7>,4- -^. What does this^ aJ It y a."
fj-'

y- a.- /j- y^
theorem become when (x= ft

= y 1

Ex. 15. Shew that conjugate diameters satisfy the condition of

Ex. 8, § 70, for conjugate lines.

Since the plane POQ, (fig. 36), bisects all chords of the

conicoid which are parallel to OR, the line OQ bi.sects all

chords of the conic ROQ which are parallel to OR. Similarly

OR bisects all chords of the conic which are parallel to OQ

;

and therefore OR and OQ are conjugate diameters of the

ellipse ROQ. But Q is any point on the ellipse ; therefore

OP and any pair of conjugate diameters of the ellipse in

which the diametral plane of OP cuts the ellipsoid are

conjugate diameters of the ellipsoid.

Ex. 16. P is any point on the ellipsoid "^ + t2+^ = 1 and 2o(. and 2/5

are the principal axes of the section of the ellipsoid hy the diametral
plane of OP. Prove that OP'^= cfi+ b'^+ c'- -a?- (3\ and" that a.fip = abc,

where p is the perpendicular from O to the tangent plane at P.

Ex. 17. If 2a. and 2(3 are the principal axes of the section of the
ellipsoid by the plane Lv + m?/+ nz= 0, prove that

'y82 =
a^l^fiP+ nf+ T^

^Ex. 18. If P, (ri, //j, 2j) is a point on the ellipsoid and (^,, ?;,, t,),

(^2) ^/2> i-i)
are extremities of the principal axes of the section of the

ellipsoid by the diametral plane of OP, prove that

(^.ti _ C^)-ri + (,2 _ «2)^ + („2 _.^,2) i. ^ 0.

^1 '/I fl
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Conjugate diameters of the hyperboloids. The equation of a

liyperlioloitl uf one sheet refeiTcd to three conjugate diameters as

coordinate axes is
'— +^,-^= 1. Hence it appears that the ./•- and
«.-

i8- 7-

//-axes meet the surface in real points (±0., 0, 0), (0, ± (3, 0), and that

the 5-axis does not intersect the surface. The 2-axis, however, inter-

sects the hyperboloid of two sheets whose equation is ij~^+-v = l

at the i)oints (0, 0, ±y), and these points are taken as tlie extremities

of the third of the three conjugate diameters.

Hence, if P, (.>'j, i/y, J,), Q, (.t^, >h, z^,), R? (-''3) .'h, h) ^''^ the extremities

of a set of conjugate semi-diameters of the hyperboloid of one sheet,

it follows, as for the ellipsoid, that

•<'i- + ^'2 - J'z = «^ IJi ^y-i - Vi = ^^ h^ + H" - ^'z
= - <^\ etc.

;

and therefore, that if the axes are rectangular,

OP--!- OQ- - OR-= ar+ ¥ - c-

and Ai^ -f- Aj- - Aj^= |(6-c- -f-cV _ fjfiniy

Similarly, if one of a set of three conjugate diameters of the hyper-

boloid of two sheets, -^-'73—s= l, intersects the surface, the other
a- 0^ c-

two do not, but they intersect the hyperboloid of one sheet,

and the points of intersection are taken as their extremities. Hence
if P, Q, R are the extremities, and the axes are rectangular, we have

Op2_OQ2-OR2 = «2_i2_c2

and Ai^ - K^ - A32= | (ft'^c^ _ ^2^2 - a%-').

THE CONE.

78. A homogeneous etjnation of the form

ax^ -4- hy'^+ es^ =

represents a cone. If {x', y\ z) is any point on the cone,

{—x', —y', —z') lies also on the cone, and therefore we
may consider the cone as a central surface, the vertex being

the centre. The coordinate planes are conjugate diametral

planes and the coordinate axes are conjugate diameters.

We easily find, as in the case of the other central

conicoids, the followino; results

:
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The tangent plane at {x', y\ z) has for its equation

axx + hyy'+ czz — 0.

The plane lx-\-iny-\- iiz^O touches the cone if

The polar plane of P, (a, /5, y) is given by

acLX 4- h^y + cyz = 0.

The section whose centre is at (a, ^, y) has the equation

(«-a)«a+(2/-/3)6/5+(s-yVy = 0.

The diametral plane of the line x/l = yini = zln is

alx+ hmy+cm = 0.

The locus of the tangents drawn from P, (a., ^, y) is the

pair of tangent planes whose line of intersection is OP.

They are given by

(ax^+ by^+ cs^) (axx?+ b^-+ cy- ) =^ (aoLX + b^y + cyzf.

The diametral plane of OP is also the polar plane of P

Conjugate diameters. Let OP, OQ, OR, (tig. 37), any three

conjugate diameters of the cone, meet any plane in P, Q, R.

The plane meets the cone in a conic, and QR is the locus

of the harmonic conjugates of P with respect to the points

in which any secant through P cuts the conic ; i.e. QR is the

polar of P with respect to the conic. Similarly, RP and PQ

are the polars of Q and R, and therefore the triangle PQR

is self-polar with respect to the conic. Conversel}^ if PQR
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is any triaiitj;le seli'-polar with respect to the conic in which

the plane PQR cuts the cone, OP, OQ, OR are conjugate

diameters of tlie cone. For the polar plane of P passes

through the line QR and through the vertex, and therefore

OQR is the polar plane of P, or the diametral plane of OP
;

and similarl3^ ORP, OPQ arc the iiametral planes of OQ
and OR.

Ex. 1. The locus of tlie iisymptotic lines drawn from O to the

conicoid ax^+ b>/-+ cz"^l is the "asymptotic cone a.v^+ bi/^+ cz'^= 0.

Ex. 2. The hvperboloids

.v^/a^'+ fib"- - z^lc^= 1, - xya^ - >/lb'^ + z^lc^= 1

have the same asymptotic cone. Draw a figure shewing the cone and

the two hyperboioids.

Ex. 3. The section of a hyperl)oloid by a ])lane which is parallel

to a tangent plane of the asymptotic cone is a parabola.

Ex. 4. If a plane through the origin cuts the cones

ax^+ by' + cz"= 0, clx^ + /3_//"+ yz^ =

in lines which form a harmonic pencil, it touches the cone

by + cf3 cm + ay a(3+ ba.

For the following examples the axes are rectangular

Ex.5. Planes which cut ax'^ + bif + cz^ = m perpendicular

;^enerators toiicli
^,.j

.,

^^

b+7' 7+(('''a + b~

Ex. 6. Tile lines of intersection of pairs of tangent planes to

u.v'+ by"+ ci-= which touch along perpendicular generatoi's lie on

the cone
«.(i+ ,),,2+ ^2(,+ „)^. + ,.(« + ^),2= 0.

Ex. 7. Perpendicular tangent planes to ax"+ bi/-+ cz'=^Q intersect

in generators of the cone

a{b+ c) .1-+ b {<:+ a)f+ c (a + Z>) -;- = 0.

Ex. 8. If the cone Aa'-*+ By- + Cs''+ 2Fy-+ 2G5a;+2H.rj/= passes

througli a set of conjugate diameters of the elli])soid

'-/'f'+.'/-/^-+ ^Vc2= 1, then A«-+ B^- + C.V- = 0.

Ex. 9. If three conjugate diameters of an ellipsoid meet the

director sphere in P, Q, R, the plane PQR touches the ellipsoid.

Ex. 10. Find the equation to the normal plane {i.e. at right angles

to the tangent plane) of the cone a.ic^ -^-by"- -^ cz^= <d which passes through

the generator .r/^ =///?» = i/«. .^ ^
(/> -(•).> ^^
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Ex. 11. Lines drawn through the origin at right angles to normal

planes of the cone ax^+ hy'^+ Gz^— O generate the cone

a{b-cf h{c-af c{a-bf _
X' y^

Ex. 12. If the two cones ax^-^hf+ cz^= ^, aLx'^+ (iif+yz'^ = have

each sets of three mutually perpendicular generators, any two planes

which pass through their four common generators are at right angles.

THE PARABOLOIDS.

79. The locus of the equation

9-;

U> 5+'^- (2)
X- y-

The equation (1) represents the surface generated by the

x^ iP- 2/i'

variable ellipse = /^, —:+^ =— • This ellipse is imap-inary
^

a- h- c
^

unless k and c have the same sign, hence the centre of the

z

ellipse lies on OZ if c>0 and on OZ' if c<^0. The sections

of the surface by planes parallel to the coordinate planes

YOZ, ZOX are parabolas. Fig. 38 shews the form and

position of the surface for a positive value of c. The

surface is the elliptic paraboloid.
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The equation (2) represents the surface generated by the

.r- ip- 1h
variable hyperbola —— n- = -—

> z = li'. The liyperbola is

real for all real values of /j, and its centre passes in turn

through every point on Z'Z. When /i; = () the hyperbola

deoenerates into the two lines —; — r? = 0, = 0. 'Ihe sections

of the surface by the planes z = k, z=—k project on the

z

plane XOY into conjugate hyperbolas whose asymptotes are

0. The sections by planes parallel to YOZ,= 0.
X' y^_

ZOX are parabolas. The surface is the hyperbolic paraboloid,

and fig. 39 shews the form and position of the surface for

a negative value of c.

80. Conjugate diametral planes. An equation of the

form
^+ hy' = 2z

represents a paraboloid. Any line in the plane XOY which

passes through the origin meets the surface in two co-

incident points, and hence the plane XOY is tlie tangent

plane at the origin. The planes YOZ, ZOX bisect chords

parallel to OX and OY respectivel}'. Each is therefore

parallel to the chords bisected by the other. Such pairs of

planes are called conjugate diametral planes of the paraboloid.
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81. Diameters. If A is the point (a, ^, y), and the

equations to a line tlirough A are

I 111 n

the distances from A to tlie points of intersection of the

line and the paraboloid are given by

r^al^+ 6m2)+ 1r{a(d+ h^m

-

1? )+ aa^+ &/32- 2y= 0. . . .( 1

)

If l=m= 0, one value of r is infinite, and therefore a

line parallel to the 5;-axis meets the paraboloid in one

point at an infinite distance, and in a point P whose

distance from A is given by

~ —2 {aa.1+ b^m—n)~ 2n

Such a line is called a diameter, and P is the extremity of

the diameter.

Hence ax'^+ hy'^ = 2z represents a paraboloid, referred to

a tangent plane, and two conjugate diametral planes

through the point of contact, as coordinate planes. One
of the coordinate axes is the diameter through the point

of contact. If tlie axes are rectangular, so that the tangent

plane at O is at right angles to the diameter through O,

O is the vertex of the paraboloid, and the diameter through O
is the axis. The coordinate planes YOZ, ZOX are then

principal planes.

Ex. What surface is represented by the equation .>v/= 2c2?

82. Tangent planes. We find, as in § 67, the equation

to the tangent plane at the point (rx, fS, y) on the paraboloid,

aXJLX ~\-h^lj =z+ y.

If lx+ my + nz=]) is a tangent plane and (a, /3, y) is the

poiiit of contact,

— I o —tn —V

and therefore -+ -,- + 2/w=:0

an ^ hn ^ n
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Hence 211(1x + my -\-nz)-{ \- . =0 is the 0(|nati()ii to

the tangent pUine to the paraboloid which is parallel to the

plane lx-i-i)iy+ nz = 0.

If the axes are rectangular and

2nr{l.v+ m,y + n,z) +-^+ '-^ = 0, ( r = 1 , 2, 3),

represent tln-ee mutually perpendicular tangent planes,

we have, by addition,

(/

and therefore the locus of the point of intersection of three

mutually perpendicular tangent planes is a plane at right

angles to the axis of the paraboloid.

Ex. 1. Shew that the plane 8x-6ij~z=-i) touches the paraboloid

'— -'^ = 2, and lind the coordinates of the point of contact.

Ans. (8, 9, 5).

Ex. 2. Two perpendicuhir tangent planes to tlie paraboloid

'-
+"-r= 2i intersect in a straight line lying in tlie plane .r= 0. Shew

that the line touches the parabola

x=0, i/= {a + b)(2z + a).

Ex. 3. Shew that the locus of the tangents from a point (ol, (3, y)
to the paraboloid «.*- + iy-= 2j is given by

(cu-- + h>/- - 2z)(aaL-+ hfi'- - 2y)= {a<x,v+ hfij/ -z- yf.

Ex. 4. Find the locus of points from which three mutually per-

pendicular tangents can be drawn to the paraboloid.

A ns. ah (.r^

+

f) - 2 (a+ 6) ^ - 1 = 0.

83. Diametral planes. If a line op has equations

xll = ylm = zjn, the diametral plane of OP, i.e. the locus

of the mid-points of chords parallel to OP, is given by

alx+ hiny — n = 0. Hence all diametral planes are parallel

to the axis of the paraboloid, and conversely any plane

parallel to the axis is a diametral plane. If OQ, whose

equations are x/r = y/m'= zln', is parallel to the diametral

plane of OP, aU'+ hmm' = (1)



126 COOEDINATE GEOMETRY [ch. vii,

Hence OP is parallel to the diametral plane of OQ, and the

diametral planes of OP and OQ are conjugate.

Equation (1) is the condition that the lines alx-{-hmy = 0,

al'x-\-hin'y = 0, in the plane z = k, should be conjugate

diameters of the conic ax^+ hy'^ = 2k Hence any plane

meets a pair of conjugate diametral planes of a paraboloid

in lines which are parallel to conjugate diameters of the

conic in which the plane meets the surface.

Ex. 1. The locus of the centres of a system of parallel plane

sections of a paraboloid is a diameter.

Ex. 2. The plane 3*'+4^ = 1 is a diametral plane of the pai^aboloid

5j;- + 6y^ = 22. Find the equations to the chord through (3, 4, 5) which
it bisects. . a; -3 y-A z-b

Ex. 3. Any diametral plane cuts the paraboloid in a parabola, and
parallel diametral planes cut it in equal parabolas.

x-
84. The normals. If -5 + 12 = 20 represents an elliptic

paraboloid, referred to rectangular axes, the normal at

{x\ y\ z) has for equations

X — X _ y — y' _z — z'

^ T~ -1
°

If this normal passes through a given point (a, ^, y),

^^ = X, say.

mi n >
<^^«-

. ' ^"/^
' , N

Therefore x = ., , y =
/2_l\ ' ^ =y+ ^>

This equation gives five values of A, and hence there* are

five points on the paraboloid the normals at which pass

through a given point.

Ex. 1. Piove that the feet of the normals from any point to the

paraboloid lie on a cubic curve.
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Ex. 2. Prove tliat the noniijils fi-oin ((l, fi, y) to tlie paraboloid lie

x-o, i/-f3 z-y

Ex. 3. Prove that the cubic curve lies on this cone.

Ex. 4. Pi'ove that the perpendicular from («., /i, y) to its polar

plane lies on the cone.

Ex. 5. In general three normals can be drawn from a given point

to the paraboloid of revolution .>-+y' = 2rt-, l)ut if the point lies on

the surface 21a(.v' + i/-)-\-8{a-zf= 0, two of the three normals
coincide.

Ex. 6. Shew that the feet of the normals from the point ('x, /i, y)
to the pai'abolokl .v-+ i:f = 2az lie on the sphere

.^.2+ y2+ ,^._,(^a + y)- ^(rx2+ [3^)= 0.

Ex. 7. Shew that the centre of the circle through the feet of the

three noi'mals from the point (a., (3, y) to the paralwloid .r'- + ?/- = 2«s is

/a. (3 y + n\

\4' 4' 2 J

* Examples IV.

1. Two asymptotic lines can be drawn from a point P to a conicoid

cuc'^+h/-+ cz^= \, and they are at right angles if P lies on the cone

cfi {b + c).t'2+ b%c+ a)if + (? {'c+ h)z^= 0.

2. The lines in which the plane ^.r + wi?/ + ws= cuts the cone

cu;'^-{-(3i/--\-yz'' = are conjugate diameters of the ellipse in which it

cuts the ellipsoid ^,+|n+ Aj= l. Prove that the line y = =^ = - lies on

the cone
^^.,^^^., ^ ^^2^ ^,, _^ j2(.y,,2+ ^La'^.y^+ c^a.a^+ f3f')z^= 0.

3. P and Q are points on an ellipsoid. The normal at P meets tlie

tangent plane at Q in R ; the normal at Q meets the tangent plane at

P in S. If the perpendiculars from the centre to the tangent planes

at P and Q arepi, p-2, prove that PR : QS =;'._, -.pi-

4. The line of intersection of the tangent planes at P and Q, points

on (u-- + b>r + cz'= \, passes through a fixed point A, (</., (3, 7), and is

parallel to the plane XOY. Shew that the locus of the mid-])oii!l

of PQ is the conic in wliich the polar plane of A cuts the surface

a.v^+ bjj^+ cz"^= z'y.

5. Shew that the greatest value of the shortest distance between

the axis of .rand a normal to the ellipsoid .r''-la^+f-lb-+ z^/c- = l is

b-r.

6. Plane sections of an ellipsoid wliich have their centres on a

given straight line are parallel to a fixed straiirht line mid touch

a parabolic cylinder.
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7. OP, OQ, OR are con j u i^ate diameters of an ellipsoid

if 0" 0"

At Q and R tangent lines are drawn parallel to OP, and p^, p^ are
their distances from O. The perpendicular from O to the tangent
plane at right angles to OP is p. Prove that

J^'- +Pi-+ p-r = «- + b''^ + cK

8. Conjugate diameters of

a^x'^-^h^y'^\-c^z'^= l meet ag.*^^+ ^2^^+ ^^2^^— 1

in P, Q, R. Shew that the plane POR touches the conicoid

, CTo &., Co tto b., Co
where — = /= -^ =_-+_- + _^.

«! Oj C^ «! 6j Cj

9. The ellipsoid which has as conjugate diameters the three straight
lines that bisect jmirs of opposite edges of a tetrahedron touches the
edges.

10. Shew that the projections of the normals to an ellipsoid at

P, Q, R, the extremities of conjugate diameters on the plane PQR,
are concurrent.

11. If through a fixed poirit P, (a.,
f3, y) on the ellipsoid

.t^/a^ + iflb'^ + z^/c^=l perpendiculars are drawn to any three con-

jugate diameters, the plane thi'ough the feet of the perpendiculars
passes through the fixed point

/ a^oL b'^f3 c^y \

Vc^+PTc^' d^+ b'^+ c^' aF+W+7^J'

12. If perpendiculars be drawn fx"om any point P on the ellipsoid

to any three conjugate diametral planes, the plane through the feet of

the perpendiculars meets the normal at P at a fixed point whose
distance from P is 979 ^

p{¥c^+ <'M^+aWy

where p is the perpendicular from the centre to the tangent plane
at P.

13. Find the locus of centres of sections of a conicoid that are at a
constant distance from the centre.

14. Shew that the ec^uations to the right circular cones that pass

through the axes (which are rectangular) -Ave yz±zx±xi/ = Qi.

Deduce that the lines through a given point P, whicli are per-

pendicular to their polars with respect to .v^/a^ + 7/^/b^ + z'^/c'^=\, lie

upon a right circular cone if P lies on one of the lines

(P - ,2)2,,.2^(e2 _ „2)2_y2= («2 _ 52)2,2.

15. Chords of a conicoid which are parallel to a given diameter and
are such that the normals at tlieir extremities intersect, lie in a fixed

plane thi'ough the given diameter.
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16. The perpendiculars from the origin to the faces of the tetra-

hedron whose vertices are the feet of the four normals from a point to

the cone «.r;2+ 6y^+ c«-= 0, lie on the cone

a{b - cfx- + Z)(c - a)'ij- -f c{a - b)-z- = 0.

17. P, Q, R ; P', Q', R' are the feet of the six normals from a point

to the ellipsoid x'^/a.^+ i/'jb'^+z^/c'^= l. Prove that the poles of the

planes PQR, P'Q'R' lie on the surface ^"I
—T2~ •/ (a'"-«-) ^ =0.

18. The normals at P and P', points of the ellipsoid

meet the plane XOY in A and A' and make angles 6^, B' with PP'.

Prove that PA cos 6'+ P'A' cos ^'= 0.

19. The normals to x'^jd^ +y-lb'^+ z'~j(P'= \ at all jjoints of its inter-

section with lyz-\-mzx+ nxy= intellect the line

a^x _ 6^y ch

l(a^-b^){c^'-a-^)~ m{b'^-c^)(a^-b^)~ n{c' - d'){b-^ - c^)'

20. Shew that the points on an ellipsoid the normals at which
intersect a given straight line lie on tlie curve of intersection of the
ellipsoid and a conicoid.

21. The normals to x^ja? +y'^lb^+ z'^lc^=\ at points of its intersection

with xla+i/jb+ z/c= l lie on the surface

, / ab xy -f be yz+ cazx \

'\b{a^-c'-)2/+ c(d'-b^)z)'

22. Prove that two normals to ax^+ by^ + cz^^l lie in the plane
lx+ my + nz=p, and that they are at right angles if

abep'-^{a{b + c)P\='Z{a^-(b-c)-m-n-}.

23. The locus of a point, the sum of the sqiiares of whose normal
distances from the ellipsoid x-ja-+y^lb- + z^lc- = \ is constant, (=F), is

I (a^-b^){c^-a^) )

24. If the feet of the six normals from (rx,
f3, y) are

(Xr.yr :r), >= 1, 2, . . . 6),

lorove that d^a.^fy^^ + F-(3^fl'^ + c^y^fl^ = 0.

25. If the feet of three if the iioruials from P to the ellipsoid

—,-1-1^-1-^=1 lie in the plane -+-y + - = l, the feet of the other three
a^ b^ c^

' a b c '

lie in the plane --f'f+ --1-1=0, and P lies on the line
^ a b c

a(b-- C-)X= b(c-- a-)y= c (a- - 6-) z.

B.G. I
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26. If A, B are {a.,, (3^, y,), (ol^, /^g, 72). the pair of tangent planes

at the points where AB cuts the conicoid S = CLv'^+ b7/^+ cz^-l=0 is

given by S2Pi2-2PiP2Pi2+ SiP,- = 0,

and the pair of tangent planes that intersect in AB, by

S(SiS2-P^2)-S2Pi2+ 2PiP2Pi2-SiP22= 0,

where ^1= a<+ bfi^^+ ey^^ - 1, etc.

;

P^=aa.iX+ bf3ii/+ cyiZ-l, etc.;

Pi2= 00.^0.2 + bl3iP.2 + cyi72 - 1 •

27. If P, (.''1, i/i, ^i), Q, (^2, 3/2, --2), R> (-^s, 3/3> -^3) are the extremities

of three conjugate semi-diameters of the ellipsoid ^ + 'p + -^ = l5 and

Op = ,- OQ = r2, OR^rg, pi'ove that the equation to the sphere

OPQR can be written

and prove that the locus of the centres of spheres through the origin

and the extremities of three equal conjugate semi-diameters is

1 2(a2r2+ by-+ c%2)= (a2 + b^ + c^f.



CHAPTER VIII.

THE AXES OF A PLANE SECTION OF A CONICOID.

85. We have proved, (§ 54, Exs. 2, 3), that every plane

section of a conicoid is a conic, and that parallel plane

sections are similar and similarly situated conies. We now
proceed to find equations to determine the magnitudes and

directions of the axes of a given plane section of a given

conicoid.

General method for determining the axes. If the lengths of

the axes of a conic are 2«. and 2/3, and o.^ r > ,/3, the conic

has two diameters of length 2r, and they are ecjually

inclined to the axes. If r = a or /3, the two diameters of

length 2r coincide with an axis. Hence to find the axes

of the conic in which a given plane cuts a conicoid, we first

form the equation to a cone whose vertex is the centre, C,

of the conic and which has as generators the lines of

length r which can be drawn in the plane from C

to the conicoid. The lines of section of this cone and the

given plane are the semi-diameters of length r of the conic.

If 2)' is the length of an axis, these are coincident, or the

plane touches the cone, the generator of contact being the

axis. The condition of tangency gives an equation which

determines r ; the comparison of the equations of the given

plane and a tangent plane to the cone leads to the direction-

cosines of the generator of contact.

86. Axes of the section of a central conicoid by a

plane through the centre. Let the equations, referred to

rectangular axes, of the conicoid and plane be

a,r-+ hjf -{.cz^=l, Lv 4-m y + » ; = 0.
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The centre of the conicoid is also the centre of the

section. If A, ix, v are the direction-cosines of a semi-

diameter of the conicoid of length r, the point {\r, fir, vv)

is on the conicoid. Therefore

.0 , 7 9 , , 9 1 X--\-fJ?-\-V-
aX-+ 6/x--|-cj/- =^= ^

•

Hence the semi-diameters of the conicoid of length r are

generators of the cone

a;>-l/r2)-h 2/^(6 -l/r2)+ 02(c-l/7'2)= O (1)

The lines of section of the cone and plane are the semi-

diameters of the conic of length r. Hence, if 7- is the

length of either semi-axis of the conic in which the plane

lx+my+ nz= cuts the conicoid, the plane touches the

cone, and therefore

ar2-l"^6r2-l"^cr2-l ' ^ ^

or T\hd'^+ cam'^+ahv?-)-r''{{h+ c)l^+ {c-\-a)m^+ {a-\-h)n^

The roots of this quadratic in r- give the squares of the

semi-axes of the section.

If 2r is the length of an axis and \,ij.,v are the direction-

cosines, the given plane touches the cone (1) along the

line xlX — ylfJi — zlv, and therefore is represented by the

equation

\x{a - l/r2)+ fxy{h- l/r^) -f vz{c- l/r^) = 0.

Therefore M«^)^,(^f^^^(sf^
^3)

These determine the direction-cosines of the axis of

length 2r.

Since the extremities of the semi-diameters of length r of the

conicoid lie upon the sphere .v^+^'^+ 2' = 7-'\ the equation of the cone

through them may be obtained by making the equation to the conicoid

homogeneous by means of the equation to the sphere. Thus the cone is

^2 4- 7/2 4. r2

which is another form of equation (1).
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Ex. 1. Prove that the axes of the section of the conicoid

ax^+ bf+ cz"-^! by the plane l.K+ mi/+m= lie on the cone

(From equations (3) we deduce that

Ex. 2. Prove that the cone of Ex. 1 passes through the normal to

the plane of section and the diameter to which the plane of section is

diametral plane. Prove also that the cone jmsses Uirough two sets of

conjugate diameters of the conicoid. (Cf. Ex. 6, ^ 77.)

Ex. 3. Find the lengths of the axes of the conies given by

(i) 3j;2+2/+ 622= 1, a;+y+ z= Oi

(ii) 2x^+f-z^= l, 3x+ 4i/+ 5z=0.

A71S. (i) -64, -45
;

(ii) 3-08, '76.

Ex. 4. Prove that the equation of the conic

^.•2+2/ -222= 1, 3x-2i/-z= 0,

referred to its principal axes, is approximately

l-70x^-l-71,f=l.

Ex. 5. Prove that the lengths of the axes of the section of the

ellipsoid of revolution
'—2^+72=1, by the plane Lv+7n7/+ nz=0, are

a, ac{l^ + 7/i2 + ,i2)5 {a2(^2+ ,,^2) + ^2,^2 yl^

and that the equations to the axes are

£_j/__2, X _ y _ z

m^ -l^O' nl~mn ~~ -{1"^ + m-)'

Ex. 6. Prove that the area of the section of the ellipsoid

xya^+f/b'^+ zyc'^=l

by the plane lx+ 7)u/+ nz= is —^, where p is the perpendicular from

the centre to the tangent plane which is parallel to the given plane.

Ex. 7. The section of the conicoid ax'^+ bi/^+ cz^= l by a tangent

plane to the cone , 2 -">

b+c c+a a+h

is a rectangular hyperbola.

Ex. 8. The section of a hyperboloid of one sheet by a tangent

plane to the asymptotic cone is two parallel straight lines. What is

the corresponding section of the hyperboloid of two sheets w^hich has

the same asymptotic cone ?

Ex. 9. Central sections of an elli])soid whose area is constant

envelope a cone of the second degree.
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Ex. 10. If Ai, A2, A3 are the areas of three mutually perpendicular

central sections of an ellipsoid, Ar^+ A2~^+ A3-2 is constant.

Ex. 11. One of the axes of each section of the ellipsoid—2^ + 3^^
"^ ^

by a tangent plane to the cone y'- -\- z^— x"' lies on the cone

What is the nature of the section of this cone by a plane parallel to

the plane XOY % Sketch the form of the cone.

Ex. 12. Prove that the axes of sections of the conicoid

ax^ -{})}/ -\- cz^— \

which pass thi'oucrh the line '- = -^ = - lie on the cone

^{niz- nil)+~ {nx - Iz) +'^{kl - mx) = 0.

87. Axes of any section of a central conicoid. Let the

equations, referred to rectangular axes, of the conicoid and

plane be ax^+ hy'^+ cz^= l, lx-\-my+ nz =]i.

Then if C, (a, /3, y) is the centre of the section, the

plane is also represented by the equation

{x-a.)aa.+ {y- ^)h^+ {z-y)cy = 0.

Therefore «^^^ ^ ^_y = ^i^^!±M!+^ (1)

Hence «aHt/3Hcy'-=
p^^^ j)^^,^,^^=g,

say,

The equation to the conicoid referred to parallel axes

through C is

0.x-+ 6?/2 4. cz^+ 2 {aaux+ h^y + cyz)+ aa}+ h^'+ cy' -1 = 0,

or ax^+ hy'^+ cz-+ 2 {aoLX+ h^y + cyz) — k-= 0,

where k^^l — —,-
IV

The equation to the plane is now lx+ 'my-\-i\z = 0.

If A, [JL, V are the direction-cosines of a line of length r

tlrawn from C to the conicoid,

r\aX^+ hfi^+ cv')+ 2r(«aA + 1(3fx + cyv) - /,- = 0.

If the line lies in the given plane

l\-\-miL-\-'in' = 0,

and therefore, by ( 1 ), (/(xX + hjifi + cyv = 0.
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Hence r''(c(A'+ hfi'^+ ct-) - 1<?{\^+ /x"+ v') = 0,

and therefore the semi-diameters of tlie section of length r

lie on the cone

If r is the length of either semi-axis of the section, the

plane touches the cone. Therefore

_4^+^+^ii_= (21

And, as in §86, the direction-cosines of the axis of

length 2r are given by

^(^-0 "^-^ '(^-^
,3,

i 111 n

Comparing these equations with equations (2) and (8) of

§86, we see that if a and /3 are the lengths of the semi-

axes of the section by the plane lx+ my-\-nz = 0, the

semi-axes of the section by the plane lx-\-my+nz=p are

/.a and Z-^, or ^^rj^ 1^^
and that the corresponding axes are parallel. We thus

have another proof for central surfaces of the proposi-

tion that parallel plane sections are similar and similarly

situated conies.

From equations (4) it follows that if A, \ are the areas

of the sections of a conicoid by a given plane and the

parallel plane through the centre, A = aJI——^j, where

p, Pq are the perpendiculars from the centre to the given

plane and the parallel tangent plane. Thus the area of the

section of the ellipsoid %i+ 'L+% = lhy the plane

lx+my+nz=2^
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The student should note that the equation to the cone through all

the lines of length r drawn from C to the conicoid would be obtained

by making the equation

ax^+ by"^+ cz^+ 2 {acuc+ bfy+ cyz) -k-=

homogeneous by means of the equation x^+ f/^ + z^= r^. It would be

of the fourth degree, while for our purpose we require a cone of the

second degree. The cone chosen passes through the lines of length r

which lie in the given plane, and these lines alone need be considered.

Ex. 1, OP is a given semi-diameter of a conicoid and OA( = fj(.),

OB ( = /?), are the principal semi-axes of the section of the diametral
plane of OP. A plane parallel to AOB meets OP in C. Prove that

the principal axes of the section of the conicoid by this plane are

a.'Jl^OC'IOP\ /jVl-OC^/OP-, and deduce equations (4), § 87.

(Take OP, OA, OB, as coordinate axes.)

Ex. 2. Find the coordinates of the centre and the lengths of the
axes of the section of the ellipsoid Zx^+ Zy'^+ Qz'^= \0 by the plane

x+i/-\-z^\.

\5'5 5/' \l5' 5

Ex. 3. If OP, OQ, OR are conjugate semi-diameters of an ellipsoid

prove that the area of the section of the ellipsoid by the plane PQR is

two-thirds the area of the parallel central section.

Ex. 4. Find the area of the section of the ellipsoid —2+ 'jo+ -^,= '^

by the plane x/a+ i//b+ z/c = l.
a b c-

Ans. ^(iV+ c2a2+ a262)i

3V.3

Ex. 5. Find the locus of the centres of sections of the ellipsoid

-2 + r2+-^ = l whose area is constant, ( = 7rF).

Ex. 6. Prove that tangent planes to '\-f^- At + 1 =0 which
X^ y2 ^2

.

""' ^" '"

cut -a + A2
—5^-1=0 in ellipses of constant area nB have their points

(^ O C-
^_.2 2 -2 7.4

of contact on th- surface '—+^+ 1-——'^
.

Ex. 7. Prove that the axes of the section whose centre is P are
the straight lines in which the plane of .section cuts the cone con-
taining the normals from P.

Ex. 8. Find the lengths of the axes of the sections of the surface
Ai/z+ bzx-bxy^8 by the jjlanes {\)x+i/-z= Q, (ii) %r+y-z= 0.

Ans. (i) 2, \/3 (ii) 2, 2.

Ex. 9, Prove that the axes of the section of

/(.r, ;y, z) = a.v^ + hf^+ cz~ + %fy:+ 2gzx+ 2h.ry= 1
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by the plane l.v+ m>/+ nz= are given b,y

i'*{M^... + 2Fmn...)+r'^{f(l,m,7i)-(a + h+ c)(l- + m'^+ n-)}

where A = bc -/-, etc.

Prove also that the axes are the lines in which the plane cuts the cone

(mz - HTj)
^^,+ {nx -lz)^+ {^ - mx) ^_= 0.

Ex. 10. Prove that the axes of the section of the cone

by the plane lx+ mi/ + nz=p are given by

^1 + '2}- + !i! =0
ap^h--+p^ bpo¥^+p^ cp^-r-+p^ '

where ^o^=^+ '-^+ 7-

88. Axes of a given section of a paraboloid. If the

equations to the plane and the paraboloid are

the centre of the section, (a, (3, y), is given by

aa._bl3_—l _ aoL^ -f &/3^— y
I m n p

Whence aa.-+ b^- — 2y= -^ --— ^ = -f^ , say.

Changing the origin to (rx, /3, y) and proceeding as in

§ 87, we find that X, /ul, v, the direction-cosines of a semi-

diameter of length r of the section, satisfy the equation

The semi-diameters are therefore the lines in which the

plane cuts the cone

x" (an'-r'- -po')+ irQmh^- -p)^^)- z^pi = 0.

Hence the lengths of the axes are given by

an^r^-p^^^bn^r--'p^- ]:>^-

or

dbn^'r'^- n-r%^{(a -\- b) n-+ am"+ bl-} + p^^Q-+ m--\-n~)= 0,

and the direction cosines by

\(aii^r^ — p,^')_/uib}} -r- — p,^")_ vp,^

I

~ m —n
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Ex. 1. Find the lengths of the axes of the section of the paraboloid
2?;^+y2= 2 by the plane ^+ 23/+ 2=4. Ans. 5-28, 1-68.

Ex. 2. A plane section through the vertex of the paraboloid of

revolution x'^+^'^= 2az makes an angle 6 with the axis of the surface.

Prove that its principal axes are a cot ^cosec 0, n cot 0.

Ex. 3. Prove that the axes of the section of the paraboloid x7/ = az

by the plane l.v+mf/+m= are given by
ft6,.i 1 4ah-Hhn^n'^ - AaH'^m^P+ vf-+ n^)= 0.

Ex. 4. Find the locus of the centres of sections of the paraboloid

'—,+'{t,= 2z which are of constant area ttP.

A«s. aV{;^4+l){$4-^^) =^.

Ex. 5. Given that the radius of curvature at a point P of a conic

whose centre is C is equal to CD^/a.f3, where oc and (3 are the axes and
CD is the semi-diameter conjugate to CP, tind the radius of curvature

at the origin of the conic ax^ + bi/'^= 2z, lx+my+ nz= 0.

Ans. {P+ ni^f {am^+ hP)-^ (P+ m^+ «2)-*.

Ex. 6. Planes are drawn thi'ough a fixed point (a., f3, y) so that

their sections of the paraboloid ax^+ bi/-= 2z are rectangular hyper-

bolas. Prove that they touch the cone

(x--a.y
^

(y-f3f ^{z-yy^Q_

CIRCULAR SECTIONS.

89. If F = 0, the equation to a conieoid, can be thrown

into the form S+\uv = 0, where S^O is the equation to a

sphere and u = 0, v = represent planes, the common points

of the conieoid and planes lie on the sphere, and therefore

the sections of the conieoid by the planes are circles.

90. The circular sections of an ellipsoid. The equa-

tion, referred to rectangular axes, of the ellipsoid,

a^ b- e-

can be written in the forms
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Hence the planes

cut the ellipsoid in circles of radii a, h, c respectively. If

a'^b'^c, only the second of these equations gives real

planes, and therefore the only real central circular sections

of the ellipsoid pass through the mean axis, and are given

by the equations

a ~c
Since parallel plane sections are similar and similarly

situated conies, the equations

a c a c
'^

give circular sections for all values of X and jul.

91. Any hvo circtdar sections of an ellipsoid which are

not parallel lie on a sphere.

The equation /.'(^+ 1^+ ?:-
1) +

\a c J\a c /

represents a conicoid which passes through the sections,

and if k = Ir, the equation becomes

x~-^y-+ z^— ^-^ x+ ~ ^^ + X^i — 6- = 0,

which represents a sphere.

92. Circular sections of the hyperboloids. By the

method of § 90, we deduce that the real central circular

sections of the hypei'boloids

/yi2 /ii2 ty2. r,^^ ny- /^-^
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are given by

(i) y¥^^±-^J^^+^^=Q, (ii) y'^fFyb''±yw^^=o.

The radius ot* the central circular sections of the hyper-

boloid of one sheet is a. The planes given by

a ~c

do not meet the hyperboloid of two sheets in any real

points. Thej^ are the planes through the centre parallel

to systems of planes which cut the surface in real circles.

Ex. 1. Prove that the section of the hyperboloid '—, -'/s—s=l bv^ r f^i f^i ^i J

the plane - sia-+ ^^+ - -s/i'^ - c'^= X is real if A^ > ci^ + c^.

Ex. 2. Find the real central circular sections of the ellipsoid

a;2+2/+ 6s""= 8. Ans. x^--iz"= 0.

Ex. 3, Prove that the planes 2.r+ 35-5 = 0, 2^-32 + 7 = meet
the hyperboloid - .r^+ 3_y2 + 1 222= 75 in circles which lie on the sphere

3.^2 + 3^+ 322+ 4^+ 362- 110= 0.

Ex. 4. Prove that the radius of the circle in whicli the plane

a c

cuts the ellipsoid *-^+ r^+—,= 1 is h'SJl—5
r,-

Ex. 5. Find the locus of the centres of spheres of constant radius

k which cut the ellipsoid -2+ /2+^~ ^ ^" ^ P^^'^ ^^ circles. (Use § 91.)

.r;2 z^ Jc^

Ans. W = 0, —, TV,-,-:; 7=1-7T,-

Ex. 6. Chords of the ellipse x-la-+^-lb-= l, 2 = 0, are drawn so as

to make equal angles with its axes, and on them as diameters circles

are described whose planes are parallel to OZ. Prove that these

circles generate the ellipsoid 2b'iv" + 2a^i/'^+ {a^+ b''^)z"= 2a^b~.

93. Circular sections of any central conicoid. An
equation of the form

f(x, y, z) = ax" -\- hf+ cz^+ 2///c + 2r/c.r+ -21)xy = 1
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represents a central conieoid. It may be written

f{x, y, ^)-A(^-+ 2/-+ s2)+ a(..^+ |/-+ 5--^) = 0.

Hence if /(,c, y, z)-\{x'-^y^+Z') = Q

represents a pair of planes, these planes cut the conieoid in

circles. For a pair of planes

a— \, h, g

h, b-\, f
9> /> c-X

This equation gives three values of A. It will be proved

later, § 145, that these are alv^ays real, and that only the

mean value gives real planes.

Ex. 1. Find the real central circular sections of the conieoid

3.r2 + 5/+ 3s2+ 2jP3= 4.

The equation may be written

3.^.2 4. 5_y2+ 3^2+ 2xz - X(x^+f + 22)+ X{x"+f+ Z')-A = 0.

If 3x^+ 5i/^+ 3z^+ 2xz-X{x^+^^+ z^)=0 represents a pair of planes,

A3-lU2+ 38X-40= 0, or A= 2, 4, or 5. For these values of A the

equation to the planes becomes

(.r+ 2y-+ 3/= 0, (.v-zy-f= 0, x'^-.vz+ z^= 0.

The real circular sections correspond therefore to A = 4 and ha'-e

equations x-z+y= 0, x-z-y^^.

Ex. 2. Find the equations to the real central circular sections

of the conicoids,

(i) 5?/2 - 8^2+ 18^2 - 142.r - lO.ry + 27 = 0,

(ii) 2j72+5/+ 222 -yz- 4z.v -xy + 4 = 0,

(iii) 6.-<^+ 1 3^2+ 622 - 10^2+ 4zx -I0xy= l.

Atis. (i) {.v-2y-5z)(3.i'-4y + z)= 0,

(ii) {.v+y + z){2x-y+ 2z)= 0,

(iii) 2{.v + zf - 1 Oy{x + z)+ dy-= 0.

Ex. 3. Find the equations to the circular sections of the conieoid

Ans. - + T+ - = A, ax+ hu+ cz==ii.
a b c ^

"^
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Ex. 4. Find the conditions that the equations

/(.r, i/,z)—\^ Ix+m^+ nz

=

should determine a circle.

The equation /(.r, y, z)-k{x^+f+z^)=^0 is to represent two planes,
one of which is the given plane. Therefore

f{x, y, z) - k{x- +y'+ z') = {U+ my+ «j)|(a - A) |+ (6 - A)| + (c - A)| |.

Whence, comparing coefficients of yz^ zx, xy, we obtain

, _ i?i2+ cm- — 2finu _ d-+ a?i- - ^goil_ am^+ bP - 2hlm

("We assume here that I, m, n are all different from zero. If 1= 0,

the conditions become (A — a), gr = /i = 0, (c-a)m'^-2fmn + {b-a)n'^ = 0.)

94. Circular sections of the paraboloids. The equation

ax^+ hy" = 2z may be written in the forms,

afx^+ y^^+ z^—-^-y\a-h)-az'- = (),

ax"+ 62/2 - (0 vT.2+ 0.7/2+ 0.^2+ 2s) = 0.

Hence if a^^^^O, x\a — b)= bz^ represents real planes

which meet the paraboloid in circles, and the systems of

circular sections are given by

xja— b+ z\/b = \, xJa— b — Zsfb = ijL.

If, however, a or b is negative, the only real planes are

those given by ax^+ by- = 0. The equation

0-a;2+ 0-2/2+ 0.;2H 20 =
is the limiting form of

hx^ + hf^lc{z+^J^
as k, tends to zero, and therefore the sphere containing

the circular sections is in this case of infinite radius, and the

circular sections are circles of infinite radius, i.e. straight

lines. They are the straight lines in which the plane =
cuts the surface, (§ 79).

Ex. 1, Find the circular se^-'-'ons of the paraboloid .7;-+ 10j2= 2y.

Ans. y±3z= \.

Ex. 2. Find the radius of the oircle in which the plane 7.i- + 2z= r-)

cuts the paraboloid 53.i'- + 4y"= 8z. A m. r-= ^^Y.
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95. Umbilics. The centres of a series of parallel plane

sections of a conicoid lie upon a diameter of the conicoid

and the tangent plane at an extremity of the diameter is

parallel to the plane sections. If, therefore, P and P' (fig. 40)

are the extremities of the diameter which passes through

the centres of a system of circular sections of an ellipsoid,

the tangent planes at P and P' are the limiting positions

of the cutting planes, and P and P' may be regarded as

circular sections of zero radius. A circular section of zero

Pig. 40.

radius is called an umbilic. It is evident from the form

of the hyperboloid of one sheet that the smallest closed

section is the principal elliptic section and that tlio surface

has therefore no real umbilics.

To find the umbilics of the ellipsoid -2+^+ -2 = l-

If P, (^, }], ^) is an umbilic, the diametral plane of OP
is a central circular section. Therefore the equations

represent the same plane. Hence

since ^+M=i,
and therefore

+ ,,,/,72irp +ejb^'^'
>7 = 0, ^=—

These give the coordinates of the four umbilics.
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The unibilics of the hyperboloid of two sheets

a^ h" cr

are real and given by

i=
Ja^+ c^

'

'Jo?+ c^

Bx. 1. Prove that the umbilics of the ellipsoid lie on the sphere

A'2 +y'^+ z^= d^ — Ir' -\- C^.

Ex. 2. Prove that the perpendicular distance from the centre to

the tangent plane at an unibilic of the ellipsoid is acjb.

Ex. 3. Prove that the central circular sections of the conicoid

(g - 6) A-^+ ay"^ + {a+ b) z"-= 1 are at right angles and that the umbilics

are given by x= ± -\/ ^ + ^
, «= o, 2- ± J-JLzJL-.

9^2 0/2 ^2

Ex. 4. Prove that the umbilics of the conicoid -^--t+ — -\
z;
= l

a+o a a—o
are the extremities of the equal conjugate diameters of the ellipse

a + b a -

b

a- b'^
Ex. 5. Prove that the umbilics of the paraboloid — + -

62^

a>b, are (o, ±b\.'d^-¥, —^ /

Ex. 6. Deduce the coordinates of the umbilics of the elli

from the result of Ex. 4, § 92.

* Examples V.

1. Prove that if Aj, fx^, Vj ; Ag, /X2, v^ are the direction-cosines of the

axes of any plane section of the ellipsoid "^+|2+^^= 1,

2. If Ai, ^2, A3; 81, 82? S3 3i'6 the areas of the sections of the

ellipsoids ^+ 1-2+^2= ^^ -"2 +^+^ = 1' ^^y ^^^'^^ conjugate diametral

planes of the former,

A,^ A2^ A3^ a252,2/^2 /32 2X

8l2
"^

832 + S32 -o,2/32.y2\,«2
+ ^2 + ,,2/

3. If Aj, A2, A3 are the areas of the sections of the ellipsoid

a^ b^ c^
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by the diametral planes of three mutually perpendicular semi-

diameters of lengths r,, r.,, r.^,

4. Through a given point (r^, /?, y) planes are drawn parallel to

tliree conjugate diametral planes of the ellipsoid "-2+'/2+'2^^- Shew

that the sum of the ratios of the areas of the sections by these planes

a? B'^ -f
to the areas of the parallel diametral planes is 3—2~7^~72"

5. Prove that the areas of the sections of greatest and least area

of the ellipsoid ^+l2+ ^i=^ which pass through the fixed line

•f= ^ = f are^i^, ^"^^, where ^i, r^ are the axes of the section by
I m 11 r, ?'2

,1 , Ix my nz ^
the plane —+ -^-1— = 0.

a c

6. Prove that the systems of circular sections of the cone

ax^+ bi/'^ + cz^= 0, a>b>c,

are given by x'\la-b±z\Jb-c===k, and that these also give circular

sections of the cone (a+ /i.).6'2+ (6+ ju,)?/2+ (c+ |u,)22= 0.

7. Any tangent plane to a cone cuts the cyclic planes in lines

equally inclined to the generator of contact.

8. Any pair of tangent planes to the cone ax^-\-by^+cz^^Q cuts the

cyclic planes x\Ja- b±z\'b-c= in lines which lie upon a right

circular tone whose axis is at right angles to the ))lane of contact.

9. The plane -+/ + - = 1 cuts a series of central conicoids whose
' a b c

principal planes are the coordinate planes in rectangular hyperbolas.

Shew that the pole of the plane with respect to the conicoids lies on a

cone whose section by the given plane is a circle.

10. OP, OQ, OR are conjugate diameters of an ellipsoid, axes

a, b, c, and S is the foot of the perpendicular from O to the plane PQR.
Shew that the cone whose vertex is S and ba.se is the section of the

ellipsoid by the diametral plane parallel to the plane PQR has

constant volume irabcj^slz.

11. If two cones have the same systems of circular sections, their

common tangent planes touch them along perpendicular generators.

?-2 tfi z"^

12. The normals to the ellipsoid '-2+"r2+ ~i
= ^ '*^ •*'' points of a

central circular section are parallel to a plane that makes an angle

'

with the section.
b\Ufi-l)^-\-c'
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13. If rj, 7-2 are the axes of a central section of an ellipsoid, and

6i, d-i the angles between the section and the circular sections,

sin^,.sin^2-^.(^.~;^.)' _

where a and c are the greatest and least axes of the ellipsoid.

14. Through a fixed point which is the pole of a circular section of

the hyperboloid ^+p- i = l are drawn planes cutting the surface

in rectangular hyperbolas. Shew that the centres of these hyperbolas

lie on a fixed circle whose plane is parallel to one system of circular

sections.

15. The locus of the centres of sections of the cone ax^+ bi/^+ cz^=0,

such that the sum of the squares of their axes is constant, ( = F), is

the conicoid

16. The area of a central section of the ellipsoid
-2+f2

+^= ^ ^^

constant. Shew that the axes of the section lie on the cone

a* \ c2 ?/ 62

where p is the distance from the centre of a tangent plane parallel to

any of the planes of section.

17. Prove that the tangents at the vertices to the parabolic sections

cf the conicoid ax'^+ bi/'''+ cz^= l are parallel to generators of the cone

y'^^(c!^z_a^-^lY^^

.r2 ifi z^r
18. Prove that the normals to central sections of the ellipsoid

,.2 ,,2 -2

^+ -f,+ - = l,
a^ Ir c-

which are of given eccentricity e, lie on the cone

a26V(e2 - 2)2(.r2 +y2+ 22)(^2^2+ 52_^2+ ^2^2)

= (1 - e2){a2(i2+ c2).r2+ 52(c2+ a^y/+ c2(a2 + ly^yf

Find the locus of the centres of sections of eccentricity e.

19. Prove that the normal at any point P of an ellipsoid is an axis
/ji*Z /ji/2 ^2

of some plane section of the ellipsoid. If the ellipsoid is -2'^'p+ ~2~^

and P is the point (.r', ?/, z'\ shew that the length of the axis is

where p is the perpendicular from the centre to the tangent plane

at P.
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20. The normal section of an enveloping cylinder of the ellipsoid

x'^la'^+i/jl)^+z-jc^=] has a given area ttR Prove that the plane of

contact of tlie cylinder and ellipsoid touches the cone

x^ y- z^

21. Prove that the locus of the foci of parabolic sections of the

paraboloid «,r-+ %"-'= 25 is

ah{:lz - a.v' - hf){ax'^+ hi/'^)= a^.i- + 6-/.

22. Prove that the equation to a conicoid referred to the tangent

plane and normal at an uinbilic as .r_y-plane and i-axis is

a (.i'2 +3/2)+ cz^+ 9,fyz + 2gzx+ ^ivz= 0.

If a variable sphere be described to touch a given conicoid at an

umbilic, it meets the conicoid in a circle whose plane moves parallel

to itself as the radius of the sphere varies.

23. If through the centre of the ellipsoid '\+p+^= l =» pei'-

pendicular is drawn to any central section and lengths equal to the

axes of the section are marked off along the perpendiculai', the locus

of their extremities is given by

wherer^= x^+ 7/^+ z\ (The locus is the Wave Swface.)

24. Prove that the asymptotes of sections of the conicoid

a.v^+ bf- + cz- = \

which pass through the line x= k, 7/= lie on the surface

{ax(.v- k)+ bfr-+cz'^{a(x - hy+ hr} = 0.

25. If the section of the cone whose vertex is P, (a, /3, y) and base

2= 0, ax^+ bi/^ = \, by the plane x= is a circle, then P lies on the

conic ,?/
= 0, ax'^-bz^= 'l, and the section of the cone by the plane

(a - b) yx - 2aa.z—
is also a circle.
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CHAPTER IX.

GENERATING LINES.

96. Ruled surfaces. In cones and cylinders we have

examples of surfaces which are generated by a moving

straight line. Such surfaces are called ruled surfaces. We

shall now prove that the hyperboloid of one sheet and the

hyperbolic paraboloid are ruled surfaces.

The equation |^+p-^ = l. which represents a hyper-

boloid of one sheet, may be written,

Whence it appears that the hyperboloid is the locus of the

straight lines whose equations are

^r^'+l) H4(-f)^ <^>

where X and ix are variable parameters. It is obviously

impossible to assign values to X and
ij.
so that the equations

(1) become identical with the equations (2). Hence the

equations give two distinct systems of lines, no member of

one coinciding with any member of the other. As X

assumes in turn all real values the line given by the

equations (1) moves so as to completely generate the hyper-

boloid. Similarly, the line given by the equations (2)

moves, as jn varies, so as to generate the hyperboloid. The

hyperboloid of one sheet is therefore a ruled surface and
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can be generated in two ways by the motion of a straight

line. (See tig. 41.)

In like manner the equation

which represents a liyperbolic paraboloid, may be written

Fig. 41.

Whence it is evident that the paraboloid is the locus of

either of the variable lines given by

a b fx (I

The hyperbolic paraboloid is therefore a ruled surface
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and can be generated in two ways by the motion of a

straight line. (See fig. 42.) The generating lines are

parallel to one of the fixed planes -+ r = 0.

Ex. 1. CP, CQ are any conjugate diameters of the eUipse

x^la^+fl¥= \, z= c.

C'P', C'Q' are the conjugate diameters of the ellipse x"-\a^Ar}hV^= \
i= -c, drawn in the same directions as CP and CQ. Prove that the

hyperboloid ^^2 +t^
" ^ =1 ^^ generated by either PQ' or P'Q.

Ex. 2. A point, " jft," on the parabola^ = 0, cx"^= 2a\ is (2a?H , 0, ^c',n'\

and a point, "«," on the parabola x=Q, af= -^hh, is (0, 26^, -2ch^).

Find the locus of the lines joining the points for which, (i) m=?«,

(ii) m — — n.

Ans. -^

97. Section of a ruled surface by the tangent plane at

a point. Since a hyperboloid of one sheet or a liyperbolic

paraboloid is generated completely by each of two systems

of straight lines, there pass through any point P, (fig. 43),

of the surface, two generating lines, one from each system.

Each of these meets the surface at P in, at least, two

coincident points, and therefore the lines lie in the tangent
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plane at P. The tangent plane at P is therefore the plane

throut^li the generators which pass throu<;li P. But any

plane section of the surface is a conic, and therefore the

section of the surface by the tangent plane at P is the

conic composed of the two generating lines through P.

It follows that if a straight line AB lies wholly on the

conicoid it must belong to one of the systems of generating

lines. For AB meets any generating line PQ in some point

P, and AB and PQ both lie in the tangent plane at P. But

the section of the surface by the tangent plane at P con-

sists of the two generators through P, and therefore AB

must be one of the generators.

Again any plane through a generating line is the tangent

plane *at some point of the generating line. For the locus

of points common to the surface and plane is a conic, and

the generating line is obviously part of the locus. The

locus must therefore consist of two straight lines, or the

plane must pass through the given generating line and a

second generating line which meets it. It is therefore the

tangent plane at the point of intersection.

The intersection of a cone or cylinder with a tangent

plane consists of two coincident generators. The ruled

conicoids can therefore be divided into two classes according
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as tlie generators in which any tangent plane meets them

are distinct or coincident. If the generators are distinct

the tangent planes at different points of a given generator

are different, (see fig. 43). If the generators are coincident,

the same plane touches the surface at all points of a given

generator.

98. //' three points of a straight line lie on a conicoid

the straight line lies wholly on the conicoid.

The coordinates of any point on the hne through (a, /3, y),

whose direction-ratios are I, m, n, are a+ Zr, (B+mr, y-\-nr.

The condition that this point should lie on the conicoid

F{x, y, 0) = O may be written, since F{x, y, z) is of the

second degree, in the form

Ar-+ 2Br+ C = 0.

If three points of the line lie on the conicoid, this

equation is satisfied by three values of r, and therefore

A = B = C= 0. The equation is therefore satisfied by all

values of r, and every point of the line lies on the

conicoid.

99. To find the conditions that a given straight line

shoidd he a generator of a given conicoid.

Let the equations to the conicoid and line be

ax}-\-hy"-\-cz^ — l,

oi— (*-_ y — ^ _z— y
I ni n

The point on the line, {oL+ lr, ^-\-mr, y+ '/tr), lies on

the conicoid if

r^(al-+ hm^+ en-) -f- 2r(acx.l+ h(im + cyn

)

+ «oo-+ h^-+ c'y- -1=0.

If this equation is an identity, the line lies wholly on

the conicoid, and is a generator of the conicoid. The

required conditions are tlierefore

aoc2+ 6/3- +(y =1, (1)

acd+ h^m+ cyii^O, (2)

al^ +hm^ +c»2 =0 (3)
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Equation (1) is the condition that (a, 0, y) .sliould lie

on the surface ; equation (2) shews that a generatin^r line

must lie in the tangent plane at any point (a, 0, y) on

it ; and from (3) it follows that the parallels througli the

centre to the generating lines generate the asymptotic cone

The tliree equations (1), (2), (3) shew^ that through any

point (a, /3, y) of a central conicoid two straight lines can

be drawn to lie wholly on the conicoid, the direction-ratios

of these lines being given by equations (2) and (3). By

Lagrange's identity, we have

(aP+ 6m2)(aa2

+

bjS")- {acd+ h^mf = ab{a.m- 01f ;

whence, by (1), (2), (3),

-cn'^ = ah(a.m-/3lf (4)

The values of ^ : m : n are therefore real only if ah and c

have opposite signs, which can only be the case if two of

the quantities a, h, c are positive and one is negative. The

only ruled central conicoid is therefore the hyperboloid of

one sheet. From equations (2) and (4) we deduce the

direction-ratios of the generators through (a, 0,y),

I m n

Similarly, the conditions that the line

x— OL_ y — _^ y
I

~~ m ~ n

should be a generator of the paraboloid ax'~ -^hif = 1z are,

«a2-f?;/3- = 2y, (1)

Md-\-h0m-n^K) (2)

oP-^Ur^^ (3)

Equation (3) is satisfied by real values of I :
vi only if

a and h have opposite signs. The only ruled paraboloid
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is therefore the liyperbolic paraboloid. The direction-ratios

of the generating lines through (oc, /3, y) are given by

I _ 7)1 n

The following examples should be solved in two ways, (i) by
factoi'ising the equation to the surface as in § 96, (ii) by means of the

conditions in § 99.

Ex. 1. Find the equations to the generating lines of the hyperboloid

^+^-:^=l which pass through the points (2, 3, -4), (2, -1, *).

Ans. ____^__^, _________

r- 2 _y+ l _g-f . x-2_ t/-^l ^z-^0~3~"4' 3~6~10*
Ex. 2. Find the equations to the generating lines of the hyperboloid

yz-\-'izx+Zx(/ + Q = Q which pass through the point (-1, 0, 3).

|>.-+ 2^.r+3^^+ 6^(3/+ 2)(0+ 3)+ (2.-+ .3^)(.i- 1).]

,
, „ x+\ y 2-3

1 — 1 o

Ex. 3. Find the equations to the generators of the hyperboloid

^+"y^-^= l which pass through the point (a cos a, 6 sin a., 0).

, x — a cos OL II -h sin a. z
Ans. :

='^—, =
a sin a. -b cos a ±c

Ex. 4. Find the equations to the generating lines of the paraboloid

{x-\-i/+z){±c-\-y — z)= hz which pass through the point (1, 1, 1).

. x-\ y-\ 2-1 x—\ y-\ 2-1

THE SYSTEMS OF GENERATING LINES.

100. We shall call the systems of generating lines of the

hyperboloid of one sheet which are given by the equations

?+? = x(l+f> ?-?=l(l-f); (1)

?_?=^(i+a 5+=='(i-f) (2)
a c ' \ bJ a c jji\ bJ

the X-system and //-system, respectively.
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101. N^o ttvo generators of the same system intersect.

For the equations (1) and

a^o '^V^bJ' a c X\ h)

lead to - + - = 0, '^-^ = 0, l + 5- = 0, 1-^ = 0,
a c a a b b

which are obviously inconsistent.

Otherwise, if P and Q are any points on any generator of the

)a-system and tlie generators of the A-systeui through P and Q
intersect at R, then the plane PQR meets the hyperboloid in the sides

of a triangle. This is impossible, since no plane section of a conicoid

is of higher degree than the second.

102. Any generator of the X-syste7n intersects any gene-

rator of the jUL-system.

From the equations (1) and (2),

«^+! ^_£ iV i+fa c _a c_ b b

\ JUL
" \/U 1

Whence, adding and subtracting numerators and de-

nominators,

X _\-\- fl ?/_!— A./" Z_\— JUL

a 1+X//' b l+A/z' c l + X/i'

These determine the point of intersection.

The equations

^^^(l+!)+^{^^xO-f)}=« («>

^^''0+!)+'•|^^K^-!)}=" «
both reduce to

l(\
+ fi)+ l{l-\fJi)-l{\-/ui) = l+\fi, (5)

ii" k = l/k' = \/jUL. But equation (5) represents the tangent

plane at the point of intersection of the generators. Hence

the plane through two intersecting generators is the tangent

plane at their common point. (Cf. § 97.)

If, in equation (3), k is given, the equation represents
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a given plane through the generator. But the equation

reduces to equation (5) if /x = A//i;. Hence any plane

through a generating line is a tangent plane.

Ex. Discuss the intersection of the A-generator through P with
the /Lt-generator through P' when P and P' are the extremities of a
diameter of the principal elliptic section.

103. Perpendicular generators. To find the locus of

the points of intersection of perpendicular generators.

The direction-cosines of the X- and //-generators are

given by, (§42),

Ija _^m/b_ n/c l/a _mlb _ n/c

The condition that the generators should be at right

angles is

a'-^(X2_ I)(;x2 _ l)+ 46-^X// -c2(A'2+ l)(/>t-+ 1) = 0,

which may be written

a\\+ juy+h%l-\fJif+ c\\-/jif = {a'^+ ¥-c^)(l+\fjif,

and shews that their point of intersection

,{\ + /ji) hil-\^) c(X-//)\(ctC

I 1 + X/X ' 1 + X// ' l + XjUL J

lies on the director sphere

x^-+ y^-\-z^- = a^+ h^~-c^

The locus is therefore the curve of intersection of the

hyperboloid and the director sphere.

Or if PQ, PR are perpendicular generators and PN is normal at P,

by § 102 the planes PQR, PNQ, PNR are mutually perpendicular
tangent planes, and therefore P lies on the director sphere.

104. The projections of the generators of a hyperboloid

on a principcd plane are tangents to the section of the

hyperboloid by the principal plane.

The projections of the X- and //-generators on the plane

XOY are given by
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whicli may be written

Whence tlie envelope of the projections is the ellipse

,=0, ^:=i-f-:.
a- 0^

Similarly, the projections on the planes YOZ, ZOX touch

the corresponding principal sections.

The above equations to the projections are identical if

X = ^. Hence equal values of the parameters give two

generators wdiich project into the same tangent to the

ellipse = 0, x'^la"-\-y^/b^=l. The point of intersection, P,

of the generators given hy \ = iix = t k, hy § 102,

i.e. is (a cos a, h sin a, 0), where t = tan
(^^
-

^ j- P is there-

fore the point on the principal elliptic section whose

eccentric angle is a, and the generators project into the

tangent ^ .,

z = i), -cosa+|sina=l, (%. 44).

From § 103, the direction- cosines of the A-generator are

proportional to
X'- —

1

2X
h

^"x-^+i X'+l

or, since X = tanf^-^j, a sin a, -6cos«.; -c.

Therefore the equations to the X-generator through P are

a;—acosa_ y — ^sina _ z

rt sin a.
~ —h cos a, — c

Similarly, the equations to the />t-generator are

x— a cos a_ y — 6sinoc_ z

a sin a —h cos (x c

Ex. Prove that the generators given hy X = t, ix= - Ijt are parallel,

and that they meet the principal elliptic section in the extremities of

a diameter.
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105. Let P and Q, (fig. 44), be the points on the principal

elliptic section whose eccentric angles are a. and /3. Then

the A-generator through

through Q at the point, R,

P intersects the /z-generator

a
X + M
l+A/x

x_rx^

.4 2;

Whence the coordinates of R are

where X = tan

'i+Am'

and ;

'l + A/x/'

tan(^j-2^

Now the coordinates of any point on the hyperboloid

can be expressed in the form

a cos Q sec (p, h sin sec 0, c tan ^ ;

therefore if R is the point " 0, 0,"

0:
;+a

and = ^--^-

,

or 0-\.(p = /3^ 0-(p = oL.

Similarly, it may be shewn that the //-generator tlirough

P intersects the A-generator through Q at the point "0, — <p."

Suppose now that P remains fixed while Q varies, so that

a is constant and (3 variable. R then moves along a fixed
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generator of the A-system, and in any position — </) = (/..

Hence for points on a generator of the A-systeni — is

constant. Similarly, by supposing Q to remain fixed and

P to vary, we can prove that for points on a given generator

of the //-system + is constant.

Ex. 1. If R is " $, (ji," (fig. 44), shew that the equations to PQ are

0=0, - cos ^-f-"^ sin ^ = cose/), and deduce that 6-4>= ol, + (fi = fS.

Ex. 2. The equations to the generating lines through " 0, </>" are

x — a cos sec </> __y - 6 sin ^ sec
(f>
_z-c, tan

asin(6'±0) ~ - b co9.{d ± 4>)
~ +f

Ex. 3. If {a cos 9 sec c/), h sin 6 sec 0, c tan 0) is a point on the
generating line

i / \

-+f= A 1+1), ^-^=^ 1-f),a c \ bJ a c X\ bj

prove that tan £llx = _Z_ and hence shew that for points of a given^
2 1+A' ^ "^

generator of the A-system 6 — cfiis constant.

Ex. 4. Prove that the equations

£i'_cos{d-<f)) ;y_cos^sin0 0_sin^cos0
a~ cos {6+'(f>y 6~cosY^+0)' c~cos(B+~(f))

determine a hyperboloid of one sheet, that is constant for points on
a given generator of one system, and that (ft is constant for points

on a given generator of the other system.

(The equation to the surface is '—^--r~= \.j

Ex. 5. Find the locus of R if P and Q are the extremities of

conjugate diameters of the principal elliptic section.

We have 0-(j) = a., + <)i = rx.±-^, whence 0= i-, "nd R lies in one
of the planes z= ±r.

Ex. 6. Prove also that R P- + RQ- = a- + 6-+ 2cK

Ex. 7. If A and A' are the extremities of the major axis of tlie

principal elliptic section, and any generator meets two generators of

the same svstem throui^li A and A' respectively in P and P', prove
that AP. A'P' = ?;- + r2.

Ex. 8. Prove also that the planes APP', A'PP' cut either of the

real central circular sections in perpendicular lines.

Ex. 9. If four generators of the liyperboloid form a skew quadri-
lateral whose vertices are " 6r, 4'r" r=l, 2, 3, 4, prove that
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Ex. 10. Interpret the equation

where P, {x\ y\ z') is a point on the hypeiboloid.

[The equation represents the pair of planes through the origin and
the generators that intersect at {x\ y', 2').]

Ex. 11. Prove that the generators through any point P on a

hyperboloid are parallel to the asymptotes of the section of the hyper-

boloid by any plane which is parallel to the tangent plane at P.

Ex. 12. Prove that the angle between the generators through P
i^ given by ^(,.2_,,2_52+ ,2)

where p is the perpendicular from the centre to the tangent plane

at P and r is the distance of P from the centre.

Ex. 13. All parallelepipeds which have six of their edges along

generators of a given hyperboloid have the same volume.

If PQRS is one face of the parallelepiped and P, P'
; Q, Q'

; R, R'

;

S, S' are opposite corners, we may have the edges PS, RP', S'R' along

generators of one system and the edges SR, P'S', R'P along generators

of the other system. The tangent planes at S and S' are therefore

PSR, P'S'R', and are parallel, and therefore SS' is a diameter.

Similarly, PP' and RR' are diameters. Let P, S, R be (.rj, y^, z{),

{x^, y^, z^), (x^, ys, 23). Then the volume of the parallelepiped is

twelve times the volume of the tetrahedron OPSR, (O is the centre).

Denoting it by V, we have

V = 2 -2abc\/-l 6' V-

a b' sj-c^

But

.2abc'J -\

2^1^3 ^X.,X^

^OC^X^

/>-. 2 7^ 2 0/ 2 /^ 2 -)-» 2 ^1 2^—^ , ,V1 lL= l
V-_2__2 V-^3 _| .

^2 - ^2 ^2 q1 •> ^ or ' ^ a- '

ana, since R' and S are on the tangent plane at P, and S on the tangent

plane at R,

Therefore V - 2a6cV^f( - Af=Aabc.
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Ex. 14. Find the Inous of the corners Q and Q' wliicli arc not oii

the given hvpcrlidloid.

Since QS and PR bi.sect one another, Q is the point

('
'i
-'• + •'':!

. y 1
- y2+ .'/s 5 ^1 - ~2 + h\

and hence lies on the liyperboloid

a- CI-' t-

106. The systems of generators of the hyperbolic

paraboloid. We shall now state the results for the

hyperbolic paraboloid -^— j^ = 2z correspond! no- to those

which we have proved for the hyperboloid. Their proof

is left as an exercise for the student.

The point of intersection of the generators

5-f = 2A, 2+ f
= ,f

; (1)
a a \

by

5 + 1 = 2;,. ?-f =
5

(2)
a h ^' a b fi

^ = /x + X,
l
= t^-\ z^2\fx.

The direction-cosines of the generators are given by

I _ m _ a
.

/ _ m _ n

and lience the locus of the points of intersection of perpen-

dicular generators is the curve of intersection of the surface

and the plane 2z+ c(r-b^ = 0.

The plane . ^

?_^_2X + 7ii? + f-.^|
=

a {a b A}

passes through the generator (1) and is tangent plane at

the point of intersection of that generator and the generator

of the //-system given by // = \/k.

The projections of the generators on the planes YOZ, ZOX

envelope the principal sections whose equations are

^ = 0, 2r --^ - 2^^--
: // = 0. »" = 2«^3;.

B.G. L
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Any point on the second parabola is {2am, 0, 2m2), and if

•\ = jUL = m, the generators of the X- and /^[-systems corre-

sponding to these vakies project into the tangent to the

parabola at '' in."

Any point on the surface is given by

X = ar cos 0, y = br sin 6, 2z = r^ cos 20,

and the equations to the generators through " r, 6 " are

n I.
' n ^-o" cos 20

x— ar cos 6_y — or smd_ '^

+ 6 7^(cos0 + sin0)

Ex. 1. Shew that the angle between the generating lines through

(x, 1/, z) is given by ^

Ex. 2. Prove that the equations

4A'= a(] +cos2^), ^= & cosh (^ cos ^, 2= csinh c^cos ^

determine a hyperbolic paraboloid, and that the angle between the

generators through "^, <^" is given by

, {(&'+ c2)2+ a« cos" 6+ 2a2(62+ c2)cos2^ cosh 2(/)
}

-

sec Vr=-^ 7-r
;

^;r ^ •

6--c-+ rt-cos-^

Ex. 3. Prove that the equations

2A' = «e-*, y/= 6e*cosh^, £ = ee*sinh^

determine a hypei'bolic paraboloid, and that d-+<^ is constant for

points of a given generator of one system, and $-<j> is constant for a

given generator of the other.

Ex. 4. Planes are drawn through the origin, O, and the generators

through any point P of the paraboloid given by x^ — y^— az. Prove

that the angle between them is tan"^—, where /• is the length of OP.

Ex. 5. Find the locus of the perpendiculars from the vertex of

the paiuboloid
'-y-fy"^^

'^^ ^^ generators of one system.

A ns. .r^+ ?/2+ 2z^ ±—-,— .tv/= 0.

Ex. 6. The points of intersection of generators of xi/— az which are

inclined at a constant angle (x. lie on the curve of intersection of the

paraboloid and the hyperboloid .r-'+//--/- tan'-^a.+ ((-= 0.
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107. Conicoids through three given lines. The o-eneral

e(|uation to a coiiicoid,

ux^+ bf-+ cz-+ 2fijz+ -luzx+ 2Ilv7J+ 2ux+ 2 r^ + 2ivz -\-d = 0,

contains nine constants, viz., the ratios of any nine of the

ten coefficients a, b, c, ... to the tenth. Hence, since these

are determined by nine equations involving them, a coni-

coid can be found to pass througli nine given points. But

we have proved that if three points of a straight line lie

on a given conicoid, the line is a generator of the conicoid.

Therefore a conicoid can be found to pass through any

three given non-intersecting lines.

108. The general equation to a conicoid through the two

given lines '2t = = v, u —0 = v, is

\uu'+ iiuv' 4- wii + pvv' = 0,

since this equation is satisfied when u = and v = 0, or

when u' = and v' — O, and contains three disposable

constants, viz. the ratios of X, lu, v to p.

109. To find the equation to the coiiicoid through three

given non-intersecting lines.

z

If the three lines are not parallel to the same plane,

planes drawn through each line parallel to the other two

form a parallelepiped, (fig. 45). If the centre of the
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parallelepiped is taken as origin, and the axes are parallel

to the edges, the equations to the given lines are of the

form,

(1) y = h, z=—c; (2) z = c,x= —a; (S) x = a, y= —b,

where 2a, 2b, 2c are the edges; The general equation to a

conicoid through the lines (1) and (2) is

{y-b){z-c)+My-b)(x+ a)

+ ju(z+ c){z-c)+ i'(z+ c)(x+ a) = 0.

Where x = a, y= —b meets the surface we have

jULz'^+ 2z(av-b)-fJLC^+ 2c(av+ b)-4^ab\r=0,

and if x = a, y = —b is a generator, this equation must be

satisfied for all values of z. Therefore

* = 0, 1' = -, X =
b c{av-\-b)_c

a 2ab a

and the equation to the surface is

ayz+ bzx+ cxy + abc = 0.

iz

The origin evidently bisects all chords of the surface

which pass through it, and therefore the surface is a

central surface, and is therefore a hyperboloid of one sheet.

(Cf. §47, Ex. 1.)

If the tliree lines are parallel to the same plane, let any

line which meets them be taken as 2^-axis. If the lines are

AjBp A^B.^, A3B3, (tig. 40), and the 0-axis meets them in
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Cp Co, C.5, take A^B^ as aj-axis and the parallel to A^Bg

through Cj as y-axis. Then the c([uations may be written

(1) y = 0, z = 0; (2) x = 0, z = (jl; (3) lx+ my:==0, z = ji.

The equation to a conicoid through the lines (2) and (.']) is

\x{lx-\-my)-\-iJix{z— ^)

+ v{z-cL){lx+ my)+ p{z-cj.){z-(i) = Q.

If 2/ = 0, z = is a generator, the equation

VKx-- X (jufi+ d(jL)+ /5a/5 =
must be satisfied for all values of x, and therefore

X = p = 0, ///3+ 2'/a = ();

and hence the equation to the surface is

z{lx{a.- ^)— I3m.y} -\-a.j3mij = 0.

Since the terms of second degree are the piwluct of linear

factors, the equation represents a hy})erbolic paraboloid.

110. The straight lines which meet four given lines

If A, B, C are three given non-intersecting lines, an infinite

number of straight lines can be drawn to meet A, B, and C.

For a conicoid can be drawn through A, B, C, and A, B, C
are generators of one system, say the X-system, and hence

all the generators of the //-system will intersect A, B, and C.

A fourth line, D, wdiich does not meet A, B, and C, meets

the conicoid in general in two points P and Q, and the

generators of the //-system through P and Q are the only

lines which intersect the four given lines A, B, C, D. If,

however, D is a generator of the conicoid through A, B,

and C, it belongs to the X-sj^stem, and therefore all the

generators of the //-system meet all the four lines.

111. // three straight lines can be drawn to meet four
given non-intersecting lines A, B, C, D, tlien A, B, C, D are

generators of a conicoid.

If the three lines are P, Q, R, each meets the conicoid

through A, B, C in three points, and is therefore a generator.

Hence D meets the conicoid in three points, viz, the points

of intersection of D and P, Q, R ; and therefore D is a

o-enerator.
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Ex. 1. A, A' ; B, B' ; C, C are points on X'OX, Y'OY, Z'OZ.

Prove that BC','cA', AB' are generators of one system, and that

B'C, C'A, A'B are generators of the other system, of a hyperboloid.

Ex. 2. A, A' ; B, B' ; C, C are pairs of opposite vertices of a skew

hexagon' drawn on a hyperboloid. Prove that AA', BB', CC are

concurrent.

Ex. 3. The altitudes of a tetrahedron are generators of a hyper-

boloid of one sheet.

Let A, B, C, D be the vertices. Then the planes through DA,

perpendicular to the plane DBC, through DB, perpendicular to tha

plane DCA, and through DC, perpendicular to the plane DAB, pass

through one line, (§ 4.5, Ex. 6, or § 44, Ex. 22). That line is therefore

coplanar with the altitudes from A, B, C, and it meets the altitude

from D in D, and therefore it meets all the four altitudes. The corre-

sponding lines through A, B, C also meet all the four altitudes,

which are therefore generators of a hyperboloid.

Ex. 4. Prove that the perpendiculars to the faces of the tetrahedron

through their orthocentres are generators of the opposite system.

Ex. 5. Prove that the lines joining A, B, C, D to the centres of

the circles inscribed in the triangles BCD, CDA, DAB, ABC are

generators of a hyperboloid.

112. The equation to a hyperboloid when two inter-

secting generators are coordinate axes. If two inter-

secting generators are taken as ic-axis and i/-axis, the

equation to the surface must be satisfied by all values of x

when 2/= 2;= 0, and by all values of y when z=x = ^.

Suppose that it is

aa;- -f hij-+ cz^+ "Ijijz+ Igzx -f ^]iX'y+ 2ua;+ "ivy -f Iwz = 0.

Then we must have

a = u = 0, and 6 = t) = 0,

and therefore the equation takes the form

cz^ -f Ifyz+ Igzx -f Ihxy+ Iwz = 0.

Suppose now that the line joining the point of intersection

of the generators to the centre is taken as 0-axis. Then,

since the generators through opposite ends of a diameter

are parallel, the lines y=-'^, z = 1y\ a; = 0, = 2y are

generators, the centre being (0, 0, y). Whence

f=9 = ^, y=-w/c,

and the e(juation reduces to

cz"+ 2hxy+ 2wz = 0.



i:;.^ 112, 113] PROPERTIES OF A GENERATOR 167

Ex. 1. Prove that (j/ + m:)(:+)i.r) +h = represents a paraboloid
which passes through OX and OY.

Ex. 2. The generators through a variable point P of a h\-|)f'rlMil()id

meet the generators through a fixed point O in Q and R. If OQ : OR
is constant, find tlie locus of P.

Take OQ and OR as .v- and ,v/-axes, and the line joining O to the
centre as 2-axis. The eqnation to the hyperboloid is

It may be written z(rz+ 2io)+ 2Li-i/ = 0,

and hence the systems of generating lines are given by

z= 2/iXx, X(cz+ 2iv)+ 7/ = 0;

z= 2kfjif/, fi(cz+ 2w)+ .v= 0.

OX belongs to the X-system and corresponds to A = ; OY belongs to

the /x-systeni and corresponds to /x= 0. If P is {$, r/, C), the generators
through P correspond to

A = C2/^^', ix^C!2/nj.

Where a generator of the /x-system meets OX,

y = 0, z=Oj x=-2wiJ.,

therefore OQ = - 2wfi= - wC/ht}.

Similarly, OR = - 2wX=^ - wl/hi
and P tlierefore lies on. the plane x= h).

[OQ and OR may be found more easily by considering that the
])Iane PQR is the tangent plane at P whose equation (see !^ 134) is

h^r + h'^>i + (r(+ v)z + (rC= 0.]

Ex. 3. Find the locus of P if (i) OQ • OR = F, (ii) OQ- + OR-' = /!-2.

Ex. 4. If OQ"- + OR"- is constant, P lies on a cone whose vertex
is O and whose section by a plane parallel to OXY is an ellipse whose
equal conjugate diameters are parallel to OX and OY.

Ex. 5. Shew that the projections of the generators of one system
of a hyperboloid on the tangent plane at any point envelope a conic.

Take the generators in the given tangent plane as OX and OY, and
the normal at O as OZ. The plane z= Xii is a tangent plane, (§97),
and the projection on OXY of the second generator in which it meets
the surface has equations

z = 0, cX-y + 2\{(]x+ fi/ + w)+ 2hx= 0.

Whence the envelope of the projections is the conic

z= 0, {gx +/}/+ wf = 2<±r>i

*113. Properties of a given generating line. If wc
have a system of rectangular axes in which tlie .j'-axis is

a generator and tlie 2;-axis is the normal at the origin,

the equation to the hyperboloid is of the form,

hif+ cz^+ 2/2/s

+

2gzx+ 2hxy+ 2ivz = 0,

or y{hy+ 2hx)+ z(cz-{- 2gx+ 2/)/ + 2v') = 0.
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The systems of generating lines are given by

\y = z, {hy-\- 2hx)+ A (cz + 2gx+ 2fy + 2w) = ;

?/ = // (C0+ 2gx+ 2fy+ 2t(0, z + /u{by+ 2hx) = 0.

The a;-axis belongs to the //-system and corresponds to

/x = (). The generator of the A-system through the point

(ex., 0, 0) is given by -/la

gcL+w
The tangent plane at (a, 0, 0) is the plane through this

generator and OX. Its equation is therefore \y = z,

or licxy -\-z{goL+ iv) — 0.

Let P, (a, 0, 0), P', (ol, 0, 0) be points on the .'C-axis.

Then the tangent planes at P and P' are at right angles if

(]t"+g')0L0L 4- wg{(jL + a')+ w^ = 0,

^... If [a.+ -~l^[a.+^^ =^-^-^ (1)

Therefore if C is the point {-j^^^, 0, o), CP CP' is

constant for all pairs of perpendicular tangent planes

through OX. C is called the central point of the generator

OX. If the origin is taken at the central point, the equa-

tion (1) must take the form aa' = constant, and therefore

g = ^, and aa'= —'W-/h^. The equation to the conicoid

when OX is a generator and O is the central point, OZ is

the normal at O, and the axes are rectangular, is therefore

by^+ cz'^+ 2fyz+ 2hxy 4- 2wz = 0.

Ex. 1. Find the locus of the normals to a conicoid at points of a
given generator.

Taking axes as above, the equations to the normal at (ol, 0, 0) are

'^~"'=^ = i. The locus of the normals is therefore the hj'perbolic
hcL to

paraboloid whose equation is hxz— vn/. It has OX and OZ as generators,

and its vertex at the origin,

Ex. 2. The anharuionic ratio of four tangent planes through the

same generator is the anharuionic ratio of their points of contact.

The tangent plane at (a.,., 0, 0) is /icLr^+ wz= 0, whence, by § 38, Ex. 4,

the anharmonic ratio of the planes is

(«..-a..)(fJL,-CX4)'
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Ex. 3. Four fixed generators of the same system meet any generator

of the opposite system in a range of constant anharmonic ratio.

Ex. 4. Find the locus of the perpendiculars from a point on a

hyperboloid to the generators of one system.

Take O, the point, as origin, and a generator through O as OX.
Take the normal at O as OZ, then XOY is the tangent plane at O.

The equation to the liyperboloid is

6y-+ cz-+ Ifiiz+ Igzx+ 'Hixy + 2wz = 0.

The systems of generators are given by

X.i/=z, {by+ 2ha;)+ X{cz+ 2gx+2f9/+ 2w)=
;

y= ix(cz+ 2gx+ 2fi/+ 2w), z+ /x(ft?/+ 2h.v)= 0.

The locus of the perpendiculars to the generators of the A-system is

the cubic cone
x{cz^+ 2fyz+ 6y2) - 2{f+ z'^){h>/ +gz)= 0.

*114. The central point and parameter of distribution.

Taking the axes indicated in 5:^ Ho the equation to the

conicoid is , ., , 9,0^' > o? .0 a
hy^+ cz'+ 2tyz+ zlixy + ^%vz = 0.

The equations to the system of generators to which

OX belongs are

y = \{1fij+ cz+ '2w), z-\-X{2hx+ hy) = 0,

OX being given by X= 0. The direction-cosines of a

generator of this system are proportional to

6cX2-2/X+ l, -2chX\ 2//X(2/A-l),

and therefore the shortest distance between this generator

and OX has direction-cosines proportional tc

0, 2/X-l, c\.

Hence the limiting position of the shortest distance, as X

tends to zero, is parallel to OY. Again, any plane through

the generator is given by

y{2fX -l)+ c\z+ 2ic\ - k { -IhXx + hXy+ z]= 0.

This plane meets OX where x = iv/hk. It contains the

s.D. if (2/x_i)(2/X-] -WX)4-c-X(eX-/.-) = 0,

. .„ , 1-4A
t.e. It k=-—T-,

(c — 6)X

squares and higlier powers of X being rejected.
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Therefore the ,s.D. meets OX where

_ w{c — b)\

Since x tends to zero with X, the limiting position of the

s.D. is OY. Hence the central point of a given generator is

the point of intersection of the generator and the shortest

distance between it and a consecutive generator of the

same system.

The equation y = \(2fy-{-cz+ 2w) represents the plane

through the X-generator parallel to OX. Therefore the

shortest distance, S, is given by

rejecting X", etc.

Again, if is the angle between the generator and OX,

&cX^"-jA+l
^^"^

J\hcX^ - 2/X+ 1 f -fid'k-'X'+ 4A^-X^(2/X-if
whence, if X" and higher powers be rejected,

e = 2h\.

The limit of the ratio S/6, as X tends to zero, is called

the parameter of distribution of the generator OX. Denoting

it by 2^, we have 2w\ w

Cor. If O is the central point and the tangent planes at

A and A' are at right angles, OA . OA' = —p^.

Ex. 1. If the generator " ^ " of the hyperboloicl

a^ 0^ G-

1 x — a cos cf> y — h sin i> z
IS given by -.

—r^— -—

,

]- =—

>

" '' asincp -bcoscp -c

and is the angle between the generators "(^" and "<^i," prove that

. o/j _ a-6'"sin-((^ - c^,)+ aV-(sin c^ - sin
</)x)^+ 6V(cos 4> - cos (fnY

, - , .1 ^.
dO (a-b^+ b^c^-s'w^+ c-a^cos^)^

and deduce that -jj- = — .. . .. , ,
,!> r, ,

, ,
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Ex. 2. Prove that the shortest distance, 8, between the generators
t/j " and " (/>! " is given by

2abcsii\' ^J'

(iVsin-^'^+ c^a^cos^'^ + a^i^cos^^'^j^

and deduce that -rj
= .

'

'V» (a^b- + h\^ sin2<^+ c^a'- cos^c/)) ^

Ex. 3. Prove that the parameter of distribution for the generator

^ ^'^ a&c(a^sin^(^ + 6-cos'-(^+ c-)

rt'^6-+ //-^c-sin-^ + chi-cos^4>'

Ex. 4. If D is the distance of any generator of the hyperboloid

a'^ b^ c'

from the centre, and/) is its parameter of distribution, D-p= abc.

Ex. 5. Find the coordinates of the central point of the generator

Tlie equation to the plane through the generator "</>" ])arallel to

the generator " ip" is

- sin ^ ^ '
' - •' cos -^——^ + - cos „ +sin ^ ^^' = 0.

a 2 6 2 f 2 2

Whence the direction-cosines of the s.d. between the generator "
(f>

"

and a consecutive generator of the same system are proportional to

1 • <
1

/L 1- sm d), - 7 cos (h, -•
a ^ b ^' c

The coordinates of any point, O, on the generator are

a(cos ^ - it sin <^), b{sm cfi + k cos (ji), ck.

If O is the central point the normal at O is perpendicular to the

S.D. between the generator and a consecutive generator of the same
system. Hence we find

k:
c\b^ - a"^)sin <^ cos <^

"

a%''-+ 6"^c- sin-(^+ c-d- cos^<f>

and the coordinates of the central point are given by

V ^ V £

a3(i2+ c-)cos^ 7)^(c2+ a"-)sin<j!) c3(6--a=^)sin ^cos^
1

a^lfi+ 6-'c''^ sin'''^+ c'd- cos^(f>

Ex. 6. Find the locus of the central points of the generators of
the hyperboloid.

The equation to a surface containing the central points is obtained
by eliminating cf) between the equations for the coordinates. It is

^6 7,6 ^G
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Ex. 7. For the generator of the paraboloid "-i-'4= 25 given by

^'-•^= 2A, - +T=v, prove that the parameter of distribution is

a 6 ' a A ^

a6(aH6H 4A2)^
and that the central point is

f ^a^X -%¥\ 2(a2-62)A2\

Prove also that the central points of the systems of generators lie on

the planes —±p= 0.

Ex. 8, If G is a given generator of a hyperboloid, prove that the

tangent plane at the central point of G is perpendicular to the tangent

plane to the asymptotic cone whose generator of contact is parallel

toG.

Ex. 9. A pair of planes through a given generator of a hyper-

boloid touch the surface at points A and B,,and contain the normals

at points A' and B' of the generator. If Q is the angle between them,

. ^ ^ ,. AB.A'B'
prove that tan''t7= — ad' ar"

Ex. 10. If the tangent plane at a point P of a generator, central

point O, makes an angle Q with the tangent plane at O, ptan ^= OP,
where p is the pai-ameter of distribution.

*Examples VI.

1. Prove that the line ?.r+}?i?/+ ??e+p= 0, r.r-t-m'y+ »'2+^'= is a

generator of the hyperboloid .r^/a +3/^/6+ 27'^= 1 if aP+ b7n'^+ cn'^= p'^,

al'"+ b7n'^+ cn"^=p"^, and all'+ hmm'+ cnn'=pp'.

2. Shew that the equations

v/-A:-t-A + l=0, (A+ l).r+^y+X =

represent for different values of A generators of one system of the

hyperboloid ijz+ zx-\-xy-\-\=0, and find the equations to generators

of the other system.

^.2 j,2 ^2

3. Tangent planes to '-7j+'p-^= l, which are parallel to tangent

planes to
at

hhh'^ c^ahf a^h"^

c2_;,2
+ c2_a2 + a2+ t2

".

cut the surface in perpendicular generators.

4. The shortest distances between generators of the same system

drawn at the ends of diameters of the principal elliptic section of the

hyperboloid '\+'r2~\^^ ^^® °^^ ^^'® surfaces whose equations are

c.r>i __ ahz
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5. Shew that the shortest distance of any two perpendicular

members of that system of generators of the paraboloid _i/{a.r + hi/) = :,

which is perpendicular to the y-axis, lies in the plane a-z = h.

6. Prove that any point on the lines

lies on the surface 7/z + z.v+ .ri/ + f/ + z= 0,

and find equations to determine the other system of lines which lies

on the surface.

7. The four conicoids, each of which passes through three of four

given non-intersecting lines, have two common generators.

8. Prove that the equation to the conicoid through the lines

u = = v, u'=0= v',

Am + /x y+ A'?i'+ ii'v'= = lu +mv + I'u'+ m'v'

Xu+ fxv _ lu+ viv
^^ AVT/aV ~ I'u'+ m'v'

9. ABC, A'B'C are two given triangles. P moves so that the lines

through P which meet the pairs of corresponding sides AB, A'B'

;

BC, B'C ; CA, C'A' are coplanar. Prove that the locus of P is the

hyperboloid through AA', BB', and CC
10. If from a fixed point on a hyperboloid lines are drawn to

intersect the diagonals of the quadrilaterals formed by two fixed and

two variable generators, these lines are coplanar.

11. Through a variable generator

X- - ?/= A, x+ i/= 2':/A

of the paraboloid .i^-f= 2z a plane is drawn making a constant

angle a. with the plane .»•= .?/. Find the locus of the jwint at which

it touches the paraboloid.

12. Prove that the locus of the line of intersection of two perpen-

dicular planes which pass through two fixed non-intersecting lines is

a hyperboloid whose central circular sections are perpendicular to the

lines and have their diameters equal to their shortest distance.

13. Prove that if the generators of ^i+%-^2= '^ ^® drawn through

the points where it is met by a tangent to

they form a skew quadrilateral with two opposite angles right angles,

and the other diagonal of which is a generator of the cylinder

a^ b^

14. The normals to ^,+-'f.^-^o= l at points of a generator meet
a^ h- c

the plane ^ = at points lying on a straight line, and for different

generators of the same system this line touches ^ fixed conic.
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Id. Prove that the generators of ax-+ hy"- -\-d-= \ through {x^
, y, , ^j),

(^2) y%-> -2) li® in the jilanes

{ax^x^ + hy^i/o+ cz^z^ - \){ax"+ bf+ cz^-\)

= 2 {axx-i + hyy^+ czz^ - l)(axx.^ + byy.^+ czz., - 1 ).

16. The generators through points on the principal elliptic section

^^
~2+'f2"~;;2=^'

^"^^1 tli^t the eccentric angle of the one is double the

eccentric angle of the other, intersect on the curves given by

«(l-3^) b_t(l-f) _^-
1 + ^2 ' .'/- 1 + ^2 '

--±ct.

17. The planes of triangles which have a fixed centre of gravity
and have their vertices on three given straight lines which are parallel

to the same plane, touch a cone of the second degree, and their sides

are generators of three paraboloids.

18. The cubic curve
1 1 _ 1

•''~A-(x' ^"A-/^' ^~A-y
meets the conicoid ax''-+ by'^+ cz'=\ in six points, and the normals at

these points are generators of the hyperboloid

ayzifi -y) + bzx{y - a.)+ cxy{a. -/3)+ x{b - c) +y{c - a)+ z{a -b)= 0.

19. Prove that the locus of a point whose distances from two given
lines are in a constant ratio is a hyperboloid of one sheet, and that

the projections of the lines on the tangent plane at the point where
it meets the shortest distance form a harmonic pencil with the

generators through the point.

20. The generators through P on the hyperboloid '--^+-^^_l^= i

meet the plane z = in A and B. If PA : PB is constant, find the

locus of P.

21. If the median of the triangle PAB in the last example is

jiarallel to the fixed plane a.x+ /3y+ yz= 0, shew that P lies on the

«"^^f^^««
z{a.x + fiy)+ y(c^+ z^)= 0.

22. If A and B are the extremities of conjugate diameters of the

principal elliptic section, prove that the median through P of

the triangle PAB lies on the cone

2x^

¥Ki-r
23. A and B are the extremities of the axes of the principal elliptic

section of the hyperboloid —2+ a2~~2~^' ^"^^^ "^ ^'^ ^^^y ^"^^ "^ ^^^® plane

of the section. G,, G., are generators of the same system, Gj passing

through A and G., through B. Two hyperboloids are drawn, one
through T, G,, OZ, the other through T, G., OZ. Shew that he
other common generators of these hyperboloids lie on tlie<^urface

a- 6- c
.?('-^_.!/V---^=o.
' c\a bj a h
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24. Prove that the .shortest distances between the generator

y _z
'h—c

and the other generators of the same system, meet the generators in

points lying in the plane

25. If the generators through P, a point on the hyperboloid

rt/ b^ c^

whose centre is O, meet the plane ,?= in A and B, and the volume of

the tetrahedron OAPB is constant and equal to ahcjQ, P lies on one
of the planes z= ±c.
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CHAPTER X.

CONFOGAL CONICOIDS.

115. Confocal conicoids are conicoids whose principal

sections have the same foci. Thus the equation

represents, for any value of A, a conicoid confocal with

x^ if z^
,—+ 72+ ^ = 1'

since the sections of the conicoids by the planes YOZ, ZOX,

XOY are confocal conies. Again, if arbitrary values are

assigned to a in the equation

±_j it
I - =1

b and c being constants, we obtain the equations to a

system of confocal conicoids. If this form of equation be

chosen to represent a confocal a is called the primary semi-

axis.

The sections of the paraboloids

by the planes YOZ, ZOX, consist of confocal parabolas, and

hence the paraboloids are confocal.

116. The three confocals through a point. Through

any point there pasn three conicoids cov focal ivith a given

ellipsoid,—an ellipsioid, a hyperholoid of one sheet, and a

hyperhoJoid of two xjwefs.
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The equiition ——r + ,.>" v+ •/ \=1 represents any

conicoid coufocal with the elHpsoid '—^+ 'p,+ ^,= i- It" the

con focal passes throngli ((/-, /3, y),

a'-X^b'^-X^c'-X '

or /(X) = (a2-X)(?y2-X)(c2-A)-a-(//^-X)((;2-\)

- /3-(c' - X)(rt- - X) - yH<-*' - \){h''- X) = 0.

This cubic equation in X gives the parameters of three

confocals wliich pass through (a, /?, y). Suppose that

a > 6 > c. When

X = oc , a^, 6-, C', — 00

,

/(X)is -, -, +, -, +.

Hence the equation f{X) = has three real roots X, , Xo, X3

such that
^^2 ^ X, > 6-^ > X, > (^ > X,.

Therefore the confocal is a hyperboloid of two sheets, a

hj'perboloid of one sheet, or an ellipsoid, according as

X = X^, X.,, or X3.

As X tends to c^ the confocal ellipsoid tends to coincide

with that part of the plane XOY enclosed within the ellipse

2; = 0, -^—2+ 1^2
—2 ~ ^ ' ^^^^^ ^^^® confocal hyperboloid of

one sheet tends to coincide with that part of the plane

which lies without the ellipse. As X tends to 6- the con-

focal hyperboloid of one sheet tends to coincide with that

part of the plane ZOX which lies between the tAvo branches

of the hyperbola y = 0, -^—^+
.21 / 2

~ ^ !
^"^^^ ^^^^ confocal

hyperboloid of two sheets tends to coincide with tlie two

portions of the plane which are enclosed by the two branches

of the hyperbola. If X = a^, the confocal is imaginary. The

above ellipse and hyperbola are called the focal conies.

Ex. 1. Three paraboloids confocal with a given paraboloid pas.*?

through a given point,—two elliptic and one hyperbolic.

B.Cx. H
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Ex. 2. Prove that the equation to the confocal through the point

of the focal ellipse whose eccentric angle is a. is

^^
yl , !! ^ 1

(«2 _ ^2) cos^o. {a? - 6-) sin-cx. c^ - a? sin'^^o. - &-cos%

Ex. 3. Prove that the equation to the confocal which has a system

of circular sections parallel to the plane x=y is

: +
{c^ - a^){a? - 62) ^ (62 - c^){d^ - Ifi) 2 (6^ - e^){c^ - d^) 2c2 - d^ - 62'

117. Elliptic coordinates. Since X^, A2, X3 are the roots

of the equation /(X) = 0,

f(X)^ -{X-\^){X-XX\-\).

Therefore

1
oi ^ y^ _ m

^ a'-\ ¥-\ c2-A~(a2-X)(62-X)(c2-X)

^ -(X-Xi)(X-Xo)(X-X3)
~ {d'-\){W-\){c'--Xy'

Hence, by the rule for partial fractions,

{a^-\){a^-\){d'~\,) j¥-\^){W-\^)(h''-\^)
(62-a2)(c2_a2) ' ^ (c2_6'^)(ft2_52^

2 ^ (c^-X,)(c^-X,)(c^-X3)

These express the coordinates a, j8, y of a point P, in

terms of the parameters of the confocals of a given conicoid

that pass through P ; and if the parameters are given, and

the octant in which P lies is known, the position of P is

uniquely determined. Hence X^, Xo, Xg are called the

elliptic coordinates of P with reference to the fundamental

conicoid x'-ja^+ y'^jh'^ + z^lc^= 3

.

Ex. 1. If aj, a.^, a^ are the primary semi-axes of the confocals to

x'^/d^+ i/'^jb'^ + z^/c" = I which pass through a point (a., /3, y),

'(62_a2)(c2-a2)'

^ (c2-62)(a2-62)

^^ (c^-r<Har)(c2-a2+ a..,2)(^2_t,24.^^2)
"^

(a2-c.2)(62-c2) •
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Ex. 2. What loci are represented by the equation.s in elliptic
coordinates,

'

(i) Ai + A2+ A3 = constant,

(ii) A2A3+A3Ai + AiA2= constant,

(iii) A1A2A3= constant ?

Ex. 3. If Ai, Ao, A3 are the parameters of the paraboloids con-

focal to —+y = 25 which pass througli the point (a., /?, y), prove that

2_ 0<-Ai)(a-A.,)(a-A3) oo_ {b-X,)(b-\,)(b-X, )

b-a '^-
^3i

-'

_ A; + Ao+ A3 — « - 6

118. Confocals cut at right angles. The tangent planes

to two confocals at any common point are at right angles.

Let (ct'p 7/p 0j) be a point common to the confocals to

CU" V" z'~

-5+ f^+ — = 1, whose parameters are A, and X.,.
a/ 0^ C" ^ i -

Then _^4.^^+,^ = l

Therefore, subtracting,

(a2-Ai)(a2-X,) ' (6^-Ai)(6-'-A,)^(c2-Ai)(c2_^^)'

and tliis is the condition that the tangent planes at

{x^, 2/1, z^) to the confocals should be at right angles.

Cor. The tangent planes at a point to the three con-

focals which pass through it are mutuall}' perpendicular.

119. Confocal touching given plane. One conicoid con-

focdl iritli a given coniroid imiclirs; a given plane.

For the condition that the plane lx+my + nz = p should

touch the conicoid

X-
,

?/- , z-

+ ro- -.+-.r^ = l,
a2_X ' h~-\ ' e^-X

viz., ?)- = (r(2-X)?-+ (/r-X)»?-+ (('--X)>r,

determines one value of X,
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Ex. 1. A given plane and the parallel tangent plane to a conicoid

are at distances p and jOq from the centre. Piove that the parameter
of the confocal conicoid which touches the plane \'s,p^ — 'p'':

Ex. 2. Prove that the perpendiculars fr'ora the origin to the tangent
planes to the ellipsoid which touch it along its curve of intersection

with the confocal whose parameter is A lie on the cone

f,a_A^62_x"^c2-A~

120. Confocals touching given line. Two conicoids

confocal with a given conicoid touch a given line and the

tangent 'planes at the points of contact are at right angles.

The condition that the line —-,—= '^ ^ = ^ should

touch the conicoid

A ' 62-A+ -r^ = X

+ r^a—A ' /;2-A ' c'-A/Va^-A ' ^^-A c^-A

_( fd ^m yn Y
-\a^-\'^W-\^c^-\)'

^ {(Bn — ynif _ l^
,

m~ n^

(6'^-A)(c2-A) a^-A ' ^'-^-A ' c'-X

gives two values of A.

Let the equations to the two confocals be

x"

a- \ ' //--Ai '^c^-Ai
= 1, (1)

a'-\^b-'-\^c'-X^ '

^^

and let the line touch the first at P, (x-^, y^, z^) and the

second at Q, (x.^, t/o, s.,)- Then, since PQ lies in the tangent

planes to the confocals at P and Q,

62_x^
+ ,2_x^-l and ^^2_^+i,2_^+,,_^^-i-

Therefore, subtracting,

y^y^ + ., .T% . . =0,(a^^-\){a^-\.y (/>2-Ai)(/j-^-A,) ' {c'-X.Xc^-X,)'

whicli is the condition that the tangent planes should be at

right angles.
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121. Parameters of confocals through a point on a

conicoid. //' P i^ n point on a rentrai cou'u-oid, Hit

'parameters of the two confocals of the conicoid which

pass through P are equal to the squares of the semi-axes

of the central section of the conicoid which is i^arallel to

the tangent plane at P, and the normals to the confocals

at P are parallel to the axes.

Let P, Cr,
, y, , z, ) lie on the conicoid '— 4- tt,+ -9 = 1 • Then

the parameters of the confocals through P are gixcn by the

equation

2
1

»^i J Zl = 1 = —J- 4-

:+..7#-.x+->74^ = 0.
a^a'- A) ' ¥(b'-- X) ' c^((r - A

)

But the squares of the semi-axes of the section of the

conicoid by the plane -V+ X2
"1

—

^^^ ^^'^ given by, (§86),

^2 0,2 ^2

a\a'--o^'-y¥{¥-r'-ycHc'-r^)

Therefore the values of A are the values of r'-. Again,

the direction-cosines of the semi-axis of length r are

^i^^enby
^ ,,^ ,,

^1 Ih

^2-^2 h~-r- c^-r^-

and therefore the axis is parallel to the normal at (a-j, y^, %)
to the con focal whose parameter is equal to 7^-.

122. Locus of poles of plane with respect to confocals.

The locus of the poles of a given plane tvith respect to the

conicoids confocal ivith a given conicoid is the normal

to the plane at the point of contact with that confocal

ivhicJi touchrs it.

Let a confocal be represented by

y ^2

a-- A ' b'^-X ' c2-A

and the given plane by Ix + iiu/-}- nz-
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Then, if (^, t], ^) is the pole of the plane with respect to

the confocal,

1=
., ^ , m =

, ,
'^

, 1? =—^.
a^-\ b--\ c^-A

Whence ^— a" =—— b^=^— c".

Therefore the locus of (^, ?/, i,) is a straight line at right

angles to the given plane. Again, the pole of the jjlane

with respect to that confocal which touches it is the point

of contact. Hence the point of contact is on the locus,

which is therefore the normal to the plane at the point of

contact.

123. Normals to the three confocals through a point.

Tltree conicoids confocal ivith a given conicoid

pass tJirougJi a fjiveji point P, a7id PQ, PR, PS, fJte normcds

at P to the confoccds, meet the polar plane of P with respect

to the given conicoid in Q, R, S. To prove that

PQ = \/Pv PR = \Jp,, PS=^\,/p,,

where p^, p^, p.^ are the perpendicidars from the centre to

the tangent planes at P to the confocals, and Xp Xg, Xg are

the parameters of tJte confocals.
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If the coordiiicates of P, (fif^. 47), are (a, /5, y), the equations

toPQare ^_oc _ y-/3 z-y ,_

a- —\ Ir"—\ I?— Ai

Hence, if PQ = /', the coordinates of Q are

-0+„^)- Ki+i^^x,)' K>+^>
But Q is on tlie polar plane of P, and therefore

a^ \} + ,^2_ x^y + 6- V^ + 6-^ - AJ + <'-^ V ^ ^ c^- Ai
= 1

0^^

I

p^
, y

«'^—\ b'^ — Ai c^—\
Rearranging, this becomes

Therefore r = Xjp^. Similarly, PR = Ao/po and PS = \j2h'

124. The tetrahedron PQRS is sclf-'polar tvith respect to

the given conicoid.

Substituting \ for jy^r, the coordinates of Q become

J^, J?!^, _£!Z_. Whence the polar plane of Q with
Cfc2-Ai 6^-Ai c^-Ai

^

respect to the conicoid

IS given by -^^-^+^^,-^+-^- = 1,

and therefore is the tangent plane at P to the con focal

whose parameter is A^, or is the plane PRS. Similarly, the

polar planes of R and S are the planes PQS, PQR, and, by

hypothesis, the polar plane of P is the plane QRS.

125. Axes of enveloping cone. The normals to the

three co7(focals through P are the axes of the enveloping

cone ivhose vertex is P.

Since the tetrahedron PQRS is self-polar with respect to

the conicoid, the triangle QRS is self-polar with respect
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to the common section of tlie conicoid and enveloping cone

by the plane QRS. Therefore, (§ 78), PQ, PR, PS are

conjugate diameters of the cone, and being mutually per-

pendicular, are the principal axes.

126. Equation to enveloping cone. To find the equa-

tion to tlie enveloping cone tvhose vertex is P referred to

its principcd axes.

The equation will be of the form Ax"-\-By'^-^Cz^ = Q.

Since the tangent planes at P to the confocals are the

coordinate planes, C, the centre of the given conicoid, is

i'Pi, P-z, jh)' ^^^^ ^^^^ equations to PC are «'/Pi = ?//p2 = ^//'s-

But the centre of the section of the cone or conicoid by

the plane QRS lies on PC, and therefore its coordinates

are of the form kp.^, kp^, k}^^, and the equation to the plane

QRS is, (§ 71),

(x- kp^)A-p^+ (y - kp.^Bp.^+{z- kp.^)C% = 0.

By §123, the plane QRS makes intercepts \Jpi, Xjlhy

\Jp-^ on the axes, and therefore its equation is also

and the equation to the cone is

127. Equation to conicoid. To find the equation to the

given conicoid referred to tJie normals to the confocals

through P as coordinate axes.

The equation will be of the form

tj^t^t^kimj^'Mj^p^^i^ (1)
A;^ X2 A3 V Aj A2 A3 /

The centre C, {p^, p^, p^) bisects all chords through it.

The equations to the chord parallel to OX are

1
" ~ " ^~ ^'
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and hence the equation obtained by substitutino; ^j^ + v, y).^,

p3 for X, y, 2, in (1), viz.,

takes the form Lr-+ M = 0. Therefore

k Xi X2 Xg

and the equation to the conicoid is

vx;+x;+x3Ax;+x:+x3 ^^-U, + x, + x3 v-

Ex. 1. If A and [j. are the parameters of the confocal hyperbok)ids

through a point P on the ellipsoid

prove that the perpendicular from the centre to the tangent plane

at P to the ellipsoid is -^— . Prove also that the perpendiculars to

the tangent planes to the hyperboloids are

y a(a-/a) ' V M/^-A)

Ex. 2. If Ai, A.J, A3 are the parameters of the three confocals to

that pass through P, prove that the perpendicular.s from the centre to

the tangent plane at P are

v^ A,)(&'^-A,)(c''^-A,)

(Ao-Ai)(A3-Ai)

Ex. 3. If «i, ^1, Ci ; a.^, b.,, c^; a^, b-^, c^ are the axes of the

confocals to 2 ,,2 ~2

^, + |>+ ^, = l
a.- fs^ y

which pass through a point {x, 1/, 2), and Px, p-i, Px '^^'*^ the perpen-

diculai-s from the centre to the tangent planes to the confocals at the

point, prove that

^+f+ z^= a^+ b^+ e^, £l+^+^=1,
a

J
a.. If

3

Pi' d^f^r

ai^-u." a.;--a.- "/-oC^ {a^- -a:-){a^^-a:^){a^--a:^)

Ex. 4. If a,, ^i, Cj ; «.,, 6.2, Cj ; 03, 63, C3 are the axes of the

confocals to a given conicoid through P, show that the equations,

referred to the normals at P to the confocals, of the cones with P
as vertex and the focal conies as ba.ses, are

61- h.,- b.f Cj- c.r C3-
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Ex. 5. Prove that the direction-cosines of the four common
generators of the cones satisfy the equations

l^ _ m^ _ n^

(The intercepts on these generators by the ellipsoid are called the
bifocal chords of the ellipsoid through the jjoint P.)

Ex. 8. Prove that the bifocal chords of the ellipsoid

d^ b'^ c2

thi'ough a point P on the surface lie on a right circular cone whose

axis is the normal at P and who sesemi -vertical angle is cos~^--=4=i,

where Aj, Ao are the parameters of the confocals through P. vAjAj

Ex. 7. If the plane through the centre parallel to the tangent
plane at P meets one of the bifocal chords through P in F, then
PF= a.

Ex. 8. P is any j^oint on the curve of intersection of an ellipsoid

and a given confocal and r is the length of the central radius of the

ellipsoid which is parallel to the tangent to the curve at P. If p is

the perpendicular from the centre to the tangent plane to the ellipsoid

at P, prove that pr is constant.

CORRESPONDING POINTS.

128. Two points, P, {x, y, z) and Q, (^, >;, ^), situated

respectively on the conicoids

a^ b^ cr a- p^ y-

are said to correspond when

!^=1, 1=1, -=y.
a a.' b 13' c ^'

If P and Q are any points on an ellipsoid and P' and
Q' a/re the corresponding points on a confocal ellipsoid,

PQ' = p'Q.

Let P and Q, (,>', y, z), (^, i?, ^) lie on the ellipsoid

a^^W^c^~ '

and let P' and Q', {x', y', z), (^', i{, ^') be the corresponding

points on the confocal

q& nfl ^'i
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Then ^= ^-^-, i=-jJ==, etc.

Therefore _

Vet- a-.

and lience

\((- 0- c^ a^ 6^ c-/

which proves the proposition.

Ex. 1. If P is a point on an ellipsoid and P' is the corresponding

point on a confocal whose parameter is A, OP-'-OP'- = A, where O is

the centre.

Ex. 2. OP, OQ, OR are conjugate diameters of an ellipsoid, and
P', Q', R' are the points of a concentric sphere corresponding to

P, Q, R. Prove that OP', OQ', OR' are mutually perpendicular.

Ex. 3. If P", Q", R" are the corresponding points on a coaxal

ellipsoid, OP", OQ", OR" are conjugate diameters.

Ex. 4. An umbilic on an ellipsoid corresponds to an umbilic on

any confocal ellipsoid.

Ex. 5. P and Q are any points on a generator of a hyj^erboloid

and P' and Q' are the corresponding points on a second hyperboloid.

Prove that P' and Q' lie on a generator, and that PQ = P'Q'.

THE FOCI OF CONICOIDS.

*129. ^(I) The locus of a point such that the square on

its distance from a given point is in a constant ratio

to the rectangle contained by its distances from two fixed

planes is a conicoid.

The equation to the locus is of the form

(x-a.f+ (y-^y~+(z-yf
= Jr(lx+ my + nz+j'^W^' + '"'// + '''

'^ +p')'

which represents a conicoid.

^(11) TJie locus of a point ivhose distance from a fixed

point is in a constant ratio to its distance, measured

parallel to a given 'plane, from a given line, is a conicoid.

iThat a conicoid could be generated by the method (I) was first

pointed out by f>alinon. The method (II) is due to IMacCullagh.
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Choose rectangular axes so that the given plane is the

a;?/ -plane and the point of intersection of the given line

and given plane is the origin. Let the fixed point be

(a, B, y) and the fixed line have equations y= ^^=
. The

plane through (^, >/, ^) parallel to the .^^/-plane meets the

given line in the point ( — ,
—-, O, and therefore the

distance of (^, t}, ^) from the line measured parallel to

the given plane is given by

Hence the equation to the locus is

(..-a)H(3/-/3)H(.-y)-^ = /4(--'7/+ (2/-'fy}'
which represents a conicoid.

In (I) the equation to the locus is of the form X^ — uv —
and in (II) of the form A0 — (it^+i'-) = 0, where

and u= (), v = represent planes. In either case, if S = ()

is the equation to the locus, the equation S — X^^O re-

presents a pair of planes. In (I) the planes are real, in

(II) they are imaginary, but the line of intersection, u= 0,

f = 0, is real in both cases. These suggest the following

definition of the foci and directrices of a conicoid

:

If S = is the equation to a conicoid and A, a, ^, y can

he found so that the equation S — \<p = represents two

planes, real or imaginary, (a, /3, y) is a focus, and tlie

line of intersection of the 'planes is the corresponding

directrix.

If the planes are real we shall call (a, (3, y) a focus of

the first species, if they are imaginary, a focus of the

second species.

Lemma. If the equation ¥(x,y, 2) = represents a pair of planes,

the equations ^=0, ^=0, ^=0 represent three planes passing

throwjh their line of intersection.
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If F(.r, //, z) = iiv, where ii^a.v+ l)j/ + cz+d and v = a'.v+ b'j/ + c'z+ il',

then 7:^=av+ au, p^- — uv-\-ou, ^^ = cv+ cu,
ox oy oz '

whence the proposition is evident.

*130. Foci of ellipsoid and paraboloids. To 'find the

foci of tJie ellipsoid

Tlie e(|iiation

'^^+ ^^,+ ~-l-K^-o.f-\{y-^f-\{z-yr = ^ ...(1)

is to represent a pair of planes, and hence, by our lemma,

the equations

represent three planes through the line of intersection.

The three planes pass througli one line if

(i)X = ~, a = 0; or (ii)X = ^2' ^ = ^'^ ^^ (iii)X = ^,, y = 0.

The line is,

(i)y= —ti z= ^ ' ./. or(ii)2; = T-5

—

'-,, (r = ——r^,

,.... — a^oL IrR
or (in ) X = —^

7, , y = jT, TV
^

- C-— rt- '' b~ — C"

But tlie line is the line of intersection of the planes given

by equation (1), and therefore the coordinates of any point

on the line satisfy equation (1). Therefore, substituting

from the equations to the line in equation (1), we obtain

(i)
, ,

-, ^—o = l, and in this case, a = 0:
ft-— //- ft- — c^

(ii) Tp^-f^^, = l, ., . |8 = 0.;
?>- — c- a^ — b-

(iii) -^.+p^=l, „ „ y = 0.
ft-- c- 6-— c- '
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Hence, (i) there is an infinite number of imaginary foci

in the 2/2;-plane lying on the imaginary ellipse

^ = 0.
-^ ?^-i

a^— b" a^— c^
'

and the corresponding directrices are imaginary.

(ii) There is an infinite number of real foci in the 0a;-plane

lying on the hyperbola

y = 0, —,—p— p 2= 1 ,
(the focal hyperbola),

and the corresponding directrices are real.

(iii) There is an infinite number of real foci in the xy-p\ane

lying on the ellipse

z = 0, "2 2"l" /2_ 2
^-^' (the focal ellipse),

and the corresponding directrices are real

The directrix corresponding to a point (a, 0, y) on the

focal hyperbola has equations

_ '^'^-
^ _ ~ ^"7

and therefore, since -^

—

rr,— ij^ o = 1,

the directrices corresponding to points on the focal hyper-

bola lie on the hyperbolic cylinder

x%a^-b-') z%¥-c'-) _

Similarly, the directrices corresponding to foci which lie

on the focal ellipse lie on the elliptic cylinder

x\a^— C-) i/^(/j-— C-) _ -

a'^
"•"

6^ "
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If (a, 0, y) is a point on the focal hyperbola,

s-A(/>-^i+ |^ + ^;-l-p{(-^-«.)Hr+ (^-y)^}.

where the equations to the directrix corresponding to

(a, 0, y) are x = ^, s=^. But the equations to the planes

through the line « =
f,

3 = ^, parallel to the real circular

sections, are

Therefore any point on the focal hyperbola is a focus of

the first species, and the ellipsoid is the locus of a point the

square on wliose distance from a focus of the first species

is proportional to the rectangle under its distances from

the two planes through the corresponding directrix parallel

to the real circular sections.

If (a, /3, 0) is a point on the focal ellipse.

r(JL Y

w'

.,2 c"" — })-

here the equations to the directrix corresponding to

{(*., /3, 0) are x= ^, y = v- Now the equation to a plane

through P, i:x', y', z') parallel to a real circular section is
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and hence this plane meets the directrix x = ^, y = ri in the

point P', whose coordinates are

The distance PP' is the distance of P from the directrix,

measured parallel to the plane. It is given by

Hence any point on the focal ellipse is a focus of the

second species, and the ellipsoid is the locus of a point

whose distance from a focus of the second species is pro-

portional to its distance, measured parallel to a real circular

section, from the corresponding directrix.

By the same methods, we find that the points on the

parabolas

(i) c« = 0, ^%=-2z+ a; (u) y = 0, .--- = -20+ 6

are foci of the paraboloid —+^ = 2z. These parabolas are

called the focal parabolas. The corresponding directrices

generate the cylinders

(i)^./ = 2.+ a, (ii)^-^..2 = 2.+ 6.

It (0, ,8, y) is any point on the focal parabola in the

yz--p\iine,

a-h{
,

6/3 V 1,
, ,,

ah \ a— bJ cr ' '

If ((X, 0, y) is any point on tlie focal parabola in the

$;a!-plane,
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a/ . (ta \"-^ 1

Whence the species of the foci can be determined if the

signs and relative magnitudes of a and b are given.

Cor. All confocal conicoids have the same focal conies.

Ex. 1. Fi'ove that the product of tlie eccentricities of the foca!

conies is unity.

Ex. 2. Find the equations to the focal conies of the hyperboloid

Ex. 3. If P is a point on a focal conic, the corresponding directrix

intersects the normal at P to the conic.

Ex. 4. If P is a point on a focal conic the section of the conicoid

by the phane through P at right angles to the tangent at P to the
conic has a focus at P.

Ex. 5. If P is any point on the directrix of a conicoid which
corresponds to a focus S, the polar plane of P passes through S and
is at right angles to SP.

Ex. 6. The polar plane of any point A cuts the directrix corre-

sponding to a focus S at the point P. Prove that AS is at right

angles to SP.

Ex. 7. If the normal and tangent plane at any point P of a
conicoid meet a principal plane in the point N and the line QR, QR is

the polar of N with respect to the focal conic that lies in the principal

plane.

Ex. 8. Prove that the real foci of a cone lie upon two straight

lines through the vertex (the focal lines).

Ex. 9. Prove that the focal lines of a cone are normal to the cyclic

planes of the reciprocal cone.

Ex. 10. The enveloping cones with vertex P of a system of con-

focal conicoids have the same focal lines, and the focal lines are the

generators of the confocal hyperboloid of one sheet that passes

through P.

* Examples VII.

1. If the enveloping cone of an ellipsoid has three mutually

perpendicular generators the plane of contact envelopes a confocal.

2. The locus of the polars of a given line with respect to a system

of confocals is a hyperbolic paraboloid.

3. Through a straight line in one of the principal planes, tangent

planes are drawn to a system of confocals. Prove that the points of

contact lie in a plane and that the normals at these points pas.s

tlirough a fixed point in the principal plane.

E.G. N
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4. Shew that the locus of the centres of the sections of a system of

confocals by a given plane is a straight line.

5. If PQ is perpendicular to its polar with respect to an ellipsoid,

it is perpendicular to its polars with respect to all confocal ellipsoids.

6. Any tangent plane to a cone makes equal angles with the planes
through the generator of contact and the focal lines.

7. Through any tangent to a conicoid two planes are drawn to

touch a confocal. Prove that they are equally inclined to the tangent
plane to the conicoid that contains the tangent.

8. The locus of the intersection of three mutually perpendicular
planes each of which touches a confocal is a sj^here.

9. The sum of the angles that any generator of a cone makes with
the focal lines is constant.

10. The four planes through two generators OP and OQ of a cone
and the focal lines touch a right circular cone whose axis is the line

of intersection of the tangent planes which touch the cone along OP
and OQ.

11. The planes which bisect the angles between two tangent planes
to a cone also bisect the angles between the planes containing their

line of intersection and the focal lines.

12. A conicoid of revolution is formed by the revolution of an
ellipse whose foci are S and S'. Prove that the focal lines of the
enveloping cone whose vertex is P are PS and PS'.

13. The feet of the normals to a system of confocals which are
parallel to a fixed line lie on a rectangular hyperbola one of whose
asymptotes is parallel to the line.

14. A tangent plane to the ellipsoid .v-Ja-+ i/-/h'^ + z-/c'^= 1 intersects

the two confocals whose parameters are A and jtx. Prove that the
enveloping cones to the confocals along the curvges of section have a
common section which lies on the conicoid

15. The three principal planes intercept on any normal to a confocal
of the ellipsoid x-/a^+ 7/^/6"+ z-/c^='[, two segments whose ratio is

constant. Also the normals to the confocals Avhich lie in a given
plane Lv+mi/+nz=0 are parallel to the line

Ix _ my _ nz

16. The cone that contains the normals fi'om P to a conicoid
contains the normals from P to all the confocals, and its equation
referred to the normals to the confocals through P as coordinate
^^^^^^

P,iX,-\,)
^
P-2(^,-^,)

^

P.JK-X,)^
(C 1/ z
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17. Normals are drawn from a point in one of the principal planes

to a system of confocals. Prove that they lie in the |)rincipal \A:ine or

in a plane at right angles to it, that the tangent planes at the feet of

those in the principal plane touch a parabolic cylinder, and that the

tangent planes at the feet of the others pass through a stiuight line

lying in the principal plane.

18. If tangent planes are drawn through a fixed line to a system of

confocals the normals at the points of contact generate a hyperbolic

paraboloid. Shew that the paraboloid degenerates into a plane when
the given line is a normal to one of the surfaces of the system.

19. From any two fixed points on the same normal to an ellij

perpendiculars are drawn to their respective polar planes with regard

to any confocal ellipsoid. Prove that the perpendiculars intersect and
that the locus of their intersection as the confocal varies is a cubic

curve whose projection on any principal plane is a rectangular

hyperbola.

20. Find the parabola which is the envelope of the normals to the

confocals —.—r-+ 4./ . + -^—r- — 1 which lie in the plane Ix+ my+ nz =p,

and prove that its directrix lies in the plane

(62 _ (p^xll+ (c^ - d^)y\m+ (a2 - W)zln = 0.

21. If A, jLt, V are the direction-cosines of the normal to a system of

parallel tangent planes to a system of confocal conicoids, express the

coordinates of any point of the locus of their points of contact in

the form
x^Xit^a'lt), y= ii{t+ ¥lt\ z^v{t+ c^/t),

where a, b, c are the principal axes of a particular confocal of the

system. Deduce that the locus is a rectangular hyperbola.

22. If A, /x, V are the parameters of the confocals of an ellipsoid,

axes a, b, c, through a point P, the perpendicular from P to its polar

plane is of length

Xixv{h'^c^lj.v(a'^ - A) + c^ahX{b^ - /^)+ (i"b-Xii{c^ - v) }~
-.

23. Through a given line tangent planes are drawn to two confocals

and touch them in A, A' ; B, B' respectively. Shew that the lines

AB, AB' are equally inclined to the normal at A and are coplanar

with it.

24. If P and Q are points on two confocals such that the tangent

planes at P and Q are at riglit angles, the plane through the centre

and the line of intersection of the tangent planes bisects PQ. Hence
shew that if a conicoid touches each of three given confocals at two
points it has a fixed director sphere.
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CHAPTER XL

THE GENERAL EQUATION OF THE SECOND DEGREE.

131. In Chapter VII. we have found the equations to

certain loci, (tangent planes, polar planes, etc.) connected

with the conicoid, when the eonicoid is represented by

an equation referred to conjugate diametral planes as

coordinate planes. We shall in this chapter first find the

equations to these loci when the conicoid is represented

by the general equation of the second degree, and then

discuss the determination of the centre and principal

planes, and the transformation of the equation when the

principal planes are taken as coordinate planes.

132. Constants in equation of second degree. The

general equation of the second degree may be written

F{x, y, z) = ax"+ by-+ cz-+ 2fyz+ 2gzx+ 2hxy

+ 2ux+ 2vy+ 2wz+d= 0,

or f{x, y, z)+ 2ux+ 2vy + 2ivz -\-d = 0.

It contains nine disposable constants, and therefore a

conicoid can be found to satisfy nine conditions which each

involve one relation between the constants ; e.g. a conicoid

can be found to pass through nine given points no four

of which are coplanar, or to pass through six given points

and touch the plane XOY at the origin, or to pass through

three given non-intersecting lines.

Ex. 1. A conicoid is to pass through a given conic. How many
disposable constants will its equation contain ? Is the number the

same when the conicoid is to pass through a given circle ?
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Ex. 2. Tliu equation to a conicoid through tlie conic z= 0, </) = 0, is

(li + z{(Lv+ bf/ + ci + d) = 0,

where a, b, c, d are disposable constants.

Ex. 3. The equation to a conicoid that touches the plane 2= at
an umbilic at the origin and touclies the plane l.v+ my+ nz=p is

z{lv+ my+m -p) + {kx + fxzf+ ( A.y+ vzf = 0,

where A, /x, v are disposable constants.

Ex, 4. Find the equation to the conicoid which passes through
the circle .r-4-y- = 2a.i-, ^= 0, and the points {b, 0, c), (0, b, c), and
has the 2-axis as a generator.

.1 m. c{x-+ i/^ - 2cuv) - byz+ (2a - b)zx=0.

133. Points of intersection of line and conicoid. The
ei [nations to tlic straight line through A, (a, ^, y), whose

direction-ratios are I, m, n, are

x-(x. _y-^_z-y
I ~ m ~ n '

^^

and the point on this line whose distance from A is r has

coordinates OL+ lr, jS+jnr, y-\-nr. It lies on the conicoid

F{x,y,z) = 0,

if F(a.+ lr, jS+mr, y+ iir) = 0;

that is, if

F(a, (3, y)+ r(^^+m|^+ 7.|^) + ry(/,, m, .0 = 0. : (?^

Hence the straight line meets the conicoid in two points

1^ iind Q, and the measures of AP and AQ are the roots of

the equation (2).

If (i)F(«./3,y) = 0. (ii) /,|+™|+ „|I = 0.

(iii) f(l, m,n) = 0,

equation (2) is satisfied by all values of r, or every point

on the line lies on the conicoid. The conditions (ii) and (iii)

give two sets of values for I :m : 7?, and therefoi-e through

any point on a conicoid two straight lines can be drawn to

lie wholly on the conicoid. They are parallel to the lines

in which the plane

3F
,

aP 3F ^

da. "^ dp dy
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cuts the cone f{x, y, z) = 0, (cf . § 60). They may be real,

imaginary, or coincident, as in the cases of the hyperboloid

of one sheet, the ellipsoid, and the cone, respectively.

134. The tang-ent plane. If F(a, /3, y) = 0, a is on the

conicoid, and one root of equation (2) is zero. A coincides

with P or with Q. If also

,9F
,

3F
,

3F _ ,_,

^3^+^3^+ ^'9^ = ^' (^)

both roots of equation (2) are zero, and P and Q coincide

at A, which lies on the conicoid. The line is therefore a

tangent Hue to the surface at A. If we eliminate I, m,, n
between the equations to the line and equation (3), we

obtain the equation to the locus of the tangent lines drawn

through A in all possible directions. The equation is

(.-a)3^+(,-^)| + (.-y)| = 0.

and hence the locus is a plane, the tangent plane at A. The

above equation may be written

3F
,

9F
,

BF SF
,

^SF
,

3F ...

If, now, F{x, y, z) be made homogeneous by the introduc-

tion of an auxiliary variable t, which is -equated to unity

after differentiation, equation (4) is equivalent to

3F
,

3F
,

9F
,

,3F 3F
,

^3F
,

DF
,

,9F

= 2F(a, /?, y, t), (Euler's Theorem),

= 0.

Ex. 1. Find the equations to the tangent planes at (,r', y\ z') on

(i) .v)/= cz, (ii) x-+ ^yz= a?.

Ans. (i) xlx'+yly'-zlz'= \, (ii) xx' +yz' \-zy'= a^.

Ex. 2. The bisectors of the angles between the lines in which any

tangent plane to z'^= Axy meets the planes ,r;= 0, ,y= 0, lie in the planes

x+y+ z=0, x+y-z=0.
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Ex. 3. Find the equation to the tangent plane at (1, 2, 3) on the

liyperboloid

x"-+ 8^2+ ^2 _ o,yr + 1

4

zx - 1 6.r ?/ - 6.r - // + 4; - 2 = 0,

and the equations to the two generators through the point.

Ans. (i) .r-2y+ 5= 0; (ii) the equation (i) and 4.r-3y + 2 = 0,

3.i'-2y+l=0.

Ex. 4. Find the condition that the plane lx-^m})-\-nz-{-p = should

touch the conicoid F(.c. y, i) =
If the point of contact is (a., /?, y), then

represent the same plane. Therefore

3F aP 3F 3F
9oL 3^ 3y 3< „,
-7- = -i-=—4-=— =-2a, say.
L m. 11 p ""

Hence aa.+ hl3+gy + u+ IX = 0,

koL+bf^+ fy+ v + mX = 0,

go. +f(3+ cy + w+ nk= 0,

7i.ciL+v(3+ wy +d+ pX= 0.

And la.+ mf3+ny+p = 0,

since the point of contact must lie in the given plane. Therefore

eliminating a., (3, y, A, we obtain the required condition, viz.

:

a, h, jr, «, I ~Q.

h, b, f, V, in

g, f\ c, u\ n

u, V, ti>, d, p
I, ?H, n, 27,

Ex. 5. Prove that Lv+ 7711/+ nz=p touches x>j= cz\i dm + np = 0.

Ex. 6. Prove that lx+my+ 7iz=p touches /(.r, y, z) = \ if

A^-+B??i2+ Cji2-f-2F«i?i + 2G?i^+ 2H^?H=j92D,

where a, h, q , and A = ^3-, 8=^^7-1 etc.

^>-^ ^ /

Ex. 7. If the axes are rectangular, prove that the locus of

the feet of the perpendiculars from the origin to tangent planes to

f\r,y,z) = \ is

A.r2+ B/+ C- + 2Fy^ + 2G--.r- + 2H.»y/ = D (.f- + ?/2+ ^2)2.

Ex. 8. Prove that the locus of the point of intersection of three

mutually perpendicular tangent planes to /"(.r, //, z)=\ is the sphere

D(.r2+/ + ^-) = A + B + C. (Cf. §G8, Ex. 1.)
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Ex. 9. Prove that the plane 2j/-22= l is a tangent plane to the

surface
-^2^'jy2^2z^-9i/z+ 5zx-6.vi/+ 5.v-l4i/+ lOz+ 6= 0.

Prove also that the lines of intei'section of the given plane and the

planes 2.?;+ 3= 0, 2x-2z+l=0 lie on the surface.

Ex. 10. If two conicoids have a comnion generator, they touch

at two points of the generator.

If the generator is taken as .r-axis, the equations to the conicoids are

6/+ C2^+ 2fi/z+ 2gzx +2h.vi/ +2vi/ +2wz =0,

6'_y2

+

c'z'^+ 2fyz+ 2g'zx+ 2Kxy+ 2v'9/+ 2w'z— 0,

The tangent planes at (a., 0, 0) are

y{hoL+ v)+ z(goL + w)= 0, y{k'a.+ v') + z(g'o.+ w')= 0.

They are coincident if

hcL+ v _ goL+ w
h'a.+ v' g'a.+ w'

This equation gives two values of a..

Ex. 11. If two conicoids touch at three points of a common
generatoi', they touch at all points of the generator, and the generator

has the same central point and parameter of distribution for both
surfaces.

Ex. 12. Tangent planes parallel to the given plane

ajc+ [iy+ yz =

are drawn to conicoids that pass through the lines .r= 0, ,y = ; 2= 0,

x= c. Shew that the points of contact lie on the paraboloid

X (ot,r+ (iy + y: ) = c (our + Py).

Ex. 13. If a conicoid passes through the origin, and the tangent

plane at the origin is taken as 2= 0, the equation to the surface is

ax"-+ 6/+ cz^+ 2fyz+ 2gzx + 2hxy+ 2«'2= 0.

Ex. 14. If a set of I'ectangular axes through a fixed point O of a

conicoid meet the conicoid in P, Q, R, the plane PQR meets the

normal at O in a fixed point.

Ex.15. If Ur = arX+hry+ CrZ+ dr, r= l, 2, 3,

prove that the tangent planes at (.r', y', z') to the conicoids

(i) Aitti2+V2^+ ^3%^=1'

(ii) AjWi^+ AgWa^= 2X3^3

are given by (i) X.^^^^n^-{-X2U.iU2^X:iU^^(^ = '\,

(ii) Ai«i?(i'+ X2U2U2'= Xsi'ih + '":\)i

where «/ = a,.v' + 6^?/+ Cr^+ dr.

Ex. 16. Prove that

n^U2+ AiV,2+ 2\2ViV2+ A3?'.;-=

represents a conicoid touching the planes «i = 0, ?f^= at their points

of intersection with the line i'i = 0=V2.
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135. The polar plane. If any secant through a meets

the conicoid in P and Q and if R is the harmonic conjugate

of A with respect to P and Q, the locus of R is the

polar of A.

If A is (a, j8, y) and the equations to the secant are

X — CL _ 1l
— ^ _ Z—y

I m n

then i\, i\, the measures of AP and AQ, are the roots of

the equation

Hence if R is (^, >;, ^) and the measure of AR is p,

_ 2i\r, _ 2F(a, ^, y)
^ n+7\,~ ,3F

,
9F

,
ap'"

^3^+ ^"3^+ ^'3y

and ^—cL = lp, r]— ^ = mp, ^—y = np.

Therefore

(f-a)3^+(,-/3)|+(f-y)|=-2F(a,Ay),

and the equation to the locus of (^, >/, ^), the polar plane,

becomes

3F
,

9F
,

3F
,

,3F

^3^+ 2/3^+%+%

= 2F(a, /3, y, t)-2F(cjL, (3, y, t),

= 0.

Ex. 1. Find the equations to the pohir of —^^^^^=trJ[
'

I m n
with respect to the conicoid F{x, y, z)= 0. (Cf. § 70.)

. 9F, 3F, 3F. 3F ^ ,9F, 3F
,

3F ^^^. ^9^+yg^+-3^4-^3^=o, z3^+.t^+«^=o.

Ex. 2. Prove that the lines

.v-a._y- P_z-y .r - a.' _if - ft' _z - y'

I m n ' I' m' n'



SoS- COOEDINATE GJEOMETKV [ch. xi.

are polar with respect to the conicoid F(.v, y, z) = if

,3F
,

^,3F
,

,3F
,
3F ^ ,,3F

,

3F
,

,3F ^

ooL op oy ol om on

Ex. 3. Any set of rectangular axes through a fixed point O meets
a given conicoid in six points. Prove that the sum of the squares of

the ratios of the distances of the points from the polar plane of O to

their distances from O is constant.

(Take O as origin, and use § 54, Ex. 9.)

Ex. 4. Prove that

AiMj^+ AaWa^+ A3%2+ A^V=
represents a conicoid with respect to which the tetrahedron whose
faces are »i = 0, U2= 0, u^= 0, u^= is self-conjugate.

Ex. 5. Find the equation to the conicoid with respect to which
the tetrahedron formed by the coordinate planes and the plane

a c

is self-conjugate, and which passes through the points ( — a, 0, 0),

(0, -b,0), (0,0, -c).

"«• "(5+^+3 -(^f+^ ')'=»

Ex. 6. All conicoids which touch a given cone at its points of

section by a given plane have a common self-conjugate teti^ahedi'on.

136. The enveloping cone. The equations

x — 0L_y — ^_s— y
I m ~ n

represent a tangent if equation (2) of § 133 has equal roots.

The condition for equal roots is

Therefore the equation to the locus of the tangents

drawn from a given point (oc, /3, y) is

4.F(a, ^, y)f{x-CL, y-/3,z-y)

But F{oL+ x-Oi, ^+ tj-l3, y-\-Z-y)

=f{x-OL,y-^,Z-y)
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Therefore the e(|iuition to the locus becomes

4F(a,^, y)F(,f,2/,0)

/ OF
,

3F
,

3F
,
,SF\2

Ex. 1. If a cone envelope a sphere, the section of the cone l\y any
tangent plane to the sphere is a conic which has a focus at the point
of contact.

Ex. 2. The tangent plane to a conicoicl at an unibilic meets any
enveloping cone in a conic of which the mnbilic is a focus.

Ex. 3. Find the locus of a luminous point which moves so that
the sphere .^.2 +fJrz^-iaz=
casts a parabolic shadow on the plane 2= 0.

Ans. z= 2a.

137. The enveloping cylinder. From the condition for

equal roots used in the last paragraph we see that (a, /3, y),

any point on a tangent drawn parallel to the fixed line

-=! = -,
I m n'

lies on the cylinder given by

A^, ^^n ^ A^F ,
3F

,
3F\2

^F(x, y, z)f{l, m, n) = [l:^+m:^y^n-) .

Ex. A cylinder whose generators make an angle a. with the 2-axis

envelopes the sphere .v^+ i!f+ z^= 2az. Prove that the eccentricity of

its section by the plane s= is sin a..

138. The locus of the chords which are bisected at

a given point. If (ex., /3, y), the given point, is the mid-

pcjint of the chord whose equations are

a^-a _ y — ^ _ z--y

I ~ m ~ n '

the equation

F(a, /3, y)+ r (/ ^^+mf.+nf) + r\f{l, m, n) =

takes the form r- = k^, and therefore

;3F ,
3F

,
SF ^ .-,,
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Hence all chords which are bisected at (a, (3, y) lie in

the plane given by

(--)g+(!/-/3)|+(-y)|=o.

The section of the conicoid by this plane is a conic of

which (rx, /3, y) is the centre.

Ex. Find the locus of centres of sections of

a>/z+ hzx+ cxy+ ahc

=

which touch .r2/a.2+//i8H 22/7^=1-

A ns. cf.\hz+ c^)-'^+ (i\cx + azf+ yXaij+ hxf= 4 {ai/z + bzx+ cxyf.

139. The diametral plane. Equation (1) of § 138 shews

that the mid-points of all chords drawn parallel to a fixed

line
X_y _z
T m n

lie on the diametral plane whose equation is

, 3F
,

3F
,

3F „

^x dy dz

Ex. 1. Find the central circular sections and unibilics of the

following surfaces

:

(i) x^+y2+2 = 0,

(ii) 4i/z+ bzx - 5x1/+ 8= 0,

(iii) 7/2 - yz — 2zx — xi/ — 4:= 0.

Ans. (i) x+i/-z= 0, x-i/ + z = ;

1 -2 2 *V.3'1 2 -2 >3"

(ii) %v+y - s= 0, x+ 2// - 2j= ;

X _ji_ z _ 2\/3 X _y_ z _ \J2

(iii) x-\-z = 0, x+y-\-z= ; the umbilics are imaginary.

Ex. 2. Prove that the umbilics of conicoids that pass through the

circles
^^ Q^ ^2+ ?/2^ ^2 . j;= 0, yH ^2^ ^^2

lie on two equal hyperbolas in the ^A-plane.

140. The principal planes. A diametral plane which is

at right angles to the chords which it bisects is a principal
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plane. If the axes are rectangular, the diametral plane

whose equation is

l— +m~—\-n— =0,
dx dy dz

or x(al+ hm + fjn)+ y (Id+ bm +fn)+ z {gl+fm + en)

+ id+vm+wn= 0,

is at right angles to the line

x^y_^z_
I m n

if
al+htn+gn_ hi+ bm+fn _ gl+fm+ en

I m n

If each of these ratios is equal to A, then

{a— \)l+ hni-\-gn = 0,

ld+{b-X)m+fn= 0,

gl+fm+ {c-X)n = 0.

Therefore A is a root of the equation

-A, h, g =0,

h, b-\, f
0, f> c-A

or \^-X\a+b+ c)+ \{bc+ ca+ ab-f -g'^-h'')-D = 0,

•(1)

where D ((,
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Ex. Find the jDrinciiml planes of the conicoids :

(i) U.v^+Uf+ 8z^ - 4i/z - 4sx - 8x^+ 18x - I8i/ + 5 = 0,

(ii) 3a'2+ 5?y2+ 3s2 _ 2i/z+ 2zx - 2x1/+ 2.r+ 12j/+ 10^+ 20= 0.

Jns. (i) A= 6, 12, 18; x+9/ + 2z=0, x+^-z=0, x-7/+l=0;

(ii) A= 2, 3, 6; x-z-2 = 0, a;+i/ + z+ 4= 0, x-2i/+z~l=0.

141. Condition for two zero-roots. If d = 0, then

BC-F- = aD = 0, CA-G" = 6d = 0, AB-H2 = cD = 0,

and therefore A, B, C have the same sign. Therefore if

D = and A+ B+ C = 0, A = B = C = 0, and tlierefore we have

also F = G = H = 0. Hence if the discriminating cubic has

two zero-roots, all the six quantities A, B, C, F, G, H, are

zero and f{x, y, z) is a, perfect square.

142. Case of one zero-root. If the discriminating cubic

has one zero-root, th-e corresponding principal plane either is

at an infinite distance or may be any plane at right angles

to a fixed line. For if X = 0, the equations (1), § 140, give

I _'}n_n
G~y~C'

or —= = -= = -=, (8141).
v/a Vb Vc ^^

^

These determine a fixed direction, since A, B, C are not

all zero. The corresponding principal plane has, by § 140,

(2), the equation

s/Ax 4-VB (/ + ^/Cz -\ = 0,

and is at an infinite distance if \/Au+ \/Bv-}-Vci^^O, or

may be any plane at right angles to the fixed line

X y z .- ,- ,-

TaTJI^Jo '^ Va^^+ n/Bi;+ Vcio = 0.

In the first case the conicoid is a paraboloid whose axis

is in the fixed direction, in the second, an elliptic or hyper-

bolic cylinder or pair of intersecting planes whose axis or

line of intersection is in, tlie fixed direction.
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Ex. 1. Find the principal planes of the surfaces

(i) 2.v-^+ 207/+ 18r - 1 '2yz+ 1 ^2xi/ + 22.f+ 6^ - 2i - 2 = 0,

(ii) 5.r2+ 26/+ 10^2+ Ayz+ 1420;+ 6.ry - 8a- - 18i/ - 10.- + 4 = 0.

Ans. (i) A.= 14, 26, ;
^-+ 2^+ 32 + 1 = 0, .r+ 4y-32+ l=0, the plane

at infinity :

(ii) A=14, 27, 0; 2x-y + Zz= \, .r + fvy + 2==2, any i)lane at

right angles to -^=|= ^.

Ex 2. Verify that the principal planes in Exs. §§ 140, 142 are

mutually at right angles.

143. Case of two zero-roots. If the discriminatino-

cubic has two zero-roots the equations (1), § 140, when

X= 0, all reduce to

Jat -\-slbm-\- sjcn= 0,

and therefore the directions of the normals to two of the

principal planes are indeterminate. These planes, however,

must be at right angles to the plane Jax+Jby+ -</cz = 0,

and they may be at an infinite distance, (if ul+ vm-\-wn^O),

or at any distance from the origin, (if ul+ V7n+wn = 0).

In the first case the surface is a parabolic cylinder and the

axes oi normal sections are parallel to the plane

Jax+ Jby + Jcz = ;

in the second the surface is a pair of planes parallel to

Jax+ Jbij+ Jcz = 0.

Ex. 1, For the surfaces

(i) .r2+ 2/2+ 22

_

2yz + 2zx - Ixy - 2.v -iy-2z+ 3=0,

(ii) x'^+y^+z'^-2yz + 2zx-2xy-2x+ 2y-2z-S= 0,

A= 3, 0, 0. The determinate principal plane is x-y+ z = 0. If

x-y+ z= 0, x+ 2y + z= 0, x-z=

are taken as coordinate planes the equations transform into

3^2= 2v/6>7-3, 3^2_2v/3^-3= 0.

Ex. 2. If one of the principal planes of the cone whose vertex is P

and base the parabola y^-= 4ax, 2= is parallel to the fixed phme

lx+my+ nz= 0,

the locus of P is the straight line

n m V m I m\l vJ
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THE DISCRIMINATING CUBIC.

144. All the roots of the discriminating cubic are real.

The equation may be written,

^(X)^(X-a){{\-b){\-c)-f}

-{(X-b)g^+ Qi-c)h^+ 2fgh}=-.0.

We may assume (X>?>>c. Consider

y = ^|r{\)^(\-b){X-c)-f\

Corresponding values of A and y are

— 00 , c, b, + 00
,

+ G0, -f, -f, +00.

Y
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when

A = a, y ^ - {{(x-b)[f+ (oi-c)h-±2j{fj.-b){a.-c)gh}

= — {iJs/cL—b± llJcL — Cf,

where Jcl— h, Jo.— c are real

;

wlien

= (gJb^+JiJc-^f,

where Jb— ^, Vc — /3 are real.

Hence from the graph we see that the equation 0(X) = O

has three real roots, X^, A2, A3, such that

The above proof fails if a and (3, the roots of the

equation \p-(\) = 0, are equal. In that case, however, we

have b = c, and /= ; and therefore the cubic becomes

{X-b){{\-a){\-b)-g^-h^]=0,

tlie roots of which are easily seen to be all real.

145. The factors of f{x, y, 2)-\(x^+ y''+ s^). If X is a

root of the discriminating cubic,

(M-+ by'+ C2-+ 2fyz+ 2gzx + 2hxy - A (a.'^+ ^/H 5^)

is the product of two factors of the f

o

i^m (x.x+Py + ys. Only

one of the three roots leads to real values of a, /3, y. For

(a-X)x'+ {b-\)y^-{-(c-\)z^+ 2fyz+ 2gzx+ 2hxy

and therefore is of tlie form

where tv and v are linear functions of x, y, z, with real

* ax- + by- + cz" + '2fyz + ^gzx + 'ihxy

= 1 Uhx + by+M + (C.r- - 2Gr.a: + A:^)
J

,

\\^{hx + by+f^^ + \{^z-G.vr^^

if A = and therefore Qr=-kC.

B.C.
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coefficients. Reference to the graphs shews that the signs

of 6 — A and V'(A) for A = Xi, X2, A3 are as follows:

b-X, x/.(A),

A = Ai, -, +,

\ = \, ±,

A = A3, +, +.

Hence /(;«, y, z) — X(x^+ y^+ z^) takes the forms

- Lht^- M^^ Lhi^ - Mh", Lhi'-+ Mhj^,

according as A = Ai, Ag, or A3. The factors with real

coefficients correspond therefore to the mean root, A^.

(Cf.§93.)

146. Conditions for equal roots. To find the condi-

tions that the discrimhiating ctchic shoidd have, (i) two

roots equal, (ii) tliree roots equal.

The cubic is

(p(\)= a— \, h, g
h, h-\, f
fj> f> c-A

Therefore, as in § 141, if A is a root of the cubic,

(6-A)(c-A)-/-, (c-A)(a-A)-^^ {a-X){h-X)-h^

have the same sign.

(i) If A is a repeated root, 0(A) = and

-^^(b-\)(c-X)-P

+ {c-X){a-X)-g~+ (a-X)ih-X)-h^ = 0,

and therefore

(b-X)(c-X)=P, (c-X){a-X) = g\\ ,^s

(a-A)(6-A) = ^^ J

and hence, (corresponding to F = G = H = 0), we have also

{a-X)f=gh, {b-X)g = hf, {c-X)h=fg (b)

Any one of the three sets of conditions,

(c-A)(a-A)=/, (a-X)(h-X) = h:\ (a-X)f=gh, (a')

(a-X)(b-X) = h\ {h-X)ic-X)=f, (b-X)g = hf, (p/)

{h-X)(c-X)^f\ (c-X)ia-X) = g'\ {c-X)h=fg, (r')
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is both necessary and sufficient. For if (a') is given, substi-

tuting for a— X from the third equation in the first two,

we obtain
(j,.x)g = hf, {c-\)h=f<j,

whence (6 — X)(c — A)=/'-.

Therefore, if none of the three quantities /, g, h is zero,

A, the repeated root, is not equal to a, h or c, and we have

f ff-

. F G H . (i^or -X = -.= - = ^ --Ai;

/ 9 f^

If /, one of the three quantities /, g, It, is zero, then,

from (a), X = b or c. If X = b, then h = 0, and

If X = c, then <; = 0, and

{a-c){h-c) = h\

Therefore if one of the three quantities is zero, anotlier

must be zero, and we have

X = «, g = h = 0, {h-a){c-a)=p;\

or \ = h, h=f= 0, (c-h)(a-b) = g'-}, (2)

or X = c, f=g = 0, {a-c){b-c)= h\)

The equations (1) and (2) give the conditions for a pair

of ec[ual roots and the value of the roots in each case.

(ii) If the three roots are equal to X, X also satisfies the

equation

^ = 0, or (a-X)+(6-X)+ (<-X) = 0.

But, by (A),

{(a-\)+ {b-\)+ (c-\)]^

= (rt-X)H(6-X)-+ (c-X)H2/-+ 2fr+ 2A2.

Therefore \ = a = b = c, and /= g — h = 0. Tlie conicoid in

this case must be a sphere.
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147. The principal directions. We shall call the direc-

tions determined by the equations

al+ h.in+ gii _ Id+ hm+fn _ gl +fin+ cn _
I

~ m ~ n ~
'

2/ J/ ^
dl_dm _c)n _^^ Tr 2^i~27i~^'

the principal directions.

// X is a root of the discriminating cubic giving values

I, m.; n of the direction-cosines of a principal direction,

\ =f{l, m, n).

„ ^ do din dn dt dm dn ,.,
t or X =— = -— = rr- =—lTTTt:—5-:—sr—= / (^ 'tn, n).

21 2m 2n 2{l'"-\-m^-\-n")
•'^'

' ^

148. The principal directions corres2Mnding to two

distinct roots of the discriminating cubic are at right

angles.

If \, X., are the roots, and l^, m^, n-^; l.^, m.,, n.-, are the

corresponding direction-cosines, then

^k\ =^' etc.; %\ = ^' etc.

But l^^+,n,^+n,^^l,^+m.:^+ n.,^,
^dt^ ^dm^ ^dn^ ^dl^ "dm^^ ^dn^

and therefore

which proves the proposition.

149. Cases of equal roots, (i) If X^, A^, A3 are the roots

of the discriminating cubic, and Ao^A^, there is a definite

principal direction corresponding to A^ ; but the equations

dl2_d7no_dno_^ ...

2t^^2^,^2^~^'- ^^

reduce to a single equation which is satisfied by the

direction-cosines of any direction at right angles to the

principal direction corresponding to A,.



a — A, - - -
;^ '-• It
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Suppose that we have

A., = A3^0, and \., = a-'4 = 0-^ = c--^}'-.
- 3^ ' -

/ (J
1^

Then the equations

gl,+fm2+ {c-\.,)n,=^0

all become ry/iZ.,+ hfm.^ +fgn.^ = 0.

And since the sum of the roots of the cubic is a+ ^+ c,

and hence the equation

{a-X^}l^+ hm^+gn^ =
may be written

The three e(iuations corresponding to X^ therefore give

which determine a definite principal direction. The single

equation corresponding to \ is the condition that the

directions given by gh : hf:fg, l.^ : m.y : v., should be at right

angles.

If we have

X, = X3 = a, r/=.0, /i = 0, and {b-a)(c-a)^f,

the equations corresponding to Xo and A^ are

(b-a)m,+fn.-, = 0,

If X., = X.^ = 0, then D = 0,

he=p ca - g", <ih = //
'^

;

and the equations corresponding to A., and Aj are

s/cilo+ Jbm., 4- s/cv 2 = 0,

Ja Jb sjc
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(ii) If the discriminating cubic has three equal roots,

any direction is a principal direction. For X = a = h — c,

and f=g = ]i = 0, and the equations for principal directions

reduce to ^ _^i^ _ '^

I on n

The reason is obvious. The surface is a sphere, and any

plane through the centre bisects chords at right angles

to it.

To sum up, if the discriminating cubic has distinct

roots, there are three mutually perpendicular principal

directions. If it has two or three repeated roots, three

mutually perpendicular directions can be chosen whose

direction-cosines satisfy the equations of § 147, which

determine the principal directions. Therefore in all cases

we can transform the equation, taking as new rectangular

axes three lines through the origin whose direction-cosines

satisfy the equations

dl _ dm _'c>n _
2l~2in~2n~ '

where A is a root of the discriminating cubic.

150. Transformation of/(«, y, z).

f(x, y, z) transforms into \i^+ \9>f' \-\^^-

Let O^, 0>y, O^ have direction-cosines l^, m-^, % ; l.^, m^, n.,
;

?3, m^, %3, corresponding to the roots X^, Ao, A3 of the cubic.

Then x = l^^+l^}]+ ^, etc. ^=-l^x+ m^y+ n^z, etc.

We have also

^dx ^dy ^dz dl^ '^dm^ dri^

= 2\{l^x+ m^y + n ^z),

And similarly,
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Hence, multiplying by ^, »;, ^ respectively and adding,

or f(x, y, z) = \$''+\r+ A3^'-

Ex. 1. (i) IiiEx. (i), §140,

\Ax"+ 1 4?/- + 8^^ - 4^2 - 4^.'; - 8.*v/ tiansfornis into 6g -'+ 1 2>/- + 1 8^^.

(ii) In Ex. 1, (i), § 142,

2A'^+ 20^2+ i82a_i2_y2+12.tv/ transforms into \A^--\-2ir,f.

(iii) In Ex. (i), § 143,

x^+y^+ z'-'ir/z+ 2zx-'ixn transforms into 3^-.

Ex. 2. Prove that the conicoids

'imjz+ ^hzx+ 2cx}j = 1 , 2cLi/z + 2f3zx+ 2yxi/= 1

can be placed so as to be confocal if

THE CENTRE.

151. If there is a point O, such that when P is any point

on a conicoid and PO is produced its own length to P',

P' is also on the conicoid, O is a centre of the conicoid.

// the origin is at a centre, the coefficients of x, y, z in

the equation to the conicoid are zero.

Let the equation be

f{x, y, z)+ 2nx+ 2vy + 2wz+d=0.

Then if P is (x, y', z), P' is {-x\ -y', -z), and

f{x\ y, z)+ 2ux'+ 2vy'+ 2wz + d = 0,

f(x\ y', z) - 2ux'- 2vy' - 2vjz + d = 0.

Therefore %ix'+ vy'-\-wz =0 (1)

Hence, since equation (1) is satisfied by an infinite

number of values of x', y\ z other than the coordinates

of points lying in the plane

iix+ vy + ivz = 0,

we must have u = t' = i'' = 0.
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152. To determine the centres of the conicoid

F{x, y, z) = 0.

Let (a, (3, y) be a centre. Change the origin to (a, ^, y)
and the equation becomes

F(x+ 0L, y+ l3,
z+ y) = 0,

or fix, y, z)-\-x—+y;^+ z— -j-F{0L, (3, y) = 0.

Therefore, since the coefficients of x, y, z are zero,

aF_3F_9F_

Cor. The equation to any diametral plane is of the form

, SF
,

9F
,

dF „

dx dy dz

and therefore any diametral plane passes through the

centre or centres.

153. The central planes. The e(juations

2 9^ = «''»+ %+5'^+ ^^ = (1)

^'^^hx+ hy+fz+ v= 0, (2)

l^^gx+fy + cz+w^O (8)

represent planes which we may call the central planes.

Any point common to the central planes is a centre.

Multiply equations (1), (2), (3) by A, H, G respectively

and add ; then, since

aA+ /iH + f7G = D and hA+ bH+fG = 0, etc.,

Au+ H y+Gwx= -D

Similarly, y= —

^

, z = _p —
We have to consider the following cases, (cf. § 45)

:

I. D^tO, single centre at a (ellipsoid, hyper-

hnite distance, boloid, or cone).
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11. D = 0,

Au+Hv+ Giv=l=0,

III. D = 0,

IV. A, B, C, F, G, H,

all zero,

V. A, B, C, F, G, H,

all zero,

fu = gv = ivh,

single centre at an

infinite distance,

line of centres at a

finite distance,

(central planes

pass through one

line and are not

parallel,)

line of centres at an

infinite distance,

(central planes

parallel but not

coincident,)

plane of centres,

(central planes

coincident,)

(paraboloid).

(elliptic or hy-

perbolic cy-

linder, pair

of intersect-

ing planes).

(parabolic cy-

linder).

(pairofparallel

planes).

154. Equation when the origin is at a centre. If

the conicoid has a centre (oc, /3, y) at a finite distance, and

the origin is changed to it, the equation becomes

f(x,y,z)+F{a.,^,y) = 0,

or, since
,3F dF

f(x, y, z)-{-uoi+ v^+wy+ d = 0.

This becomes, on substituting the coordinates of the

centre found in § 153,

,,. . Ati^-{-Bv^-\-Cw-+ 2Fviu+ 2Giim+ 2Huv-<^D
A^'. y> ^)= ^

-S
where S

:

a,
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Ex. 1, Find the centres of the conicoids,

(i) U.v^+Uf+ 8z'^-4^z-4zx-8xi/+l8x-l8i/+ 5 = 0,

(ii) 3x^-+ 5f-+ 3z'^-2i/z+2zx-2x)/ +2x+Uy + lOz + 20= 0,

(iii) 2.^;2 + 20j/2+ I8z^-l2i/z+ l 2xxj+ 22x+Qy-2z-2= 0,

(iv) 5.^2+ 26/+ 10^2 + 4^2+142^^+ 6^^- 8j;- 18^-10.5+ 4= 0,

(v) x''-+y'''+ z^-2yz-\-2zx~ 2x}j - 2x-47/-2z+ 'S=0,

(vi) x^ +3/2+ s2 - 2i/z+ 2zx - 2x1/ -2x+ 2i/- 2z -3= 0.

Ans. (i)(_l, 1, o), (ii)(_l, -|_^), (iii) the central pL.

are parallel to the line J^=-^ = |, (iv) !_^=-^ =^ is the line of
^ -9 3 1 —lb 1 11

centres, (v) the central planes are parallel, (vi) x-^+z= l is the

plane of centres.

Ex. 2. If the origin is changed to the centre, the equations (i) and
(ii) become ^^^2 + 14^2+ 8.-2 _ 43/2 - Azx - Sxjj = 4,

3.r2+ 5/ + 322 _ 2yz + 2zx - 2x11= 1 •

Ex. 3. If the origin is changed to (.5, 0, - 3), or to any point on

the line of centres, the equation (iv) becomes

5.t'2+ 26y2+ 1 0,s2+ 4yz+ 14:ZX+ 6x1/ = 1

.

Ex. 4. Prove that the centres of conicoids that pass through the

ellipses x^ja^+fjb^^l, z=0 ; x^/a^+ z^/c^=l, ?/= lie on the lines

b ±c'

Ex. 5. The locus of the centres of conicoids that pass through two
given straight lines and two given points is a straight line.

Ex. 6. If F(x, ?/, 2, t)=0 represents a cone, the coordinates of the

vertex satisfy the equations

dx 'by dz ?)t

Ex. 7. Through the sections of a system of confocals by one of the

principal planes and by a given plane, cones are described. Prove
that their vertices lie on a conic.

Ex. 8. Prove that the centres of conicoids that pass through the

circle x'^+y^= 2ax, 2= 0, and have OZ as a generator, lie on the cylinder

x'^+ i/^= ax.

Ex. 9. A conicoid touches the axes (rectangular) at the fixed

points (a, 0, 0), (0, b, 0), (0, 0, c), and its section by the plane through

these points is a circle. Shew that its centre lies on the line

Ex. 10. Shew that the locus of the centres of conicoids which

touch the plane 2= at an unibilic at the origin, touch the plane x=a
and pass through a fixed point on the 2-axis, is a conicoid which
touches the plane 2=0 at an umbilic.
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Ex. 11. Variable conicoids pass through the given conies

z--=0, a.v'^ + hf+ 2f.v+d=0; .v= 0, cz^+ bf+ 2(/z + d= 0;

shew that the locus of their centres is a conic in the plane .y = 0.

Ex. 12. Find the locus of the centres of conicoids that pass througii

two conies which have two common points.

REDUCTION OF THE GENERAL EQUATION.

155. Case A: D^O.

There is a single centre at a finite distance, (§153, I.)

Change the origin to it, and the equation becomes

The discriminating cubic has three non-zero roots,

\, X^, A3, and there are three determinate principal direc-

tions, (Xi=^X2=/=X3), or three directions that can be taken

as principal directions, (A2 = A3, or Ai = A2 = A3). The lines

througii the centre in these directions are the principal

axes of the surface. They are the lines of intersection

of the principal planes. Take these lines as coordinate

axes, and the equation transforms into

\x^+\y'~+ \z'^+ ^ = ().

The surface is thus an ellipsoid, a hyperboloid of one

sheet, a hyperboloid of two sheets, or a sphere, if S^O
If S= 0, the surface is a cone.

Ex 1. A'2+f+ 22 - 6,/z - 2S.V - 2.v>/ - 6.V - 2>/ - 2^+ 2 = 0.

The discriminating cubic is

A^-3A--8A + 16= 0.

Whence A^4, ~^"^
»

~^
V^' ' 4, «.2, -/Q^ say

For the centre a* - ?/ - 2 - 3= 0,

-.r+y-32-l=0,
-.r-3y+ 2-l =0.

These give .r= l, y=— 1, z=-l.

.: ^=u.r+n/+)r-+ d=l.

The reduced equation is therefore -4x^-0.-^-+ fSh"^ I, and re-

presents a hjqjerboloid of two sheets.
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Note. If the roots of the discriminating cubic cannot be found by
inspection, their signs may be determined by a corollary of Descartes'

Rule of Signs :
" If the roots of /(A)= are all real, the number of

positive roots is equal to the number of changes of sign in /(A)." In

the above case, /(A) = A^ + 3/\.2-8A + 16, and there are two changes of

sign, and therefore two positive roots.

Ex 2. Reduce :

(i) .r2+3/+ 352-2j/2- 2a,-- 2y+ 62+3= 0,

(ii) 3a72-y2_22+6y2-6x+6j/-2s-2= 0,

(iii) 2/ + 4sjp+ 2j;-43/ + 6s + 5 = 0.

/I « s. (i) ^H 2/+ 452= 1 ,
(ii) 2,x^+ 2j/2 - 4^2= 4, (iii) x^ + y'^ - z^= 0.

156. CaseB: d = 0, au+ hv+ giv^O.

There is a single centre at infinity, (§ 153, II.). If

Xj, X2, Xg are the roots of the discriminating cubic, Xi=f 0,

X^^O, X3 = 0, (§ 141). If ^3, m^, n.^ are the direction-cosines

of the principal direction corresponding to X3,

(/^3+/m3+f"3 =

and hl^-{-bm.^+fn^ = 0,

and therefore -^ = —^ = —?=—2_J d ^.

A H G uA+ vH +wG
Hence ul.^+ vm..^+ wn^^O. Denote it by k
The principal plane corresponding to X3 is at infinity,

(§U2).

Where the line —^— = -—~ = = r

meets the surface, we have

which, by means of the equations of § 147, may be written

\r-+ 2r {X3(/3a+ m.^^+ n^y) + ul^+ vm^+ wn.^}

+ F(oL,/3,y) = 0,

or . r2+ 2kr+ F(a, ^, y) = 0.

Therefore any line in the principal direction corre-

sponding to X3 meets the surface in one point at a finite

and one point at an infinite distance.

If the hne - = -^ =—
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is normal to tlie tangent plane at (x', y', z'), a point of

the surface,

3F. SF 3F , 9F 'dF_ 9F
^- g^ gg^ Sx^"^'"=^3j/"^'^^9^;

= 2('M,^3+ «;7?i,3+ wn^) = 2k.

Hence such points as (x, y', z) lie on the three planes

p^ = ax-{-hy + gz+u— }d.^ = (1)

p.2^hx+ hy+fzi-v-km._^ = 0, (2)

P3 = gx+fy+ cz+tv-kn.^ = (3)

But kPi + '>'>hp.,+ n^Ps^O,

therefore the three planes pass through a line which is

parallel to 7- =— =— •^
^3 '^h ^3

Therefore there is only one point on the surface at which

the normal is parallel to the line 'j- = -^ = ^. That point

is the vertex of the surface. Its coordinates are given by

the equations (1), (2), (3), (which are equivalent to two

independent equations,) and the equation F(x, y; c) = 0.

But F(x, y, z) = hx— -\-hy:^+^z^+ ux + vy+ ivz+ d,

= k(l^x+ vi^y + n^z)+ ux+ vy + ivz+ d.

Hence any two of the equations (1), (2), (3) and the

equation

k{l^x+m^y+ n.;^z)+ ux+ vy+ ivz+ ^' =

determine the vertex.

To reduce the given equation, change the oi'igin to the

vertex, {x\ y', z'). The equation becomes

fix, y, z)+ x^^,-\-y'^,+ z'^,+ F{x', y\ z) =

or f(x, y, z)+ 2k{l^x + m.^y+ n.^) = 0.

Take the three lines through the vei-tex in the principal

directions as coordinate axes, so that O^ has direction-

cosines Z.p -rtio, ??3, and the equation transforms into

A,f+ A,'r+ 2/.f-0.
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The surface is therefore a paraboloid.

Since, from (1), (2), (3),

, 3F ,
SF

,
c^F „ , 9F

,

3F
,

3F ^

^dx ^dy ^dz -dx ^dy ^dz

the principal planes corresponding to X^ and X^ pass through

the vertex. The new coordinate planes are therefore the

two principal planes at a tinite distance and the tangent

plane at the vertex.

Ex. 1, 2x^ + 2f+ z^ + 2i/z-2z.v-Uy+ :v+ 7/ = 0.

The discriminating cubic is

X3_5A2+ 2A = 0.

Whence \=^^> ^^' 0; o.^ /3^ 0, say.

For the principal direction corresponding to Ao,

2ls-2m^- 71^=0,

Therefore
^3_'"3_%_ ^

1 1 V2

and k= 2d^+ vm3 + wn.^=-7^-

2
The reduced equation is therefore a?x^ + (^^y" + -f^z= 0.

V2
The equations for the vertex give x=i/=z—0, and the axis is

iV= i/, = 0.

Ex. 2. The following equations represent jjaraboloids. Find the

reduced equations, the coordinates of the vertex, and the equations

to the axis.
^
j^ ^^g+ 4.2+ ^^j^ _ ^x - 1 4^ - 22^ + 33= 0,

(ii) 4,1-2 - if - ^2+ 2yz - %x -Ay+ Sz-2= 0.

J,... (i).r + 3.2 = ..; (1,1/2,5/2); ^ =?^=?^ ;

(ii)2,.2-,/2 + x/2.= 0; (1,-9/4,3/4); ^=.^9=^.

157. CaseC: d = 0, Ai6+ Hv+ Gi^ = 0, a^O.

There is a line of centres at a finite distance, (§ 158, III.).

The discriminating cubic has one zero-root, A3, giving,

(as in §1.56), l^^m^^^
A~ H ~G '

or,smceGH=AF,. ^^=-^^ = -^.
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In this case ul.^+ vm.^+ um.^ = 0, &nd the principal plane

corresponding to A3 is indeterminate, (ij 142). It may be

any plane at right angles to Fx = Gy = Hz.

The line of centres has equations

ax+ hy -\-g.z-\-7t = 0,

hx + hy+fz+ v = 0,

which may be written

uf vg u'Jt

^-T y-t ^-l^-

1/F 1/G 1/H

Hence ^3, 7713, v.^ are the direction-cosines of tlie line of

centres.

Any point on the line of centres has coordinates

1if+ r vg+r wh+ r

F"' G~' H

If we change the origin to it, F{x, y, z) = becomes

F G H

or, since ul.^+ vi]i.^+ ivn.^ = 0,

fix, y, z)+ ~^+-^ +-^ + d = 0.

Transform now to axes through the centre chosen whose

directions are the principal directions, and the equation

further reduces to ^^^z^ ^^y2 ^^' = 0,

where ^'.^+!^+!^^+ ^.
F G H

If (r=f=0, the surface is an elliptic or hyperbolic cylinder;

if d' = 0, it is a pair of intersecting planes.

Ex. 1. A-2+ 6//-i2-;/^ + 5.r^+ 2.r+ 5y= 0.

The discriminating cubic is

0, say.
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and therefore -^=—^=-rr,
5 — z 1

and ul3+ vin^+ 1071^= 0.

Hence there is a line of centres, given by 2x+ 5j^+ 2 = 0, i/+ 2z= 0.

A point on this line is (-1, 0, 0). Change the origin to it, and the

given equation becomes
^.2^ g ^2 _ ^2 _ ^2^ 5 -^^

_
i^

which reduces to a^x^- (i'^y'^ = l.

Ex. 2. What surfaces are lepresented by

(i) 2y2- 2.y2+ 2«^- 2a;j/- ^- 2y+ 32- 2 = 0,

(ii) 26j;2+ 20/+ 10^2 - Ayz -\<ozx - ZQxy+ b%v - 36y - I62+ 25 =0 ?

Ans. (i) 6^'2_ 2/= l, axis2^+ 3= 2j/= 2s-l
;

(ii) 14r2+ 42?/2= l, axis x=y-\=z-\.

Ex. 3. Prove that the equation

5.^2 _ 4^2+ 5^2 + 4^2 - \Azx+ 4.rj/ + 16.v+ 1 6y - 322+ 8=
represents a pair of planes which pass through the line x+Z=y= z+ \

and are inclined at an angle 2 tan~W2.

158. CaseD: A = B = c = F = G = H = 0, u/^v^f.

There is a line of centres at infinity, (§ 153, IV.). If

A^, A2, \ are tlie roots of the discriminating cubic.

If Zp m.^, n^ are the direction-cosines of the principal

direction corresponding to A^, since f'^
= bc, g^ = ca, and

]^ = ah, we have

al^+Jabm^+ Jacn^ _ Jabl^+ hii\ 4- slhcn^

_Jcal^-\-\/hGii\-\-cn^~
^1

~'

whence -^ = -J = -^4

.

sja \lh vc

And since uf—vg^Q, Us/b— vja=f=0, or um-^ — vl^^O.

Let O^, O;;, O^be a set of rectangular axes whose direction-

cosines are l^, m^, n^; l^, m^, th^ '> h> ''^h> '^s-
Then l^, m^, n.^

;

^3, m^, % satisfy the equations for principal directions,

(§ 149). The equation to the surface referred to O^, 0>;, O^

is therefore
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Now l^l.^+ m^TTi^+ n^n.^ = 0,

and we can choose l.^, on^, n^ to satisfy also

u^2

+

VTTi^+wn^ = 0.

Then nj^ul.^+ vm._^+ tvn 3)= u{n.J..j^— n.J..^— v{m^n^— m^n^),

= um^ — vl^=f=0.

Therefore, if ul.^+vm^+ ivu.^ is denoted by ti\,

iv^ = 'Z(uii\ — vl^f

_ {vS-wJhf+{wJ7t-uJcfJt{uJh-vJa,f~
a+ 6+ c

Writing ii^ for id-^+ vin^-{-ivii^, the equation to the

surface becomes

Ai^;-+ Su^a;+ 2ii\z + fZ = 0,

'''+A,/ + \ V^^^iv, 2iv,\J-^^'

which may be reduced, by change of origin, to

The surface is therefore a parabolic cylinder.

The latus rectum of a normal section

_2w^_ 2{(vs/c-wJbf+{W'Ja-Us/cf+(^vs/b-Vs/af} ^

^1 (a+ b+ cf

159. Case E: a = b = c = f = g = h = 0, uf=vg = wh.

There is a plane of centres, (§ 153, V.).

As in Case D, X^ = a+ b-\-c, X^ = '\^ = 0, and

sfa sjb \fc

But since uf= vg = wh,

u _ V _w
Ja -Jb Jc

and therefore

iil.2+ vm.,

+

wn^= ul^+ vm^+wn^ = 0.

The equation to the surface therefore reduces to

\x-+ 2u^x+ d = 0,

and the surface is a pair of parallel planes.

B.G. P
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160. Reduction when terms of second degree are a

perfect square. The following method of reduction is

applicable to Cases D and E, and is the most suitable

method when the coefficients in the given equation are

numerical.

Since a = B = C = 0, f{x, y, z) is a perfect square.

Hence

?{x, y, z) = {Jax+Jby+ slczf-\-2ux+ 2 vy+ 2wz+ d.

If, (Case E), -7= = --p = -7= = /»;, the equation becomes
\la \lh sjc

(Jcix+ s/by+ Jczf+ 2k{Jax+Jby + Jcz)+ d = 0,

and represents a pair of parallel planes.

But if, (Case B), -j^=l=-7=:, the equation may be written

(Jax+ Jbij + s/czi-Xf

= 2x{xJa-u)+ 2y{Xjb-v)+ 2z(XsJc-w)+ \~~d.

Now choose X so that the planes

U=J7ix+ s/bij+ s/cz+ X = 0,

V = 2x{Xs/a-u)+ 2y{xJb -v)+ 2z{Xslc-w)+X^-d = {)

are at right angles. This requires that

_ uja+ vjb+ Wsjc

Then take rectangular axes with U = 0, V = as new
coordinate planes ^=0, >7 = 0, so that

t=
,

^-= and ^ =—T_==,
^a+6+ c 2jl.{X'Ja-uf

and the equation reduces to

i\a+ &+ c)= 2V2(xVrt- u)\

But, by Lagrange's identity,

{a+ b+ c){Z{Xj7i-uf] - {^Ja{Xs/a-u)Y

^^{vslc-wslbf;
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therefore the reduced equation may be written

^
(a+ 6+ c)^

Ex. Reduce the equations

(i) X-+ \f + .'•- - 4y,: + 2cX - Axij - 2.*;+ Ay - 2.- - 3= 0,

(ii) 9./'- + Af + Az- + 8yz+ 1 izx + 1 2*7/ + 4.^-+y+ 1 Oj + 1=0.

Ans. (i) G.^- -2vW-3 = 0, (ii) x\=f^^y.

161. Summary of the various cases. In the reduction

of the general equation of the second degree with numerical

coefficients the following order of procedure is generally

the most convenient

:

If the terms of second degree form a perfect scjuare,

proceed as in § 160.

If the terms of second degree do not form a perfect

square, solve the discriminating cubic.

If the three roots are different from zero, find the centre

(a, ^, y) from the equations ^^^~'^~^> ^"^ ^^^®

reduced equation is

X^x"+ A,2/2+ X3S-+ w*.+ *"/5+uy+ d = 0.

If one root, A3, is zero, find l^, m.^, n.^, from two of the

7^-f 'Psf 7)'f

equations •,' =~-=^ = 0. Evaluate td.^+ vm.^+ivu.^ = k.

If k=f=0, the reduced equation is

If /,: = 0, there is a line of centres, given by any two of

the equations —=— = ^ = 0. Choose (a, (3, y) any point

on it as centre, and the reduced equation is

\a:"+ X.3I/+ ucjL+ r/3 + vy+ <J = 0.
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Ex. Reduce the following equations :

(i) 3.1-2+ 5^2+ 3^-j+ 2j/2+ 'izx+ 2^7/ - 4x- - 8s + 5 = 0,

(ii) 2.rH20yHl8s2- 123^s + 12.rj/+ 22,i-+ 6j/-22-2= 0,

(iii) 3A'2_24_^2+ 822-}-16y/;- 10i;t'- 14>;j/ + 22y+2s-4= 0,

(iv) 36J';2+ 4y2 + ^2_4_y-_12^A. + 24^J/+ 4^+16_?/- 26^-3 = 0,

(v) 3^2 ^. 7^2+ 3^2+ iOj/2 - 22^+ lOj^^j/

+

4jp - 12^ - 45+ 1 = 0,

(vi) 6y2 - 18^/2 - 62JC+ 2^3/ - 9^7+ 5^/ - 52+ 2= 0,

(vii) 5^2+ 26j/2+ 1022+ 4^2+ 1 42J,+ g^^ _ 8_^ _ jg^ _ lo^+ 4= 0,

(viii) 4*2 + 9y2+ 36j2_3g^2+ 24e.y_12jr.i/-10.r+15?/- 302+ 6=0,

(ix) ll?/2+ 14y2+ 82^ + 14^j/-6j^-]6?/+ 22-2= 0,

(x) 2^2_ 7^2^.222 _ iq?/2-82j»;- 10,rj/+ 6.r+ 12j/-6j + 5=0.

J?js. (i) 3^2+ 2/+ 622= 1, (ii) 14:p2+ 26j/2= 2^912,

(iii) 14a;2- 273/2=1, (iv) 4lA'2= 28y,

(v) 3^-4^2-1222=1, (vi) 14.v2-26/==2v^9T2,

(vii) 14x-2+ 27/ = l, (viii) 49.^2-35.^^+ 6=0,

(ix) 3.^2+ 4^/2-1822=1, (x) .r2+ 2^/2 -4*2= 0.

162. Conicoids of revolution. If two of the roots of the

discriminatino- cubic are equal and not zero, the equation

^{x, y, z) = reduces to

\(^'+y')+\^^+~=o, (i)

or \{cv^+ i/)+ 2kz = 0, (ii)

or \{x^+ y'^)+ d' = (iii)

The surface is therefore, (i), an ellipsoid,, hyperboloid, or

cone of revolution, (ii), a paraboloid of revolution, or (iii), a

right circular cylinder. These are, if we exclude the sphere,

the only conicoids of revolution, and therefore the con-

ditions that F(x, y, z) = should represent a surface of

revolution are the conditions that the cubic should have a

repeated root different from zero, viz., (§ 146),

X, = a-'^ = 6-^Cc-f; (1)'

f g h

or \ = a, (h-a){c-a)=f, g=^0, h = 0; (2)

or \ = h, (c-b)(a-h) = g", h = 0, /=0; (3)

or \^c, (a-c){h-c) = lr, f=0, g = (4)
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If equations (1) are satisfied,

F(x, y, z) = \{x'+ y'+ s2)+ 2ux+ 2 vy+ 2ivz + d

And therefore any plane parallel to the plane '-.+ '- + - =
J 9 '^

cuts the surface in a circle. The axis of the surface is the

line through the centres of the circular sections, that is,

the perpendicular from the centre of the sphere

\ (.«'+^H z~)+ ^ux+ 2 ry -\-2wz -|- d =

to the planes of the sections. Its equations are therefore

Similarly, if equations (2) are satisfied, the equations to

the axis are
a;_^^,/,<, ^ y±vla

^

z+w/a

s/h — a sjc — a

Ex. 1. Find the right circular cylinders that circumscribe the

The enveloping cylinder whose generators are parallel to the line

xll=ylni=zjii has equation

Conditions (1) give

m^ ?i^\ \ f l'^ . »i- . n^\ \ fl- ,
nfl

,

«-^

aAa^+^+^;=p^^+F+c^;==M^+p+c^.
which can only be satisfied if a= h= c, or l=zm= n= 0. (If rt = & = f,

the ellipsoid becomes a sphere, and any enveloping cylinder is a right

cylinder.) Using conditions (2), (3), (4), we obtain

l= Q, {m2(a2 - C2) + «2(a2 - 62)}{ ,^2^2 4. „2^2} ^ Q,

or m=0, {n\l)^-a'')+ l-{h'^-c^)]{n-a?-^l'c''}= Q,

or n= 0, {l%c'^-h'^+ m\c^-a?)]{l%'^ + m'^a?} = 0.

If a >b>c, the second only of these equations gives real values for

the direction-cosines of a generator, viz.,

I _ 'w_ w

If A is the repeated root of the di.scrin\inating cubic,

/>- \ a- c- J
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The reduced equation to the cylinder is

or x^+y^= b'^.

Ex. 2. Find the right circular cjlindei's that can be inscribed in

the hyperboloid ^^o
_^ .-^^^ _ 3^2^ 1,

Ans. A{x''-+ y^-2z^-\) + {x±'JYbzf^0.

Ex. 3. Prove that

^^^.2 j^y'i+ £2 ^yz-zx- xy - 3.^• -% - 9^+ 21 =

represents a paraboloid of revolution, and find the coordinates of the

focus. Ans. (1, 2, 3).

Ex. 4. Find the locus of the vertices of the cones of revolution

that pass through the ellipse

^•>H?/2/62= l, 2= 0.

Ans. x= 0, ^, +|=-l; ^= 0, ^-^= 1-

Ex. 5. The locus of the vertices of the right circular cones that

circumscribe an ellipsoid consists of the focal conies.

Ex. 6. If f{x, I/, s)= represents a right cone of semi- vertical

f g 1^ \f g h.j

Ex. 7. If /(*', y, z) = \ represents an ellipsoid formed by the

revolution of an ellipse about its major axis, the eccentricity of the

generating ellipse is given by

a + b+ c qh

Ex. 8. If the axes are oblique, F(,r, ?/, z)= Q represents a conicoid

of revolution if

fix, y, z) - k(x'^+y^ + z^ + 2yz cos A + 2zx cos /x+ 2xy cos v)

is a perfect square.

Hence shew that the four cones of revolution that pass through the

coordinate axes are given by ayz+ bzx+ cxy= 0, where

a b c , -a b c

. „A . ,u . „v' . „A „/x ,v'
sni^- sin^^ sm-;^ sin-- cos-^^ cos-^

a _ -b (? ^ a, b —c

„ A • o/x „v' IA „w • 9V
cos-- sin-^ cos^- cos'^- cos-^- sin--

Z '2 Z Z A Z

Ex. 9. Find the equations to the right circular cones that touch

the (rectangular) coordinate planes.

A 718. x'^+y^ + z^±2yz±2zx±2xy= 0, (one or three of the negative

signs being taken).
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INVARIANTS.

163. If the equation to a conicoid F(ft-, y, z) = is trans-

formed by any change of rectangular axes, the expressions

rt+ 6+c, A+ B+ C, D, S

remain unaltered in value.

If the origin only is changed, f(x, y, z) is unaffected, and

therefore a+ h+ c, A+ B + C, and D are unaltered.

If now the coordinate axes be turned about the origin

so that fix, y, z) is transformed into

f[{x, y,z)^ a,x^+ b,y^+ c,z^^+ 2f,yz+ 2g,zx+ 2h,o:y,

then f{x, y, z)— \ {x-+ y-+ z-) becomes

f^{x,y,z)-\{,^-Vf-^-z;^).

If /(a',7/,s)-ACTH2/H5^) =

represents two planes,

f^{x,y,z)-\{x}+ y'+ z'') = Q

will also represent the planes. And \ is the same quantity

in both equations, therefore the equations

a— X, h, g
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will also represent tlie cone. And A being the same (iiuintity

in both e<|iuitions, the equations

a-X, />,

h.,b-\,

ih 't-
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2. Find the eccentricity of a section of the surface

by a plane through the line x—y= z.

3. What is the nature of the sui'face given by

4. Prove that the cylinder and real cone through the curve of

intersection of the conicoids

ai'e given by

b (,^2 - 2cy) - a{f - 2c.);) = 0, x'^ - y'^+ {a-h)z^+ 2c{x- y)= 0.

5. Prove that three cones can be drawn through the curve of

intersection of the conicoids

.r2+ C22+ 2%+ a2= 0, ?/2+ dz'^+ iax+¥= 0,

and that their vertices form a right-angled triangle.

6. Prove that

(aX-2+ 6z/2+ Cl2 _ 1 )
{l^ + !|!+t^ = (/,; + ,„ y+ nZ - 1 f

represents a paraboloid touching the surface ar''''-]-bii'^+ cz^=\ at its

points of section by the plane "^.r+ «?^-|- ??? = !. Prove also that its

,,,,,, v ax hi cz
axis IS parallel to the hne -= -^= -.

7. Shew that the conicoids

(rti.r+ 61 ?/+ c^zf+ {a.^v+ b.^y + c.zf + (a.,r+ b.jy + c^zf= 1,

(aix+ a^y+ a^zf+ {b^x+ b.^y + h^zf + (cri'

+

c.^y + Cgs)^= 1

are equal in all respects.

8. Prove that if a^^b^+ (?= 3abc,

ax- + by^+ cz^+ 2ayz+ 2bzx+2cxy+ 2tix+ 2vy+ 2ivz+d=0

represents either a parabolic cylinder or a hyperbolic paraboloid.

9. If F{x, y,z) = represents a cylinder, prove that

?)S 3S 3S
9<x 'dh _ "dc

'da db 'dc 9S 3S 3S
, , , ^ , , . • "da 'db 'dc

and that the area of a normal section is tt

3D 3D 9D\^
da^db^dc)
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10. Prove that if F(.r, y, 2)= represents a paraboloid of revolution,

and that if it represents a right circular cylinder we have also

f 9 ii

11. The principal planes oi f(x, y, z) = l are given by

a; 9/, z

;di -^ 'df

'dx' 'dy' dz

3F 9F SF
dx' dy' dz

where F(,r, _?/, s) = is the cone reciprocal to /(.r, y, z)= 0.

12. Prove that the centres of conicoids that touch yz=mx at its

vertex and at all points of its generator y=kx, kz=m, lie on the line

//= 0, kz= m.

13. Prove that z{ax+hy+ cz)-\-cL.v+ Py= represents a paraboloid
and that the equations to the axis are

ax+by+ 2cz--=0, {a^+ b'^)z + a/x +b/3= 0.

^^^
ji

a~J)~2c
'14. A hyperbolic paraboloid passes through the lines ' ^^ ^

- =--T= ^; ^^^'^^ li^s ^^^ system of generators parallel to the plane

2= 0. Shew that the equations to the axis are

M4=»- '=G-i)+«=(^>)=o-

15. Paraboloids are drawn through the lines ?/= 0, z= h; x= 0,

z= -h; and touching the line x=a, y= b. Shew that their diameters
thi-ough the point of contact lie on the conoid

a(y-b){z-/iy-b(x-a){z + />f= 0.

16. Given the ellijisoid of revolution

0-2 ,,2 I -2

^,+^—= -1, («->62).
«- b-

^ '

Shew that the cone v/hose vertex is one of the foci of the ellip.se 2= 0,

x^la^+y^jb'^= \, and whose base is any plane section of the ellipsoid is

of revolution.

17. The axes of the conicoids of revolution that pass through the

six points {±a, 0, 0), (0, ±6, 0), (0, 0, ±c) lie in the coordinate planes

or on the cone .,_ o ,2_,,2 ^2_,,2

o- ¥ c-

18. Prove that the equation to the right circular cylinder on the

circle through the three points {a, 0, 0), (0, b, 0), (0, 0, c) is
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19 Find the equation to the paraboloid which has

as generators and the other system parallel to the plane x+i/+ z= 0.

Find also the coordinates of the vertex and the equations to the axis.

20. The axes of cylinders that circumscribe an ellipsoid and have a

cross-section of constant area lie on a cone concyclic with the ellipsoid.

21. A conicoid touches the plane z = and is cut by the planes .r= 0,

y=o'in two circles of variable centres but constant radii a and b.

Shew that the locus of the centre is

22. A, B, C are the points (2a, 0, 0), (0, 2ft, 0), (0, 0, 2c), and the

axes are rectangular. A circle is circumscribed about the triangle

OAB. A conicoid passes through this circle and is such that its

sections by the planes x= 0, i/ = are rectangular hyperbolas which

pass throTigh O, B and C ; O, C and A respectively. Prove that

the equation to the conicoid is

,^.2 ^. ^2 _ ^2^ 2 Aj/2+ 2[xzx -2ax-2h/+ 2cz^0,

where A and jn are parameters, and that the locus of the centres of

such conicoids is the sphere

x'^+^^ + z'^-ax-by-cz—0.

23. Shew that the equation to the conicoid that passes through the

vertices of the tetrahedron whose faces are

.t'= 0, 2/
= 0, 2=0, .vla+j/jb + z/c= l,

and is such that the tangent plane at each vertex is parallel to the

opposite face, is

24. Shew that the equation to the ellipsoid inscribed in the

tetrahedron whose faces are x=0, y= 0, s= 0, xja+ylb+zjc^l, so as

to touch each face at its centre of gravity, is

"o^ +'F^ c2 ^'hc ^ ca'^ ab a b c
"^

Shew that its centre is at the centre of gravity of the tetrahedron

and that its equation referred to parallel axes through the centre is

x"^ f f^^/z zx xi^\_
cC'^ F-^ c^^ be ca'^ ab 24"

25. If the feet of the six normals from P to the ellipsoid

a- b- c

lie upon a concentric conicoid of revolution, the locus of P is the cone
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and the axes of symmetry of the conicoids lie on the cone

a- {I)- - c-)x' + 62(c2 - a^)/+ c2(a2 _ h'^)r = 0.

26. If a.v- + h>f''- + cz^-\-2fyz+ 'ilgzx-'r'ih.v>/^Q represents a pair of

phines, prove that the planes bisecting the angles between them are

given i)y

ax + h>/+gz, hx+ h>/+ fz, gx +/?/ + cz

F-i, G-\
'

H

27. Prove that

(.r-+ oC'KP + y) + (f- + /52)(y + a.) + (z^+ y^)(r^ + fS)

- Zu.j/z - 2/3zx - 2yx>/+ 2.>i2/3y - fx/3 - rxy)

+ 27/(2yoL -f3y-f3a.)+ 2 : {2<l(3 - yc*. - yfi)=

represents a cylinder whose axis is

A--a=y-/5= s-y.
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CHAPTER XII.

THE INTERSECTION OF TWO CONICOIDS.

164. Any plane meets a conicoicl in a conic, and therefore

any plane meets the curve of intersection of two conicoids

in the four points common to two conies. The curve of

intersection is therefore of the fourth degree, or is a quartic

curve.

If the conicoids have a common generator, any plane

which does not pass through it meets it in one point and

meets the locus of the other common points of the conicoids

in three points, and therefore the locus is a cubic curve.

Thus the quartic curve of intersection of two conicoids

may consist of a straight line and a cubic curve.

Ex. The conicoids zx='if-^ xy = z have OX as a coiumon generator.

Their other common points lie on a cubic curve wliose equations may-

be written x=t^ ?/= ^^ s= i!-\ where t is a parameter.

Again, an asymptote of one of the two conies, in which

a given plane cuts two conicoids, may be parallel to an

asymptote of the other. In that case the conies will inter-

sect in three points at a finite distance, and the locus of

the common points of the two conicoids which are at a

finite distance will be a cubic curve.

Ex. We have seen that three cylinders pass through the feet of

the normals from a point (a, jtf, y) to the conicoid

mt, • ^- .r-o. 11-^ z-y
Iheir equations are = , = '-,

^ ax by cz

or yz{h-c)- hyy+ c(iz= 0, zx (c - «) - cou+ ayx= 0,

xy (« - h) - afSx+ hcjLy= 0.
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Their curve of intersection is a cubic curve whose cfjuations may bo
written

</. /i v
•^'^

1 - at' ^^ Y~ht' ^^\-ct

One asymptote of any phine section of the lirst lies in the phme

and one asymptote of any phme section of the second lies in the plane

z+^ = 0.
c — a

Hence any plane meets the two cylinders in two conies such that
an asymptote of one is parallel to an asymptote of the other, and
the conies therefore intersect in three points at a finite distance.

165. The cubic curve common to two conicoids. Suppose

that the locus of the common points of two conicoids S^ and

So consists of a common generator AB and a cubic curve.

Any generator, PQ, of S^, of the opposite system to AB,

meets S._, in two points, one of which lies upon AB and the

A

Fig. 49.

other upon the curve. Let P, fig. 49, be the first of these

points and Q the second. The plane containing AB and PQ
meets the curve in three points, one of which is Q. But
all points of the curve lie upon Sj and the plane intersects

S^ in the lines AB and PQ, therefore the other two points

must lie upon AB or PQ, or one upon AB and one upon PQ.

Neither can lie upon PQ, for then PQ would meet the

surface S., in three points, and would therefore be a generator
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of S.,. Therefore the cubic curve intersects the common

generator AB at two points.

Let AB meet the curve in R and S, and let P move

along AB. As P tends to R, Q tends to P, so that in the

limit PQ is a tangent at R to the surface S^, and the plane

of AB and PQ is then the tangent plane at R to the

surface S.,. But the plane of AB and PQ is tangent plane

at P to the surface S^ for any position of P. And therefore

the surfaces S^ and S2 have the same tangent plane at R.

Similarly, the surfaces also touch at S. But we have

proved, (§ 134, Ex. 10), that if two conicoids have a common

generator, they touch at two points of the generator.

Hence the locus of the common points of two conicoids

which have a common generator consists of the generator

and a cubic curve, which passes through the two points

of the generator at which the surfaces touch.

Ex. 1. Theconicoids 5.r2-j/2- 22J«; + 2^3/+ 207+ 2^= 0, (1)

2x^-zx+x + i/=0, (2)

have OZ as a common generator. Any plane through the generator

is given hy 7/= tx. To find where tliis ph\ne meets the cubic curve

common to the conicoids, substitute in equations (1) and (2). We
obtain ^_Q^ x{5 + 2t)-z{t+ 2)+ 2{t+ l)=0, (3)

x=0, 2x -z + t+ \ =0 (4)

The points corresponding to .r= lie upon the common generator.

The remaining point of intersection of the plane and cubic has,

from (3) and (4), coordinates

x=t{t+\\ z^{2t+ \){t + \); and y= tx= t%t+ l) (5)

But t is a variable parameter, so that we may take the equations (5)

to represent the curve. The points where the curve meets the

common generator OZ are given by ^= 0, t= -\. They are the

points (0, 0, 1), (0, 0, 0). It is easy to verify that the common tangent

planes at these points are y= 0, x+y= Q.

Ex. 2. Prove that the conicoids

x'^-y'^-yz+zx-\-x-2y+z= 0,

x^+ 2y'^+^z^-Zyz+ zx-Axy+x-2y+ z= Q

have x=y=z as a common generator. Prove that the plane

x-y= t{y-z)

meets the cubic cui've which contains the other common points in the

P'^i"^
_ (4<2+ 4< + 3)(l-0 _30-0 ,_(4^+ l)(<-l).

'^"'
Ai^+ bt ' ^ Af + bt'

^
Ai^+bt

'
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shew that the cubic meets tlie common generator at the origin and tlie

point .v=i/=z= -
15, and verify that the surfaces have the same tangent

{)hines at these jioints.

166. Conicoids with common generators. The cubic

curve may deoenerate into a straight line and a conic or

into three straiojlit lines.

Let O and P, (fig-. 50), be the points of the common
generator at which the surfaces touch and let the measure

of OP be y. Take OP as s-axis and O as origin. Let OX
and PG be the other generators of the conicoid S, which

pass through O and P. Take OX as a'-axis, and the parallel

tin-ougli O to PG as y-axis. Then, since

x = 0,y = 0; y = 0,z = 0: z = y,a: =

are generators of S^ its equation may be written

2yz+ 2gzx+ 2hxy-2yy = (1)

Fia. 50.

And since the tangent planes at the origin and (0, 0, y)
to So are 2/ = 0, x = respectively, the equation to S.^ is

«i«2 4- by-+ 2yz+ 2g^zx+ 2k^xy -2yy = (2)

The tangent planes at (0, 0, z') to Sj and S.^ are given by

gz'x -y(y-z') = 0, g^z'x - y {
y-z) = 0,

and hence if g^g^ the surfaces touch at all points of the
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common generator OZ. We shall consider meantime the

case where g^f^g^ From (1) and (2), by subtracting, we

obtain a^x^-^rh^y''^2zx{g^-g)-\-2xy{h^-h) = 0, (3)

which clearly represents a surface through the common

points of Sj and Sg. It is in general a cone, having OZ as

a generator, and in general, the locus of the common points

of Sj and S2 is a cubic curve which lies upon the cone.

But if equation (3) represents two intersecting planes, the

cubic will degenerate. The condition for a pair of planes is

h^(gi—gy= 0, and hence 6^ = 0.

If h^ = 0, PG, whose equations are a; = 0, s = y, is a generator

of So, and equation (3) then becomes equivalent to

x = 0, a^x+ 2z(g^-g)+ 2ij{h,-h) = ().

Hence tlie common points of S^ and S.^ lie upon a conic

in the plane

a,x+ 2z{g,-g)+ 2y(h,-h) = 0,

and the two common generators, OZ and PG, in the plane

x = 0.

If, also, % = 0, OX is generator of S^. The plane of the

conic then passes through OX, and is therefore a tangent

plane to both conicoids. The conic therefore becomes two

straight lines, one of which is OX, and the other a generator

of the opposite system. But OX and PG are of the same

system, and the conic consists therefore of OX and a

generator which intersects OX and PG. The complete

locus of the common points of S^ and S., is then a skew

quadrilateral formed by four common generators.

If the conicoids touch at all points of the common

generator OZ, g = g^, and equation (3) becomes

a^x^-\-2{\ - h )xy + h^y- = 0,

which represents a pair of planes through OZ.

If these planes are distinct, they meet the conicoids in

two other common generators of the opposite system to OZ.

If they are coincident the conicoids touch at all points of a

second common generator.
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Ex. 1. The conicoids

2.f- -y"-\- Ai- + ;3j/?+ G:.'' + 4,ty/ - 2.f +// - A- = 0,

±c--f- 5^- - (5//^ - 3:.'.'+ 4.*v/ - ±v+i/ + r)£=

have two ceiuiiuon genei-ators and a couiiiion conic section.

(The generators are .f= 0, >j + z— \ ; i/= 0, z->rx=\.)

Ex. 2. The conicoids

3?y2+ 42^+ 6j/3 - bzx - xy + ;/ + ^ = 0,

4y2 + 6j2 + 9^2 _ 3- y+ 2 y + 3: =

have OX for a common generator. Find the locus of tlicir otlior

common points.

A n s. 3. f+ 1 = - 2>/ = Az, and x+y + z+l = 0, ( 2// + 3.:)- + 2y + G.- = 0.

Ex. 3. The conicoids

2z^ - 2>/z - 5zx - Gx>/+ z= 0,

4z^ - 6>/z - \Ozx + Ixj/ + 2z=

have four common generators.

(y = 0, z= ; 2= 0, x=0 ; x=0, ^i/-2z= l ; ?/= 0, 5.r-22= l.)

Ex. 4. The conicoids

z^+ di/z+ 6zx - Zxy - 1 2?= 0,

4j2 - 2?/2 - Azx+ 2.iv/ + 82 =

have two conimon generators and touch at all points of these generators.

Ex. 5. Prove that the intersection of tlie coniccnds

22 + 22-.y + 2=0, y'^-'2ij-x-\=^

is a quartic curve whose equations may be written

.v=A*-2, v/ = A2+l, 2= A-1.

Ex. 6. Find the points of intersection of the plane A" -9;/- 42=
and the quartic curve which is common to the parabolic cylinders

22+ 102-y + 26 = 0, /-2j/-,r + 2 = U.

Am. Two coincident at (17, 5, -7) ; (2, 2, -4) ; (82, 10, -2).

Ex. 7. Prove that the conicoids

3x'2+ 42- - 4//2 - zx - 2xy - 2x+ 22= 0,

^.2 _ yi _ 8^2+ 7^2+ 1 22.^ - 1 1xy - 2x + 22 =

touch one another at all points of the common generator x=y = z, and

that their other common generators lie in the planes

2{x-yf+ \Z{x-y){y-z)+ \2{y-zf= 0.

Ex. 8. If two cones have a common generator, their other common
points lie on a cubic curve which passes through both vertices.

Ex. 9. If two paraboloids have each a system of generators parallel

to a given plane and touch at two points of a common generator of the

syste"n, they touch at all points of the generator.
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Ex. 10. Prove that the three cylinders

y{a-z)= a^, z{a-.v)= a\ x{a-y)= a^

pass through a cubic curve which lies on the surface .rv/^ + a^— 0,

Ex. 11. Prove that if the cubic curve

2 _ 2 _ _2_
*''~^=^' y~t-ir ^~'t-c

meets a conicoid in seven points, it lies wholly on the conicoid.

Shew that the curve lies upon the cylinders

Ci = y.(6-c)-2^ + 2£= 0,

C2 = zx{c - a) - 2s+ 2.r= 0,

Cs = xii{a-h)-'ix+2y= 0,

and hence that the general equation to a conicoid through it is

ACi+/i.C2 + vC3= 0.

Prove that the locus of the centres of conicoids that pass through

the curve is

(6 - c){c -a){a- h)xyz + 2(6 - c)(i + c - ^a)i/z - 22(6 - c)x= Q,

and that this surface is also the locus of the mid-points of chords of

the curve.

Shew that the lines

2 2 2_2__2_2
''~a-l) ~a-c' ''~b-c b-a' ' c-a ' r-h

are asymptotic to the curve, and that the locus of the centres passes

through them and through the curve.

Ex. 12. Prove that the general equation to a conicoid through the

cubic curve given by _^_^^ ^^2^ ^^^3

is A (.r?/ -z)+ix{zx- 3/2)+ v(.^•2 -y)-=0,

?nd that the locus of the centres of such conicoids is the surface

2A-3-3.r2/+ s=0.

Verify that this surface is also the locus of the mid-points of chords

of the curve.

Ex. 13. The equations to a cubic curve are

x=ait^+ hit'^+ c^t, y = a.f+ h.f+ c.^t, z= a^l?+ h^fi-\-c^t.

Prove that the cone generated by chords through the origin is

given by wu= v^, where

?« = Aj.r 4- A2?/ -1- Agz, V = Bi,i- -I- B.?/ -f B^ • , w = Ci.r+ C^/+ CjJ
;

^^ -'- ^ - "1, 6„ c,

a 21 b.2, Co

Shew that the curve lies on each of the conicoids, (two of which

have a common generator),

and that the locus of the centres of conicoids that pass through it is

2ir{w^ - Av) -A{iup- Au) = 0.

Ai =^, etc.; Ae
OUi
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Ex. 14. Prove that the equations

determine a cubic curve, which lies upon three cylinders whose
generators are parallel to the coordinate axes.

Ex. 15. Prove that the cubic curve given by

a,fi + Iht''+ c,t+ d,
.'/-

aofi+ b.,fi + c.,t+ d..

aifi+ b/- + Cit+ d^ ai^^ + b/^+ Cit+ c/i

lies upon the conicoids

nl = Al.r + A.,>/+ A:i^ + A^, v.^ = B^.r+B.,_// + B..: + B^,

«3= Cj.i-+ C.,)/ + C.j2 + C4, u^ = D,.r + Do// + D.,: + D^

where

3A
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the equation S+ AS'= represents a conicoid through the

curve of intersection. This conicoid is a cone if

(t+ \a, ]i-\-\]i', + \g\ ^i+ \u' =0,

h-\-\li, b+ \b', f+Xf, v+ \v'

O+ Xg, f+\f', c+ Ac', w-\-\w'

u-\-X^t', v-\-Xv', w+ Xiv', d+ Xd'

and this equation gives four values of X. If these are

Xp A2, A3, A4, then (a, /3, y), the vertex of the cone corre-

sponding to Ap is given by

Sa+AiS'„= 0, S^+ AiS'^ = 0, S^+ AiS'^ = 0, S, + AiS', = (), (1)

where Sa = —-, etc. Again, the polar plane of (a, ,8, y)

with respect to S + julS' = has for equation

x(S,-{-lu.S'^) + y{S^ + jULS'p)-^z{Sy+ iuiS'y) + {St+ l(JLS't) = 0,

which by means of the relations (1) reduces to

(fx-X,)(xS\+ yS'^+ zS\+ S\)=0.

The polar plane of (a, ^, y) with respect to any conicoid

through the curve of intersection is therefore the polar

plane with respect to the conicoid S'. Hence this plane is

the polar plane of (a, ^, y) with respect to the three cones

corresponding to A.,, A3, A4, and thei-efore passes through

the vertices of these cones. Thus the plane through the

vertices of any three of the cones is the polar plane of the

fourth vertex with respect to any conicoid of the system,

or the four vertices form a self-polar tetrahedron.

168. Conicoids with double contact. If two conicoids

have common tangent planes at two j)oints they are said

to have double contact.

If tiuo conicoids have double contact and the line

joining the points of contact is not a common generator,

their curve of intersection consists of two conies.

If the points of contact are A and B, any plane through

AB meets the conicoids in two conies which touch at A

and B. Take AB as (/-axis and any two lines through
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a point on AB as x- and s-axes. Let the conies in wliidi

the .»;^-pUine cuts the conieoids be

/= ax'+ 2hxy+ by'+ 2gx + 2/// + c = 0.

and /+ \x' = 0.

Then the equations to the two conieoids are

f+s{Ix+ m>j + nc-\-2^) = i), ......(1)

f-{-\x^-+ z{l'x+m'y+n'z+p') = (2)

But the sections of the conieoids by the ?/5;-planc also

touch at A and B, and therefore their equations are of the

^«""s
<p{y,z) = {), <p(y,z)+Xz^ = 0.

The sections of the conieoids by the plane x = are given

^y by'+ 2fy+ c-\-z{my +7iz+2j) = 0,

by-+ 2fy-\-c-[-z{my + n'z+i>') = 0,

and therefore m =m and p=j/.

From (1) and (2), by subtraction, we have

\x'+z{{l'-l)x-i-{n'-i})z}=();

tlierefore the common points of the two conieoids lie in two

planes which pass through AB, or the curve of intersection

consists of two conies w^iich cross at A and B.

If AB is a common generator of the two conieoids, the

other common points lie on a cubic curve, which may, as

we have seen in § 166, consist of a straight line and a

conic, or three straight lines. In either case the common

points lie in two planes. In the first case, if the conmion

generators AB and AC meet the conic in B and C, the coni-

eoids touch at the three points A, B, C. For the tangent

plane to either conicoid at B is the plane containing AB

and the tangent to the conic at B, and the tangent plane

to either conicoid at C is the plane containing AC and

the tangent to the conic at C ; also the plane BAC is the

common tangent plane at A. In the second case, the

common points of the conicoid lie on the sides of a skew

quadrilateral and the conieoids touch at the four vertices.
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169. // tivo conicoids have two common 'plane sections

they touch at ttvo points, at least.

The line of intersection of the planes of the sections will

meet the conicoids in two common points A and B. The

tangents to the sections at A are tangents to both conicoids

at A, and therefore, since two tangents determine the tangent

plane at any point, the conicoids have the same tangent

plane at A. Similarly they touch at B. If one plane

section consists of two generators CA and CB, the conicoids

also touch at C. If the other also consists of two generators

the conicoids touch at their point of intersection, and thus

touch at four points.

The analytical proof is equally simple. If S = is the

equation to one conicoid, and

u = ax+hy-\-cz-\-d= (), v = ax+ b'y+ (^'^+ d' =

represent the planes of the common sections, the equation

to the other conicoid is of the form

S+ \uv = 0.

If A is the point (a, /3, y), then

u' = aa.+ b^+ cy-\-d = 0, and v =aa.+ b'l3+ cy-{'d' = 0. (I)

The equation to the tangent plane at A to the second

conicoid is

xSa+yS^+ zSy+St+ \{uv + vu') = 0,

or, by (1), a;S„+ 2/S^+ 2;S^+ St = 0,

which represents the tangent plane at A to the first conicoid.

Hence the conicoids touch at A, and similarly they touch

at B.

170. The general equation to a conicoid having double

contact with S = 0, the chord of contact being u = 0, u = 0, is

S+ \n^+ 2/xuv + vv^ = 0.

For the tangent plane at A is

a-'Sa -{yS^+ zSy+ S, + 2Auu'+ 2// {uv'+ vu')+ Iwv' = 0,

or, since u' = ?/ = 0, xS„_-\-yS^+ zSy-\-St^O.

Thus the conicoids touch at A, and similarly, at B.

Again, three conditions must be satisfied if a conicoid is to
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touch a triveii plane at a <>-iven point, and tlicrerore the

general e(iuation should contain three disposable constants,

whicli it does.

Cor. A focus of a conicoid is a sphere of zero radius

which has double contact with the conicoid, and the corre-

sponding directrix is the chord of contact.

171. Circumscribing conicoids. If two conicoids toucli

at three points A, B, C and none of the lines BC, CA, AB is a

common generator, then the conicoids touch at all points of

their sections by the plane ABC.

Since the conicoids touch at B and C, their connnon }5©ints

lie in two planes which pass through BC, (§ 168). Since

these planes pass through A, they must coincide in the

plane ABC. The curve of intersection of the surfaces con-

sists therefore of two coincident conies in the plane ABC,

and the surfaces touch at points of their section b}^ the

plane.

When two conicoids touch at all points of a plane section

one is said to be circumscribed to the other.

Ex. 1. If two conicoids have a connnon ])lane section, their other
points of intersection lie in one plane.

Ex. 2. If thx'ee conicoids have a connnon plane section, the i)lanes

of their other connnon sections pass through one line.

Ex. 3. The locus of a point such that the square on the tangent
from it to a given sphere is pi'oportional to the rectangle contained by
its distances from two given planes is a conicoid which has double
contact with the sphere.

Ex. 4. Two conicoids which are circumscribed to a thiid intersect

in plane curves.

Ex. 5. When three conicoids are circumscribed to a fourth, tliey

intersect in plane curves, and certain sets of three of the six planes of

intersection, one from each pair of conicoids, pass tln-ough one line.

Ex. 6. Prove that the ellipsoid and sphere given by

.r2+ 5y2+ 14j2= 200, 5 (.1-2+^24.52) -64.1- -I- 362+ 20=

have double contact, and that the chord of contact is x'=8, z= 2.

Ex. 7. If a system of conicoids has a connnon conic section, the

polar planes with respect to them of any point iu the plane of the

section pass through one line.
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Ex. 8. If two conicoids have two common generators of the same

system, they have two other common generators.

Ex. 9. The centres of conicoids which have double contact with

the surface
ax'^+ hf+ cz^^l

at its points of intersection with the chord x= ol, v/ = /5, and intersect

the plane 0=0 in a circle, lie on the line

' acL b(3 a b

Ex. 10. A sphere of constant radius r has double contact with the

ellipsoid _j.2 ,„2 ,2

Prove that its centre must lie on one of the conies

.r
.+ -^^.= 1

'
h'^ — d^ c^ — d^ d^

g2 _j;2 ,.2

x^ -ifi ^ r^
2= 0, ^ 2+7:2^=l-"2-

Examine when the contact is real and when the sjAere lies wholly

within the ellipsoid. Cf. § 130.

Ex. 11. If a conicoid is circumscribed to a sphere, every tangent

plane to the sphere cuts the conicoid in a conic which has a focus at

the point of contact.

Ex. 12. If a conicoid is circumscribed to another conicoid, the

tangent plane to either at an umbilic cuts the other in a conic of

which the umbilic is a focus.

Ex. 13. Any two enveloping cones of the conicoid

ax'--\-by'--\-cz^=\

whose vertices lie on the concentric and nomothetic conicoid

ax^-^-bjf'-^-cz^— lc^

have double contact.

Ex. 14. The centres of conicoids which have double contact with

a given conicoid so that the chord of contact is parallel to a given line

lie in a given plane.

Ex. 15. If two cones have a common circular section, they have

double contact, and if the line joining their vertices meet the plane of

the circle in P, the chord of contact is the polar of P with respect

to the circle.

Ex. 16. If a sphere has double contact with an ellipsoid, the chord

of contact is parallel to one of the principal axes, and the angle

between the planes of the common sections of the sphere and the

ellipsoid is the same for all chords parallel to a given axis.
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172. Conicoids through eight given points. An intinite

number oL' conicoids can be i'ound to })a.s.s thron<i;li ci^bt

given points.

Take A and B any otber two fixed points. Tbeii one

conicoid can be found to pass through A and the eight

given points, and one to pass through B and the eight given

points. Let the equations to these conicoids be S = 0, S' = 0.

The equation S+ AS' = represents a conicoid which passes

through all the points common to the conicoids given by

S = 0, S' = 0, and therefore tln-ougli the eight given points.

xVnd any value can be assigned to the parameter A ; there-

fore an intinite number of conicoids can be found to pass

through the eight given points.

The locus of the common points of S = 0, S' = is a

quartic curve. Hence all conicoids through eight given

points pass through a quartic curve.

Cor. One conicoid, in general, passes through nine given

points, but if the ninth point lies on the quartic curve

through the other eight, an infinite number of conicoids

passes through the nine.

173. Tlie polar planes of a given iwhit ivitJi respect to

the conicoids through eight given points pass througli a

fixed line.

Any conicoid through the eight points is given by
S-1-AS' = 0, where S = and S' = represent fixed conicoids

through the points. The ecjuation to the polar plane of

(a, /3, y) with respect to the conicoid S-f-AS' = is

a;Sa+ .VS^+:S^+ S, + A(.'-S'„+ //S'^+:S;+ S',) = {).

Hence, whatever the value of A, the polar plane passes

through the fixed line

a'S„+ //S^+ :S^+ S, = 0, xS\+ yS'^+ : S',+ S\ = 0.

Ex. 1. If four conicoids pass tlirough eight given points, the polar

planes of any ])oint with respect to them have the same anharn)onic

ratio.

Ex. 2. Tlie diametral pianos of a given line with respect to the

conicoids through eight given j)oints pass through a fixed line.
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Ex. 3. TFie polars of a given line with respect to the conicoids

through eight given points lie on a hyperboloid of one sheet.

If Aj, (aj, /3i, yi) and Ao, (olj ySg, ji) are points of the given line,

and we denote o , o , o , o i r.

and xSa.. + >jSp.,+zSy. + St.i by Pa.,,

then the equations to the polar of AjA., with respect to the conicoid

S+ AS' = Oare
p,^ + AP'„^ = 0, Pa,+ AP'a,=0.

The locus of the polars is therefore given by

Pa,P'ao-Pa.,P'a,=0.

Ex. 4. The pole of a given plane with respect to the conicoids

through eight given points lies on a cubic curve, the intersection of

two hyperboloids which have a common generator.

Let Aj, (oLi, ^1, yj), A^, (a..,, ^82) y-A A3, (olo, ^3, y3) be three points
of the fixed plane. Then the po e of the fixed plane with respect to

the conicoid S + AS' = is the point of intersection of the polar 23lanes

of Ai, A2, A3, and therefore is given by

Pai + A P'ai = 0, Pa2 + A P'a, = 0, Paj + A P'aj = 0.

The locus of the pole is therefore the curve of intei'section of the

hyperboloids
p„^p'„^ _ p„^p'„^=0, Pa^P'a, - Pa.P'a3 = 0.

Ex. 5. The centres of conicoids that pass through eight given
points lie on a cubic curve.

174. Conicoids through seven given points. If s = 0,

S' = 0, S" = 0, are the equations to fixed conicoids through

the seven given points, the general equation to a conicoid

through the points is

S + XS'+ /^S" = (1)

The fixed conicoids intersect in eight points whose co-

ordinates are given by S = 0, S' = 0, S" = 0, and therefore

evidently satisfy the equation (1). Therefore all conicoids

which pass through seven given points pass through an

eighth fixed point.

Ex. 1. The jDolar planes of a given point watli respect to the
conicoids which pass through seven given points pass through a fixed

point.

Ex. 2. The diametral planes of a fixed line with respect to the

coincoids which pass through seven given points pass through a fixed

point.

Ex. 3. The poles of a given plane with respect to tlie conicoids

which pass through seven given points lie on a surface of the third

degree.
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Ex. 4. The centres of the coiiicoitls wliich pass through seven given
points lie on a surface of the tliird degree.

Ex. 5. The vertices of the cones that pass througli .seven given
points lie on a curve of the sixth degree.

Examples IX.

1. Tangent planes parallel to a given plane are drawn to a system
of conieoids which have double contact at fixed points with a given
conieoid. Prove that the loc\is of their points of contact is a hyper-
bolic paraboloid which has one system of generators parallel to the
given plane.

2. Tangent planes are drawn tlirough a given line to a system of
conieoids which have contact with a given conieoid at fixed points A
and B. Prove that the locus of the points of contact is a hyperl)oloid
which passes through A and B.

3. The feet of the normals to a conieoid from points on a given
straight line lie on a quartic curve.

4. The edges OA, OB, OC of a parallelepiped are fixed in position,

and the diagonal plane ABC }ja.s.ses through a fi.xed line. Prove that
the vertex opposite to O lies on a cubic curve which lies on a cone
that has OA, OB, OC as generators.

5. A variable plane ABC passes through a fixed line and cuts the
axes, which are rectangular, in A, B, C. Pi'ove that the locus of the
centre of the sphere OABC is a cubic curve.

6. The feet of the perpendiculars from a point ((l,
f3, y) to the

generators of the paraboloid xij — cz lie on two cubic curves whose
equations may l)e written

_ yl-V fx.fi _c _ y + aji

t'
' \+fi

'

l+;2-

7. The .shortest distance between the fixed line x= a, z = b, and the
generator ?/= A, \x=z, of the paraboloid .v^=z, meets the generator
in P. Shew that the locus of P is a cubic curve which lies on tlie

'^^'l'"^^^^
x^+z^^-ax-bz=0.

8. Find the locus of the centres of conieoids that pass througli a
given conic and a straight line which intersects the conic.

9. Two cones have their vertices at an umbilic of an ellip.soid and
meet the tangent plane at the opposite umbih'c in two circles wliich

cut at right angles. Shew that their curvt's of intersection with the
ellipsoid lie in two planes, each of which contains the i)oIe of the other.

10. If a cone with a given vertex P has double contact with a given
conieoid, the chord of contact lies in the polar plane of P with lespeet

to the conieoid.
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11. A variable plane ABC meets the axes in A, B, C, and is at a
constant distance p from the origin. A cone passes through the

curves of intersection of the ellipsoid whose semiaxes are OA, OB, OC,
and the planes OBC, ABC. Prove that its vertex lies on the surface

12. When two conicoids touch at all points of a common generator
AB, the line joining the poles of any given plane with respect to them
intersects AB.

13. AB is a given chord of a cubic curve. Prove that an infinite

number of conicoids can be found to pass through the curve and
through AB, and that one of these^ will touch a given plane which
passes through AB at a given pont of AB.

The s-axis is a chord of the curve

x= t'^^t, y = t'^+t\ 2= 2^2+ 3^+ 1.

Prove that the equation to the conicoid which passes through the

curve and the ^-axis and which touches the plane 2*'= 3j/ at the point

(0, 0, 2) IS
7 ^,2^ ,^, _ 4 .

y _ 2,,^+ 4^+ 4^^ 0.

14. Prove that the conicoids

2^2 _ y2 _ ^2 + 2j/s - 2.«'j/+ 2.>; - 2?/= 0,

.^2 -f -yz+ ^zx- '2xy -2y+ 2z=

have a common generator x=y=z, and pass through the cubic curve

,
- 2(2^3+ ;!2+ l) ^{f-fi-\) 2(^» + 2;;2-l)

*'~4^^+ 2i2_3^+ 2' ''•^~4f'+ 2«2_3^ + 2' ^~ 4«-'*+ 2^2 _ 3; + 2'

which touches the generator at ( - 1, - 1, - 1).

15. If two conicoids, Cj and C.^, have double contact, and the pole

with respect to Cj of one of the pfanes of the common sections lies on

Co, then the pole of the other also lies on C2.

16. Find the locus of the centres of conicoids of revolution that

circumscribe a given ellipsoid and pass through its centre.

17. P is any point on the curve of intersection of two right cones

whose axes are parallel and whose semiveitical angles are a. and rx.'.

If d and d' are the distances of P from the vertices, prove that

(i^ cos CL±d' cos a.' is constant.

18. If a variable conicoid has double contact with each of three

confocals it has a fixed director sphere.

19. Prove that two paraboloids can be drawn to pass through a

given small circle on a given sphere and to touch the sphere at a given

point, and prove that their axes are coplanar.

20. OP and OQ are the generators of a hyperboloid through a

point O on the director sphere. Prove that the two paraboloids which

contain the normals to the hyperboloid at points on OP and OQ
intersect in a cubic curve whose projection on the tangent plane at O
is a plane cubic witii three real asymptotes.
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21. The sides of a skew quadrilateiul are the .r-axis, the //-axis,

and the lines

v/ = 0, Lv+mz+ l=0; x= 0, r^ + mz + \=0.

Prove that the general equation to a conicoid which touches tlie

sides is
^

,

,

,

. / \ , , , s-) r,
z{lx + a./y + mz+ \)+ K.ri/+ (A.r + /x// + v: + (>)-

=

0,

where cx.= r or I' - A{ix- 1'p){v - mf)).

22. Give a geometrical interpretation of the equation of tlio conicoid

in Ex. 21 in the case when (*.= l'.

23. Prove that if the joins of the mid-points of AB, CD ; AC, DB
;

AD, BC are taken as coordinate axes, the etjuation to any conicoid

through the four sides of the skew quadrilateral ABCD is of the form

(H^(^•^4(^lr^^>r^
where A is a parameter. What surfaces correspond to (i) k = \,

(ii) A=-l?

24. Find the locus of the centres of hyperboloids of one sheet that

pass through the sides of a given skew quadrilateral.

25. If a conicoid passes through the edges AB, BC, CD of a tetra-

hedron, the pole of the plane bisecting the edges AB, CD, AC, BD
will lie on the plane bisecting the edges AB, CD, AD, BC.

26; If the intersection of two conicoids consists of a conic and two

straight lines through a point P of the conic, the sections of the coni-

coids by any plane through P have contact of the second order unless

the plane passes through the tangent to the conic at P, when the

contact is of the third order.

27. A cone, vertex P, and a conicoid S have two plane sections

common. The conicoids Sj and S2 each touch S along one of the

curves of section. Prove that if S, and S._, pass through P, they touch

at P and have a common conic section lying in the polar plane of P
with respect to S.

28. If three cones Cj, Co, C3 have their vertices coUinear and

C,, C. ; C^, C3 intersect in plane curves, then C„ C, intersect also

in i)lane curves and the six planes of interstnaion pass through one

line.

29. If conicoids pass through the curve of intersection of a given

conicoid and a given sphere whose centi-e is O, the noi-mals to them

from O lie on a cone of the second degree, and the feet of the noi-mals

lie on a curve of the third degree which is the locus of the centres

of the conicoids.

30. Two conicoids are inscribed in the same cone and any stM-ant

through the vertex meets them in P, P' : Q, Q'. I'love tliat (he lines

of intersection of the tangent planes at P, Q ; P, Q'
; P', Q ;

P', Q' lie

in one of two fixed planes.



256 COORDINATE GEOMETRY [en. xu,

31. The sides of a skew iiuadrilateral ABCD are along generators

of a hyperboloid, and any transversal meets the hyperboloid in Pj, Pj

and tlie planes ABC, BCD, CDA, DAB in Aj, A,, Bj, B^. Prove that

PAPiB, ^ PAP2Bi
PiA. .P1B2 P^Ag.PaBg"

32. A curve is drawn on the sphere xP- \-y^ \- z^ = ci^ so that at any

point the latitude is equal to the longitude. Prove that it also lies on

the cylinder xr-\-ip'= ax. She\T that the curve is a quartic curve, that

its equations may be written

^-(l+^2_)2
y-

(1 + ^2)2' * 1 + ^2'

and that if t^, t^, ts, t^ are the values of t for the four points in which

the curve meets any given plane, t-^t2titi= \.

33. The general equation to a conicoid through the feet of the

normals from a point to an ellipsoid, S= 0, is

S + ACi + /xC2+ vC3= 0,

where Ci = C2 = 0, 0^= represent cylinders through the feet of the

normals.
Prove that the axes of paraboloids of revolution that pass throiigli

the feet of six concuri'ent normals to the conicoid ax'^-^by'^+ cz'^= \ are

parallel to one of the lines

,,2 „2 ^2

-a+b+c a-b+c a+b-c

34. Prove that the cone whose vertex is (a, 0, 0) and base

•??,+^ = l, .r=0,
ft- c

intersects the cone whose vertex is (0, h, 0) and base

'2c-

in a parabola of latus rectum 7=^=^^-
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CHAPTER XIIL

THE CONOIDS.

175. A cone is the surface generated by a straight Hne

which passes through a fixed point and intersects a given

curve, and a cyHnder is the surface generated by the

parallels to a given straight line which intersect a given

curve. These are the most familiar of the ruled surfaces.

Another important class of ruled surfaces, the conoids, may

be defined as follows : a conoid is the locus of a line wliich

always intersects a fixed line and a given curve and is

parallel to a given plane. If the given line is at right

angles to the given plane, the locus is a right conoid.

Ex. The hyperbolic paraboloid is a conoid, since it is the locus of

a line which intersects two given lines and is parallel to a given plane,

(§ 50, Ex. 3).

176. The equation to a conoid. If the coordinate axes

be chosen so that the given line is the 2;-axis and the given

plane the xy-Tplane, the generators of the conoid will project

the given curve on the plane x=l in a curve whose

equation, let us suppose, is z=f{y). Let P, (1, y^, z^), be

any point of this curve; then z^=f{y^). The generator of

the conoid through P is the line joining P to the point

(0, 0, z-^), and therefore has equations

X _ y _z— z^

i~yr~^'
Eliminating y^ and z^ between the.se equations and the

equation z^=f{y^, we obtain the equation to the conoid,

viz., ^=f(yM-
Ex, 1. Find the equation to the right conoid generated by lines

which meet OZ, are parallel to the piano XOY, and intersecl the

circle .t;= ff, y- + s2 = 7-2. .1//*-. y-(z'-r-) + aY^O.
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Ex. 2. The grapli of csin6', from ^= to d= 2rTr, is wrapped
round the cylinder x-'^+^/" = r" so that the extremities of the graph
coincide on OX. Lines parallel to the plane XOY are drawn to meet
OZ and the curve so formed. Prove that the equation to the conoid
they generate is

rtan~^ -= sin~^-.
X c

Ex. 3. Prove that if r=2, the equation to the locus becomes

z(.v^+f)= 2c.V7/.

(The locus is tlie cylindroid.)

e drawn on the right cylinder x'^ + t/^

cut all the generators at the same angle is called the right circular

helix. The coordinates of any point on it are easily seen, (fig. 51),

° y x=aco»d, y^asind, z= aOtsir\a..

The conoid generated by lines parallel to the plane XOY which
intersect the 2-axis and the helix is the helicoid, (fig. 52). Shew that

^ z = c tan~iy/.r, where c = a tan oc.

Ex. 5. Lines parallel to the plane XOY are drawn to intersect OZ
and the curves , o „

(i) .v^+f

(ii) ,r2+_y2 b\ -
Find the equation to the conoids generated.

Ans. (^) -<l-5)-
(ii) (f^-^)\

{v'+.f'),

.'/).
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Ex. 6. Discuss the form of the conoids represented l)y

(i) yh= Aacx, (ii) >/z^ = ctx'.

Ex. 7. Conoids are constructed as in Ex. 2 with tlie graphs of

c cosec 0, c tan 6. Find their equations, considering specially the

cases in which r= l and r= 2.

Ans. rtan-^^= cosec-i-, ,-tan-i^= tau-i^.
X c X c

r=\, c\x^+7f)=fz\ xz= cy;

r= 2, c{x^-\-y'^)= 2xyz^ 2cxy= z{x^-y%

Ex. 8. A curve is drawn on a right cone, semi-vertical angle a., so

as to cut all the generators at the same angle, /i, and a right conoid is

generated by lines which meet the curve and cut OZ at right angles.

Prove that the coordinates of any point on it are given by

X= u cos d^ y— u sin 6, z= ae'"®,

where m = sin a. cot (3.

SURFACES IN GENERAL.

177. We shall now obtain some general properties of

surfaces which are represented by an equation in cartesian

coordinates. In the following paragraphs it will some-

times be convenient to use ^, tj, ^ to denote current co-

ordinates.

The general equation of the o?*'' degree may be written

U(^+ Ui+ Uo +...-}- Un= 0,

where Ur stands for the general homogeneous expression in

X, y, z of degree r. The number of terms in u^ is

(r+l)(r-H2)

1.2

and therefore the number of terms in the general equation is

-y(r+l)(r+ 2) (u-fl)(n+ 2)(o.+ 3) _^^ ^
,.7o 1.'-^ ' l-2.'3

'

Hence the equation contains N disposable constants, and

a surface represented by an equation of the '?<*"' degree can

be found to satisfy N conditions which each involve one

relation between the constants.

Ex. 1. In the general cul)ic equation there are 19 disposable con-

stants, and a surface represented by a cubic equation can be found to

pass through 19 given points.
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Ex. 2. A cubic surface contains 27 straight lines, real or imaginary.
If u= 0, v=0, w=0, Ui=0, ^1= 0, ^1 = represent arbitrary planes,

the equation uvw+ Xu,v,^o, =

contains 19 disposable constants, and therefore can be identified with
any cubic equation. Suppose then that the equation to the given
surface has been thrown into this form. Clearly the lines

u= 0,
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meets the surface in n points. Hence the locus of an
equation of the n^^' degree is a surface of the ?/>•' degree.

. Cor. Any plane section of a surface of the /^"' degree is

a curve of the n^^^ degree.

179. Tangents and tangent planes. If in eciuation (1)

of the last paragraph, F(.^;, y, z) = 0, the jjoint (.«, y, z) is on
the surface. If also

jdF
, 3F , 3F ^l—+m—+n— = 0, (2)dx dy dz ^ ^

the equation gives two zero values of p, and the line meets
the surface at (x, y, z) in two coincident points. If therefore

aP BF 3F

are not all zero, the system of lines whose direction-ratios

satisfy equation (2) touches the surface at {x, y, z), and
the locus of the system is the tangent plane at {x, y, z),

which is given by

If the equation to the surface is made homogeneous by
the introduction of an auxiliary variable t which is equated

to unity after differentiation, the equation to the tangent

plane may be reduced, as in § 134, to the form

.3F SF ,3F SF

^3.K 3?/ ^^z dt

Ex. 1. Find the equation to the tangent plane at a point (.'•, //, :)

of the surface ^rjC^a^. Ans. ^/.>;+ >//// + C/^'=3.

Ex. 2. The feet of tbe normals from a given point to the cylindroid

lie upon a conicoid.

180. The inflexional tangents. Two values of the

ratios I : m, I : n can be found to satisfy the equations

jdF
,

3F
,

3F „
l^^+m-—\-n— = 0,
?)x dy dz

303^ dy^ dz- dydz dzdx dxdy
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formed by equating to zero the coefficients of p and p^ in

equation (1) of § 178. The lines through {x, y, z) whose

directions are determined by these values meet the surface

in three coincident points. That is, in the system of

tangent lines through {x, y, z) there are two which have

contact of higher order than the others. They are called

the inflexional tangents at {x, y, z). They may be real

and distinct, as in the hyperboloid of one sheet, real and

coincident, as in a cone or cylinder, or imaginary, as in

the ellipsoid.

The section of the surface by the tangent plane at a

point P on it is a curve of the n^^ degree, and any line

through P which Hes in the tangent plane meets the curve

in two coincident points. P is therefore a double point of

the curve. The inflexional tangents at P meet the curve in

three coincident points, and are therefore the tangents to

the curve at the double point. Hence, if the inflexional

tangents through P are real and distinct, P is a node on the

curve ; if they are real and coincident, P is a cusp ; if they

are imaginary, P is a conjugate point.

181. The equation ^=/(^, n)- If the equation to the

surface is given in the form ^=f(i, )]), the values of p

corresponding to the points of intersection of the surface

and the line ^_ .. c_^

I m n '

are given by

z+np=f(x+ lp, y+ mp),

dz dz 3% d''z .d^-z
where p^^, g = ^, r.—,, s = ^^, ^ = ^,.

Hence the tangent plane at (x, y, z) has for its equation

p(i-x)+q{>i-y)-{^-z)=o,

and the inflexional tangents are the lines of intersection of

the tangent plane and the pair of planes given by

r{i-xf+ 2s{i-x)i>]-y)+ t{,i-yf = 0.
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Ex. 1. The inflexional tangents through any point of a conoid

are real.

One inflexional tangent is the generator through the ]K)int, and is

therefore real. Hence the other must also be real.

Or thus : The inflexional tangents are real, coincident, or imaginaiy

according as rt - s^ = 0.

For the conoid z=f(i//x),

r'%r4r, ^^-hf-'^f' '4/-.

and hence rt-s'=— ,f"^.

Ex. 2. Find the equations to the inflexional tangents through a

point (.*;, >/, z) of the surface (i) r}~C=4c^, (ii)
C'^y}

= a^^.

Ex. 3, Any point on the cylindroid

z(.v^+ i/)= 2cxi/

isgivenby
,;=„cos^, .^/

= usind, z=^c^mW.

Prove that the inflexional tangents through "?{, 9" have for

"
.?; - u cos 9_y — u sin 9_z — c sin 2^

-UiimW~ Mcos3^ ~ 2ccos22^
'

X _ y _2-csin2^
cos^~sin^~

Ex. 4. Find the locus of points on the cylindroid at which the

inflexional tangents are at right angles.

182. Singular points. If at a point P, {x, y, z), of tlic

0,

surface ^p 3P ^^

ctt; ?)y dz

every line through P meets the surface in two coincident

points. P is then a singular point of the first order. The

lines through P whose direction-ratios satisfy the equation

(sI+-b4+v>="a-c ?iy 'dz/

meet the surface in three coincident points at P, and are
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the tangents at the singular point. The locus of the system

of tangents through P is the surface

tf-.)^g+...2(,-,)«-.)^^+... = 0.

Singular points are classified according to the nature of

the locus of the tangent lines. When the locus is a proper

cone, P is a conical point or conic node, when it is a pair of

distinct planes, P is a biplanar node or binode, when the

biplanes coincide, P is a uniplanar node or unode.

The six tangents through a singular point P, (x, y, z),

whose direction-ratios satisfy the equations

?)X dy dzJ \ dx dy dz/

have four-point contact with the surface at P. They corre-

spond to the inflexional tangents at an ordinary point of

the surface.

Ex, 1. For the surface

,>;* + >/* + z^ + Qxyz + 2.i-2 -/+ z^+ 4?/^+ ^zv= 0,

the origin is a conic node. The locns of the tangents at the origin is

the cone „ o <? , <? , a , o r\

The six tangents which have four-point contact are

A'= 0, y= (2±\/5)2; ?/= 0, 2x+z= 0;

y = 0, .*; 4- ^= ; z= 0, \/2.r= ± y.

Ex. 2. For the surface

.r* -hy*+ 3* -t- ^xyz + A-2 - 2 y2 - Se- - hyz+ 2r.r+ xy= 0,

the origin is a binode. The six tangents with four-point contact are

.i-= 0, 2y+ 3j= 0; .r= 0, ?/ + s = 0; y= 0, 3£ + .r = 0;

y^%z-x= Q; 2= 0, .r 4-2^= 0; 2 = 0, .i--//= 0.

The sections of the surface by the planes x-\-'iy-^Zz= <d^ x-y-z = 0,

have a triple point at the origin.

Ex. 3. The equation to a surface is of the form

2^ -I- M3 -h W4 -f- . . . -t- U„ = 0.

Prove that there is a unode at the origin, that the section of the
surface by the plane 2 = lias a triple point at the origin, and that the
three tangents there, counted twice, are the tangents to the surface
with four-point contact.
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Ex. 4. The eiiuation to a surface is of the form

.V'+ff+ M3+ ^4 + . . . + it,, = 0.

Shew that tlie section of the surface by any plane through OZ 1ms

a cusp at the origin.

Ex. 5. For the surface

x)/+ z {ax-+ -Ihxif + hi/-)+ z\cx + dy)= 0,

prove that the origin is a binode and that tlie line of intersection of

the biplanes lies on the surface. Shew that the plane cx-\-dy= Q is a

tangent plane at any point of OZ.

Ex. 6. Find and classify the singular points of the surfaces

(i) a?x^--bY= ^ir'-z\

(ii) .ry2=a.r2+ 6?/^ + c«2,

(iii) Xix"^+ 3y2+ 322)= 3« (.^.2 _ y2 _ ^2)^

(iv) xijz-a-{x+y + z)+ 10^= 0.

Am. (i) (0, 0, 0) is binode
;

(ii) (0, 0, 0) is conic node
;

(iii) (0, 0, 0)

is conic node, (the surface is formed by revolution of the curve

*-(.»;2+ 3//-) = 3rt(.>;'-^-y-), s= 0, about OX)
;

(iv) {a, o, a) is a conic node.

Ex. 7. Find the equation to the surface generated by a variable

circle passing through the points (0, 0, ± c) and intersecting the circle

s=0, x^+y'^ = 'iax, and shew that the tangent cones at the conical

points intersect the plane 3=0 in the conic

(c^ - 4«2).f2+ c2y2_ ^ac^x.

Ex. 8. If every point of a line drawn on a surface is a singular

point, the line is a nodal line. Find the nodal lines of the surfaces

(i) 3(,.;2+/) = 2«.7;y,

(ii) C%r2+J^2)2 = «2,2(^.2_^2)^

{:xn) {y^W){{^x-yf+ z^ = Aah\

Ans. (i) x=y = 0; (ii) x=^y= 0; (iii) y = z^O, y-2x=z= 0.

Ex. 9. Prove that the ^-a.xis is a nodal line on the surface

2xy+ ax^+ ^hxhj+ Zcxy-+ dy^+ z ( px'^+ 2qxy+ ry"^) = 0,

any point (0, 0, y) being a binode at which the tangent planes are

'ixy+ y (
px^ + 2qxy+ ry'^)= 0.

Prove also that if r and p have the same sign there are two real

u nodes lying on the nodal line.

Ex. 10. For the surface

%vy + A-3 _ 3.j;2y - 3.ry2 + ?/3+ z^x"^ - xy+ ?/2)= 0,

prove that the 2-axis is a nodal line with unodes at the points (0, 0, - 2),

(0, 0, §).

183. Singular tangent planes. We have seen that tlie

tangent plane at a point P of a snrface meets the surface

in a curve wliicli has a doublo point at P. Tlie curve may
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have other double pomts. If Q is another double point,

the plane contains the inflexional tangents to the surface

at Q, and is therefore the tangent plane at Q. A plane

which is a tangent plane at two points of a surface is a

double tangent plane. We may likewise have planes touching

at three points of the surface or triple tangent planes, and

tangent planes touching at four or more points of the

surface.

Or we may have a tangent plane which touches the

surface at all points of a curve, as the tangent plane to a

cone or cylinder. Such a plane is a singular tangent plane or

trope.*

Ex. 1. For the cubic surface ^ivw+ UiViWi=^0, the planes u=0,
v= 0, w= 0, tti = 0, ^1=0, Wj=0 are triple tangent planes.

The intersection of the plane u= and the surface is the cubic curve

consisting of the three straight lines « = «i = 0, ic= t\ = 0, u= w^ = 0.

These lines form a triangle and the three vertices are double points,

so that the plane m= is tangent plane at thi'ee points.

Ex. 2. Find the singular point on the surface

and shew that the planes z= ±a are singular tangent planes.

Ex. 3. Sketch the form of the cone

and shew that the planes 2\/2Gi/=±az each touch it along two
generators.

The sections by planes parallel to XOY are lemniscates.

Ex. 4. Prove that the planes z= ±c are singular tangent planes to

the cylindroid 2(.v'^+y'^)= 2c.ry.

THE ANCHOR-RING.

Ex. 5. The surface generated by the revolution of a circle about

a line in its plane which it does not intersect is called the anchor-ring

or tore.

If the straight line is the 0-axis and the circle is y= 0. (x - a)^+ z'^= b"^,

(a>b), shew that the equation to the surface is

(.1-2+f + s2 + a2 - 62)2= 4a\x^+ 7f).

Prove that the planes z= ±b are singular tangent planes.

* For an adequate discussion of the singularities of surfaces the student

is referred to Basset's Geometry of Surfaces. An interesting account of

the properties of cubic surfaces with methods for the construction of models

is given in Cubic Surfaces, by W. H. Blythe. Kummer's Quartic Surface

(Hudson) contains an exposition of the properties of various quartic

surfaces.
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Ex. 6. Prove that the polar equation of the curve of intersection

of the surface and the tangent plane x= a-h, referred to a line

parallel to OY as initial line, is )-'-^= 4a-sin(«.- 6')sin (fx+6'), wliere

sina.= v^6;«.

Ex. 7. Prove that the inflexional tangents at {a-b, 0, 0) are

x=a-b, y\lb=±z\Ja-h.

Ex. 8. The tangent plane which passes through OY is i = ,/; tan ol,

where sina.= 6/a and it touches the surface at the two points

(acosV, 0, a cos ex. sin ol), (-acos'-^o., 0, -ocos«.sin cc).

Where it meets the surface we have

a; sin ex.=2 cos OL, {x^+ y"^+ z"^+ a- - h'^Y= 4,a~{.v^{ jf-) ;

therefore

{x'^+y^ + z^ -a^ cos-ot.)'-= ia\x-+y-) - 4a-(.^'2 +y'^+ z-) cos'V,

= Aa'{x^ +y-) sin^o. - Aah"^ cos'^o.,

= Aa-y- sin^a.

Hence x- + (_y ± « sin a.)-+ 5- = a-.

Therefore the curve of intersection of the surface and the tangent

plane consists of two circles which intersect at the points of contact

(acos^oL, 0, rt cos a. sin a), (
— f< cos-a., 0, -rtcosocsino.).

THE WAVE SURFACE.

If N'ON is normal to any central section of the ellipsoid

a- b'^ c^
'

and lengths OA, OA' ; OB, OB' equal to the axes of the section are

measured along ON and ON', the ])oints A, A', B, B' lie upon a surface

of the fourth degree, which is called the wave surface. Since the axes

of the section by the plane lx+ m.y-\-nz= ^) are given by

r/^/2 ;,2„,2 c2„2 _
a--;" b--r^ c--r^

the equation to the wave surface is

ah-'
^ bY

I

ch'^ ^Q
ct^-r- b'^-r'^ c^-r^ '

where r'^= x''^-\-y'^+ z'^. The equation, on simplification, becomes

(.t-H/+22)(aVH6y+ cV)-a2(62+ c2).^2_52(^.2+«2)_y2_c2(a2+ i2)-2

+ a26V = 0.

Tf the plane of section of the ellipsoid passes through one of the

principal axes, that axis is an axis of tlie conic in which the plane cuts

the ellipsoid. Thus one of the axes of any section through YOY is

equal to b. The remaining axes of such sections coincide in tui'n with

the senii-dianieters of the ellipse y= 0, .y^//^^ + .--/r- = 1 . Hence the

points A, A', B, B', corresponding to sections through Y'OY, describe

a circle of radius b and an ellipse which is simply the above ellijjse

turned through a right angle, and whose equations are therefore ^= 0,
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x^/c^+z^la^ = l. The circle and this ellipse clearly form the inter-

section of the wave surface and the plane y= 0.

The result can be immediately verified by putting y equal to zero

in the equation to the surface, when we obtain

(02+ .r2 - 62) (^252+ ahf- - c'^a-) = 0.

Similarly, the sections of the surface by the planes .v=0, 2=0 are

the circles and ellipses given by

^= 0, {f +z^- a2)(bY+ c^z'^ - h^-(P) = ;

2 = 0, (^2^y2_ c2)(a2^2+ i)2y'i _ ^252)= 0.

Fig. 53 shews an octant of the wave surface.

lia>h>c, the only two of these circles and ellipses which have

common points lie in the plane ?/= 0, and the points are given by

ax y <?^ _ Q^c

-v/a2-62 sJU^-c^ \'a^-i

The wave surface consists of two sheets, one described by points

such as A and A', the other by points such as B and B'. The sheets

will cross only where the axes of the central sections are equal.

Hence since there are only two real central circular sections, and the

radius of each is b, the only four points common- to the two sheets lie

on the normals to the central circular sections, and are at a distance b

from the centre. They are given by

a^ V cC h ^ ±00

Va2^rp~0~Vp372- /a2_^)2 fc2_c2 s/a2-c2'

V f(2-'+ c2

and are thus the points of intersection of the circle and ellipse in the

plane ?/= 0, as clearly should be the case.

If P is one of these four points, the section of the surface by the

plane w= has a double point at P, and the plane ?/= is not a

tangent plane at P. This suggests that P is a singular point on the

wave surface. Change the origin to P, (^, t), (), noting that

^2+ ^2^h\ 7; = 0, a^^-+ C'C-=^a-c^.

The equation becomes
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and hence P is a conical point. Thus the wave surface has four
conical jjoints, and they are the |)oints of intersection of the circle and
ellipse which form the section of the surface by the plane /y = 0.

Since any plane section of the surface is a curve of the fourth
degree, if the surface has a singular tangent plane, the intersection
of the tangent plane with the surface will mnsist of two coincident
conies, or the plane will touch the surface at all points of a conic.

Any plane will meet the conic in two points Q and R, the singular
tangent plane in the line QR, and the surface in a curve of the fourth
degree which QR touches at Q and R. Considering, then, the sections
of the surface by the coordinate planes, we see that any real singular
tangent plane must pass through a common tangent to the circle and
ellip.se in the plane y= 0. Their equations are

y= 0, 2-+ x^= 62
; y= 0, ch'^ + dhfl= c-a\

and the common tangents are easily found to be given by

y = 0, ±sla^- bh: ± Vft^— c'^z= b sJa^ — c^,

or by «.r^+ c"3.f=a6c, .y
= 0,

where (^, rj, () is one of the singular points.

If the equation to the surface is f{x, ?/, *)= 0, ^ = when ?/ = 0,

and hence the tangent plane at any point of the j.r-plane is parallel

to OY, and therefore the plane

ax^+ cz^=abc

is at least a double tangent plane. Now the equation to the surface

can be written in the form

62(,.2 - a2)(,.2 _ ^2) + («2 _ J2)(,,2 _ f,2).,.2
_ Q;i _ ,.2)(,.2 _ ,,2) j2 = Q,

0, |6(,2_,,2)+!:^(„2_,2)l|^(,2_,2)_|(«2_,2)J

|(,.2 _ ^2) -^ _ (,.2 _ ^,2) t^l .(,,,,,^ + c:i- ahr]= 0.

Therefore the plane ax^+ cz^-abc meets the surface at points lying

on one of the spheres

6(/--' - «2) + 'li (,j2 _ (.2) = 0, b{r^ - r"'-')
- ^1 (a^ - c"-) = 0.

But, subtracting, we see that the common points of these spheres

lie in the plane

c a

or ax^+ cz^=abc.

Thus the plane meets both spheres in the same circle, or tl>e section

of the surface by the plane consists of two coincident circles a'"'

therefore the ])lane is a singular tangent plane. The wave .surface

has therefore four singular tangent planes.

a2-c2

ac
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184. The indicatrix. If the tangent plane and normal

at a given point of a surface be taken as the plane z =
and the s-axis, and the equation to the surface is then

z=f{x, y), this equation may be written

z =px+ qy^-hir^+ 2'i'*2/ + ''-2/^) +'•>

where p, q, r, s, t are the values of

dz dz 3'% dh 3%
?>x' dy' dx^' dxdy' dy^

at the origin ; or, since p = q = 0,

^z^rx^+ lsxy + ty'-^....

Hence, if we consider x and y in the neighbourhood of

the origin to be small quantities of the first 'order, z is

of the second order, and therefore, if we reject terms of the

third and higher orders, we have as an approximation to

the shape of the surface at the origin the conicoid given by

2.Z = rx^+ ^sxy + ty^.

This conicoid is a paraboloid if Tt=l=s^, and a parabolic

cylinder if rt= s^. In the neighbourhood of the origin the

sections of the surface and conicoid by a plane parallel to

the tangent plane, and at an infinitesimal distance h from

it, coincide ; the section of the conicoid is the conic given by

z = h, 2h = rx^"+ 2sxy + ty^,

which is called the indicatrix. The inflexional tangents are

given by ^ = o, ra^+ 28xy+ ty'^ = 6,

and are clearly parallel to the asymptotes of the indicatrix.

Hence if the inflexional tangents are imaginary, the indi-

catrix is an ellipse, and the origin is an elliptic point on the

surface ; if they are real and distinct, the indicatrix is a

hyperbola, and the origin is a hyperbolic point ; and if they

are coincident, the indicatrix is two parallel straight lines,

and the origin is a parabolic point.

At an elliptic point the shape of the svirface is approxi-

mately that of an elliptic paraboloid, and therefore the

surface lies on one side of the tangent plane at the point.

It is said to be synclastic in this case. At a liyi)erbolic
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point the sliape is approximately that of a lij'perbolic

paraboloid, and the surface lies on both sides of the tant;ent

plane. At such a point it is said to be anticlastic.

Ex. 1. Every point on a coue or cylinder is a parabolic point.

Ex. 2. Find the locus of the parabolic points on the surface

The direction of the inflexional tangents through (x, i/, z) are given

l^Fxz+ wi^F^3,+ n-F:,+ 2mn F,j, + '2.n IF,^+ ±hn F^^ = 0.

Hence the inflexional tangents coincide if

F„, F,„ F.,„ F. ==.0 (1)

F,,,, F„„ F,,, F,

F.., F,„ F,„ F,

F:,, F,j, F„

But F^ is a homogeneous function of x, y, z, t, of degree {a - 1), and
therefore ...p^, +yF,,+ zF,,+ iF^e= (w - 1) F^,, etc.

,

by means of which equation (1) can be reduced to

= 0.

This equation determines a surface whose curve of intersection with

the given surface is the required locus.

Ex. 3. Prove that the points of intersection of the surface

A'*+^*+ 2* = «*

and the coordinate planes are parabolic points.

Ex. 4. Prove that the parabolic points of the cylindroid

2(a,--+y-)= 2c.!v/

lie upon the lines x-y= 0,z= c; x-\ry= 0, z= -c.

Ex. 5. Prove that the indicatrix at a point of the surface z=/(-v,y)

is a rectangular hyperbola if (1 +p^)t+ {l+q'^)r-2pqs= 0.

Ex. 6. Prove that the indicatrix at every point of the helicoid

tan-i.V rectangular hyperbola.

Ex. 7. The points of the surface xyz - a(j/z+ zx+ xy)= 0, at which

the indicatrix is a rectangular hyperbola, lie on the cone

,iiQ;+ z) + 7/\z+x)+ z^{x+y) = 0.

185. Representation by parameters. If .'•, y, c are

functions of two pai-ameters u and r and are given by tlie

equations

x=fy{u,v), y=Mu,v), z=f,,{ii,v),



272 COORDINATE GEOMETRY [CH. XIII

the locus of the point {x, y, z) is a surface. For u and v

can be eliminated between the three equations, and the

elimination leads to an equation of the form ¥{x, y, s) = 0.

The tangent plane. To find the equation to the tangent

plane we may proceed thus. The equation is

(^-a^)F«,+ (>/-2/)F,+ (^-0)F, = O.

But since x, y, z are functions of u and v,

Fa;««+F2;2/M+F,2„ =

and ?^Xy+ Vyy^+ F^s,, = 0.

Fa, F.
Therefore

Viflv '^ihijv ^u^v ^u^v ^uyv~ yw^v

These give the direction-cosines of the normal.

The equation to the tangent plane is

Xu,

Xj),

n-y,
z,.

:0.

Ex.
for which

Ex. 1. Find the tangent plane at the point " m, Q " on the helicoid,

for which
.^.=,,cos^, y=«sin^, z=ce.

2. Find the tangent plane at the point " «, Q " on the cylindroid,

X= xh cos ^, y= n sin Q, z= c sin 2^,

and prove that its intersection with the surface consists of a straight

line and an ellipse whose projection on the plane 2= is the circle

(^2 4- j/2) cos 2^ - M{x cos 9 -y sin 0)= 0.

Ex. 3. Prove that the normals at points on the cylindroid for

which Q is constant lie on a hyperbolic paraboloid.

Ex. 4. Prove that the equations

.r=aiA + &i/x+ CiAju-, y= a.-X-\-h.,\x-\-c.^\x^ z= asX + bs[j.+ c.^XiJL

determine a hyperbolic paraboloid if A =/= 0, and a pair of planes if

A= 0, where

Ex. 5. If A =/= 0, prove that the equations

X= ajA^+ &! AjU.+ Cifx^, y= WgA^+ 62A/x + c.,[ji?, z= a^A"+ h^Xii+ Cyju^

determine a cone whose vertex is the origin and which has as

generators the lines

.r/rtj =yla.^= zla^, xjc^ =y/r,= zlc3.
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Examples X.

1. Prove that the smfaces

z{x^+y'^-z^ + \)= 'ixy

have each four conic nodes whose coordinates are

(1,1,1), (1,-1,-1), (-1,1,-1), (-1,-1,1).

2. Prove that the surface

{o:->ry+ z-af= xyz

has binodes at the points {a, 0, 0), (0, a, 0), (0, 0, a).

3. Prove that the line ±v—a, z= is a nodal line on the surface

4c5-(a' - a) + hy{2x - a)-= 0,

and that there is a unode at the point where it meets the plane y= 0.

Prove also that the section of the surface by any plane through the

nodal line consists of three straight lines, two of which coincide with

the nodal line.

4. Prove that the surface

('•-+/)(%- 2)2= 4.r2

contains an infinite number of straight lines. Examine the nature of

the sections by planes through the line x=Zy-s=0.

5. Prove that the equation

a(y-b)(z-cy-h(.r-a){z+cf^O
represents a conoid which is generated by lines parallel to the plane

XOY which meet the line x= a, y= b. Shew also that the normals to

the surface at points of the generator x/a=y/b, z = 0, lie on the hyper-

bolic paraboloid

4:ab{bx - ay)(ax+ by - ci^ - ¥) = cz{a^+ b'^f.

6. Shew that the equation

x^-{-y^+ !?- Zxyz— o?

represents a surface of revolution, and find the equations to the

generating curve.

7. Prove that the perpendiculars from the point (f/., /?, y) to the

generatoi's of the cylindroid

X= u cos d, y = u sin 0, z= c sinW
lie on the conicoid

y(.r-cx.)2+ y(y-^)2+ 2c(a;-a)(.y-i«)-(s-7)('^r+ /?y-«.2-/i-) = 0.

8. Prove that the only real lines lying on the surface x^-\-y^->t-z^= a}

^^^ x=a,y+ z = 0; y^a,z+x=0; z= a, x+y= 0.

Shew also that the section of the surface by a plane through one of

these lines consists of a straight line and a conic. Detormiiu' the

position of the plane through the line x= a, .?/ + .r = which meets the

surface in a conic whose projection on the //:-plane is a circle.



27J. COORDINATE GEOMETRY [ch. xiii.

9. Shew that an infinite number of spheres with centres on the
.i-y-plane cuts the surface {.c" + f/-){x+ a)+ z^{x-a)= at right angles,

and find the locus of their centres.

10. Discuss the form of the surface

i/-2-+ 2tvi/z+ k'.v^ - 2ak^i/

=

0.

Shew that it is a ruled surface, and give a geometrical construction

for the generator through a given point of the parabola in which it

meets the .«7/-plane. Prove also that any point on its curve of inter-

section with the cylinder x^ + 7/'^ = 2ai/ is given by

.V= 2asm 0cos9, y=2a cos^O, z=k (sec 6 - tan B).

11. P, P' are {a, b, c), {-a, -b, -c); A, A' are (a, b, - c),

( — a, 6, -c); B, B' are {-a, b, c), (-a, -b, c) ; and C, C' are

(a, —b, c), (a, —b, —c). Prove that the equation to the surface

generated by a conic which passes through P and P' and intersects

the lines AA', BB', CC is

(^0(l-0(^f)(f-J)-(^l)li;-')-•
Shew that this surface contains the lines, AA', BB', CC, PA, PB,

PC, P'A', P'B', P'C, PP'. Examine the shape of the surface at the

origin. Shew that any point on PP' is a singular point, and that

P and P' are singular points of the second order, (that is, that the

locus of the tangents at P and P' is a cone of the third degree).

12. If A, IX are the parameters of the confocals through a point P of

an ellipsoid x^la^+ 7/^/b^ + z^lc'^=l, centre O, prove that the points on
the wave surface which correspond to the section of the ellipsoid by
the diametral plane of OP are given by

2_ 5V(ffl^-A)(«2-,x) ^_ c%^(&2-A)(62-yj) , a'-h^c--k)(c'^- [x)
^

A(a2 _ 62)(^,2 _ ^2) ' ^ A(62 - «2)(ft2 _ ^2) ' ^"" A(f2 - a2)(c2 - ^2) '

and the corresponding expressions obtained by interchanging A and fx.
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CHAPTER XIV.

CUEVES IN SPACE.

186. The equations to a curve. The equations

f\{x,y,z) = 0, Ux,y,z) =

together represent the curve of intersection of the surfaces

given by /^(a;, y, z) = and f^{x, y, s) = (). If we eliminate

first X, and then y, between the two equations, we obtain

equations of the form

y=M^l ^=M^) (1)

If, now, z be made to depend upon a variable /, z and /

being connected by the equation z — (}).^{t), the equations (1)

take the form y ^ ^^ (^t), x = 0^ (0-

Hence the coordinates of any point on tlie curve of

intersection of two surfaces can be expressed as functions

of a single parameter.

Conversely, the locus of a point whose coordinates are

given by x = c/,,(t), y = <}>o,{t), z = ^,(f),

where t is a parameter, is the curve of intersection of two

surfaces. For the elimination of t leads to two equations

of the form
f,{x, y) = 0, My, z) = 0,

which represent two cylinders whose curve of intersection

is the locus of the point. (Compare ^^^ 40, 41, 7G, Uif).)

187. The tangent. To find the equations to the t((V(/rnt

at (I given point to a given curve.

Suppose that x, y, z are given as functions of a para-

meter t. We shall throughout use the symbols x\o:", ...
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etc. to denote ^, "tS- ... etc., unless where another meaning
at dr

is expressly assigned to them. Let the given point, P, be

{X, y, z), and let Q, (x+ Sx, x+ 8y, z+ Sz) be a point on the

cm^ve adjacent to P. Then, if x=f{t),

x-iSx=f{t+ St),

=f(t)+Stf{t)+^f"{tH...,

= X+ X 6t+ X r^-\-

Similarly, y + S}j = y + y'St+ y"r^ + ...,

Z-\-Sz=Z+ z'St + z"rj+....

The equations to PQ are

^-x 7,-y t-^
" Jt ,

~
,

,

Jt
,

,^ Jt^ '

x'+x-^ + ... y+y^ + --- 2+5-2+...

Now, as Q tends to P, U tends to zero, and the limiting

position of PQ, that is, the tangent at P, is given by

X y' z'

If the equations to the curve are

F^{:x,y,z) = 0, F,(a', 2/, s) = 0,

/3F,
,

,BFt
,

,9Fi „

we have ^-^+2/^+^^= "
Tix '' oy oz

therefore

,9F2
,

,3F,
,

,dF,

y
3F, 9F2_9F, SR, 3F, 3F2_3Fi 3F2 3F, 3F2_9Fj BFg

^ dz dz dy dz dx dx dz ox dy dy dx

whence the direction-ratios of the tangent are found.

Cor. The tangent at a point P to the curve of inter-

section of two surfaces is the line of intersection of their

tangent planes at P,
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Ex. 1, Eind tho equations to the tangent at the point " 6" on the

^'^''•"^
.r= acos^, y = asin6/, z= ke.

Ex. 2. Shew that the tangent at a point of the curve of inter-

section of the ellipsoid x'^/a^+y'^/b'^ + z^/c'= l and the confocal whose

parameter is A is given by

a\l)^-c'){a'-k)~ b\c' - a'){b'^ - A) c\a^ - ¥){c^ - A)"

Ex. 3. Shew that the tangent at any point of the curve whose

equations, referred to rectangular axes, ai-e

makes a constant angle with the line

188. The direction-cosines of the tangent. If tlie axes

are rectangular, and P, {x, y, z) and Q, {x+ 6x, y+ Sy, z+ 6z)

are adjacent points of a given curve, Sr, the measure of PQ,

is given by ^7.2= Sx"-+ Sy^-+ SzK

Let the measure of the arc PQ of tlie curve be Ss. Then

Sr
Lt-T- = 1, and therefore

or s'^= x-+ y'-+ z^,

clx

where x, y, z are functions of t and •'»' = ^ > ^tc. Hence

the actual direction-cosines of the tangent at P are

X v' z' dx dy dz
-, ^, -, or -7-, -r, -T--
« s s as CIS as

Ex. 1. For the helix x= acos 9, y= asm 9, z= o.9 tan a., prove that

^=:« secoc, and that the length of the curve measured from the point
d9
where ^=0 is a^seco.. (Compare fig. 51.)

Ex. 2. Prove that the length of the curve

between the points where t= ti and t= U, is Asl2a{to-t^). Shew also

that the curve is a helix drawn on a cylinder whose base is a cycloid

and making an angle of 45° with the generators.

189. The normal plane. The locus of the normals to a

curve at a point P is the plane through P at right angles to
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the tangent at P. If the axes are rectangular the equation

to the normal plane is

{i-x)x+{n-y)y'+ {t-^)-=^-

190. Contact of a curve and surface. If p, p^, p.^, . .
. Pn,

points of a given curve, lie on a given surface and P^, P2, . . . P,i

tend to P, then in the limit, when P^, P2,...Pn coincide

with P, the curve and surface have contact of the 11^^ order

at P.

To find the conditions that a curve and surface shoidd

have contact of a given order.

Let the equations to the curve and surface be

and let ^{t)^f{<pM H^)' 4>S))-

Then the roots of the equation F{t) = are the values of

t which correspond to the points of intersection of the curve

and surface. If the curve and surface have contact of the

first order at the point for which t = t-^, the equation

F(/) = has two roots equal to t-^, and therefore

F(g = and 1^ = 0,

, , , dF -df dx , df dii , 3/ dz
and clearly ^= J-^-^+^^ --+- ^.

If the contact is of the second order, the equation F(f) =
has three roots equal to t^, and therefore

And generally, if the contact is of the 7i*^' order, <; \

Ex. 1. Find the plane that has three-point contact at^ the origin

th the curve ^,_.

Ans. 3.t'-8y-|-6i = 0.

withthecurve
.,_^,_i^ y= f-\, z= t^-l.
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Ex. 2. Determine a, />, h so that the paraboloid 2z= cu:--\-2lixij-\-hi/-

may have closest possible contact at the origin with the curve

x=fi-2fi+\, i/= fi-}, z=--t--2t + l.

What is the order of the contact ?

Ans. a/45= k/-3 = b/5 = l/54. Fourth.

Ex. 3. Find the inflexional tangents at
(.)'i, y,, -,) on tlie surface

The equations to a line tlimugh (.Vj, ?/,, s,) may be written

r= .ri + l(, _?/=_y,+jHi', z= Sy + nt.

The inflexional tangents are the lines which have three-point contact
with the surface where t = 0. For all values of t, we have

dv , dy dz

dt ' dt ' dt

Hence for three-point contact at {a\, y,, z{), we have

(i)yi%i-4cr, = 0,

(ii) -4cl+2//iZim+ 7/i-n = 0,

(iii) ^lw2+ 2J/lm?t=0.

Therefore ±-'J^=± or ±=^=^.
i/i^ 4c 3a-, 2^1 -^1

(Compare § 181, Ex. 2.)

Ex. 4. Find the lines that have four-point contact at (0, 0, 1) with
the surface

,>;* -i- 3.11/z + x^ -i/--z^+ 2>/z - 3xy - 2y+ 22= 1

.

xins. The direction-ratios satisfy lmn= 0, l'^-m'-n^ + 2mn= 0.

Ex. 5. Prove that if the circle lx' + viy + nz= 0, x'^+>/-+ z-= 2cz
has three-point contact at the origin with the paraboloid

ax-'+ by-= 2z, = 775-- ->•

Deduce the result of ^ 88, Ex. 5.

191. The osculating plane. If p, q, r are points of a

curve, and Q and R tend to P, the limiting pcsition of the

plane PQR is the osculating plane at the point P.

To find the equation to the osculating plane.

Let the coordinates be functions of a parameter t and P

be {x, y, z). The equation to any plane is of the form

a^+b,]+c^+d = 0.

If tliis plane and the curve have contact of the second

order at (x, y, s), we have

ax+ by + cz-{-d = 0,

ax -{ by' -\- cz =0,

ax"-[-by"-{-cz" =0
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Therefore, eliminating a, h, c,

to the osculating plane,
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d, we obtain the equation

t-'^

X,

x",

= 0.

Ex. 1. Find the osculating plane at the point "^" on the helix

x=acosB, y—asmdi z= kd.

Ans. k{j(;sind-ycosd-ad)+ az= 0.

Ex. 2. For the curve x= 3t, i/= 3t% z= 2fi, shew that any plane

meets it in three points and deduce the equation to the osculating

plane at «=^i. A7is. "Lt^x-^t^-^z^^t^^

Ex. 3. Prove that there are three points on the cubic x— at^-X-h,

i/— 3ct'^+ 3dt, z= 3et+f, such that the osculating planes pass through

the origin, and that the points lie in the plane Scex + afi/= 0.

Ex. 4. P and Q are points of a curve and PT is the tangent at P.

Prove that the limiting position of the plane PQT as Q tends to P is

the osculating plane at P.

Ex. 5. Normals are drawn from the point (a, fi, y) to the ellipsoid

x^/a'^+ i/'^/b'^+ z^/c'^= l. Find the equation to the osculating plane at

(a., /?, y) of the cubic curve through the feet of the normals.

Ans. + 6V + ;

(C^ - a2)(a2 _ 62)(X^(«2 _ 62)(52 _ c2)^^(62 _ c2)(c2 _ a^)y
+ 1 = 0.

Ex. 6. Shew that the condition that four consecutive points of a

curve should be coplanar is

I

•*'", y"\

Ex. 7. Prove that the equations

^•=aji;2+ 26ii! + q, }i
= a.f'^2\t-\-c-^, i = a3<2+ 263!'+ C3

determine a parabola, and find the equation to the plane in which it

lies.

Ex. 8. Shew that the curve for which

c-V a-t' h-t

is a plane curve which lies in the plane ax + bi/+ cz~0.

192. To find the osculating plane at a point of the curve

of intersection of the surfaces f(^, rj, ^) = 0, 0(^, ;;, ^) = 0.

The equations to the tangent at (x, y, z) are

{i-^)f.+ {ri-y)fy+ {t-^)^ = ^,
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and therefore the e(][uatioii to the osculating plane is of

the form

X{{i-r)f.+(>i-y)fy+a-^)f\}

That this plane should have contact of the second order

with the curve, we must have

^Wfx+ y'fy+ zf^}=fx{x'<p^+ y'<Py-]-z'cl,,} (1)

and M^"fx+y"fy+ z"f^}=fi{x"<l)^^-^y"<Py+ z"<p^}. ...(2)

But x%+y'fy+ z'f,= and x<l>^+i/(Py+z'<p,= 0, ...(3)

and therefore equation (1) is an identity. This is to be

expected, since any plane through the tangent to a curve

has contact of the first order with the curve. Differenti-

ating the equations (3), we obtain

a^'%x+ y'%y+ zjzz+ ^y'z'fyz+ 2s'x'^+ ^x'y'Uj

= -{^"fx+ y"fy+ z"f^),

X'~(}>:cz+ y'Hyy + ^'V~'^+ W^'^yz+ '^z'x'<i>zx + 2,r''J/'0^y

= -{x"(p^+ y"({>y-\-z"cf>^),

whence by (2) the equation to the osculating plane is

{i-^^)fx-\-{^-y)fy+{t-^)fzAi-^)^x+{n-y)<t>y\-{t-^H^

X^fxx • . • + ^'z'fyz+ . .

.

X^:,^ . .
. + ^'Z'(l>yz+ . .

.

Ex. 1. Prove that the osculating plane at (.r,, y^, z^) on the curve

of intersection of the cylinders .v'^+ z^= a?., y'^ + z-= b^ is given by

a'
~"

62

Ex. 2. Find the osculating plane at a point of the curve of inter-

section of the conicoids

f= o.»;2 + 6y2+ C22 - 1 = 0, 4^ = a..)--'+ ftf + yz- -1=0.

We have axx'+ hyy'+ czz'= 0,

olxx + ftyi/+ yzz'= 0,

xx yy' z^
whence -A=B =

C'

where A = hy-c(i, B= ca.-ay, C=a(i-hct..

Again, /„=2a, fy.j
= ^.b, /„= 2c; f,.= f,,=U= ; <^„= 2a, etc.

Therefore the required equation is

(^_,^„,r + (rj-y)hy + (C-:)rz (^-,-)r^r+ Oj -y)f3y +a- :)y^

aA-^'b/PcC' a-A' fSh^ yC^
1^^ y/2

+
Z-' .r;2

"^ y^
"^

z^

which reduces to 2(^-.r).t-3iJr'(5.^2_ c/) = o.
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The equation may be further transformed.

We have a.f-a^= Bz'-Cf -(a.-a)= 0, etc.

Hence the equation may be written

^^x^BC{c^. -a) = 2.r^ BCiBz' - Cf),

= - {Bz^ - CiMCx"- - Az^){Ai/ - Bx^),

:+ ;
+ 1-0.

(/3-6)(y-c)^(y-c)((x.-a) {a.-a){(i-b)

Ex. 3. Shew that at {x\ y\ z'), a point of intersection of the three

confocals,

the osculating plane of the curve of intersection of the first two

Ex. 4. Prove that the points of the curve of intersection of the

sphere and conicoid

rx"- + rf + Tz^= 1 , ax^^- hf+ cs^= 1

,

at which the osculating planes pass through the origin, lie on the cone

a-r b-r
a-b'

'= 0.

193. The principal normal and binomial. There is an

infinite number of normals to a curve at a given point, A,

Kp

^1

jlcin«

on it, and their locus is the normal plane at A. Two of the

normals are of special importance, that v^hich lies in the

osculating plane at A and is called the principal normal, and
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that whicli is perpendicular to the osculating plane and is

called the binormal. In fig. 54 AT is the tangent, AP the

principal normal, AB the binormal ; the plane ATP is the

osculating plane, and the plane ABP is the normal plane.

The plane ABT is called the rectifying plane.

We shall choose as the positive direction of the tangent

at A the direction in which the arc increases, and as the

positive direction of the principal normal, that towards

which the concavity of the curve is turned. We shall then

choose the positive direction of the binormal so that the

positive directions of the tangent, principal normal and

binormal can be brought by rotation into coincidence with

the positive directions of the x-, y-, and 2;-axes respectively.

Let us throuoliout denote the direction-cosines of the

tangent by l^, w^, n^;
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Therefore

^ ^ _^
z(z'x"- xz")- y'jx'y"- y'x")

^ ~ s''^\/x"'^-\-y"'^-\-z"'^— s"'"

^ _^
x"(x^-+ y"^+ z'^-) - X (x'x"+ y'y" + zz")

~
s"'Jx"'^+ y'"^+ z""— s'"^

and similarly,

il"s'— y's"
,

z"s'— z's"

ssjx '^+ y '-+S -— s
^ ssjx "-+?/ -+0 '-— s

-

Ex. 1. Prove that the parallels through the origin to the binomials

of the helix x= a cos 6, y= a sin 6, z= kO

lie upon the right cone a%x'^+y'^)^kh^.

Ex. 2. Prove that the principal normal to the helix is the normal
to the cylinder.

194. Curvature. If A^ and Ag are points of a given

curve so that the arc A^A^ is positive and of length Ss and

the angle between the tangents at Aj and Ao is Sxp-, the

ratio -^ gives the average rate of change in the direction

of the tangent over the arc A^A^. Tiie rate of change at A^

is measured by the Lt -)-, that is by -^

curvature of the curve at A. It is denoted by Up, and p
is called the radius of curvature.

195. Torsion. The direction of the osculating plane at

a point of any curve which is not plane changes as the

point describes the curve. If 8t is the angle between

the binormals at A^ and A.,, the ratio -k- gives the average

rate of change of direction of the osculating plane over the

arc AjAo. The rate of change at A^ is measured by the Lt -k-,

that is by -t-, and is called the torsion at A^. It is denoted
•^ (Is

^

by ] /cr, and a is called the radius of torsion.

— <-^^«<" ia '^^^ — and is called the
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196. The spherical indicatrices. The formulae for

curvature and torHiun are readily deduced by means of

spherical indicatrices, which are constructed as follows.

From the origin, O, draw in the positive directions of tlie

tangents to the curve, radii of the sphere of unit radius

whose centre is O. The extremities of these radii form a

curve on the sphere which is the spherical indicatrix of the

tangents. Similarly, by drawing radii in the positive

directions of the binomials, we construct the spherical

indicatrix of the binomials.

197. Frenet's formulae. In figs. 55, 56, let A^, A,, A3, ...

be adjacent points of a given curve, and let O^^, O^,' 0^3 » •••

be drawn in the same directions as the tangents

AJi, A,T.,, A3T3, ...,

and 0?>j , oh.,, Ob.,, . .
.

, in the same directions as the binomials

A^Bp AoBg, A3B3, ....

Then f^ t.,, f.^, ... , h^, 6.,, 63, ... are adjacent points on the

indicatrices of the tanwnts and binormals.

Since Ot^ and Of., are parallel to adjacent tangents to the

curve, the limiting position of the plane t^Of., is parallel to

the osculating plane of the curve at Aj. Hence the tangent

at t^ to the indicatrix tj:.-,t^ . .
.

, being the limiting position

of tjt^, is at right angles to the binomial at Aj. And since

it is a tangent to the sphere, it is at right angles to the

radius Ofp and is therefore at right angles to the tan-

gent AjT^. Therefore the tangent at t^ to the indicatrix
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t^t.^t^ ... is parallel to A^P^, the principal normal at A^. Let

us take as the positive direction of the tangent to the in-

dicatrix, the positive direction of the principal normal.

Since the sphere is of unit radius, the measures of the

arc t-^t.^ of the great circle in which the plane t-^Ot.2 cuts

the sphere, and of the angle t^Ot^ are equal, and hence the

measure of the arc is Syp-. Let 8a. measure the arc t^t.^ of

the indicatrix. Then Lt
Syjy

If we take the arcs

of the indicatrix and great circle through t^, to in the same

sense, the limit is +1, and since we have fixed the positive

direction of the tangent to the indicatrix at i^, we thus fix

the sign of S\p: Hence we have, in magnitude and sign,

Ss ds

^
S\J^ Sol doi'

(1)

Again, t^ is the point (l^, m^, n^), and therefore, by §188,

the direction-cosines of the positive tangent at t^ to the

indicatrix
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position oi" the plane h^Ob.^, i-C. the tangent pkme to the

reciprocal cone, is at right angles to 0<^, and the limiting

position of b^K, i.e. the tangent at 6^ to the indicatrix

bj)jb.^... is at right angles to Ot^. IJesides, the tangent at

b^ is a tangent to the sphere, and is therefore at right angles

to Ob^. Therefore the tangent at b^ to the indicatrix bj)jj.^ . .

.

is parallel to A^P^, the principal normal at A^. Suppose

that its positive direction is that of the principal normal.

If the measure, with the proper sign, of the arc bjj., of

the indicatrix is 8/3, then the measure of the arc bjj., of the

great circle in the plane bjOb.^ is ^t, and Lt~-=+l. If

we take the arcs in the same sense so that the limit is +1,
since we have assigned a positive direction to the tangent

at b^ to the indicatrix, we fix the sign of St. Hence we
have, in magnitude and sign,

J OS
J

Ss ds^="^ ="^=30 (-^

Again, the coordinates of 6^ are ^3, m^, n^, and licnoc the

direction-cosines of the positive tangent at b^ to the in-

dicatrix are cU^ dm^ dn^

d(i' d(3' d^'

Therefore h= -f%> '>^^->= -j^> ^'2 = t^'^ dp - d^ ^ d(3

Orbv(2) ^^ = ^^ m^^dm, Ti^^dn^
' "^

^"^'
a- ds' a- ds '

a- ds

We have also, l^^+ If+U = 1

.

TT 1 dL ,
, dl^

,
, dL _

Hence ^1^+h^ 4- k'~r = 0.
^ ds ^ ds -^ ds

Therefore, by (a) and (i;),

ds p o-

Snmlarly, -t^= ^ K -^^^ ^ ^ (c)
•^ as p a- ds p ^

The results (a), (p.), (c) are exceedingly important. They

are known as Frenet's Formulae.
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198. The signs of the curvature and torsion. We
have agreed that the positive direction of the tangent at ^^

to the indicatrix tytj.^ ... is that of the principal normal.

But if the positive direction of the principal normal is that

towards which the concavity of the curve is turned, the

direction at t^ of the arc t^t=^ is that of the positive direction

of the principal normal, (see figs. 55, 56). Therefore, ^a,

Sxjr and p are always positive.

We also agreed that the positive direction of the tangent

at hy to the indicatrix 6^62^3 • • • ^^^ ^^^^ positive direction of

the principal normal. The direction at 6^ of the arc h-^b.y is

the positive direction of the principal normal for a curve

such as that in tig. 55, but is the opposite direction for a

curve such as that in fig. 56. For the curve in fig. 55, the

apparent rotation of the principal normal and binomial as

the arc increases is that of a left-handed screw, and such

curves are therefore called sinistrorsum. For such a curve

(5/3, St and <t are positive. For the curve in fig. 56, the

apparent rotation is that of a right-handed screw, and such

curves are said to be dextrorsum. For this class of curve

^/3, St and a are negative.

199. To find the radius of curvature.

From (a), § 197, by squaring and adding we obtain

'?Ali)'<'^hm <^>

«;' dly x's'— s'x'
But l,=—> therefore -j^= 75 •

1 {x"s—s"xy
Hence ^ = 2

(,'6 I

Therefore, since 2a;'^ = s'^, and "Zx'x" = s's",

«2
~'

.o'4



§§198-201] THE RADIUS OF TORSION 289

Got. If the coordinates are functions of 8, the len^^th of

the arc measured from a fixed point, so that t^s, then

s' = I , s" = 0, and

p' \dsy ^\dsy ^\dsy-
The stiulenfc should note the analogy between these fornuihie and

those for the radius of curvature of a plane curve.

Ex. Deduce equation (1) from the result of Ex. 10, § 23.

200. To find the direction-cosines of the 'principal

normal and hinorinal.

From equations (a), § 197,

, (dlA x"s'— 8"x'

o- -1 , y"s'— 8"y' s"s'— 8"z'
Similarly, m.,= p^——,^-^, v., = p -^^

—

.

Aojani, smce on,=—„ n,=—, and L = m,7}..— m.,n-,.

7 _ y'z"-zy"

h-P Y'
•

o. ., 1
z'x"— xz" xy"— y'x"

Similarly, m.^^ p-—
-^,
—-, n., = p ^

^,.^^

Compare § 193.

Cor. If i = s, we have.

, d-x (V^y dH

L=J'M/^':^_^.^y) etc
"" ^Kds ds^ ds ds-J'

201. To find the radius of torsion. From Frenet's

formulae, (b), we have ,^ = -^, and from S 200,
^ ^ ds <T

^

h = ji^y'^"- ^'V"l or I/-' = piy'z"- z'y").

Differentiating with respect to t, we obtain

I .<i''^^

-^ + Sl/^-s'= piy'z"- z'y'")+ p'{y'z" - z'y"),

= p{yz -zy >+ -^- <1)

T

cr
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Similarly, —^

—

V^m^s^s =p{zx —xz )-\—^—
a- p

[ciI. XTV.

...(2)

and —^

—

H3%s'^s = pixy —yx )+ -^^^--

cr p
,.(3)

Multiply (1), (2), (3) by L^, m^, n^ respectively, and add,

and we have

— = p [hiy'^'"- ^'y'")+ "^hi^'^'"- ^'z")+ n^{xy"' - y'x" )],
0"

which, on substituting p
'

-^ for l^, etc., becomes

1 ^_P_
a- s'^

X, y, z

x", y", z

x'", y'", z'

Ex. 1. Find the radii of curvature and torsion of the helix

.r= acos^, ?/ = asin^, z= u6id,\\cL.

We have x'= - a sin 6, y' — a cos 0, z'= a tan oc.

Therefore s"^ = x'"^+fp+ z"^= a^ sec-cx..

Hence x"= - a cos 0, y"= - « sin 6*, z'— s"— 0,

and x'"= a si n 6, y'"— -acos. 6, z"'= 0.

1 _ J_
- a sin ^, « cos 9, a tan a.

p'V s'*^ -acosd, -asin^,

a sin 6, -a cos ^,

whence , o-= - rt/sin a. cos a..

Ex. 2, For the curve .r^S;", y= 3i:2, 2= 2(!3, prove that

p=-(r= |(H-202.

Ex. 3. For the curve r=: 2a(sin-^A+ A\/i - A^), y=2aX^, z= iaX,

prove that p= -cr- = 8a\/l- X!^.

Ex. 4. For a point of the curve of intersection of the surfaces

Therefore

and
- tan a.

,3 apr.6„

- 1/^— c\ ?/

=

X ta nil -, p -
2x-2

(.t'=ccosh^, _y= csinhi;, z= ct.)

Ex. 5. For the curve x= sjQa\^, ?/= a(l +3A''), z= slQ,a\, prove

that (T=y'^ja.

Ex. 6. Find the radii of curvature and torsion at a point of the

curve x^+ y^= a^, x"^ - .?/= az.

2_ (5a^ -4^")^ 5a2+ i2£2

(.V— acos^, y = «sin^, 2= acos2^.)



n, = cosoi> and ^' =-^ = 0, (§197, (a)).

Again, '^+ !^= -1^ = {), (§ 197, (c)).
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202. If t]ie tangent to a curve makes a constant anffle a.

ivWt a fixed line cr= +/otana.

Take the tixed line as 2;-axis. Then

n.y dn,

P
Therefore % = 0, and n^= ±Hma..

n^ n.-^_ dn.^

p a- ds

Therefore cr = + p tan a.

Ex. 1. For the curves in Exs. 2, 3, 4, § 201, shew that the tangent
makes an angle of 45° with a fixed line, and hence that p= ±(t.

Ex. 2. If a curve is drawn on any cylinder and makes a constant

angle a. with the generators, p = /d,, cosec-a., where 1/p and l/po are the

curvatures at any point P of the curve and the normal section of the

cylinder through P.

Take the ^-axis parallel to the generators of the cylinder. Then
if 8s, Ssj are infinitesimal arcs of the curve and normal section,

ds, . dz -, d-z ^ Ti? i-» / \
-7- = sin a., ^- = cosa. and ^-t,-=0. it P is (.r, ?/, 2),
ds ds ds' \ ' ./'

Whence the result immediately follows.

Ex. 3. Apply Ex. 2 to shew that the curvature of the helix

x= a cos 6, y= « sin 6, z— ad tan a.,

Ex. 4. If pja- is constant the curve is a helix.

Since -= -y and - = -7-5 dli = lcdl^.

p ds cr ds

Therefore ^,=^3+ ^-1, where k^ is an arbitrary constant.

Similarly, nii — hi^-V ko,; ni = k7i3 + Ic^.

Multiplying by Z,, hii, «i, and adding, we obtain ^'i^i + /•.,?«! + /•;,«! = 1-

Hence, since k{^+ k./+ k3^= l + k'\ and therefore /.,, k.,, t^, cannot all

be zero, the tangent to the curve makes a constant angle with the

^xed line x y z

fCt fCi) A'o

Parallels drawn through points of the curve to this line generate a

cylinder on which the curve lies, hence the curve is a helix.

Ex. 5. If p and a are constant, the curve is a right circular lielix.

Ex. 6. A curve is drawn on a parabolic cylinder so as to cut all

the generators at the same angle. Find expressions for tlie curvature

and torsion.

Ans. If the cylinder is x=afl, y^2at, and the angle is a.,

/3= 2a(l + <2)^/sin-a. and o- = 2a(l + «-)^/sin«.cosa.
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203. The circle of curvature. If p, q, r are points of

a curve, the limiting position of the circle PQR as Q and R

tend to P is the osculating circle at P.

From the definitions of tlie osculating plane and the

curvature at P, it follows immediately that the osculating

circle lies in the osculating plane at P, and that its radius

is the radius of curvature at P. It also follows that the

centre of the circle, or the centre of curvature, lies on the

principal normal, and therefore its coordinates are

x + hp> y+ '^^hP^ s+n^p.

We can easily deduce the radius and the coordinates of

the centre by means of Frenet's formulae. If (a, j8, y)
is the centre and r the radius of the circle of curvature,

the equations

^3(^-a;)+ m3(;;-2/)+ ^3(^-^) = 0, (1)

(,^-a)H(>?-/3)H(^-y)^ = r'- (2)

may be taken to represent it. Since the sphere (2) has

three-point contact with the curve at (x, y, z), differenti-

ating twice with respect to s and applying Frenet's

formulae, we have

(x-OLf+ {y-^f+ (z-yf = r\ (3)

l^(x-a.) + m,(y-l3)+n,{z-y) = 0, (4)

l.,(x-a.)+ m.,{y-l3)+ n,{z-y)= -p (5)

And since the centre (a, /3, y) lies in the osculating

plane, (1), ^a)-OL)+m^(y-j3)+ ^>K{z-y) = (6)

Square and add (4), (5), (6), and

(x-cxy+ (y-(3f+{z-yf = p\

Therefore, by (3), r = p.

Multiply (4), (5), (6) by l-^, I.,, l.^ respectively, and add, and

X— OL= —l,p.

Similarly, y — (i=— ju^p, z —y=—n .^p.

Therefore OL = x+ l.,p, /3 = .y -{- m^/?, y— z-\-n.,p.

204. The osculating sphere. If p, Q, R, S are points

of a curve, the limiting position of the sphere PQRS as Q, R

and S tend to P is the osculating sphere at P.
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To find tJte centre and rddius of the osciUdtliig sj)herc.

Assume that the equation is

Then, for four-point contact at {x, y, z), we have on difier-

entiating three times with respect to s,

^,:-a.fj^{il-^f+{z-yf = R\ (1)

Z.j(x-fx)+ 7n,(^-,8)+ 7?,(--y) = 0, (2)

U{x-a.)+ nu{y-^)-\-n.J,z-y)= - p, (3)

or, by (2), l,ix-a.)+ m.;,{y-^)+ n.^{z-y) = crp, (4)

1 / dp
where n --f-.

^ ds

Whence, as in § 208, wc deduce

and

a. = x-\-Up— l.^<jp, ^= y+ m>p — m.^a-p', y = z+ n.,p— n.^(rp.

These shew that the centre of the osculating sphere, or

centre of spherical curvature, lies on a line drawn through the

centre of circular curvature parallel to the binomial, and is

distant —a-p' from the centre of circular curvature.

Cor. If a curve is drawn on a sphere of radius a, I{ = a,

and therefore cr^= yf- Hence, if p is known, a can be

deduced. Further, if we differentiate a- = p-+ (-.'

eliminate the constant a^ and obtain a differential equation

satisfied by all spherical curves

^ (It

Ex. 1. A curve is drawn on a spliere of radius a so as to make a

constant angle a. with the phine of the equator. Shew that at tho

point whose north-polar distance is 0, p = "0- -sco-olcos-^)-.
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We have, by § 202,

Also (T

(T = p cot O..

, dz .

and ^=sina..
ds

But

Whence

dz :W
z= a cos 6, therefore -^= -a sin d-r-

pdp - a sin dd
COSOL

Integrating, we obtain

\la^ — p^= —a cos 9 sec a.+ b,

where b is an arbitrary constant.

If p= a when d= 7r/2, 6 = 0, and then

p= a(l - cos^^ sec-cx.)'-^.

Ex. 2. Find the equation to the osculating sphere at the point

(1, 2, 3) on the curve

.v= 2t+ l, ?/= 3f'+ 2, s= 4fi+ 2.

A ns. 3.f2+ 3//2+ 3 j2 - 6.v - 16^ - 1 82 + 50= 0.

Ex. 3. Find equations to represent the osculating circle at (1, 2, 3)

of the curve in the last example.

Ans. The equation to the sphere and z= 3.

Ex. 4. Prove that at the origin the osculating sphere of the curve

x= ayfi + 3b^fi+ 3cit, 9j = a4^+ 3b^fi+ 3cJ, z= a:ifi+ 3b^f+3cst,

is given by .v^+ 7/^ + z\ 2.r, 2y, 2z

3{ci^+ c./+ cs^), 2h„ 2b.„ 263

0, t'l, c,, Co

Ex. 5. Find the curvature and toi^sion of the spherical indicatrix

of the tangents.

The direction-cosines of the tangent are Z2, «i2) «2> (§19''')) ^"^^ ^^

8a. is an infinitesimal arc, Lt ?-r = l-

Hence, if the curvature is —

,

Po

,2V ( ^

If the torsion is

' \p (Tl (T^

2= l:-£lL., as in Ex. 1.



§204] EXAMPLES ON CUllVATURE AND TORSIUN 295

Wlience we easily find

where

p(p(r'-p'(r)

, dp , , da-
p ^-f- and (T =-r^ ds ds

Ex. 6. Prove that the radii of curvature and torsion of tlie splicrical

indicatiix of the binurmals are
V p"+ (T-

and
(T{(rp-<T'p)

Ex. 7. A curve is drawn on a right circular cone, semi vertical

angle a., so as to cut all the generators at the same angle
ft.

Shew
that its projection on a plane at right angles to the axis is an equi-

angular spiral, and find expressions for its curvature and torsion.

Take the vertex of the cone as origin and the axis as 2-axis. Let C,

fig. .57, be the projection of P, the \Knni considered, on the axis, and

CP and OP have measures r and R respectively. Then if CP makes

an angle 6 with OX, r, 6 arc the polar coordinates of the projection of

P on any plane at right angles to the axis.

From fig. 58 we obtain

Whence

dr= dRsi\v\cL= dz tan a..

dR = dscos [3= rde cot 13

dr

.}
(1)

= cot/i?sina.c/6^,

which is the differential equation to the projection and lias as integral

where /t = cot ^ sin a. and .1 is arbitrary.
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Again, from (1), --^ = COS a. cos/?, and therefore the tangent to the

curve makes a constant angle y with the 2-axis such that

cos y = cos a. cos f3.

^-.=0, a= ptany.We have therefor

Since '^^=0, '

Now .i-'= rcos^, >/ = rsinO,

and, using dashes to denote differentiation with respect to s, by (1),

r'= sin fx cos /?, and rO' = sin /?.

Therefore

x'= r' cos 6 - sin fS sin 0,

od'= — (/ sin Q -\- sin /3 cos

\

y'— r' sin ^+ sin /3 cos Q ;

y"= (}•' cos d - sin /3 sin ^) ^'

;

/3'v '' , • 9o\ sin-/8(l-cos2«.cos2i3)

Hence and (r= ptan
sin;8siny' •

' sin /:( cosy

Ex. 8. Deduce equations (1), Ex. 7, by differentiating the equations

x^+y2_ z\2,v?a., x^+y^+ 2^= R^) -^'^ + .y^ == ''^>

and applying xx'+yy +zz'=R cos /?.

Ex. 9. The principal normals to a given curve are also principal

normals to another curve. Prove that the distance between corre-

sponding points of the curves is constant, that the tangents at

corresponding points are inclined at a constant angle, and that there

must be a linear relation between the curvature and torsion of the

given curve.

If O, (.r, y, z) is a point on the given curve, O', the corresponding
point on the second curve has coordinates given by

^= x-\-J.f, i}=y + m.,r, (=z+ii.,r,
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wliei-e OO' is of length r. If we take O for origin and OT, OP. OB
the tangent, principal normal, and binomial as coordinate axes,

^j= l, mi = ??j=0; ^^ = «2= 0, m2=\ ; l^ = m^= 0, «3=1
;

and C is (0, r, 0). The tangent to the second curve is at right angles

to OP or OO', and therefore ^= ; i.e. mi-,-f'-^+*-^) + jH,$'= 0.
as \ p (T J ^ ds

Hence, since m^^ = m^= 0, ;7-= 0, and r is constant.

Again, if ^' =
-f, etc., we have
ds'

therefore, at the origin,

f= (l-r/p), 7/ = 0, C=-r/^,

and the tangent to the second curve iiiakes an angle 6 with OT .such

that tan 6'=,-^^.
1 - r/p

^e"=V^+/Yl_i;,_:;)+^_;i!:^',etc.;
p- ' \p p" <r-/ cr-

therefoi'e, at the origin,

A,, rp „ 1 r r .„ ra
^

P'
'

p p- (T-
^

(T-

But the binomial to the second curve is at right angles to OP, and
therefore

f^" -t"A' =

rp' nr'

p" _ (r'~

p a-

Integrating, we obtain

i„g..i(,-i-)=i„g^,

where .1 is an arbitrary constant,

\ p/ a-

and thus there is a linear relation between the curvature and torsion.

rla-
Again, tan ^= r

—

-—7- = A, and therefore 6 is constant.°
1 -r/p '

This problem was first investigated by Bertrand, and curves which
satisfy the conditions are on that account called Bertrand curves.

Ex. 10. A curve is projected on a plane the normal to wlii<li

makes angles ol and /3 with the tangent and binomial. If p, is the

radius of curvature of the juojection, prove that p= '. ^ -
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Let P be a point of the curve and Q and R the points of the curve

distant 8s from P. Then, if the area of the triangle PQR is denoted
1 2 A 1 2A'

by A, -=Lt^. Similarly for the projection — = Lt^-;g-, where A',

8s' are the projections of A and 8s. But A'=A cos/?, and 8s'= 8s sin a.,

whence the result.

205. Geometrical investigation of curvature and tor-

sion. The following geometrical investigation of the

curvature and torsion of a curve is instructive.

Let A^, Ao, Ag, ...
,
(fig. 59), be consecutive vertices of an

equilateral polygon inscribed in a given curve, and let

'4 A

M^, Mo, Mg, ... be the mid-points of the sides. Planes

Mj^C^Sp M0C2S2, ... are drawn through M^ M^, ... normal to

the sides. M^C^ M^C^ are the lines of intersection of the

planes M^CiSp IVI.2C2S2 and the plane A^AgAg; similarly, M2C2

and M3C2 lie in the plane AgAgA^, and so on.

Then C^ is the centre of the circle through the points

Aj, A2, A3, and its limiting position when A2 and A3 tend

Let p denote the
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radius of the circle of curvature at Aj. Fioiii the cyclic

(quadrilateral C^Mj^AoM.^,

AjA, _
2.sin^MiCjiM3 ~ ^^^-'

But since the limiting positions of A^A^ and A^A.j are

tangents, A^A, _ds^
2 sin h M^C^M2~ drf/

Therefore, since the limiting value of C^A., is p,

P- w
and the curvature =-—= -, where p is the radius of the

circle of curvature.

Since the planes M^C^Sj, MoC^S^ are at right angles to

the plane A^AgAg, their line of intersection C^Sj is normal

to the plane A^A^Ag. Therefore, in the limit, CjSj is parallel

to the binormal at A^. But since C^S^ is the locus of points

equidistant from the points A,, A.,, A3, and CoSj is the locus

of points equidistant from A.,, A3, A^, S^ is the centre of the

sphere through Aj, Ao, A3, A^, and the limiting position of

Sj is the centre of spherical curvature at A^ Therefore,

the centre of spherical curvature lies on the line drawn

through the centre of circular curvature parallel to the

binormal.

Since the limiting positions of C^S^ and C.,Sj are parallel

to consecutive binomials, we may denote the angle C,S|Co

by St. If C^Mo and C^Si intersect at K, then CiK = C,S,()t.

But CjK differs from CjM^ — C.,M., by an intinitesimal of

higher order, and therefore

^ ^ St St cIt

Hence, if R is the radius of spherical curvature at A,

,

By our convention of §198, the positive direction of the

binormal is that of S,C,. In our fiirurc the curve is
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dextrorsum, and Sr is therefore negative. Also Sp is

negative, so that Sp/Sr is positive. Hence, if the co-

ordinates of A^ are x, y, z, and those of the limiting

position of S^ are Xq, y^, z^,

a^Q— a; = projection of M1C1+ projection of C^Si on OX,

or ^o = '^+ pk--^h-
Similarly,

2/0=y+ p'^^h

-
'^ ^^h ' ^o=^+p'>^2-^''h-

The points S^, S.^, S3, ... are consecutive points of a curve

which is the locus of the centres of spherical curvature,

and SjS.,, S0S3, ... are ultimately tangents to that locus.

The plane S^S^Sg or MgC^S^^ is ultimately an osculating

plane to the locus, and hence the osculating planes of the

locus are the normal planes of the curve. Therefore, if

6\lr, St are the angles between adjacent tangents and bi-

normals to the curve, and (^i/r^, <5ti are the angles between

adjacent tangents and binomials to the locus,

Lt^i = l, and Lt^^ = l.

St oyr

Hence, if infinitesimal arcs of the curve and locus are

denoted by Ss and Ss^, and the curvature and torsion of

the locus by 1/p^ and l/o-p

J , Ss Ss-^ _j,Ss Ss^ _
PP^'^^^I^'S^-^^I^'St-'"^'-

The limiting positions of C^S^, C^S^, ... are the generators

of a ruled surface which is called the polar developable.

Since CiS^ and C.^S^ are ultimately coincident, the plane

CiSiC2 touches this surface at all points of the generator

C^Sp and hence the normal planes to the curve are the

tangent planes to tlic polar developable.
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Ex. 1. Shew that if ds^ is the differential of the aic of the locus of
the centres of spherical curvature,

, Rd/i
dsi

If (^, >/, {) is a point on the locus, and ^'= X etc.,

Therefore, by Frenet's fornnilae, and since s/li^- p^= crp',

« \iif^-p^

Ex. 2. Obtain the result from fig. 59.

dll

dp ' or dp
Ex.3. Prove that p, = /^^^, a.J^P'^J^

and verify that ppi = o-o-j.

206. Coordinates in terms of .s\ If the tanoent, prin-

cipal normal and binormal at a given point O of a curve are

taken as coordinate axes, and s measures the arc OP, we
may express the coordinates of P in terms of s. We liave

«^=/(«)=/(o)+>i/'(o)+|^/'(o)+^r(o)...,

= 80c^ + 2 ^0 "^
"(3 '^'o + • • • >

where x^, Xq", x^", . . . are the values of x\ x", x"', ... at the

orio-in. Similarly,
2 3

z= 8z^ +2^0 +-(--0 +••••

We have therefore to evaluate Xq, y^, Zq, etc.

Since the tangent is the .r-axis,

Since tlie principal normal is the 7/-a.x;is,
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Again, by Frenet's formulae,

-i+-=---=-(px +px
),

P ds

-i + ^=r.-{py +pij), -^+^=-{pz +pz\

1 ,„ p ,. 1

Therefore, as far as the terms in s^, we have

Z= -7. •

Ex. 1. Shew that the curve crosses its osculating plane at each

point.

Unless l/o- is zero, z changes sign with s. If, at any point, l/cr= 0,

the osculating plane is said to be stationary.

Ex. 2. Prove that the projection of the curve on the normal plane

at O has a cusp at O. What is the shape at O of the projections on

the osculating plane and rectifying plane ?

Ex. 3. If s- and higher powers of s can be rejected, shew that the

direction-cosines of the tangent, principal normal, and binomial at P

are given by

T^s/^~0"' -s/p~T~-//o-' "O^s/o-"!'

In the following examples O and P are adjacent points of a curve,

and the arc OP is of length .s.

Ex. 4. The angle between the principal normals at O and P is

s(p-2-{-o--)i

Ex. 5. The shortest distance between the principal normals at O

and P is of length
^^

, and it divides the radius of the circle of
sjp- + &'-

curvature at O in the ratio p- : a".

Ex. 6. The angle that the shortest distance between the tangents

at O and P makes with the binomial at O is s/2o-.

Ex. 7. Prove that the shortest distance between the tangents at

O and P is s^j12per.

Ex. 8. The osculating spheres at O and P cut at an angle -~, -j-.
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Examples XI.

1. Shew that the feet of the perpendiculars from the origin to the
tangents to the helix x= acosB, i/= as\n6, z= c6, lie on the hyper-
boloid .v-jc-+ >/'jc' - z'^ja^= a-jc\

2. A curve is drawn on the helicoid z— ctaii~^i//jc so as alway.s to

cut the generators at a constant angle ex.. Shew that by properly

choosing the starting point it may be made to coincide with the inter-

section of the helicoid with the cylinder 2?'= c(e^cota_e-ecota)^ r, 6
being ordinary polar coordinate. Find the equations to the prin-

cipal normal at any point.

3. Find 7(6') so that .v = acosd, ?/ = asin6?, z = f{9) deterniino a

plane curve.

4. If tlie osculating plane at every point of a curve pass tlirough

a fixed point, the curve must be plane. Hence prove that the curves
of intersection of the surfaces x'^-\->f + Z"= a.^, '2,{x^-\-)f^+ z^) = a'^ are

circles of radius a.

5. A right helix of radius a and slope a. has four-point contact

with a given curve at the point wliere its curvature and torsion are

1/p and l/<r. Prove that

«= |-—;, and tano(.= -. •
p- -f a- (T

6. For the curve .v = a tan $, y = a cot ^, z = slia log tan 0,

_ _ _^\/2a

7. Shew tluit the osculating ))lane at (.r, y, z) on the curve

.r2+ 2ax=f -t- 2%= z'^ + Icz

has equation

8. Shew that there are three points on the cubic

X= afi -f Zh^f-+ ^c^t -^ c?, ?/

=

a4^ -V SKfi+ ^rj + d.,,

z = a.f -f Zh.f- -t- Sc.,? -t- (^3,

the osculating planes at which pass through the origin, and that they

lie in the plane
.r, ?/,

K K

9. If p, pi, p.j, p3 are the radii of curvature of a curve and its

projections on the coordinate planes, and a., ft, y ai'e the angles that

the tangent makes with the coordinate axes, prove that

sin^g. sin"/3 sin"y

Pi pi pi
sin^g-coso. sin^/3cos/? f

P\ Pi

'y=

Pi

= 0.
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10. Prove that at the point of intersection of the surfaces x'^+y^=z^,

z^atAxr^yjx, where y=xidinB, the radius of curvature of the inter-

section IS ^^ <-—r-.

11. A catenary, constant c, is wrapped round a right circular

cylinder, radius a, so that its axis lies along a generator. Shew that

the osculating plane at a point of the curve so formed cuts the tangent

plane to the cylinder at the point at a constant angle tan ^cja.

(.r= acos^, ?/ = (Xsin^, 2= ccosh^.
j

Prove also that p -

3\'a-+ (

12. If a curve is drawn on a right circular cylinder so that its

osculating plane at any point makes a constant angle with the tangent

plane at the point to the cylinder, then when the cylinder is developed

into a plane, the curve develops into a catenaiy.

13. For the helix prove the following properties : the normal at P

to the cylinder is the principal normal at P to the helix ; the binomial

at P makes a constant angle with the axis of the cylinder
;
the locus

of the centre of circular and spherical curvature is a helix ; if P' is

the cenire of circular curvature at P, P is the centre of circular

curvature at P' for the locus.

14. A curve is drawn on a sphere of radius «, and the principal

normal at a point P makes an angle B with the radius of the sphere

to P. Prove that p = acos ^, -= ± ^•^
(T CIS

15. If O, P are adjacent points of a curve and the arc OP= 5, shew-

that the difference between the chord OP and the arc OP is s^lMp%

powers of s higher than the third being neglected.

16. Prove that

•^ p-cr- p*

where dashes denote differentiation with respect to s.

17. If from any point of a curve equal infinitesimal arcs of length s

are measured along the curve and the circle of curvature, the distance

between their extremities is s^i?/6pV.

18. The shortest distance between consecutive radii of spherical

curvature divides the radius in the ratio a'^
: P'\jpJ •

19 A curve is drawn on the paraboloid x-'+f^2pz making a con-

stant angle a. with the s-axis. Shew that its projection on the plane

^= is given by j-^^^,
= cos-i -

,

where a=pcoi<i... and find expressions for its curvature and torsion.
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20. A curve is drawn on a spliere, radius «, so as to cut all the
meridians at the same angle cc. Shew that if 6 is the latitude of
any point of the curve,

^^
a cos 6 _ a^ tan a.

•Jl - sui-d cosV' ^~ (a" - p^ cos^a.)'

21. A point Q is taken on the binomial at a variable point P of :i

curve of constant torsion l/rr so that PQ is of constant l(n"th c
Shew that the binomial of the curve traced bj Q makes an'^au'de

tan~'f/3/(r\/c^+ o-- with PQ.

22. A point moves on a sphere of radius a so that its latitude is

equal to its longitude. Prove that at (.>;, t/, z)

{^a^-z^f 8a2-3j2

23. A curve is drawn on a right cone so as to cut all the generators
at the same angle. Shew that the locus of its centres of spherical
curvature satisfies the same conditions.

24. A curve is drawn on a paraboloid of revolution, latus rectum <%

so as to make an angle 7r/4 with the meridians, investigate tlie

curvature and torsion at any point in the forms

c2//j2= tan2</)(l + 3 sin^c/) - sin<<^ - siii«c/>),

c^/pV= gin ^ tan-<^(l + 4 sin-'c/) - (j siii^</) + 4 siii"0 + sin^'c/)),

<^ being the angle which the tangent to the meridian through the
point makes with the axis.

25. The normal plane at any point to the locus of the centres of
circular curvature of any curve bisects the radius of spherical curvature
at the corresponding point of the given curve.

26. A curve is drawn on a light circular cone of semivertical
angle a. so as to cut all the generating lines at an angle /?. The cone
is then developed into a plane. Shew that

p : /3o
= sin a. : \/sin2o(.cos-/:? + sin7i,

where p, p^ are the radii of curvature at a point of the original curve
and of the developed curve respectively.

27. The coordinates of a point of a curve are functions of a para-

meter t. Prove that the line drawn through any point (.r, y, z) of the

curve, with direction-cosines proportional to -^-r, -r^-, -j^,, lies in the

osculating plane at the point and makes with the principal normal an

, , ,/ d-t ds\
angle tan- (^p^.^j.

28. A curve is drawn on a cylinder of radius a and tlie cylinder is

developed into a plane. If p be the radius of curvature of the curve
and pi the radius of curvature of the developed curve at corresponding

points, -^ ^=—5^, where ^ is the angle that the tangent to the

curve makes witli the generator of the cylindm- throutrh the point.

R.r.

"

U
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29. A length equal to the radius of torsion, cr, being marked oflf

along the binomials to a curve of constant torsion, prove that po, the

radius of curvature of the locus so formed, is given by ^ „ =p^+ 2(r'\

Po
Prove also that the direction-cosines of the binormal to the locus are

\/2po/4o-, \/2/)o/4o-, \/2pJ2p.

30. A length c is measured along the principal normals to a curve.

Shew that the radius of curvature, po, of the locus is given by

1 j cp'-a-%p-c) Y .cY(^

Po'^ \cV+cr2(p-c)2j ^ {c

'^{ca-p'+pip-cWf
{cY+a-\p-cff

31. With any point of a curve as vertex is described the right

circular cone having closest contact at the point. Shew that its axis

lies in the plane containing the binormal and tangent to the curve and
that its semivertical angle is tan~i3o-/4p.

32. P is a variable point of a given curve and A a fixed point so

that the arc AP= s. A point Q is taken on the tangent at P so that

the tangent at Q to the locus of Q is at right angles to the tangent

at P to the curve. Prove that PQ= a-s, where a is an arbitrary

constant. Prove also that if Aj, pi, Vy ; Aj, p.2» v^; A3, pa, Vg are the

direction-cosines of the tangent, principal normal and binormal to

the locus,

Xy= U, etc., Xo= ' — „ , etc; A3= 'fl—

^

, etc.,

sip'^^+ cr- 'Jp-+ (T^

and that its radii of curvature and torsion are

o-{a-s) (p--^cr-){a-s)

\/pM^2' p{(rp'-p(T')
'

33. Prove that the radius of curvature, pj, of the locus of the

centres of circular curvature is given by

Pi pHp-+py .

'

where p' = -j-.

34. "With any point of a curve as vertex is described the paraboloid

of revolution having closest contact at the point. Prove that its latus

rectum is equal to the diameter of the osculating sphere.
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CHAPTER XV.

ENVELOPES.

207. Envelope of system of surfaces whose equation

contains one parameter. The equation

f{x, y, z, a) = 0,

where a is an arbitrary parameter, can be made to repre-

sent the different members of a system of surfaces by

assigning different values to a. The curve of intersection

of the surfaces corresponding to the vakies a, a+ ^a, is

given by

/(.'•, y, z, «.) = 0, f{x, y, z, a+ oa) = 0,

or by

that is, by

fix, y, z, a.) = 0, ^J{x, y, z, a+0Ja) = O,

where is a proper fraction.

Hence, as Sol tends to zero, the curve tends to a limiting

position given by

/(,7;,i/,0,a) = O, ^f{x,y,z,<^) = 0.

This limiting position is called the characteristic corre-

sponding to the value a. The locus of the characteristics

for all values of a is the envelope of the system of surfaces.

Its ecfuation is obtained by eliminating a between the two

equations -p.

f{x,y,z, a) = 0, ^/ir,y,z,a) = ().
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Ex. Find the envelope of splj^res of constant radius whose centres

lie on OX.
The equation to the spheres of the system is

{x-af+y'^-\-z'-= r'^,

whex'e a is an ai'bitrary parameter and r is constant. The characteristic

corresponding to a = a. is the great circle of the sphere

{.v-a.f+y''-+ -f-= r'^

which lies in the plane ,r= a, and the envelope is the cylinder

/ + 2-= r2.

208. Tlce envelope touches each surface of the system at

all points of the corresponding characteristic.

Consider the surface given by a — OL. The equations to

the characteristic are

f{x, y, z, a) = 0, fjx, y, z, a) = 0.

Tlie equation to the envelope may be obtained b}^ eliminat-

ing a between the equations to the characteristic, and this

may be effected by solving the equation f^{x, y, z, a) = ()

for a, and substituting in f{x, y, z,a.)^0. Thus, we may
regard the equation f{x, y, z, a) = 0, where a is a function

of X, y, z given by f^{:x, y, z, a) = as the equation to the

envelope. The tangent plane at (x, y, z) to the envelope is

therefore

where t is introduced to make the equations /= 0, f^ =
homogeneous. But at any point of the characteristic

f^ = 0, and the above equation becomes

if.+nfy+Lfz+tft=o,

which represents the tangent plane at (x, y, z) to the

surface /=0. Hence the envelope and surface have the

same tangent plane at any point of the characteristic.

At any point of the characteristic corresponding to a= a, we have

f^d.r+_f„d//+f,dz+fadoL= and .4 = 0,

and therefore fjlv+ fi,d)/+ f,dz= 0.

But if (.r, ?/, 2) is a singular point on the surface f(.v, i/, z, a.) = 0,

/^=fy= /j=b, and hence tlie characteristic passes througli the singular

point. The h)cus of the singular points of the surfaces of the system
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therefore lies on the envelope. For iiny point of the locus the co-

ertieients in tlie e(iu;ition to the tangent plane to the envelope are all

zero, and the proposition thus fails for sueli points.

Consider, for e.xaiuple, the envelope of the right cones of given

seniivertical angle a., whose vertices lie upon OA and whose axes are

parallel to OZ. The equations to the system and to the envelope are

(x -ay'^+y-= z^ tan'^ ex., y'^= z^ tan- a.

The locus of the singular points of the system is OX, and the tangent

planes to the envelope and surfaces are indeterminate at any point of

the locus.

209. The edge of regression. The equations to the char-

acteristics corresponding to values a. and a+ (5a. of a are

(/=«)„..«., (|=o)
=o+Sa

The coordinates of any common point of these character-

istics satisfy the four equations, and therefore satisfy the

equations

(/=„)„... (| = o) , (|(=o) .

where d^ and 0.^ are proper fractions. Hence, as S<i. tends

to zero, the common points tend to limiting positions

given by

(/->- (|-L;(iL„- <-

These limiting positions for all values of n lie upon a

curve whose equations are obtained by the elimination of <l

between equations (1). This locus is called the edge of

regression or cuspidal edge of the envelope.

210. Each characteristic touches the edge of regres

sion. We may consider the e(|ualions

/=0, /a = ().

where d is a function of x, y, z, given by /„,< = 0, to repre-

sent two surfaces who.se curve of intersection is the edge of

regression. The tangent at (.>*, y, z) to the edge of regression
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is the line of intersection of the tangent planes to tlie

surfaces. Its equations are therefore

At any point of the edge of regression we have /a= 0,

faa = 0, and the above equations become

which represent the tangent at x, y, z, to the curve

/= 0, fa= 0, i.e. to a characteristic.

Ex. 1. Find the envelope of the plane 3xt'^ -Si/t+ z= fi, and shew
that its edge of regression is the curve of intersection of the surfaces

7/'^=xz, xy = z.

Ex. 2. Find the envelope of the sphere

{x - a cos ^)2+ (y - a sin ^)2+ z^ = 61

A lis. ix'-+ 7/^+z^+ cC- - b'^y= Aa^x"^ +y^)-

Ex. 3. The envelope of the surfaces f{x, y, z, a, 6) = 0, where a and
b are parameters connected by the equation (/>(«, b) = 0, is found by

eliminating a and b between the equations /=0, <^ = 0, -^=^.

Ex. 4. The envelope of the surfaces /(^, ;y, z, a, 6, c)=0, where
a, b, c are parameters connected by the equation <^(«, b, c)=0, and

/ and </) are homogeneous with respect to a, b, c, is found by elimi-

nating a, b, c between the equations f=0, <f> = 0, '-t^
=

'-t = ±-
'

<Pa 9b (Pc

Ex. 5. Find the envelope of the plane lx+my+ nz= 0, where
aP+ bm^ + cii^= 0. Ans. x'^'/a+y'^lb+z^/c=0.

Ex. 6. The envelope of the osculating plane of a curve is a ruled

surface which is generated by the tangents to the Qurve, and has the

curve for its edge of regression.

The equation to the osculating plane is 2^3(^-.r)=0, where

hi ^''Sj '^3> ^'i y> ^5 ^^^ functions of s. A characteristic is given by

2^3(^-.r) = 0, i::ioi$-x) = 0, (BVenet's formulae),

which represent a tangent to the curve.

A point on the edge of regression is given by

2?3(^-.r)= 0, ll.,($-x)= 0, 2^i(^-.r)= 0,

whence ^—.v, '>]=y, C=z, and the jwints of the edge of regression are

the points of the curve.

Ex. 7. Prove that the envelope of the normal planes drawn
through the generators of the cone a.v'^+ by'^+ cz^= is given by

J(b-cyJ + b^(c-a)^y^+ (^(a-bfz^= 0.
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211. Envelope of a system of surfaces whose equation

contains two parameters. 'I'he equution

f{.r,y,c,<>,h) = 0,

where a and b are parameters, may also be taken to repre-

sent a system of surfaces. The curve of intersection of the

surfaces corresponding to values a., (/l+ oul of ((, and
ft,

ft+ Sft oi h, is given by

/(rx, ft)
= 0, /(a+ ^rx, /9+ 0/5 ) = 0,

or by /K/3) = 0,

(?a ^/(a+ e.oVx, ft+ Sft)+ 8ft^M> ^+ OJ^f^) = 0,

where 0^ and 0., are proper fractions. If Sft = \S<jL, the

curve of intersection is given by

/(a, ft)
= 0, ^J{<J.+ e^S<x, ft+ 8ft) + X ^/(a, ft+ 0.8ft) = 0,

and tlie limiting position as 8(l and 8ft tend to zero, by

/(a,^)= 0. ^+X|= 0.

But 8aL and ^/3 are independent, so that X can assume

any value, and the limiting position of the curve depends

on the value of X and will be different for different values

of X. The limiting positions, however, for all values of X

will pass through the points given by

/(a./3) = 0, 1= 0, 1 = 0.

These are called characteristic points, and the locus of the

characteristic points is the envelope of the system nf

surfaces. The equation to the envelope is found by cHini-

nating a and h between the three equations

M,.,a,;,)=o, ^My^^^o, §/i£J|^)=o.

Consider for example the system of spheres of constant mdius

whose centres are on the .ry-plane. The equation to the systenj is

{x-afH!l-W+ z' = r-,

vvhei-e a and h are arhitrarj' parameters, and /• is constant. Let

P(r^, /i, 0) and P'('x- + 3rx., /i + a/i, 0)



312 COORDINATE GEOMETRY [ch. xv.

be the centres of two spheres of the system. If tlie ratio Sfi/Six.

remains constant the direction of PP' is fixed. The limiting position

of the curve of intersection of the spheres as P' tends to P along the

line PP' is the great circle of the sphere, centre P, which is at right

angles to PP'. But all the limiting positions pass through the ex-

tremities of the diameter through P, whose equations are x— cl, y= (i,

and these are the characteristic points. Their locus is the pair of

planes s-=A

212. The envelope touches each surface of the system at

the corresponding characteristic points.

Consider the surface f{x, y, z, a., /3) = 0. The character-

istic points are given by

The equation to the envelope may be obtained by elimi-

nating (X and /3 between these three equations, and this

may be effected by solving f^ = 0, /^ = for a and /3 and

substituting in /= 0. Hence, we may regard

f(x,y,z,oi,^)==0,

where a. and /3 are functions of x, y, z, given by /^ = and

fp = 0, as the equation to the envelope. The tangent plane

at {x, y, z) to the envelope has therefore the equation

2^(/.+/.
3oc , 3^\_

But if {x, y, z) is a characteristic point, /^^ = and /^ = 0,

and the equation becomes

which represents the tangent plane at {x, y, z) to the

surface. Therefore the envelope and surface have the

same tangent plane at a characteristic point.

Ex. 1. Find the envelope of the plane

-cos ^sin (i + ysin ^sin (i)-}--cos^= l
a ^ b ^ c ^

Ex. 2. Find the envelope of the plane

(/A-A).y (l-l-A^)y (1 -V>^ ^
<x h c ^ '

where X. and /x are parameters.

A )is. x^ja^ +jf'llf' - ,?2/c2 - 1

.
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Ex. 3. Prove that the envelope of the surfaces /(.)•, y, z, a, />, i') = 0,

where a, b, e are paraineteis connected by the equation (j){a, b, f) = 0, is

found by eliminating «, 6, c between the equations

/=0, </)= 0,
fa_.h_f.
4>'t ^b </>c-

Ex. 4. I'rove that the envelope of the surfaces /(.>•, v/, z, a, b, c, d) = 0,

•whore ", /*, c, d are parameters connected by the ecj nation </>((<, />, c, d) = <)

and /' and </> are homogeneous with respect to a, b, r, d, is found by
eliminating a, b, c, d between the equations /=0, (/)=0 and

<lia ^b 4>c 4>d

Ex. 5. Find the envelope of the plane b;+ mi/ + nz=p when

(i) jt>2= a-l-+ b-m^+ c^-n^-, (ii) a-l- + b-m-+ 27>p = 0.

Ans. (i) ,i.--/aHy'/6'-^+ ^Vc^=l, (ii) xya^+yW = 2z.

Ex. 6. Find the envelope of a plane that forms with the (rect-

angular) coordinate planes a tetrahedron of constant volunie c^/6.

Ans. •27j:>/z= c^.

Ex. 7. A plane makes intercepts a, b, c on the axes, so that

a-^ + b-~ + c~'^= k-'^.

Shew that it envelopes a conicoid which has the axes as equal i;on-

jugate diameters.

Ex. 8. From a point P on the conicoid a-.)'^ + b-i/-+ c-z-=\,

perpendiculars PL, PM, PN are drawn to the coordinate planes. Find

the envelope of the plane LMN.

ent plane to tl

C. Shew thai

(ax)^ + ib>/f + {czf= (a-2+y^+ z'f

Ex. 9. A tangent plane to the ellipsoid x-la'^+ )/'ll>- + z-lc' = \ meets

the axes in A, B, C. Shew that the envelope of the sphere OABC is

RULED SURFACES.

213. Skew surfaces and developable surfaces. 11", in

the equations to a straight line

x = az+ a., y = hz+ ^,

a, h, OL, /3 are functions of a single parameter t, we can

eliminate the parameter between the two ecjuations and

thus obtain an equation which represents a surface generated

by the line as t varies. The locus is a ruled sui-face.
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The two generators corresponding to values t, t-\-St, of

the parameter have for equations

x— 0L_y —^_ x— oL— ooL_y — ^— S^ _
a ~ b

"""' a+ Sa ~ b+ Sb ~

Therefore, if d is the shortest distance between them,

,_ SoiSh — S^Sa

~j8a^+Sb-^+ (a6b-bSaf

But a+ Sa = a+ a'St+ a" ^ ... , etc., where dashes denote

differentiation with respect to t. Therefore, if cubes and

higher powers of St are rejected,

^^^ (oi'b'- 13'a') St+ (oi'b"+ b'oL"- a'/3"- ^'a") Sty2

Va'2+ b'^-(aiy~-a'b)^^(afa''+ ... jSt

'

Hence d is an infiniteshnal of the same order as St if

a'6'-/3V^O. But if o(.'6'-/3V = 0, then we have also

a.'h"-\-b'a!'— a^"— l3'a" = 0, and therefore d is at least of

the order of 6'^^. If, therefore, St is so small that Sf^ and

St^ are inappreciable, d = 0, or the two generators are

coplanar. The result may be stated thus: if a'6'-^V = 0,

consecutive generators of the surface intersect, while if

Oib'— ^'a'=f^0, consecutive generators do not intersect.

If consecutive generators intersect the surface is a

developable surface, if they do not intersect, it is a skew

surface. The name developable arises in this way. If A

and B, B and C, consecutive generators of a surface, inter-

sect, the plane of B and C may be turned about B until it

coincides with the plane of A and B, and thus the whole

surface may be developed into a plane without tearing.

Clearly cones and cylinders may be so treated, and are

therefore developable conicoids. On the other hand the

shortest distance between consecutive generators of the

same system of a hyperboloid or paraboloid does not vanish,

(§ 114), so that the hyperboloid of one sheet and the

hyperbolic paraboloid are skew conicoids.

Ex. 1. Shew by means of Exs. 5 and 7, § 206, that the tangents

to a curve generate a developable surface and that the principal

normals generate a skew surface.
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Ex. 2. Shew that the line given by )j = t.v-t-\ z = t'-h/-t^ genci'ates

a developable surface.

Ex. 3. Shew that the line x- = 3t-z + '2t(l-3t'^), i/= -2t: + (-{:i + 4t-)

generates a skew surface.

214. The tangent plane to a ruled surface. We may
reo-ard the coordinates oi" any point on i\\v. surface as

functions of two variables t and z, given by the ecjuations

i=az+ (x, u-hz+ ^, ^=z.

The tangent plane at {f, z) has for ecjuation

^—az— (x,

az+OL,

a,

az+ (JL,

0,

1

= 0,

= 0,

7j-hz-l3,

b'z+(3',

h,

h'z+ ^',

0,

'"'• (i-a{-a.){h'z + ^')-(^]-h^-^)(az+ (x.') = (1)

This equation clearly represents a plane passing through

the line ^^^^^a., ,j = h^+^,

which is the generator through the point {t, z).

If aS'— h'oL=0, or —, = -^, = /i-, sav, where k is somesay:

function of t, equation (1) becomes

and is therefore independent of z. The equation then

involves t only, and since when t is given, the generator

is given, the tangent plane is the same at all points of the

generator.

If (c'/3'— 6'a'=/=0, the ecjuation (1) contains z and t, so that

the plane given by (1) changes position if t is tixed and

z varies, or the tangent planes are different at different

points of a generator.

Hence the tangent plane to a developable surface is llie

same at all points of a generator ; the tangent planes to a

skew surface are different at different points of a generator.

Cor. The equation to tlie tangent plane to a developable

surface contains only one parameter.
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215. The generators of a developable surface are

tangents to a curve. If the equations

x = az+ OL, y = bz-\-l3;

x= {a+ aSt)z+ 0L+a.'6t, y = {b + b'St)z+ l3+ ^'St

represent consecutive generators of a developable surface,

their point of intersection is given by

These express the coordinates in terms of one parameter

t, and hence the locus of the points of intersection of con-

secutive generators of a developable is a curve.

By differentiation, we obtain

and therefore the tangent to the curve at (x, y, z) has for

equations i-^ _^l-y _9.

or ^=a^—az+ x = (i.^+a.,

which represent the generator through (a;, y, z).

216. Envelope of a plane whose equation involves one

parameter. We have seen that the equation to the tangent

plane to a developable involves only one. parameter, (§ 214,

Cor.). We shall now prove a converse, viz., that the

envelope of a plane whose equation involves one parameter

is a developable surface. Let

u = a^+bt]+ c^+d = 0,

where a, b, c, d are functions of a parameter t, be the

equation to the plane. A characteristic is given by

u= 0, u'= 0,

and therefore, since u and u are linear functions of ^, >;, ^,

the characteristics are straight lines and the envelope is a

ruled surface. Two consecutive characteristics are given by

u = 0, u' = 0; u+ n'St = 0, u'+n"St = 0;
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and these clearly lie in the plane u-\-u'Sf = 0, and therefore

nitersect. Hence the envelope i.s a developable surface.

The edge of regression of the envelope is givi^n by

u = 0, u = 0, ti" = 0,

and hence, if (a-, y, z) is any point on the edge of regi-ession,

ax+ bi/+ cz + d = 0, ax + h'y -\-vz-\-d' = {),

a"x + h"y+ c"z -{-d" = ( ]

)

But the coordinates of any point on the edge of regression

are functions of t. Therefore, from ( ] ),

(ix + by'+ cz = — {ax+ h'y+ cz+ d') = 0,

and ax"+ by"+ cz" = + (a"x+ b"'y + c"z+ d") = 0,

whence we see that the plane (i^-{-b)]-\-c^+d = has three-

point contact at (;», y, z) with the edge of regression, or is

the osculating plane. Thus a developable surface is the

locus of the tangents to, or the envelope of the osculating

planes of, its edge of regression,

Ex. 1. Find the equations to the edge of regression of tlie develop-

able in Ex. 2, § 213.

The point of intersection of consecutive generators is given 1)v

and these ecpiations may be taken to represent the edge of regression.

Ex, 2. Find tlie equations to the developable surfaces wliich liave

the following curves for edge of regression :

(i) x= QL J/
= 3('\ z=2fi;

(li) .v=acos9, y= a9,md, z = c6\

(iii) x = e% ?J
= ^~'i z='J2t.

Am. (i) {x>i - 9^)2 = (.>;2 - 1 2y)(4y2 - ^zx)
;

(ii) ,r= a(cos^-Asin6'), ?/= «(sin ^+ Acos ^), z = c{e+ X\

where 6 and A are parameters.

{\n) x = e\\ + X\ y= e-'(l-A), z= sFl{t-^X).

Ex. 3. Find the edge of regression of the envelope of the normal

|)lanes of a curve.

A normal plane is given by

\l,{i-x) = 0.

And by Frenct's formulae, we have for tlie edge of regression,
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Multiplying by li, l^, I3, and adding, we deduce

^= x+l2p — l3,(rp', and similarly,

ri=y-{-m2p-m^(rp', ^=z + n.2p-7i^a-p'.

Hence, the edge of regression is the locus of the centres of spherical
rvature. The envelope is the polar developable, (§ 205).

217. The condition that ^=/(^, >]) should represent a
developable surface. If ^=f{i, n) represents a developable

surface, the equation to the tangent plane

Vi+(ln-^=VX+ qy-z
involves only one parameter. Let (p=px + qy — z. Then,

if t is the parameter,

p=/i(0. q=A[il <I>=m,
and hence, by the elimination of t, we can express ^j and ^
as functions of q. Now if u and v are functions of 3; and

y the necessary and sufficient condition that u should be a

function of v is ;:rV^

—

I= 0.*
d{x, y)

Therefore for a developable surface,

Px, Ptj i

= 0; that is,
[

r, s

qx< qy
I

\
8, t

A necessary condition is therefore rt— s^

rt-s^ = 0.

Again, rx-j-sy, sx+ ty

t
I
qx, qy

Therefore, if rt — s^= 0, is a function of q.

necessary and sufficient condition is rt— s^ = 0.

r, s .

s, t
I

Hence, the

* This may be proved

If u=f{v),

and

and therefore

d(u, v)
Hence ,^^

^,

3(-c, 2/)

It is also sufficient.

follows :

Uy= Vyf'{v),

is a necessary condition.

For if llxi'y - V.yVx= ^,

Ux _ih_ Uxdx + Uydy _ du
i-'x Vy ~ Vxdx + Vydy~ dv

'

Therefore di' = if du = 0, and hence the variation of u depends only on
the variation of v, or 11, is a function of i\
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Ex. 1. By considering the value of r( -s-, deleiniino if f he s-jifacea

xyz=d^, xy= {z-cY are developable.

Ex. 2. Shew that a developable can be found to circumscribe two
given surfaces.

The equation to a plane contains three disposable constants, and the
conditions of tangency of the plane and the two .surfaces give two
equations involving the constants. The equation to the plane there-
fore involves one constant, and the envelope of tlie plane is the
retjuired developable.

Ex. 3. Shew tliat a developable can be found to pass through two
given curves.

Ex. 4, Shew that the developable which passes through the curves
j = 0, y-= 4rt,t' ; .^=0, Tf'= Ahz is the cylinder >/'= 4aj;+ 4hz.

Ex. 5. Prove that the edge of regression of the developable that

passes through the parabolas s = 0, j>/-= 4a.r ; x=0, ()/ — a)-= 4az is the

curve of intersection of the surfaces

(a+yf= 3«(.r+y+ z), {a+yf= 27ah:

Any plane which touches the first parabola is

\z + my -— x + am^,

and if it touches the second, A= ?h/(1 -ni). Therefoie the equation to

a })lane which touches both is

/(»!,) = am^ - 7n^{a +y) +m (x 4-,'/+ z) - x= 0.

Eliminate m between

^ ' am dm-

and the required result is easily obtained.

Ex. 6. Shew that two cones pass thi^ough the curves

X'+y-= 4a\ z= 0; x= 0, y'^= 4a(z+ a);

and that their vertices are the points (2a, 0, -2a), (-2a, 0, - 2a).

Ex. 7. Shew that the equation to the developable surface which

passes through the curves

2= 0, 4ay= ft2c2.r2; y=:0, 4a^zr^ = hciv

is (a^yz - bc^xf= 4ar-{bzx+ caf){c'-y+az%

and that its edge of regression is the curve of intersection of the

conicoids
a22+ c2y= 0, a'yz-hc\v=0.

Ex. 8. Shew that the edge of regression of the developable that

passes through the parabolas .r=0, z'^=4ay ; x= a, y- = 4az is given by

3.?- .?/_ z

y ~2~3(a-.7-y

Ex. 9. Prove that the edge of regression of the developable that

passes through the circles 2= 6, x^-iry^= a^, x=0, y'^-iri- = b\ lies ow the
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JtiX. 10. Prove that the section by the .tv/-plane of the developable

generated by the tangents to the curve

^2+y2 + ,2^,2^ 5+6=
5

is given by

Ex. 11. An ellipsoid x^la?+y'^lb'^+z^jc^=\ is surrounded by a

luminous ring ,r= 0, y'^+ z^= a?. Shew that the boundary of the

shadow cast on the plane z=0 is given by

d^ li^ — c^ cfi - c^'

218. Properties of a generator of a skew surface.

If AjBp A.2B2, A3B3 are any three consecutive generators

of a skew surface, a conicoid can be described through

AjBp A2B2, A3B3. 'J'he conicoid will be a paraboloid if the

generators are parallel to the same plane, as in the case of

any conoid, otherwise it will be a hyperboloid. If P is any

point on A^B^, the two planes through P and A^Bj, A3B3

respectively, intersect in a straight line which meets A^B^

and A3B3 in Q and R, say. Now PQR meets the conicoid

in three ultimately coincident points, and therefore is a

generator of the conicoid. Hence the plane of A^B^ and

PQR is tangent plane at P to the conicoid. But PQR also

meets the surface in three ultimately coincident points,

and therefore is one of the inflexional tangents through

P, the other being the generator AgBo. Therefore the

plane of PQR and AgB^ is also the tangent plane to the

surface at P. Thus a conicoid can be found to touch a

given skew surface at all points of a given generator.

We can deduce many properties of the generators of a

skew surface from those of the generators of the hyper-

boloid. For example, it follows from §134, Ex. 10, that

if two skew surfaces have a common generator they touch

at two points of the generator; and from § 113, Ex. 1, the

locus of the normals to a skew surface at points of a given

generator is a hyperbolic paraboloid.

Since the surface and conicoid have three consecutive

generators in common, the shortest distance and angle
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botween the given generator and a consecutive generator

are the same for both. Hence the generator has the same

central point and parameter of distribution for the surface

and conicoid. Thus it follows that if the tangent planes

at P and P', points of a given generator of a skew surface,

are at right angles, and C is the central point,

CP.CP'= -S^,

where o is the parameter of distribution.

The locus of the central points of a system of generators

of a skew surface is a curve on the surface which is called

a line of striction.

Ex. 1. l*i'ove that the paraboloid which touches the helicoid

ylx = VAi\zjc at all points of the generator .I'sin d=i/cos 0, z = c$ is

c{.vsmd-^cose) + {z-ce){xcose+//sind) = 0.

Prove also that the parameter of distribution of any generator is c,

and that the line of striction is the 2-axis.

Ex. 2. Prove that the conicoid which touches the surface i/^z= 4(.'rx

at all points of the generator .v = z, // = 2c is 9/(.v+ S-.)= 2c(3.r+ z), and
that the normals to the surface at points of the generator lie on the

paraboloid z^ - x-= 4c( ?/ - 2c).

Ex. 3. For the cylindroid z{:'J^+>/')= 27n.r>/, prove that the para-

meter of di.stribution of the generator in the plane .» sin (?=// cos ^ is

2m a >^ -20.

Ex. 4. If the line .»•= «£ + «., >/ = h: + /3, wlieie a, b, «., /i are

functions of t, generates a skew surface, the parameter of distribution

for the generator is
(,^7/ -«'^')(1 +«'•'+ ?>-^)

a"- + b"' + {ab'-a'b)-

Ex. 5. If the line -''^JLlI^=^17
,
(where P + m- + n- = \),

I m it

generates a skew surface, the parameter of distributinu for the

generator is . ^^ ^^j^^ ^^ ^{dr^ + dm^+ d»-^).da.,

dl,
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distance pa^/ip^+ a-) from the curve, and that if P, Q are any ^^air of

points on a normal such that the tangent phmes at P and Q to tlie

surface are at right angles, CP . CQ= - pV'^/(p-+ cr'-)-, where C is the

point of intersection of the normal and the line of striction.

(Apply § 206, Exs. 4, 5.)

Ex, 8. Shew that a given curve is the line of striction of the skew

surface generated by its binomials.

Ex. 9. If the line x=az+ a., 7/=bz+ f3

generates a skew surface, the ^-coordinate of the point where the line

of striction crosses the generator is

a'cL'{l + b''")-ab(a'l3'+ b'o.') + h'l3Xl+a^)

a"-^+ b"^+ {ab' -a'h)'

Ex. 10. For the skew surface generated by the line

.v+ 1/t= 3t(l + 1% y+ 'izt= f~{Z + 4;;^),

prove that the parameter of distribution of the generator is 3(1 + 2^2)2^

and that the line of striction is the curve

Ex. 11. If the line

X - fx_ ;/
- ^_z-y

I ~ m n

generates a skew surface, the point of intersection of the line of

striction and the generator is

{fx + h; P + mr, y + nr\

, '2()n?i' - m'n)(nB' - my')
wliere r=—^

—

^^tt , , ,.,
—'—

2L{mn —m n)-

Ex. 12. Deduce the results of Exs. 7 and 8.

Ex. 13. The line of striction on a hyperboloid of revolution is the
principal circular section.

Ex. 14. Shew that the distance measured aloiig the generator

x — a cos d_y — b sin _z
a sin d —b cos 6 c

of the hyperboloid x^/a^+y^/b^--z'^lc'= l, from the principal elliptic

section to the line of striction, is

c%a^ - &^) sin $ cos ^(a^sin^^ + 6^ cos-^+ c^)^

6V-^sin'-^^ + c%'-^cos-6^+ a-b'^^

Examples XII.

1. O is a fixed point on the s-axis and P a variable point on the
.^^-plane. Find the envelope of the plane through P at right angles
to PO.

2. O is a fixed point on the 2-axis, and a variable plane tlirough O
cuts the .r?/-plane in a line AB. Find the envelope of the plane

through AB at right angles to the plane AOB.
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3. Find the envelope of a plane that (.uts an ellipsokl in a conic so

that the cone whose vertex is tlic centre of the ellip-soid and whose

l)ase is the conic is of revolution.

4. Given three spheres Sj, S^, S3, Sj and S^ being fixed and S.j

variable and with its centre on S,. i'rove that the radical plane of

S3 and S2 envelopes a conicoid.

5. The envelope of a plane sucli that the sum of the squares of its

distances from n given points is constant, is a central conicoid whose

centre is the mean centre of the given points.

6. Prove that the envelope of the polar planes of a given point

with respect to the spheres which touch the axes (rectangular) consists

of four parabolic cylinders.

7. Prove that sections of an ellipsoid which have their centres cm a

given line envelope a parabolic cylinder

8. Any three conjugate diameters of an ellipsoid meet a fixed

sphere concentric with' the ellipsoid in P, Q, R. Find the envelope

of the plane PQR.

9. A plane meets three intersecting straight lines OX, OY, OZ
in A, B, C, so that OA . OB and OB . DC are constant. Find its

envelope.

10. Through a fixed point O sets of three mutually peri)endicnlar

lines are drawn to meet a given sphere in P, Q, R. Prove that the

envelope of the plane PQR is a conicoid of revolution.

11. Find the envelope of a plane that cuts three given spheres in

equal circles.

12. Find the envelope of planes which pass through a given point

and cut an ellipsoid in ellipses of constant area.

13. O is a fixed point and P any point on a given circle. Find tlie

envelope of the plane through P at right angles to PO.

14. Find the envelope of the normal planes to the curve

.i-;a^+f/b^ + z^jc"- = 1 , x^ +;/ + z- = r"-.

15. The tangent planes at the feet of the normals from {<*., f3, y) to

the confocals
^.2 2 ,-j

((' - A 0- - A c- - A

envelope a developable surface whose equation is

(no - AB)2= 4(3B - A2)(3AC - B-),

where A, B, C are the coefficients in the equation in t,

«-'
I

ft.'/
I

y- ^1
a'+ 't b-+ t c-+ t

16. The normals from O to one of a .system of confocals meet it in

P, Q, R ; P', Q', R'. Jf the plane PQR is fixed and O and the confocal

vary, find the envelope of the plane PQR'.
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17. Prove that the polai^ planes of (^, rj, Q with respect to the

confocals to x^ja+ 7/'^!b + z^/c= l are the osculating planes of a cubic

curve, and that the general surface of the second degree which passes

through the cubic is

A(R2-3Q)+ /x(RQ-9P) + KQ'-3RP)-0,

where P = abc- bcx^ - cayrj -abzC, R = a+ b+ c-x^-yr]- z(,

Q = bc + ca + ab-{b + c)x^-(c + a)ijy) - (a + b)z(.

18. Shew that the coordinates of a point on the edge of regression

of the rectifying developable, i.e. the envelope of tlie rectifying plane,

of a curve are given by

e^.^ +kiL^, etc., etc,

^(tan^)

where tan^= /3/o-. Prove also that the direction-cosines of the tangent

and principal normal are proportional to l^p-l^a; etc.; l^p-^-l-^a; etc.,

and that the radii of curvature and torsion are

19. If the conicoids

.v'jd^+fib'+ z'lc"'= 1 , .v-\a^+f'lb^ + z^\c^= 1

are confocal and a developable is circumscribed to the first along its

curve of intersection with the second, the edge of regression lies on

the cone „ „ „ „ „ » a, , ,,v2

ai bi c^

20. A developable surface passes through the curves

y= 0, a-2= (a. - b){2i - b) ; .v = 0, f= {a - b){2z - a)

;

prove that its edge of regression lies on the cylinder

21. Shew that the edge of regression of the envelope of the jjlane

•<-

I

.V 1-^-1
a+X b+X c+X

is the cubic curve given by

(a+ Xf __
(b+ Xf ^ (c+ Xf

''-{c-a){b-ay y~{c-b){a-by {a-c){b-c)-

11. Prove that the developable surface that envelopes the sphere

xij^f^z'^c^ and the hyperboloid x'l(v-\-flb--z-jc'=\ meets the

plane y = Q in the conic
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23. -V developable surface is drawn through the curves

A-.f- -vy"-= A-, ^ = c ; .f- +y- = 1 , z= -€•,

shew that its section by the j^lane 2= is given by 2.>=.sin fA + sin /:/,

2y= cos a. + A cos ^, where tan «.= A tan ^.

24. If the generator of a skew surface make with the tangent and

principal normal of the line of striction angles whose cosines are A

and /i, prove that ^=-, where p is tlic radius of curvature of the

line of striction. "'^ P

25. Prove that the line of striction on the skew surface generated

by the line

X - a cos B y -fi sin Q_ z

a a "^^
COS cos - sin cos - .sin -

is an elli])se in the plane 2y + 2 = 0, whose semiaxes are a, '—
, and

whose centre is
( —^^ 0, j.
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CHAPTEK XVI.

CURVATURE OF SURFACES.

219. We now proceed to investigate the curvature at a

point on a given surface of the plane sections of the surface

which pass through the point. In our investigation we

shall make use of the properties of the indicatrix defined

in § 184.

If the point is taken as origin, the tangent plane at the

origin as .ry-plane, and the normal as 0-axis, the equations

to the surface and indicatrix are

2s ==r.v-+ 2.s''// + ('//'+...,

z =-- ]i, 2h^') 'X"+ '2sxy + ty^.

Fio. CO.

220. Curvature of normal sections through an elliptic

point. If rf — .s'->0 tlie indicatrix is an ellipse, (tig. GO).

Let C be its centre, CA and CB its axes, and let CP be any
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semidiameter. Then, if p is the radius of curvature of the

normal section OCP, p = hi^~, and therefore the radii of

curvature of normal sections are proporticnial to the scjuares

of the semidiameters of the indicatrix. Tlio sections OCB,

OCA, which liave the g-reatest and least curvature, are

called the principal sections at O and their radii of curvature

arc tlie principal radii. If p^, p., are the principal radii, and

CA = a, CB = 6, ^..
^

/,,

If the axes OX and OY are turned in the plane XOY
until they lie in the principal sections OCA, OCB respectively,

the e(|uations to the indicatrix become

or z=K '"'-h^^2h,
Pi Pi

and the equation to the surface is

x"- y.
2^ =-+^ + ....

Py, P-2

If CP = r, and the normal section OCP makes an anule 6

with the principal section OCA, the coordinates of P are

rcosO, rsinO, h. Hence, since P is on tlie indicatrix,

2/t_cos-0 sin-0.

^~
Pi Pi

,-, e 1 cos'f? sin-0
therefore — h - -

P Pi P-i

whevo /) is the radius of curvature of tlie section OCP.

221. Curvature of normal sections through a hyper-

bolic point. If r^— s'^<0, the indicatrix is a hypcibola,

(tiij. 01). The inflexional tangents are real and divide the

surface into two portions such that tlie concavities of

normal sections of the two are turned in opposite directions.

If we consider the curvature of a section whose concavity

is turned towards the positive direction of the c-axis to be
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positive, then the positive radii of cuvvature are proportional

to the squares of semidiameters of the indicatrix

z = ]i, 2h=^rx'+ 2s.rij + fir, (A>0), (1)

and the negative radii of curvature are, proportional to the

squares of the semidiameters of the indicatrix

z=- h, - 2h = rx^+ 2sxy + ty-\ {h>0) (2)

The normal section of algebraically greatest curvature

passes through the real axis of the indicatrix (1), and the

normal section of algebraically least curvature through the

real axis of the indicatrix (2). These indicatrices project

on the a;7/-plane into conjugate hj^perbolas whose common

asymptotes are the inflexional tangents. As in § 220, the

sections of greatest and least curvature are the principal

sections. If the axes OX and OY lie in the principal

sections the equations to the indicatrices are

a- b^
(1),=,, %_r

a^ Ir
(2) z=-h,

If Pv Pi measure the principal radii in magnitude and

sisfn,

:Lt

and therefore the e(|uations to the indicatrices are

(1) h, - + •^=2/^ (2) z=-h,
Pi Pi Pi Pi

-2h



§§221,222] C'lTUVATURR OF NORMAL SKCTloN.S 329

and the c(iuation to the .suri'ciee is

V + .

Pi Pi

The radius oi" curvature oi" tbo normal section that

makes an angle Avitli the 5;.r-plane is given by

1 _cos20 sin-0

P Pi P2

222. Curvature of normal sections through a para-

bolic point. If rt — n- = {), the indicatrix consists ol" two

parallel straight lines, (tig. ()2). The intlexional tangents

coincide, and the normal section which contains them has

its curvature zero. The normal section at right angles to

tlie section of zero curvature has maximum curvature.

These two sections are the principal sections. If OX and

OY lie in the principal sections, the equations to the

indicatrix are z — h Qr = (i',

where (( = CA. The tinite principal radius p^ is given by

P\ = Lt ^-^.

Hence the C(iuations to the indiealrix and surface are

z = h, 2h= ^; 2z= +....
Pi Pi

If p is the radius of curvature of the section OOP which

makes an angle with the principal section OCA,

1 ^cofO

P Pi
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223. Umbilics. If r = t and s = 0, the indicatrix is a

circle and the principal sections are indeterminate, since all

normal sections have the same curvature. Points at which

the indicatrix is circular are umbilics,

224. The curvature of an oblique section. The re-

lation between the curvatures oi' a normal section and an

oblique section through the same tangent line is stated in

Meunier's Theorem: // p^ and p are ilie radii of curvature

of a normal section and an oblique section ilLrough the

same tangent, p = Po cos 9, where 6 is the angle between the

sections.

If the tangent plane at the point is taken as ;ri/-plane,

the normal as 2:axis, and the common tangent to the

sections as a?-axis, the equations to the indicatrix are

z = h, ^i^r.c'+ ^sxy + tf,

and, (see fig. 60),

CA' 1

The equations to QQ' are

y = h tan 0, z = li,

and where QQ' meets the surface,

2/i = roc^+ 2sxli tan + tli^ tan^ 0.

But if X and y are small quantities of the first order, /; is

of the second order, and therefore to our degree of approxi-

2h
mation, lix and /r may be rejected. Hence QV^ =— , and

QV- _ ^ 2A/r

2ov~ 2/^^^(9'P = ^^t .-- = Lt ^,-^ = Po cos 0.

The following proof of Meunier's theorem is due to Besant.

Let OT 1)6 the common tangent to the sections and consider the

sphere which touches OT at O and passes through an adjacent and
ultimately coincident point on each section. The planes of the

sections cut the sphere in circles which are the circles of curvature

at O of the sections. The circle in the plane containing the normal
is a great circle, and the other is a small circle of the sphere. If Cq
is the centre of the great circle and C of the small circle, tlie triangle

COCo is right angled at C, and the angle COCo is the angle between
the planes. Hence the theorem ininiediately follows.
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225. Expression for radius of curvature of a given

section through any point of a surface, i^d OT, the

tangent to a given section of a suri'ace through a given

point O on it, have direction-cosines l-^, m^, v^. Let the

normal to OT -wliich hes in the plane of the section liave

direction-cosines I.-,, lu.,, ii.-,- Then, since the direction-

cosines of the normal to the suri'ace are

s/i -\-p'-{- 7-' s/l +p^+ q' JI +'p'+ (f

0, tlie angle between the plane of the section and the

normal section through OT, is given by

cosO-
pU— qm^+ n^

But pl^-\-qm^ — 'i'i<^ = 0]

therefore, by Frenet's formulae, since

dn 'dp dx . 3» dv ,

ds dx ds d}j ds ' ^

. dq dq dx
,
dq di/

,

ds dx ds dy ds ^
^

pl2+ qm.-,-n.y ,70,07 ,
^ -n

or -=—5

—

, ^ ^ —L.

p Vl-f^'-^+g^

Cor. When = 0, p becomes p^, and Meunier's tlieorem

immediately follows.

Ex. 1. Find the priiicip;il radii at the origin of the paraboloid

2z= 5.r-+ 4x^ + 2j/-.

Find also tbe radius of cin-vature of the section .i-=,y. Ans. 1, J ; f^.

Ex. 2. For the h\'perbolic paraboloid

2z--=7x^+ 6x>/-jif,

prove that the principal radii at the origin are J and -
?., and that tlie

principal sections arc
^^^3^^ 3x=-^/.

Ex. 3. If /), p' are the radii of cnrvature of any two perpendicular

normal sections at a point of a surface, + ,
is constant.

P P
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Ex. 4. Prove that at the origin the radius of curvature of the

section of the surface ^^ ,.2^ 2,^ jv/+ hp-= 2s.

by the plane ^.r + TOy + «s= 0,

is {r- + m'^f-{am'^-^hhn-\-hl'^)-^{p-Vm'^-^n^Y^-.

Ex. 5. The locus of the centres of curvature of sections of the
surface ,,2 ,,2

2^=-+^- + ...

Pi Pi

which pass through the origin is the surface given by

226. Principal radii at a point of an ellipsoid. Let p

be a point on an ellipsoid, centre O. Take OP as s-axis

and the diametral plane of OP as a;?/-plane. Then take the

principal axes of the section of the ellipsoid by the a;2/-plane

as X- and y-axes. Since the coordinate axes are conjugate

diameters of the ellipsoid, its equation is

where y = OP, and 2a and 2/3 are the principal axes of the

section of the ellipsoid by the plane through the centre

which is parallel to the tangent plane at P.

The equations to the indicatrix are z = y — h, where I; is

small, and ^ ?/" _ 1 _ ^Tuii'V' - V^

Therefore, if the axes of the indicatrix are a and h,

7 ' ~ y
'

Now let 'p be the perpendicular from the centre to the

tangent plane at P, and let li be the distance between

the planes of the indicatrix and the tangent plane. Then

y~v
Therefore, if the principal radii are p^ and p.^,

Pi = Lt r =— and n., = J.t^ = '--.
^

111 V ' - 2h n
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Ex. 1. Prove that the princii)al radii at a jjoint (.>•, 7/, :) on the
ellipsoid .v-/ a- +j/-jb-+ 2^/0^=1 are given by

Ex. 2. If PT is tangent to a normal section at P on an ellipsoid,

the radius of eurviiture of the section is r-/p, where r is the central
radius parallel to PT.-

Ex. 3. If A, IX are the parameters of the confocals throiigli a point
P on the ellipsoid .v^la^+ i/'^ib'^ + z-/c- = \, the principal radii at P arc

»JX?fx vA/r'

abc ' abr

Ex. 4. The normal at a point P of an ellipsoid meets the principal

planes through the mean axis in Q and R. If the sum of the jn'incipal

ladii at P is equal to PQ + PR, prove that P lies on a real central

circular section of the ellipsoid.

Ex. 5. If P is an unibilif of the ellipsoid .v'-M'+^-ib- + z-jc- = li,

prove that the curvature at P of any normal section through P is

ac/b'K (See § 95, Ek. ±)

LINES OF CURVATUEE.

227. A curve drawn 011 a surface so that its tangent at

any point touches one of the principal sections of the

surface at the point is called a line of curvature. There

pass, in general, t\vo lines of curvature through every point

of the surface, and the two lines of curvature through any

point cut at right angles.

228. Lines of curvature of an ellipsoid. 'J'he tangents

to the principal sections at a point P of an ellipsoid wliose

centre is O are parallel to the axes of the central section of

the ellipsoid by the diametral plane of OP, (ij '1'2Q). But

the tangents to the curves of intersection of the ellipsoid

and the confocal hyperboloids through P are also parallel

to the axes of the section, (§121). Therefore the lines of

curvature on the ellipsoid are its curves of intersection

with confocal hyperboloids.

229. Lines of curvature on a developable surface.

One principal section at any point of a developable is

the normal section through the generator. Hence the

generators form one svstem of lines of curvature. Tlie
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other system consists of curves drawn on the surface to

cut all the generators at right angles. In the case of a

cone, the curve of intersection of the cone and any sphere

which has its centre at the vertex cuts all the generators

at right angles, and therefore the second system of lines of

curvature consists of the curves of intersection of the cone

and concentric spheres whose centres are at the vertex.

230. The normals to a surface at points of a line of

curvature. A fundamental property of lines of curvatures

may be stated as follows

:

If O and P are adjacent and ultimately coincided

points of a line of curvature, the normals to the surface

at O and P intersect ; conversely, if O and P are adjacent

points of a curve drawn on a surface and the normals to

the surface at O OMd P intersect, the curve is a line of

curvature of the surface.

Let O be the origin and let the equation to the surface be

2. = ^%;^ + ....

Pi Pi

P will lie on the indicatrix and will have coordinates

r cos 0, r sin B, h. The equations to the normal at P to tlie

surface are x - r cos _ y - r sin Q _ z-h
rcosd rsinO —1

Pi Pi

Therefore, if the nor-mal at P is coplanar with the normal

at O, i.e. witli OZ, / i i \

sinOcosO --- UO (1)

If O and P are adjacent points of a line of curvature,

sin = 0, or cos = 0, and the condition (1) is satisfied ;
there-

fore the normals at adjacent points of a line of curvature

intersect.

If the normals at O and P intersect, cos = or sin = 0,

and therefore O and P are adjacent points of one of the

principal sections, or the curve is a line of curvature.

Ex. Tlie normals to an ellipsoid at its points of intersection with

a confocal generate a developable surface.
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231. Lines of curvature on a surface of revolution.

Tlio iioniials U) a surface of revolution at all points of a

meridian section lie in the plane of the section, and therefore,

by § 230, the meridian sections are lines of curvature. The

normals at all points of a circular section pass through the

same point on the axis, and therefore any circular section is

a line of curvature.

Let P, (fig. G3), be any point on the surface, and let PT

and PK be the tangents to the meridian and circular sections

through P. Let PN be the normal at P, meeting the axis

in N, and let C be the centre of the circular section. Then

TPN and KPN are the planes of the principal sections. The

principal radius in the plane TPN is the radius of curvature

at P of the generating curve. The circular section is an

oblique section througli the tangent PK, and its radius of

curvature is CP. Therefore, by ]\Ieunier's theorem, if p is

the principal radius in the plane KPN,

CP = ^)COs^, where 0= _CPN,

or p = PN.

Thus the other principal radius is the intercept on the

normal between P and the axis.

Ex. 1. In the surface formed by tlie revolution of a parabola

about its directrix one principal radius at any point is twice the other.
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Ex. 2. For the surface formed by the revolution of a catenary

about its directrix, (the catenoid), the principal radii at any point are

equal and of opposite sign.

(A surface whose principal radii at each point are equal and of

opposite sign is called a minimal surface.)

Ex. 3. In the conicoid formed by the revolution of a central conic

about an axis one principal radius varies as the cube of the other.

Ex. 4. A developable surface is generated by the tangents to a

given curve. Prove that at the point Q on the tangent at P, where

PQ==^, the principal radius of the developable is —

.

Let the plane through Q at right angles to PQ cut the consecutive

generators in N and Nl, (fig. 64). Then N, Q, M are consecut'"^e points

Lt ^^ ——

•

07

of the principal section. But the angle between consecutive generators

is 8\lf, and the angle between the planes PQN, PQM is the angle

between consecutive osculating planes, and therefore is 8t. Therefore,

if pi is tlie principal radius,

^i-^^lRQM^ or p

Ex. 5. Find tlie radius of curvature at Q of the line of curvature

of the developable.

Diaw QL at right angles to the consecutive generator. Then N, Q, L
are con.secutive points on the line of curvature. Let QM, NQ, QL
meet the sphere of unit radius whose centre is Q in a, b, r respectively.

Then, if 8\//-' is the angle between consecutive tangents to the line of

curvature,
S>/^' = ic, Sf = ccr, 8T= ab.

Therefore, since the triangle cab is right-angled at a,

If
Pi,

is the radius of curvature of the line of curvature, we liave

Hence

Lt

u'f,

.Lt
I8ylr

P0= "7-;,—-^•
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Ex. 6. Shew tliat the radius of torsion of the line of curvature of
the develoijable is ,, ., , .,,

^ /(/r + (r-)

/;(a-/j'-/jo-')'

where n'^^/^, o-' =^,^ as (is

and .s- is the arc of the edge of regression.

Ex. 7. Shew that the lines of curvature of tlie developable
generated by tangents to a helix are plane curves.

232. The principal radii and lines of curvature throug-h

a point of the surface -=/(.t', ^). In %-'!''> wc liave

found that if \, m^, i\ are the direction-cosines of the

tangent to a normal section of the surface through the

point {x., y, z), the radius of curvature of tlie section is

p Jl+l>-+ q-' ^
^

We have also 2^K+ ^^^i
~ 'h — ^'

whence l-^^^+ m^"+ {j)l^ + ip^tif=^ (2)

Therefore, if we write k for Ji -\-p~+ (j', we may combine

(1) and (2) into

^r(l+y>^-'^) + 2^m,(y>^-|) +<(l+r-^) = 0...(3)

This equation gives two values of l^:m^, which correspond

to the two sections through tlie point which have a given

radius of curvature. If p is a principal radius, these

sections coincide, (cf. §85). Therefore tlie principal radii

are given by

(l + ;>^-^)(l + ,^-^) = 0.,-^y, (4)

or p^rf - s^ ) - kp { ( 1 + y/-^ ) / + (1 + ,f)
,' - -Ispq ) + /.•« = 0.

If equation (4) is .satisfied, the coincident values of

L : 771, are , /

7 j"i"r 1+7'-/.
'i (5)
m

1+^-7? y»/-|
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Now if PQ is a straight line whose direction-cosines are

l^, m^, 7^1 , and P'q' is its projection on the xy-ip]a,ne, the

projections of PQ and P'Q' on the x- and i/axes are identi-

cal, and therefore the gradient of P'q' with reference to the

axes OX and OY is mjl^. Hence, from (5), the differential

equation to the projection on the a'?/-plane of the line of

curvature corresponding to the radius p is

dx sn dx 2 ^P

which may be written

dx(l+p'-^) + daj(pq-'[^=^0

or dx(^pq-Y) + <h{'^ + Q'-f^ = ^-

If we eliminate p/k between these equations, we obtain

the differential equation to the projections of the two lines

of curvature, viz.,

dx^s(l +2^-) - rpq} + dxdy{t{l -f-p'i - r(l + q^)]

+ dyHf2yq-s{l+r)}=0.

Ex. 1. Shew that the pi'inciioal radii at a point of the paraboloid

a b
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Ex. 4. Prove that wlien a = b tliis etiiuaioii letluces to

^11Jl or $^=-•1",
dx X dx y

whence y=Ax or x''--\-f = B, where A and B are arbitrary constants.

Shew that this verifies the results of § 231 for the paraboloid.

Ex. 5. Prove that the integral of the equation in Ex. 3 is-

,, . ^ ab(a-h)\
"-^''-=

b + aX
-

where A is an arbitraiy constant, and shew that this becomes

"' +.#"^+ 1=0,
a{a-ix) b{b-ij.)

'^ ^^ ak + b-

Hence prove that the lines of curvature of the paraboloid are its

curves of intersection with confocals.

Ex. 6. Prove that the intersection of the surface 2z= ax^-'t-by^

and the plane ax= hi/ is a line of curvature of the surface.

Ex. 7. Prove that the condition that the normal,

$-x_ ')]-y^C-s
p fy -

1

'

to the surface z = f(x,y} at a point of a curve drawn on it should

intersect the consecutive normal is

dp _ dq

dx+pdz dy+ qdz'

and deduce the equation to the lines of curvature obtained in §232.

Apply §48. Also dz=pdx+ qdi/, dp= rdx+sdy, dq=sdx + td//.

Ex. 8. If li, m-i, «! are the direction-cosines of the tangent to a

line of curvature, and I, m, n are the direction-cosines of the normal

to the surface at the point,

dl dm dii

Ex. 9. Prove that at a point of a line of curvature of the ellipsoid

x~la-+y-'b'+ 2-/t'- = 1

,

and shew that the coordinates of any point of the curve of intersection

of the ellipsoid and the confocal ,'" -!-,"> h ,"
. =1 verifv thi":

equation. «' + '^ '^'- + ^ '^' + ^

Ex. 10. Prove that for the helicoid ^ = ctan"'•-,
.r

v-+ r- , o , o
p, = -p..= , where n- = .>•- + >/-.
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Any poiiil, P, on the surface is given by

x= ucosO, >/ = Ui^in6, z— cd.

The tangent plane at P is

.i'sin6^-j/cos6' + -^-«^= 0,

and heixce, if p is the perpendicular to the plane from the point Q,

But if d is the distance PQ, the radius of curvature at P of the
normal section through Q is given by

p=^^^2p=^^ 2a^8¥
•

Therefore {u'^+ c^) d0^ - 2c -'j^tL=p+ du^^ 0.

This gives two values of dd : du which correspond to the two
sections with radius p. If p is a principal radius, as in § 232, we have

coincident values of dd : du.

Hence P= ±—:;
—

•

The differential equation to the projections on the .ry-plane of the

lines of curvature is
^f^^

dd= ± ,

where u and 9 are polar coordinates. Hence the lines of curvature

are the intersections of the helicoid and cylinders

where A is an arbitrary constant.

Ex. 11. For the helicoid 2= ctan"i^, prove that

_-c?/ _c.v _ 2o.v// ^_ c(,>/^-x^)

and deduce the results of Ex. 10 from the equations of § 232.

Ex. 12, Prove that at a point of the conoid

,) = ?< cos (^, ?/ = ?4sin^, z=f{d),

the piincipal radii are given by

z"'p^ - xC-Jcz'p - %i?k\xi?+ Z-) = 0,

where / = -t^, etc., and W- = 1 + %.
dii u-

^^^ . sin^ , cos^ , s"sin2^ + 2'sin2^
We have p= .?, q= 2, r= r,

?

s"sin^cos^4-/cos2^ /'cos- ^- /sin 2,6
S= -., ) t = V,

.

w n-
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Ex. 13. Prove that at a point of the surface of revolution

.* = u cos di y— u sin ^, z =J\u),

the principal radii are

-wJl+z"' -(1+2"-)^

where ^' = -r-i etc. Deduce the result of § 231.

Ex. 14. For the surface

X= u cos 6, y — n sin ^, z= c \ogiti + 'Jv? - c^),

prove that pj= - po,.

Ex. 15. Find the principal radii at a point of the cylindroid

i(.r-+y-)= 2mry. Prove tliat at any point of the generator x=y^

z= m, one principal radius is infinite and the other is — , where u is

the distance of the point from the 2-axis. '^^'^

Ex. 16. Find the curvature at the origin of the lines of curvature
of the surface

2z=- + '^ + l(a.v^ + ?,hf-y+ 3e.iY'+ dy') + ...

.

Pi P-i
-i

If !, m, n are the direction-cosines of the tangent to a curve and a

p- \dJ '^Kda.) ^\dJ'
But for a line of curvature,

r-

{

ypq -s{\+f)] + Im \r{\+q^)-t{\+ p^} +m'^{s{\+(j^)-tpq} = 0, . .
.
(

I

)

and for the line of curvature that touches OX, ?=1, m = « = 0. Also

at the origin p = q = s= 0; therefore differentiating (1), and substituting,

we obtain
ds^

dm da. 1 f,ds ,
ds\ hi h

Pl P2

Again, pl + qm = n, and therefore at the origin

d)l 70 , ^ -> 1

da. pi

And, Since ( -^ + m -j- +n -y-=0, . =0.
(/(L (HA. ((<K (((*.

Therefore, if /)„ is the radius of curvature of the line of curvature

which touches OX,

1=1+ ^! .

p,r Pi' (I/P1-1/P2)-

Similarly, the square of the curvature of the line of curvature that

touches OY is , «

p.r{ypx-vp2f
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Ex. 17, Prove tliat the equation to an ellipsoid can be jKit in the

Pi P2 P^Pi^ P\lh P\Pi P-iJ
"'

where 4, ?/, p are the coordinates of the centre.

Ex. 18. Hence shew that the squai-es of the curvatures of the lines

of curvature through a point P are

where X. and /x are the parameters of the confocals through P.

Ex. 19. PN, PN,, PN2 are the normals at a point P to an ellipsoid

and the confocal hyperboloids of one and two sheets through P.

Prove that the curvature at P of the curve of section of the ellipsoid

and hyperboloid of two sheets is (pr^+ p2~~)- , whei'e p,"! is the
curvature of the section of the ellipsoid by the plane PNN,, and p2~^

is the curvatui'e of the section of the hyperboloid of two sheets by the
plane PNiN^.

233. Umbilics. At an umbilic the directions of tlie

principal sections are indeterminate; therefore, from equa-

tions (5) of § 232, we have

r t s /.'

where p is the radius of curvature of any normal section

through the umbilic.

Ex. 1. Find the umbilics of the ellipsoid x'^ja-+ j/'/b'^+ z'^/c- = l.

By differentiation, we obtain

X vz . -ch:
—o+—=0, or p =—^-,

^+ ij==0, or q = :=jf^.6- c- ' ^ bh

Whence

At an umbilic s(l+y-) = r;55' or pq(l+2)-)+ r:pq=^0.

Hence p=^Oovq = 0: (rz + l+p-yi^O unless c^+ a'= 0).

We have also at the umbilic

t{\+p')-r(\ +(/) = ()

or a-p-(b'^ - f-)+ b'^q-{c' - a-) = c-(a- - U').

If a>b>c, p= gives imaginary values of q.

If A c^la^-b^-
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Therefore, since p=—:r-,

* i 1 •!• ,.> t o .. />'-^(a^ - 6'-)

At ail unibilic X-= 1 + »2 _|. ^i_ _^ — y.

Hence, p^-, since 9' = 0,

"
c^ ~ ac

{Qi. § 226, Ex. 5.)

Ex. 2. Shew that the points of intersection of the surface

r'" +//"' + 2'" = «'"

and the line x—ij = z are umbilics, and that the radius of curvature at

an unibilic is given by

' 1)1 - 1

Ex. 3. Prove that the surface

a-x-^+bY+ cV= (x'+ >/-+ z^f

has an unibilic where it meets the line

ah:= b'h/= ch.

Ex. 4. Prove that in general three lines of curvature pass through
an unibilic.

If the unibilic is taken as origin, the equation to the surface is

p -5

The condition that the normal at (.r, >/, z) should intersect the

normal at O is ,.,,., ,^ , >/ i -,i\ - />
b.V + x'y {-Ic -a) + .nj- {d - -lb) - ry = (J.

Therefore, if the tangent to a line of curvature makes an angle a.

with the A'-axis,

tanf^=--Lt•
X

and c tan^o. + (26 - rf) tan^rx. - (2c - «) tan «. - 6 = 0.

This equation gives three values of tan «. which correspond to the

three lines of curvature through the unibilic. -

Ex. 5. If the origin is an umbilic of the surface z=f{x, >/), the

directions of the three lines of curvature through the origin are

given by

1^ tan3a+ f2
'^-?') tan^o.- ^2? -^) Uuu.-^ = 0.

o.v \ di/ di// \ ex ox/ c>i

Ex. 6. Investigate the lines of curvature through an unibilic of an

ellipsoid.

If the nnibilic is the origin, the nonual at the origin the r-axi.s, and
the principal plane whicji contains the umbilics the c.v-plane, the
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equation to the ellipsoid is

r" +y'^+ cz- + 2gz.v+ 2 icz = 0.

Whence, at the origin, we have

'dx •jf"'^' Sj-; w'^' 3_y 'di/

Therefore the directions of the lines of curvature through the

origin are given by
^^,^3^, + tan «.= 0,

and the onl}' real line of curvature through the umhilics is tlie section

of the ellipsoid by the principal plane that contains the umbilics.

Ex. 7, Shew that the points of intersection of the line -='| = ^

and surface ~+,^Af-+—= k'^ are umbilics on the surface, and that the
a c

directions of the three lines of curvature through an umbilic (.'•, ^, =:)

are given by ^^^ ^^^ ^^^be c a ah
If P and Q are adjacent and ultimately coincident points of a curve

drawn on the surface, the normals at P and Q intersect if

Also, we have f!^+.?«!+ !!*_o,
a c

since the tangent to the curve lies in the tangent plane to the surface.

If -=^=-, these equations give three values of dx : dy : dz, and the

first equation then reduces to

{cdy — hdz){adz — c d.v){hdx-a dy)= 0.

234. Triply-orthogonal systems of surfaces. When
three systems of surfaces are such that through each point

in space there passes one member of each system, and the

three members through any given point cut at right angles,

they are together said to form a triply-orthogonal system of

surfaces. TJie confocals of a given conicoid form such a

system.

We have seen that the lines of curvature of an ellipsoid

are its curves of intersection with the confocal hyperboloids.

This is a particular case of a general theorem on the lines

of curvature of a triply-orthogonal system, Dupin's theorem,

which we proceed to enunciate and prove.

// three systems of surfaces cut everywhere at right

angles, the lines of curvature ofany member of one system
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are its curves of intersection luitlt (he vieinbers of (he other

two systems.

Let O be an}'' point on a <;iven surface, S,, of the first

system, and let So and S3 be the surfaces of the second and

third systems that pass through o. We have to prove that

the curves of intersection of 8^ with So and S3 are the hues of

curvature on S^. The tangent phines at O to the three

surfaces cut at right angles. Take them for coordinate

planes. The equations to the three surfaces are then,

to S„ 2.r+ */i.y- + 2//i/ys+ 6,s2+... = 0,

to S.,

,

2y + a^^ + 2hfx+h^ +... = (),

to S3

,

2j+ rt3«-^+ ^i^vy + h.^j'+ . . . = 0.

Near the origin, on the curve of intersection of the

surfaces S^ and S.y, x and y are of the second order of small

(juantities, and hence the coordinates of a point of the

curve adjacent to O are 0, 0, y. The tangent planes to

Sj and So at (0, 0, y) are, if y"- be rejected, given by

x+ ]i^yy + h^yz = id,

y + a.,yz + }i.,yx = 0,

and they are at right angles
;

therefore /^ _|_/,^^0_

Similarly, we have

and therefore h-^ = h.y = ]i., — {i.

Hence the coordinate planes are the planes of the prin-

cipal sections at O of the three surfaces and the curxc of

intersection of S^ and So touches a principal section of S^

at O. But O is any point of Sp and therefore the curve

touches a principal section at any point of its length, and

therefore is a line of curvature. Similarly, the curve of

intersection of S^ and S3 is a line of curvature of Sj.

Ex. 1. By means of Ex. 8, §232, prove that if two surfaces cut at

a constant angle and their curve of intersection is a line of curvature
of one, then it is a line of curvature of the other ; also, that if the
curve of intersection of two surfaces is a line of curvature on each,

the two surfaces cut at a constant angle.

Ex. 2. If a line of curvature of a surface lies on a sphere, the

sui'face and sphere cut at a constant angle at all jjoints of the line.
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Ex. 3. If the normais to a surface at all points of a plane section

make a constant angle with the plane of the section, the section is a
line of curvature.

235. Curvature at points of a generator of a skew
surface. We have shewn that a ruled conicoid can be

found to touch a given skew surface at all points of a

given generator, (§ 218). If P is any point of the generator,

the generators of the conicoid through P are the inflexional

tangents of the skew surface, and therefore the conicoid

and surface have the same indicatrix at P. Hence the

sections of the conicoid and of the surface through P have

the same curvature.

Ex. Investigate the principal radii of a skew surface at points of

a given generator.

Take the generator as .»axis, the central point as origin, and the

tangent plane at the origin as .ry-plane. The equation to the conicoid

which has the same j^rincipal radii is then of the form

2 ivs + 2fi/z + 2/i.):j/+ hf + cz"-= 0.

Whence at {x, 0, 0) we have

-hx . -h hu^'-^f/ixiv+ ch-x^
«= 0, o= , r= 0, s=— , t.= -—^ .

The principal radii are therefore given by

g2^2 _
V6M-r^

^^g2 _ 2fx^ + c_^.2) p - (S2 + ,^.2)2^ Q,

where 8 is the parameter of distribution for the generator.

236. The measure of curvature at a point. Gauss

suggested the following method of estiiiiating the curva-

ture of a surface at a given point. Consider a closed

portion, S, of the surface whose area is A. Draw from the

centre of a sphere of unit radius parallels to the normals

to the surface at all points of the boundary of S. These

intercept on the surface of the spliere a portion of area a,

whose boundary is called the horograph of the portion S,

and a is taken to measure the whole curvature of the

portion S. The average curvature over S is -j. If P is

a point witliin S, then Lt^ as S is indefinitely diminished

is the measure of curvature or specific curvature at P.
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237. Expressions for the measure of curvature. //'

^j^ and p., arc the principal radii at a 'poini P tJic incanurc

of ciLrvatare at P 't«

Let PQ, PR, (tig. ()5), be iiitinitesiinal arcs ot" the lines of

curvature through P, and let QS and RS Ije arcs ot" the lines

of curvature tlirouoh Q and R. 'J'hen the normals to tlie

surface at P and Q intersect at Cj, so that

anil the normals at P and R intersect at C2, so that

PC.= RCo = p2-

P

C2 ^^-^-^^Ry

If the angles PC^Q, PC.^R are SO^ and ()0.,, we have

PQ= p^se^, PR = pJO.,,

and the area PQRS is p^p.^SQ-Jid.^.

li pqrs is the horograph corresponding to PQRS,

F7 = ^0i, pr^Se.,.

Therefore the measure of curvature at P

PQRS p^pM^SO., pip.^

C<y)\ The measure of curvature at a point of the surface

rf - .s'2

^=/(.^',.V)
(1+r+r/)-"
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Ex. 1. If a cone of revolution, semivertical angle a., circumscribes

an ellipsoid, the plane of contact divides the surface into two portions

whose total curvatures are 27r(l + sina.), 27r(l -sine*.).

The horograph is the circle of intersection of the unit sphere and

the right cone whose vertex is the centre and semivertical angle ^ -a..

Ex, 2. Any diametral plane divides an ellipsoid into two portions

whose total curvatures are equal.

Ex. 3. The measure of curvature at a point P of the ellipsoid

•iT-i-'L 4-^= 1 is ^, „ , where p is the perpendicular from the centre
a'^ h'^ c- a-b-c^

to the tangent plane at P.

Ex. 4. Prove that at any point P of the i^araboloid )/- + z- = -i((:r,

the measure of curvature is -^^.,, whei-e S is the jjoint (a, 0, 0), and
4SP"'

that the whole curvature of the portion of tli3 surface cut off by the

plane x'= Xq is 2t ( 1 - A/—^ j.

Ex. 5. At a point of a given generator of a skew surface distant x

from the central point the measure of curvature is , where 8

is the parameter of distribution. v" '^^'"^

Ex. 6. If the tangent planes at any two points P and P' of a given

generator of a skew surface are at right angles, and the measures of

curvature at P and P' are R and R^, prove that s/R+\/Ri is constant.

Ex. 7. Find the measure of curvature at the point (.r, y, z) on the

surface (f+ z'-){2x - 1) + 2 >.'3=o.

Ex. 8. The binormals to a given curve generate a skew surface.

Prove that its measure of curvature at a point of the curve is - Ijcr'i

Ex. 9. The normals to a skew surface at points of a generator lie

on a hyperbolic paraboloid. Prove that at any point of the generator

the surface and paraboloid have the same measure of curvature.

CURVILINEAR COORDINATES.

238. We have seen, (§ 18-5), that the equations

x=MU, V), y=MU, V), z=f,(U, V),

where U and V are parameters, determme a surface. If

we assign a particular value to one of the parameters, say

U, then the locus of the point (x, y, z) as V varies is a

curve on the surface, since x, y, z are now functions of one

parameter. If tlie two curves corresponding to lJ = t(,

V=v, pass tln-ough a point P, the position of P may be
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considered as detennincd by the values u and v of tlie

parameters, and these values arc then called the curvilinear

coordinates ol" the p(nnt P. 'J'hus a point on an ellipsoid is

determined in position if the parameters of the confocal

liyperboloids which pass through it are known, and these

parameters may be taken as the curvihnear coordinates of

the point. If one of the parameters remains constant while

the other varies, the locus of the point is the curve of

intersection of the ellipsoid and the hypei'boloid which

corresponds to the constant parameter.

Ex. 1. The helicoid is given by .v=ucosd, i/= u!i'u\$, z= cd.

What curves correspond to w= constant, ^= constant?

Ex. 2. The hypei'boloid of one sheet is given by

.( _ X + ji .y_ 1 - ^[J' £ _ '^ ~ /'

«~l + A/x' 6~l+A/x' c~l + A/x"

What curves correspond to A= constant, /a= constant? If A and /x

are the curvilinear coordinates of a point on the surface, what is the

locus of the point when (i) A = /x, (ii) A// = /?

239. Direction-cosines of the normal to the surface. I f

O, (lie. GG), is the point of a given surface whose curvi-

I

. N
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±1
nrl
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the coordinates are expressed as riiiietions of two para-

meters as follows

:

The normal to the surface is the principal normal of

any normal section, and therefore if it has direction-cosines

I, m, n, we have for the normal section whose radius of

curvature is p,

I _ (rZ% on _ cPij n _dH
o ds^' o ds-' ds^'

Whence

But

p «6- p

1 _ ld~x -f mdh/ -}- 1? d^z

p
~

ds^
•(1)

dx = a'ydu+x^dv,

and d-x = x„,,d u^+ 2x^^dudv+ x^flv^-+ x^flhL+ x/Pv,

and we have similar expressions for dy, dz, d-y and dH.

Again,

1 = l/u^.r '«?/,. ^uVv-yu^v
H H '

where H-' =EG-F\

Substituting these in (1), we obtain

H E'diP-i-2F'dudv+ G'dV^

P

H

Edip+ 2Fdu dv+ G dv^
•(^)

where E' = Vna,



352 COORDINATE GEOMETBY [ch. xvi.

If /) is a principal radius, by (3) and (4),

Edu-\-Fdv _ FdiL-\-Gdv _ p
E'du+ F'dv ~ F'du+ G'dv^H'

and therefore for a line of curvature,

du^EF'-E'F)-dudv(GE'-G'F:)+ dv^FG'-F'G) = 0.{5)

Cor. 1. The measure of curvature is ——jt,
•

Cor. 2. For an umbilic TT-' = yr, = -Frr

Eijuation (2) may also be obtained as follows :

If 0, (.*•, .y, 2) is the point considered, and P, (.r+ S,r, ?/ + 8y, 2 + &)
is an adjacent point on a normal section through 0, p, the radius of

curvature of the section, is given bj

^
2p

where p is the perpendicular from P to the tangent plane at 0. The
equation to the tangent plane is '^{^ - x)(i/„Zv- z„^/,)= 0, and

.V+ 8.V=X+ (.V„ 8U + .V,8v) + ^(.Vuu 811^ + 2.V,a. 8u8v + .r„„ Si'2) . eic.

Hence p = \./» «./ t;/

_ S(.r,.,. gu^+2xuM 8v + .V,, 8v^) (y„2„ - z„.y„)

2H

_ E'8ii^ + 2F'8u8v+ G'8v^

2H
Therefore, since l.tOF-= Ed^fi + 2Fdudv + Gdv'^,

//_ E'dit^ + 2F'dicdv+ G'dv'^

p Edii^+ 2Fdudv + Gdv^
'

Ex. 1, Find the principal radii and lines of curvature of the
surface z=f{.i\ y).

Take u = x, v=y, then

Xu= '^, yu = 0, Zu=p ; .r„= 0, v/„= l, z„= q ;

Xuu =yua= ^uv =yu» = 0,

Zuu= r, Zu«= S, Z„„= t.

Hence E=\+p\ F=pq, G=\+q"-, ir-=EG - F- = \+p''- + q''"

;

E'= r, F' = s, G'= i;

and on substituting in equations (4) and (5), we obtain the equations
of § 232.

* The student will find tiio methods of curvilinear coordinates discussed
and applied in a recent treatise on Differential Geometry by L. P. Eisenhart.
(Oinn & Co.). He is also referred to App/icnti.ov.<i Geomitriques dn CaJcul
DifferevtirJ, W. de Tanncnberg ; Theorie des Surfaces, Darboux ;, Geometria
Differe.)izi(tle, Uianchj,
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Ex. 2. A ruled surface is generated by the binormals of a given

curve. Find tlie principal radii at a point distant r from the curve.

The coordinates of the point are given by

and are functions of s and r. Taking ?« = .v and ;• = ?•, and applying

Frenet's formulae, we obtain

E^W- =0, 6'=i, IJ=\\ + %;

C-- p pcr^ o"

Therefore the principal radii are given by

Ex. 3, Find the measure of curvature at the line of striction.

The curve is the line of striction, and when /•= 0, the measure of

curvature is — l/cr'"'.

Ex. 4. Apply the method of curvilinear coordinates to prove that

the principal radius of a developable at a distance I along a generator

from the edge of regression is —

.

Ex 5. Api)lv the method of curvilinear coordinates to prove tliat
' ir+ c'^

for the helicoid .r = ticos 6, i/ = i! sin 6, z = cd, Pi= -po= > and that

the lines of curvature are given by dd^—;==^=-
Vw- + c^

Ex, 6. Find the locus of points on the helicoid at which the

measure of curvature has a given value.

Ex. 7. For the surface

x_u-\-v ji _ti — v ^_?<''

prove that the principal radii are given by

a^by+ kabp {fi? - 62 + uv) - B= 0,

where Ak- = Aa-h'^+ u-{u - v)-+ h-{7i + r)-,

and that the lines of curvature are given l)y

du _ -i- (h-

\/a-+ 6-+ n2 Va-i+ i-' + v-'

Ex. 8. For the surface

.V= 3w ( 1 + ir) - u^, II = 3 (•
( 1 + «2) _ r^ - = 3 h^ _ 3 r^,

the principal radii at any point are

i:j(l+?f2 + i;2)2,

and the lines of curvature are given by « = ai, v^-n.,, where f/j and a.,

are arbitrary constants.

B.G. 2
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Ex. 9. The squares of the semi-axes of the confocals through a

point P on the conicoid

a b c

are a^^a-X, bi = b-X., c^^c-X; a^^a-ii, b^^b-fx, Co = c-ii.

Taking A and /x as the curvilinear coordinates of the point, prove

4F
H

Deduce that

H~ y Xfx a,b,c,' ' H y Xix a.J)^c^

and that the lines of eurvatui'e are A= constant, /a= constant.

If I, m, n are the direction-cosines of the normal to the sui'face.

since :zixu=o.

We have also l=^= xl^f-- -, etc.
a ' A[i a

Ex. 10. Prove that if F and F' are zero, the parametric curves

[e lines of curvatuie.

Examples XIII.

1. Pi'ove that along a given line of curvature of a conicoid, one

principal radius varies as the cube of the other.

2. Prove that the principal I'adii at a point of the surface xy:: = cc

are given by ., ^^ fi

where p is the perpendicular from the origin to the tangent plane at

the point. Shew tliat this equation can be written in the form

and that if (^, tj, {") is a centre of principal curvature at (.r, y, z),

3. Find the principal I'adii of the surface d-x- = z'-{;i?^-ir) at tiie

points where x=y = z.

4. Prove that the cone

kxii = z{-Jx-^z' + v^/ + s'-^)

passes through a line of curvature of the paraboloid Xij — az.
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5. For the .surface

.r = ?«co8(y, // = u»\nO, 2-/(6),

prove that the angles that the lines of curvature make witli the
generators are given by

tan-'(/)+-^ , tan <i - 1 =0.
f ^JW+P

6. For a rectangular hyperboloid, (in whicl) the asymptotic cone
has three mutually perpendicular generators), the noinial chord at

any point is the harmonic mean between the principal radii.

7. PT is tangent at P to a curve on an ellipsoid along which the
measure of curvature is constant. Prove that the normal section of

the ellipsoid through PT is an ellipse which has one of its vertices at P.

8. Prove that at a point of the intersection of the cylindroid

z{x^+y") = mxrj and the cylinder {x- + 1/"-)^ = a^{.i!^ - y-)- the mea.sure of

curvature of the former varies as — -.

x^+y-

9. The principal radii at a point P of a surface are pi and p., and
tlie radius of curvature of a normal section through P is R. Shew
that the normal to the surface at a neighbouring point Q on the section

distant s from P, makes with the principal normal to the section at Q
"''"^''

s\ip^^-Rrr){R-^-pf^)^.

10. Prove that the lines of curvature of the paraboloid xy= <iz lie

on the surfaces

snih-i - ± sinh^' - = A

,

a a

where A is an arbitrary constant.

11. Shew that the sum or difference of the distances of any point
on a line of curvature of the paraboloid xii = az from the generators
through the vertex is constant.

12. A curve is drawn on the surface

22= rx^ + Isxy + ty'^

touching the a.xis of x at the origin and with its osculating plane
inclined to the ^-axis at an angle <^. Prove that at the origin

.r"= 0, ^" = 7'tan<^, r" = r, .r'"= - r- sec-<^, /"= Snf tan c/).

13. Prove that the whole curvature of the portion of the paiaboloid
xy = az bounded by the generators through the origin and througli tlie

point (.r, y, z) is ^.^

- tan"' ' -

>/.?/%''+ z'^x'+ x'^y'-

14. Prove that the diffei'ential equation of the projections on the

.iv/-plane of the lines of curvature of the ellipsoid

^+•^+4=1
(I- 0^ c-

is fjb-xydx' - (fSb-x-+ cx.a-y- + a-b-y)dxdy + (i.a-xydy^ = 0,

where a.'r^b'--c-,
ft

-<--(>-, y = a--b'-
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Deduce that

where v = —, and hence shew that the integral of the equation is

where ^: is an arbiti^ary constant.

Prove that if k= ^ ly T ,; this reduces to

,.2(,2_^2) ^2(^,2 _,2) ^
a2(«2_X) 6'-J(62-A) '

and deduce that the lines of curvature are the curves of intersection

of the ellipsoid and its confocals.

15. Prove that the measure of cui'vature at points of a generator

of a skew surface varies as cos*^, where 6 is the angle between the

tangent planes at the point and at the central point.

16. Prove that the surface

4aV= (j;2-2a2)(/-2«2)

has a line of umbilics lying on the sphere x^+;i/'^ + z^= 4a'^.

17. A ruled surface is generated by the principal normals to a

given curve
;
prove that at the point of a principal normal distant r

from the curve the principal radii are given by

What are the principal radii at points of the curve ?

18. If I, m, n a,re the direction-cosines of the normal at a point to

the surface z= fiv, v) the equation for the piincipal radii can l>e

^i-'tten
"l Ifdl 3m\

.

'd(l,rn)

19. Prove that the osculating plane of the line of curvature of the

surface >
-i

i

2s=— +'^+ ^ (a,i3+ 7,hxhi+ 7>cxf + dif^. .
.

,

Pi Pi ^

which touches OX, makes an angle <^ with the plane ZOX, such that

tan.H^i^P^.
Pi' Pi

20. Prove that for the surface formed by the revolution of the

tiactrix about its axis

^=anogtan^+ cos^j, ?< = asin^,

and that the surface has at any point a constant measure of curvature
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21. If the surface of revolution

./•= II cos 6, !)
= u sin t), 1 = f{ i()

is a miuiiual surface, f'{l +/"-)+ i{f" = 0.

Hence, sliew that the only real minimal surface of revolution is

formed by the revolution of a catenary about its directrix.

22. At a point of the curve of intersection of the paraboloid .vi/ = cz

and the hyperboloid .i-"^ +.?/-- 2- + c- = the principal radii of the para-

boloid are —(1 ±^2).

23. The principal radius of a cone at any point of its curve of

intersection with a concentric sphere varies as (sin A sin /a)^, where

A and /x are the angles that the generator through the point makes

with the focal lines.

24. A straight line drawn through the variable point

P, (a cos (ji, a sin (/>, 0),

parallel to the zi'-plane makes an angle $, where 6 is some fun<-tion

of
(f),

with the 2-axis. Prove that the measure of curvature at P of

the surface genei^ated by the line is

25. A varialjle ellipsoid whose axes are the coordinate axes touches

the given ))lane p.v + q>/ + r;=l. Prove that the locus of the centres of

principal curvature at the point of contact is

(px+qy+ rz - 1 ) {p^//z + q'zx + r\r>/) - .vijz ( p^+ q' + r^f.
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CHAPTER XVII.

ASYMPTOTIC LINES.

242. A curve drawn on a surface so as to touch at each

point one of the inflexional tangents through the point is

called an asymptotic line on the surface.

243. The differential equation of asymptotic lines. If

ly^, 7»p 1}^ are the direction-cosines of the tangent to an

asymptotic line on the surface z=f(x, y), we liave, from

§181, rJ^-+ 1sl{in^+ tin^- = 0;

whence, as in § 282, the differential equation of the pro-

jections on the i»?/-plane of the asymptotic lines is

rdx'^+ 2sdxdy-[-tchf = ^.

It is evident from the definition that the asymptotic

lines of a hyperboloid of one sheet are the generators.

This may be easily verified from the differential equation.

If the equation to the hyperboloid is x'^la^'\-y'^IW— z^jc^ = \,

^^~a'z' ^~¥z' '~avA^ 6V' ^'0^2^'

^-b'zA^ dv
Whence the differential equation becomes

I—, 5 To 1 d'^l
or y = y^:c+ \/a'yf+ Ir, where y^ ^ y _•

This equation is clearly satisfied by the tangents to the

ellipse z = 0, X"/a^+ y"/b- = l, or the projections of the
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asymptotic lines arc the tangents. We also have proved,
(ijl04), that the projections of the generators are Die
tangents.

244. The osculating plane of an asymptotic line. If /,

,

ii\, n^ are tlio direction-cosines of the tangent to an
asymptotic line,

Therefore, by Frenet's formulae.

Whence ^- =
,
^

, = ,
-—i^ ,

or

Therefore the binomial of the asymptotic line is the

normal to the surface, or the tangent plane to the surface

is the osculating plane of the asymptotic line.

Cor. 1. The two asymptotic lines through any point

have the same osculating plane.

Cor. 2. The normals to a surface at points of an

asymptotic line generate a skew surface whose line of

striction is the asymptotic line.

245. The torsion of an asymptotic line. Consider the

asymptotic lines through the origin on the surface

Pi Pi

The tangents make angles +(l with the x'-axis, where

tan a = a/——. Hence, for one asymptotic line,

^i=cosoc, mi = sina, ')?j =

and /o=— since, ?/!., = cos rx, ')?2 = 0.

Also, from S 244. l.,= ,
~^

.
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Therefore if d^ is the differential of the arc of the line,

But at the origin, r = l/p^, s= 0, p = 0, q = 0.

„,, „ sin a. cos a
Therefore =

,

a- pi

or -=:—cotfx=\/
o- pi ^ P1P2

Cor. The two asymptotic lines through a point have

the same torsion.

The asymptotic lines of a developable surface are tlie generators,

and the osculating plane of an asymptotic line is the same at all

points of the line. Hence l/a-= 0. But one of the principal curva-

tures is also zero, and thus the equation -='\/ is verified for

developable surfaces. ^ ^1^-

For a hyperboloid of one sheet, the asymptotic lines are also the

generators!^ but the osculating plane of an asymptotic line is not the

same at all points of the line. The osculating plane at each point of

the line is determinate, however, and - has a definite value A/

at each point. The value is the i^ate at which the tangent plane is

twisting round the generator. "We have thus an instance of a straight

line with a definite osculating plane at each point.

Ex. 1. Prove that the projections of the asymptotic lines of the

paraboloid ^z= '-^-'j^ on the .?v/-plane are given by -±y = A, where A

is an arbitrary constant.

Ex. 2. Find the differential equation to the projections of the

asymptotic lines of the conoid

X= ucos9, y = u sin 0, z = f{ 6).

Using the values of p, q, r, s, t, given in Ex. 12, § 232, we obtain

(i) rf^ = 0, or (ii) ^'ll':= t.d6.

From (i) ^= ol, where n. i.s aibitrary, and hence one asymptotic line

through each point is the generator.

From (ii) u^= Xz\ where A is arbitrary.

Ex. 3. Prove that the asymptotic lines of the helicoid

.(; = ?« cos ^, //
= ?< s i n ^, z= cB

consist of the generators and the curves of intersection with coaxal

rischt cylinders.
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§245] EXAMPLJES ON ASYiMlToTlC JJNKS ;3(ji

Ex. 4. Prove that the projection on the .>7/-plane of an asymptotic-

line of the cylinclroicl

.)= (/ cos (y, >/ = usinO, z = ms\\\2B
is a leniniseate.

Ex. 5. Prove that the j^rojeetions on the .'//-plane of the asymp-
totic lines of the conoid

./;= ti cos $, 11'-^'' «iii 0, z= ue"^^

are equiangular spirals.

Ex. 6. Prove that the ditVerential equation to the projeetion.s on
the .);y-plane of the asymptotic lines of the surface of revolution

X = u cos d, ii
= n sin Q, z =/( w)

dxi ~ du-'

Ex. 7. Find the a.symptotic lines of the cone z=u cot a..

Ex. 8. For the hyperboloid of revolution -^-^ = 1, prove that

the projections of the asymptotic lines on the .ry-plane are given by

?f= «sec(^-cx.),

where a. is an arbitrary constant.

Ex. 9. The asymptotic lines of the catenoid ?< = ccosh- lie on the
cylinders 2i{ = c(ae*-f a-^e"^), where a is arbitrary.

''"

Ex. 10. Find the curvatures of the asymptotic lines through the

origin on the surface

9. =::!- + ^" + 1 (a.?73+ zhx^i/ -f Zcxf+ df) + . . .

.

PX P-2 '^

Differentiating r(',--l-2.v^i/Hi-f- '/«!-= 0, we obtain

— 2

For one line,
^i
= cosa., ?Hi = sina, Wi=0; ?.,= -.sina., wi2 = cosa.,

ii., = 0, where tanV^:—^. And at the origin, r= -, s= 0, t=-,
Pi Pi Pi

dr dr ds , ds dt 'dt , .^.. .
, ,

To obtain the curvature of the other lino we must change the sign

of -J - p-,.

Ex. 11. The normals to a surface at points of an asymptotic line

generate a skew snrfare. and tlie two snifacos have the s;uue me.isiiie

of curvature at any point of the line.
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Ex. 12. In curvilinear coordinates the diti'erential equation to the

asymptotic lines is

E'du- + 2 F' du dv + G ' dc'-= 0.

Apply the metliod of curvilinear coordinates to Exs. 3, 4, 6.

Ex. 13. Prove tbat the asymptotic lines of the surface

X=v- 2?« - e-", y= e"-", z= e"

-

v

lie on the cylinders

where a and h are arbitrary constants.

Ex. 14. For the surface

X u-\-v y _u — v ,._wy

the asymptotic lines are given by ?< = A, v = ii, where A and /x are

arbitrai'y constants.

Ex. 15. For the surface

x= Zu{\+v^)-u\ y= ^v{\ + ^ir)-v^, z=-Zu--'dv\

the asymptotic lines are «± y= constant.

Ex. 16. Prove that the asymptotic lines on the surface of revolu-

^'''"
.v = ?(cos^, ^= «sin^, i=f{u\

where z= a{ log tan J + cos c^ j and u = a sin </>

are given by d9=±—.—-j-o J sin (p

GEODESICS.

246. A curve drawn on a surface so that its osculating

plane at any point contains the normal to the surface at

the point is a geodesic. It follows that the principal normal

at any point is the normal to the surface.

An infinitesimal arc PQ of a geodesic coincides with the

section of the surface by tlie osculating plane at P ; that is,

with a normal section through P. Therefore, by Meunier's

theorem, the geodesic arc PQ is the arc of least curvature

througli P and Q, or the shortest distance on the surface

between two adjacent points P and Q is along the geodesic

through the points.
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Ex. 1. The principal nonual to a right l)elix is the uonnal to the
cylinder, and lience the geodesies on a cylinder are the helices that
can be drawn on it.

Ex. 2, If a geodesic is either a plane curve or a line of curvature,
it is both. (Apply § 230.)

247. Geodesies on developable surfaces. 11" tlie siuiace

is a developable, the infinitesimal arc PQ is unaltered in

length when the surface is developed into a plane. There-

fore if a geodesic passes through two points A and B of a

developable, and the surface is developed into a plane, the

geodesic develops into the straight line joining the points

A and B in the plane.

Ex. 1. The geodesies on any cylinder are helices.

When the cylinder is developed into a i)lane, any helix develops

into a straight line.

Ex. 2. An infinite number of geodesies can be drawn through two
points A and B of a cylinder.

If any number of sheets is unwrapped from the cylinder and
A', A", A'", ... , B', B", B'", ... are the positions of A, B on the plane so

formed, the line joining any one of the points A', A", A'", ... to any
one of the points B', B", B'", ... becomes a geodesic when the sheets

are wound again on the cylinder.

Ex. 3. If the cylinder is .r-+y- = <''-, and A and B are

{a, 0, 0), (acosoL, a sin a, h\

the geodesies through A and B are given by

.r=acos^, ?/= asin^, z= - -—

.

•' ' 2»:r + 0L

248. The differential equations to geodesies. From
the definition of a geodesic, we have

cl^x <Py ^
ds^ _ ds'^ _ ds^ .

t:- Fy~ F,
^^^

for geodesies on the surface F{x, y, z) = (), and

d^T. dhf dH

P "
7 ~-l ^^

for geodesies on the s\u-face z = f{:'\ ?/).

If an integral of one of the ecjuations (1) can be found, it

will contain two arbitrary constants, and with the equation

to the surface, F{x, y, s) = i), will represent the geodesies.
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Similarly, an integral of one of the equations (2) and the

equation z=f{x, y) together represent the geodesies of

the surface z=f{x, y).

Ex. 1. Find the equations to the geodesies on tlie helicoid

X = u cos d,
>f
= i-i' sin 6, z— cQ.

-P, , . " " n J S"^ ^ <^^ cos dz
For a geodesic, ox -py =0, and jo= ^,, q = t^;° ' i J ./ '

r u at) u ad
therefore x" cos 9 +/' sin 6=
or

•

u"-ue'^= (1)

But .r'2+/2+ 2'-' = l
;

therefore w'^ + Ot'H c^) ^'2 = 1 (2)

Hence, from (1), «(1 -u'')--={u^+ c^)2t",

which gives, on integrating,

v/ + c-

where k is an arbitrary constant.

Eliminating ds between this equation and equation (2), we obtain

a first integral ^kdu

whence the complete integral can be found in terms of elliptic

functions.

Ex. 2. Find the differential equation to the projections on the

.ry-plane of the geodesies on the surface z = f(.v, i/).

If ?i, mj, ^1 are the direction-cosines of the tangent to a geodesic,

and - is its curvature.
P

P sJ\+p'+ q^

But by Ex. 10, § 204, the radius of curvature of the projection on

the A7/-plane is p^ L^.

AT 7 7 pnii-qliAnd ?J3= <jTO2-^2"'l="7=^=^=-
sj\+p-+f

Therefore the radius of curvature of the projection is

Hence, at any point of the projection we have

:i)T (-'-*'){-(i)T
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249. Geodesies on a surface of revolution. The equa-

tiou to any sui-i'ace oi" revolution is of tlie i'orni

z=f{^/x'+ y'^) or z=f{iC).

Hence p = - /' and q = -/'.

But for a geodesic, P;t4= ^7^-

Therefore

<Px dhi _ df dx dy\ ^
^ dfi' ds- dfiV df< ds/f/,s- ' ds"

Hence y
dx dy
ds 'V/.s

= — c.

where c is an arbitrarj^ constant.

Change to polar coordinates, where

X = u cos 6, y = '^^ sii'i ^>

x' — u' cos — nO' sin 0, y' = u' sin + uO' cos 0,

, , ,de
and we get u-^- = c.

'^ ds

Ex. 1. If a geodesic on a surface of revolution cuts tlie meridian

at any point at an angle <^, ?<sin
<fj

is constant, where n is the distance

of the point from the axis.

We have sin
(f>
= it -j- , whence the result is siuiplv another form of

that of i^ 249.
^•-

Ex. 2. Deduce that on a right cylinder the geodesies are helices.

Ex. 3. The perpendiculars from the vertex of a right cone to tlie

tangents to a given geodesic are of constant length.

If O is the vertex, the perpendicular on to the tangent at a point P
= OP sin <^= «coseca.sin

(f).

Ex. 4. Investigate the geodesies through two given points ou a

right cone.

Let the points be A and B, (fig. 67), and take the .-.r-plane througli A.

Let the seniivertical angle of the cone be a. and the plane B07 jiiake

an angle fS with the ^.i- plane. Suppose that A and B are distant

a and b from the vertex.

If the cone is slit along OA and developed into a plane, the distance

of the vertex from any tangent to the geodesic remains unaltered,

and therefore the geodesic develops into a straight line. (cf. § 247).

Figures 67 and 68 represent the cone and its development into a

plane. The circular sections of the cone through A and B become

arcs of concentric circles of radii a and /', and

« «n» arcA.D, arc AD ^ .

^A,OD,= OA ~0A^^ '"'"'• ^"y'^^'
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The geodesic develops into AjBi, and if P, any point on AjBj, lias

polai' coordinates r,
\l/

leferred to OjAi as initial line,

since AO1A1P1 + AOiPiBi= AOjAiBj,

a?- sin 1/^+ 6;- sin (y-\/^)= «6 sin y.

Now the relations between the cylindrical coordinates u, in space

and the polar coordinates r, yfr in the plane are

ii = r sin OL, -^=6 &iua-,

and therefore the coordinates of any point of the geodesic satisfy the

equation
?<{rt sin (^sin o(.) + &sin (y- ^sin a.)} = 06 sin rxsin y (1)

This equation represents a cylinder which intersects the cone in the

geodesic.

If the arcs DjOj, D2D.i, ... are each equal to the circumference of

the circle in the plane ADC, the positions of OB, when in addition to

the curved sector OAB of the surface of the cone, one, two, ... com-

plete sheets are successively developed into a plane; ai'e O^Bo, OiB.j ....

If Ai and B^ are joined and the plane sector AiOiB^ is wiapped

again on the "cone, AjB.^ becomes a second geodesic passing through

A and B and completely surrounding the cone. Similarly AiB.j be-

comes a third geodesic. AjB^, however, does not lie on the sheets

that have been unrolled from the cone, and hence the only geodesies,

(in our figure), through A and B are those which develop into A^B,,

AiB.„ A1B.5.

It is clear from the figure, that if (« + ]) geodesies pass through two

points A and B, and the angle between the planes through the axis

of the cone and A and B is /3,

i^'m(x(f3 + 2H-!r)<Tr.

The equations to surfaces through all the geodesies through A and

B can be obtained from equation (1) by writing (/^-^2;;7^)sin a. for y.

If A and B are points on the same generator of the cone, f3 = 2Tr.

So that, if we are to have any geodesic through A and B,

sin a.. ^< 77 or sina<|.
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A geodesic on a cone will therefore not cross <a generatoi- nt two

points unless the semivertical angle of the cone is less than ^.

Ex. 5. Find the length of the geodesic AB.

A ns. AB- = o- + b-- 2ab cos(/3 sin a.).

Ex. 6. Find the distance of the vertex from any tangent to the
geodesic AB.

I

a6 sin (/? sing.)

AB

Ex. 7. If A and B are points on the same generator OAB of a
cone semivertical angle a., and a geodesic through A and B cuts OA
at right angles at A, then sina.<j-. Also OB =f(cosec(2-sin (a) and
the length of the geodesic arc AB is a tan(27rsina.).

Ex. 8. Shew that a first integral of the equations of the geodesies

of the cone u = z tun a is sina(/^=±— .

^ and deduce the equa-

tion to the projections of the geodesies in the form

u= k sec {dsina. + (fi),

where k and ^ are arbitrary constants.

Ex. 9. Determine the values of I: and (/> if the geodesic passes

through A and B, and deduce the equation (1) of Ex. 4.

250. Geodesies on conicoids. The following theorem

is due to Joacliiiusthal :
//' P is any point on a geodesic on

a central conicoid, r is the central radius parallel to the

tangent to the geodesic at P, and p is the perpendicular

from the centre to the tangent ptlane to the surface at P,

pr is constant.

Let the equation to the conieoicl be ax^-\-hy--\-cz-= l.

Then at {iny point of a geodesic,

x^r^^±^^^5= + '' = X, ,s«y, (1)
(IX by cz Ja'X-+ h'hf+ ch^- ~p

where p is the radius of curvature of the geodesic.

We have also 2-)-- = a\v'+ h'y''+ c'Z^,

r''^ = ax"-+ hy'~+ cz'^.

Whence —p -^// = a-xx'+ h'-yy'+ c-zz',

— r - 3/.'= ax'x"+ by'y"+ cz'z",

= \{a''xx:+ }/yy'+ c'zz'), by (1).

Therefore ^ = ^\ (2)
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Again, since the tangent to the geodesic is a tangent to

the conicoid, a^x + hyy'+ czz = 0,

and therefore

ax'^-\-bi/"^-\- cz' - = — (axx"+ hyy"-{- czz")

or r - - = - X («2a32 -f-
62^2^ ^.2.2)^ by ( 1 ),

= -Ap-" (3)

Hence, combining (2) and (3),

r'2)-\-'p'r = 0,

and therefore pr is constant.

Cor. 1. Since A= + -
, from (8) we deduce p= +-p ' -])

Cor. 2. If the constant value of pv- is /.'

P'

(Cf. §226, Ex. 2.)

' p J^-

hence along a given geodesic the radius of curvature varies

as the cube of tlie central radius which is parallel to the

tangent.

Ex. 1. The radius of curvature at any point P of a geodesic

drawn or a conicoid of revolution is in a constant ratio to the radius
of curvature at P of the meridian section through P.

If fx. and ft
are the axes of tlie meridian section and />j is its radius

of curvature, 2/32

/,.2

and we have from j^^ 250, p= ±^-

Ex. 2. For all geodesies through an umbilic, p' = ac.

Ex. 3. Shew that the theorem of § 250 is ako true for the lines of

curvature of the conicoid.

Ex. 4. The constant pr has the same value for all geodesies that

touch the same line of curvature.

Ex. 5. Two geodesies that touch the same line of curvature

intersect at a point P. Prove that they make equal angles with

the lines of curvature thi'ough P.

Ex. 6. PT is the tangent to a geodesic through any point P on the

ellipsoid x''la'+flb'^-{-z^!c- = \, and A, /-t are the parameters of the

confocals tlirough P, PT makes an angle $ with the tangent to
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the curve of intersection of tliu ellipsoid and tliu L-onfucal whose
parameter is A. Prove that

A cos-(y + fi »m'0
=

' - '

,
( where /;;• = A).

The central section parallel to the tangent plane at P, referred
to its principal axes, Las equation

.1-
,

'/- , , cos- 8
,
sin'^O 1—h^ = l, whence H . =—

.

)u, A ' /x A i-^

We have also p^= a-b'C^IXfi, and the result immediately follows.

Ex. 7. The tangents to a given geodesic on an ellipsoid all touch
the same confocal.

One confocal touches the tangent. Suppose that its parameter
is V. If the normals to the ellipsoid and confocals through P
aie taken as coordinate axes, the equation to the cone, verte.\ P,
which envelopes the confocal is

V — /X V- A V

The tangent at P to the geodesic is a generator of this cone, and
since its equations are

X _ 1/ z

cos6'~sin ^~0'

v= A cos2^+/x si n2^= constant.

Ex. 8. The osculating planes of the geodesic toucli the confocal.

251. The curvature and torsion of a geodesic. Consider

a o-codesic througli tlie orio-in <jn tlie surface

Pi Pi

If tlie tangent makes an angle 6 with OX, then, at

the origin,

l^ = co%0, m^= sinO,
^?i
= 0;

/,.,= 0, Wo= 0, n}., = \\

hence, i.^ = sin S, m.^ = — cos 0, v., = 0.

We have, generally,

J -P —Q 1
to= I- , m^=

,
^-

, 71.,= ,

Whence, differentiating /,, with respect to a, the aic of tlif

geodesic, and applying Frenet's formulae,

B.G 2 A
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which gives, at the origin,

COS0 sin _ cos

Similarly, differentiating m.^, we obtain,

sin Q cos 6 _ sin 6

p a- p^

Eliminating or, we have, - =—'

1
, a result obtained

in §§220, 221. ^ ^i ^2

Eliminating p, we have

1 l-i).
Pi Pt'

= sin 6 cos 1

(7

Cor. 1. If the surface is developable, so that — = 0,

Pi

a-= —p tan 0, where 6 is the angle at which the geodesic

crosses the generator. For a geodesic on a cylinder, 9 is

constant, and we have the result of § 202.

Cor. 2. If a geodesic touches a line of curvature, its

torsion is zero at the point of contact.

Cor. 3. If a geodesic passes through an umbilic, its

torsion at the umbilic is zero.

Ex.1. Sbewthat -1= (1-— ) (
— -1).

cr- \p Pi/ \p> P

/

Ex. 2. A geodesic is drawn on the ellipsoid x^ja^+^/^lb'^+ z'^/c^=\

from an umbilic to the extremity B of the nuean axis. Find its

torsion at B.

At B, Pi = -r, P'>= -i-, ai^d therefore

Also jor= «c, and at B, p= b, and

1 _cos2^

1 hsJa^-h'^^JU^^^

1 cos^^ sin^^.
T n " }

,'hence ^

252. Geodesic curvature. Let P, o, C, (fig. 69), be

consecutive points of a curve traced on a surface. Along

the geodesic through P and O measure off an arc OG equal
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to PO, and alonu; po produced a leng-th OT also ucjual to PO.

PO is ultimately the tangent at O to the curve or geodesic,

and the geodesic touches the curve at O. Denote the amde
GOT by 6'\^o, the angle TOG by oxp-, the angle GOG l)y oV.

Then, if OP = (Jy,

Lt— = curvature of curve = -
;

OS p

Lt-P* = curvature of G-eodesic^
p..

and Lt^ is defined to be the geodesic curvature of the

curve. Let us denote it by — •

G

P O T
Fig. CO.

The points CGT lie on a sphere whose centre is O, and

therefore the arcs CT, TG, GG can be taken to measui-e the

angles GOT, TOG, GOG. And since tlie plane OGG is

ultimately that of the indicatrix, and OGT a normal section,

the angle CGT is a right angle. Hence,

CT2 = GG'+ GT2

or Sxlr' = Se-+ ^VV-

Therefore - ,,
= ^^ J

—

-;

P~ Pi Po

whence the geodesic curvature is expressed in terms of the

curvatures of the curve and the geodesic.

Again, if the angle CTG is denoted by w, <o is ultimately

the angle between the planes OGT and OGT, which become

respectively the osculating planes of the curve and the

geodesic, or the osculating plane of the curve and the normal

section of the surface through the tangent to the curve.

From the right angled triangle GGT,

(5\/ro = S\p- COS a\ Se = Syf/- sin <»>

;

whence (i) p = ^oCosw, (ii) p^,
= p coiit^c w = p^ cot co.
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Wo have thus (i) another proof of Meuiiier's theorem

and (ii) the relation between the geodesic and ordinary

curvatures of the curve.

Cor. If a curve of curvature p"^ is projected on a plane

through the tangent wliich makes an angle a. with the

osculating plane, the radius of curvature of the projection

is psecoL, (§ 204, Ex. 10). Hence the geodesic curvature

of a curve on a surface is the curvature of its projection

on the tangent plane to the surface.

Ex. 1. Shew that the geodesic curvatures of the lines of curvature

through the origin on the surface

2z= -^+.^ + l(ax^+ ^hxhj+ 3o,ry2 + df)+ . .

.

Pi P2 ^

are !!PMh_^ mPjL.
Pi-p-2 Pi-p-2

Use Ex. 16, § 232.

Ex, 2. Prove that at the origin the geodesic curvature of the

section of the surface a.r^ + 6y- = 2s"by the plane l.v-\-my+ nz = Q is

Ex. 3. A curve is drawn on a right cone, semivertical angle oc,

so as to cut all the generators at the same angle (i. Prove that at

a distance R from the vertex, the curvature of the geodesic which

touches the curve is
'^"^^^

, and that the geodesic curvature of the

sm B
curve IS —~ti.

XI

Ex. 4. By means of the results of Ex. 3 and the result of Ex. 7,

§ 204, verify the equation p~^= pg"^+ Po~'^ for the curve on the cone.

Ex. 5. If u and v are the curvilinear coordinates of a point on a

surface and the parametric curves cut at right angles, shew that the

geodesic curvatures of the parametric curves are

1 ds/G 1 d\/^

s/GE du ' sfGE 'dv

'

Consider the curve U—ri. Let w be the angle between the osculat-

ing plane and the normal section through the tangent. Then the

geodesic curvature is given by - = . Let I.,, ?«.,, n., be the
P'j P "

' ".
.

direction-cosines of the principal normal to the curve, then since co is

the complement of the angle between the princijial normal to the

curve U=u and the tangent to the curve V=i\
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Now hM^J^dv . ^.,^^^^
p as ov Lis fjQ

Therefore

aiul

f s/G dvWO/

iJut, .since the parametric curves are at right angles, '^x\Xv= 0, and
therefore

Therefore l-=-ZJ^_^=.:iL^.

Similarly for the curve V=v, i =-JlL ^^^.
R7 S.IGE 'dv

(This solution is taken from Bianchi's Geometria Differenzkde.)

Ex. 6. If the parametric curves are at right angles and G is a
function of v alone and E -a, function of u alone, the parametric curves
are geodesies.

Ex. 7. By means of the expressions given in § 241, Ex. 9, shew
that the squares of the geodesic curvatures of the curves of inter-

b

meters are A and jj., are

"ihiC^ a.,b.f.,

Shew how this result may be deduced from that of Ex. 18, § 232.

253. Geodesic torsion. If or, (tig. 70), is the tangent at

O to a curve drawn on a surface, and the o.sculating plane

of the curve makes an angle co with the normal section

through OT, then w is the angle between the principal

normal to the curve and the normal to the surface, and

therefore _ pi _ q^,+ 7r.,
^ ,

.

cos (0 = I2'i2 _..

( ] )

The binomial makes an angle 90" + w with the normal to

the surface. Let us take as the positive direction of the

binormal that which makes an angle 90° — w with the normal

to the surface, and then choo.se the po.sitive direction of the
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tangent to the curve, so that the tangent, principal normal

and binomial can be brought into coincidence with OX,

OY, OZ respectively. Then

sm CO =—S===p=s

—

Jl+p'+ q'

Diiierentiate with respect to s, the arc of the curve, and

we have, by (1),

dco cos w l^jrl^ + silly)}- m.^jsl^+ tm^
cos (JO -J-

= /I— ,
•> ~r^ *"

as cr 'Ji+p-'+ q

-{pk+ qm,-n,)^^{l+f-\-q'r (2)

Now take O as the origin, and let the etjuation to the

Hurtace be ^.2 ,,1

Pi Pi

Then at the origin (2) becomes

doo _ cos o) _ ^1 _ m.{iny

P\ Pi

Let OT make an angle 6 with OX.

Then l^ = cos 6, ii\ = sin 0, n^ = ; and since 11.2 = cos co,

/,g = on{ii.2 = sin 6 cos 00,

?n.j = — l^iio = — cos cos CO.

cos CO -7- =
as a-

(3)



§253] EXAMPLES XIV. 375

Therefore (o) becomes

,- = sin cos t^( )

,

ami lience, by ^251, the value ot" r- is the torsion ol'
> J' ^ '

(J- els

the <,^eodesic that touches the curve at O. It is called the

geodesic torsion of the curve, and is evidently the same for

all curves which touch OT at O.

Cor. 1. If a curve touches a line of curvature at O its

geodesic torsion at O is zero.

Cor. 2. The torsion of a curve drawn on a developable is

sin 6 cos 6 cZai

p (IS

where 6 is tlie angle at which the curve crosses the

generator, p is the principal radius, and w is the angle

that the osculating plane makes with the normal section

of the surface through the tangent.

Ex. 1. The geodesic torsion of a curve diawn on a surface at a

point O is equal to the torsion of any curve which touches it at O and
whose oscuhiting plane at O makes a constant angle with the tangent

plane at O to the surface.

Ex. 2. The geodesic torsion of a curve drawn on a cone, semi-

vertical angle a., so as to cut all tlie generators at an angle /3, is

sii; fS cos (3

R tan «.

where R is the distance of the point from the vertex.

Ex> 3. A catenary, constant c, is wrapped round a circular cylinder,

radius «, so that its axis is along a genei'ator. Shew that its torsion

at any point is equal to its geodesic torsion, and deduce that

where z is the distance of the point from the directrix of the catenary.

Examples XIV.

1. A geodesic is drawn on the urface

2z= ax-+ 2hx;/+ b>/'

touching the .r-axis. Prove that at the origin its torsion is h.

2. For the conoid z=fyi\ prove that the asymptotic lines consist

of the generators and the curves whose projections on the .ry-plane

are given by x-= cf'i--\ where c is an arbitrary constant.
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3. Prove that any curve is a geodesic on its rectifying developable

or on the locus of its binomials, and an asymptotic line on the locus

of its principal normals.

4. A geodesic is drawn on a right cone, seniivertical angle a..

Prove that at a distance R from the vertex its curvature and torsion

R^tanoL R^tana.
'

where p is the perpendicular from the vertex to the tangent.

5. Prove that the p-r equation of the projection on the a;j/-plane of

a geodesic on the surface .V'+^/^= 2az is

.,_F(«2 + rO
^'"

k'^+ a'
'

where k is an arbitrary constant.

6. Prove that the projections on the .vy-plane of the geodesies on

the catenoid M= ccosh- are given by

where k is an arbitrary constant.

7. Geodesies are drawn on a catenoid so as to cross the meridians

at an ano-le whose sine- is -, where u is the distance of the point of

crossing from the axis. Prove that the polar equation to their pro-

jections on the .ry-plane is

w + c
'

where a. is an arbitrary constant.

8. A geodesic on the ellipsoid of revolution

crosses a meridian at an angle at a distance u from the axis. Prove

that at the point of crossing it makes an angle

, cu cos 6

Vcr- u-{a--c-)

with the axis.

9. Prove that the equation to the projections on the .rj/-pUne of

the geodesies on the surface of revolution

A-= u cos 0, y = n sin 6, z= f{u)

J iv\'u-- (/-

where a and a. are arbitrary constants.

10. If a geodesic on a surface of revolution cuts tlie meridians at

constant angle, the surface must be a right cylinder.



Lii. xvu.j EXAMl'LES XIV 377

11. If the principal normals of a curve intersect a fixed line, tlic

curve is a geodesic on a surface of revolution, and the lixed line is

the axis of the surface.

12. A curve for which L is constant is a geodesic on a cylinder,
ir

and a curve for which -^ ( '-
) is constant is a geodesic on a cone.

as \(r/

13. The curvature of each of the branches of the curve of inter-

section of a surface and its tangent plane is two-thirds the cuivature
of the asymptotic line which touches the branch.

14. Si, S.,, S3 are the surfaces of a triply orthogonal system that

pass through a point O. Prove that the geodesic curvatures at O of

the curve of intersection of the surfaces S^ and S.,, regarded tirst as a

curve on the surface So and then as a curve on the surface S^ are

respectively the principal curvature of S3 in its section by the tangent
plane to S^ and the principal curvature of S2 in its section by the

tangent plane to S3.

Verify this proposition for con focal conicoids.

15. Prove that the angles that tlie osculating planes of the lines of

curvature through a point of the ellipsoid -^+^+ -2= 1 make with

the corresponding principal sections are

tan-'A . fe(^'-XK6^^A)(^-'A) ta,r J^ .
/A(a-/x)(6^-/x)(c^-/.)

iibcyl {x-tif «^^''

^

O^'-A)^
'

where A and fi are the parameters of the confocals through the point.
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1. Prove that the lines

are coplanar, and find the coordinates of their point of intersection.

Ans. (1, 2,3).

2. Show that the planes

.v-i/+z-4 = 0, 2x-i/-z+ 4= 0, .y+,y-5,i + 14 =
form a triangular prism, and calculate the breadth of each face of the

prism.

Aiis. \/f|^ 'Jfl, 'J^-A.

3. Find the angle between the lines

.,;_7 w+ 3 s-4-^=l:rl =__. 6.*-+ 4^-5^= 4, .^;-52/+ 2i = ]2;

show that the lines intersect, and find the equation of the plane

containing them.

Ans. 7r/3, .*; + ?/ -s= 0.

4. Find the equations of the line drawn through the point (3, - 4, 1)

parallel to the plane 2x-[-y-z= b, so as to intersect the line

.f-3_ ?/+ l _2-2
2

~'
- 3

~ - r
Find also the coordinates of the point of intersection, and the equation

of the plane through the given line and the required line.

Ans. ^=^4=^-^, (1, 2, 3), ^-3.+ 7 = 0.

5. Prove that the equations of the perpendicular from the origin to

the line ax+ b}/+ cz+ d = Q = a'x+ l>'>j + c'z+d' are

x(bc' - b'c)+y{ca' - c'a) + z{ab' - a'6)=0,

x{ad' - a'd)-Vii{hd' - h'd) + z(cd' - c'rf)= 0.

6. Prove that the planes

6x + 7/ + 5z+ 5 = 0, 2x+7^/+ 3z + 3 =

intersect the line joining the points (1, 2, 3), (3, -5,1) in points

which form a harmonic range with the given points.



MISCELLANEOUS E X AMI' E ES :^70

7. Obtain, in the syiiiinetrical form, the equatidii.s of tlie projictioii

of the line Rv-'7j/-z + G =0=x+ 7j+ z-:i

on the phine ^y.v -j/-4z= '3.

, x-l y--l z
Ans. -^ =-g- = -.

8. Prove that 4.j;2+ 8?/2+ s2-6(/i + 5«.i-- 12.»v/=^0 represents a paii' of

pUines, and find the angle between them. Find also the angle between
the lines in which the plane ILr— i;iy+ 22= cuts them.

13
Ans. cos~'-~,^, 90°.

9. Find the length of the shortest distance between the lines

£Z^=^+^ =
|, 2,»;+ 3v/-52-6 = = 3.t;-2y-z+ 3.

Ans. 97/13^6.

10. Find the equations of the straight line perpendicular to both of

the lines
-"Izl-lLzl-t^l £+2_.y-5_2+ 3

^r~"' 2~3' 2~'-l~2'
and passing through their intersection.

.^•-2 y-3 z-\

11. For the lines

>• -2 _//-! _£: ./;-3_^-5_^ + l

~ 1 ~1' 2 ~ 2 ~ 1 '

find the length and equations of the shortest distance and the co-

ordinates of the points where it meets the given lines.

Ans. 3, •I^=-'Z^ =
|, (2, 1, 0), (T, 3, -2).

12. A square ABCD, of diagonal 2rf, is folded along the diagonal

AC, so that the planes DAC, BAG are at right angles. 'Show that the

shortest distance between DC and AB is then 2o/v3.

13. Find the equation of the plane wliich passes through the line

3^P+5y + 72_5= 0=a?+?/ + 2-3, and is parallel to the line

4.r + .y+ 2 = = %v - 3^ - 5.i.

Ans. >i'+ 2y+ 3s=l.

14. Find the equation of the right circular cylinder whose a.\is is

x='iy= -z and radius 4, and prove that the area of the section of the

cylinder by the plane XOY is 247r

A ns. 5.^2+8f+ bz"-+ Ayz+ Sz-v - 4.ry = 144.

15. Find the equation of the right circular cone which passes

through the line 2,c=3y= -bz, and has the line .v=y=z as axis.

Ans. yz-\-z.v + .r)j= 0.
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16. Obtain the formulae for the transformation from a set of rect-

angular axes OX, OY, OZ, to a second rectangular set, O^, O'/, O^,

where O^ lies in the plane XOY and makes an angle 6 with OX and
O^ makes an angle (/> with OZ, viz.

x=^ cos 6-1] sin 6 cos (^+ (sin ^ sin <^,

y= ^.sin ^-|-i;cos ^ cos f^- {'cos ^sin<^,

s= 7;sin (^-f-('cos (/>.

Apply these to show that the section of the surface

by the plane 2.r — 2 v/+ 2= is a circle of radius 2.

17. If I,-, Wri n,. (r= l, 2, 3) are the direction-cosines of three

mutually perpendicular lines, prove that

and that

18. If O^, Or?, O^' are a second set of rectangular axes whose

direction-cosines referred to OX, OY, OZ are Ir, m,., iir (r=l, 2, 3)

and the projections of O^ and 0>/ on the plane XOY make angles ^,
and (f)o with OX, prove that

tan(^i -(/).,)= ±-^.

19. Find the surface generated by a variable line which intersects

the parabolas x= 2avi, y = 0, z= am^; x= 0, i/ = 2an, z= -an^, and is

parallel to the plane x + ij= 0.

Ans. .v^-7/"= 4az.

20. A line PQ moves with its extremities on the lines

?/= mx, z= c ; y= - m.v, z= - c,

so as to subtend a right angle at the origin. Prove that the foot of

the perpendicular from the origin to PQ lies on the curve of inter-

section of the surfaces

(y2 - m\v'^) ( 1 - m2) = (z^ - c2) wi2 and mz (.v^ +y^+ z^- c^)= cxy{l+m~).

21. Lines are drawn parallel to the plane .r=0 to intersect the

parabola ?/-= 4a.r, ^=0 ; and the line ?/= 0, ^= c.
" Prove that they

generate the surface c'^i/^=-4a,v(z-cy^.

22. Find the surface generated by a straight line which intersects

the lines ^ = 0, s= c; x =0,z=-c
and the hyperbola 2 = 0, .vi/+ c^ = 0.

Ans. '^--xy= c^.

23. Prove that lines drawn from the origin so as to touch the sphere

^2+ y2+ 22+ 2;i^-t-2yy-f2w2-frf=0

lie on the cone rf(.r2-f?/2-f 2^)= (wa;-f v?/-Fws)2.

24. Find the equations of the spheres which pass through the circle

^2+.^2+ 22= l^ ^x^\y-Vhz= %

and touch the plane z=0.

A ns. x"- -t- ?/2 -I- z^ - 2.r - Ay - r>z+ 5 = 0,

5x' + by' -f 5 i- - %v - Ay - 5,:+ 1 = 0.
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25. Prove that tlio locus of the centres of spheres whidi loucli tlie

two lines 7/=±7n.v, z= ±c
is the surface .vi/m + cz(l +m-)= 0.

26. P and Q aie points on tlie lines

i/=m.v, z= c
; y= -mx, z= -c

such that PQ is always parallel to the plane ZOX. Prove that the

circle on PQ as diameter whose plane is parallel to the plane ZOX
generates the s ii rface ^^^j ^,2 _ ^p,^ ^2^2= ,„2^,2_

27. Prove that the plane

(.r-a.)C«+ (x)+ 0/-/3)(<^+ ^)+ (2-7)("' + y)= O

cuts the sphere jr2+y- + j- + 2«.i'+ 2tv/ + 2M;2 + rf=0

in a circle whose centre is (a., ^, y), and that the equation of the sphere
which has this circle for a central section is

.^2 +_y2 + r2 _ 2a.(.r -u)- 2^(3/ -V)- -2y{z - «•)+ irx-' + 2/i- + 2y- + rf= 0.

28. If three mutually perpendicular lines whose direction-cosines

are Ir, m^. n^ (r=L 2, .3) are drawn from the origin O to meet the
sphere .r'- -f y'' + f-= «'- in P, Q, R, prove that the equation of the
plane PQR is

{l^ + l, + J^).r+ {m^ + m.+ m.^)y+ {n^ + n, + n.^)z = o,

and that the radius of the circle PQR is ^/(2 3)a.

29. If A, B, C are tlie points (a, 0, 0), (0, h, 0) and (0, 0, r), and the
axes are rectangular, j^rove that the diameter of the circle ABC is

4 6V + cV-+ a-62

30. Find the radius of the circle

2.r'-?/-22+ 13= 0, .«?2+_y2^22= 2.r-|-4y+ 4z+l,

and the equation of the right circular cylinder whicli has the circle for

a normal section.

Ans. 1 , bx"'+ Sif+ 5^2 - Ayz+ Szx+ A.vy - 34.r - 28_y - 2O2 + 56 = 0.

31. Show that the plane lx+ Ay+z= cuts the cones

30.1-2 - Sif - 322= 0, lijz + Szx - 2x)/ =
in the same pair of perpendicular lines, and that the equation of tlie

plane through the other two common generators of the cones is

5.r-2^-32 = 0.

32. An ellipse whose axes are of lengths 2a and 26 (a>h) moves
with its major axis parallel to OX and its minor axis parallel to OY,
so that three mutually ])erpendicular lines can he drawn from O to

intersect it. Prove that its centre lies on the ellipsoid

UK;!^4)=>-

33. Two right circular cones have a common vertex and axis, and
their semivertical angles arc 7r'4 and 7r;3 lespectively. Show that any
tangent plane to the first cuts the second in perpendicular geneiators.
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34. OP, OQ, OR, whose direction-cosines ai-e Ir, rriry ?i,. (?'=1, 2, 3),
are three mutually joerpendicular generators of the cone

ax^+ hf+ cz^= 0, (a + 6+ c= 0).

Prove that the three planes through OP, OQ, OR, at right angles
respectively to the tangent planes which touch along OP, OQ, OR,
pass through the line

{b - c)x_ {c- a)y _ {a -b)z

35. If P is any point on the curve of intersection of the ellipsoid

^+p+ ^2=l> ^'^d the cone ^-f^^ + ^M -4-pj=0, the tangent plane

at P to the ellipsoid cuts the cylinder -^-j--|^=l in an ellipse of

constant area. '*' ^^

36. If the axes are rectangular, find the length of the chord of the
conicoid .r-+ 4//-^ - 4s'-^= 28, which is parallel to the plane 'ix - 2_y+ 2^ == 0,

and is bisected at the point (2, 1, - 2).

Am. \/l54.

37. Find the equation of the tangent plane to the surface

3.^2 + 2/ -6^2= 6,

which passes through the point (2, 3, - 2), and is parallel to the line

x=y= -z.

Ans. .r+//-|-24 = l.

38. Prove that for all values of A the plane

a c \a h c J

is a tangent plane to the conicoid

and that its point of contact lies on the line

Ax — ba_y_Az-^Zc
3a b —be'

39. Prove that the straight lines joining the origin to the points of

contact of a common tangent plane to the conicoids

ax'^+ %2+ cs2= 1 ,
(a - A>2+ {b- \)ir-+ (c- X)z^= 1

,

are at right angles.

40. Find the equations of the two planes that can be drawn through
the line x= A, 3^+ 4« = to touch the conicoid .1-2+ 3//' — 6^2=4.

Ans. ,r +% + 12^=4, .r-9//- 12^= 4.

41. Find the points of contact of the tangent planes to the conicoid
2.1-2 -25?/2+ 2^2=1, which intersect in the line joining the points

(-12, 1, 12), (1.3, -1 -13).

Ans. (;3, -1, 2), (-2, -1, -.3).
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42. Find the equations of the two plane sections of the surface

>i'--y-^+ 2«'-=l, which have their centres on the line

.r-4 _?/-3_2-7
3

~'"1~~^~'

and pass through the point ( - 1, -5, 1).

A71S. .V-2l/+ Gz-\b = 0, ±r+,/ + 2z + i) = 0.

43. M, the mid-point of the normal chord at P, a point on the

ellipsoid ,.2 ^,-> .2

rt^ b^ c-

lies on the plane ZOX. Prove that P must lie on one of the planes

5—.^ ± 5

—

z= U,

and M on one of the lines

44. P is any point on the curve of intersection of the ellipsoid

^>+'r7,+ ^,= l, and the plane - + Y4--=l,and the normal at P meets
a^ b' c-

' ' a b c '

the plane XOY in G. From O (the origin) OQ is drawn eiiual and

parallel to GP. Prove that Q lies on the conic

ax+ b^+ cz= c\ d-x"'+ hhj^+ c^z-= c*.

45. A cone is described whose vertex is A, and whose base is the

section of the conicoid «.r-+ 6j/-+ C2- = 1 by the plane i = 0. It meets

the given conicoid at points in the plane XOY, and at points in a

plane Q. Prove that if A lies in a fixed plane P, the pole of Q, with

respect to the given conicoid, lies on a conicoid which touches the given

conicoid at all points of its intersection with the plane P.

46. If the polar planes of P and Q with respect to a central coni-

coid meet in a line AB, and the plane through Q parallel to the polar

plane of P meets the plane through P parallel to tlie polar plane of Q
in a line CD, show that the plane through AB and CD passes through

the centre of the conicoid.

47. Prove that the equation of the cone whose vertex is («., ^, y)

and base the conic ax- -Vby- -{ cz-= 1, P = lx-\-mi)-\-in-f= ^ is obtained

by eliminating A from the equations

«(A.f+ a)2+ fc(A.y + /3)Hf(A5+ y)- = (A + l)2

and AP + P'=0, where P'=/a. + ??j/i + //y-/', and then obtain the

equation of the cone in the form

p-^(-roLJ + ^>/i' + ry-'- 1)-- 2PP'(«a-r + 6^//+ c72- 1)

+ P '-'('^r- + bf-+ c^2 - 1 ) = 0.

Deduce (i) the equation of the cone whose vertex is («., /?, y) and

base «.r2+ 6y-^= l, 2= 0, and (ii) the equation of the other plane section

of the conicoid and the cone.
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48. Prove that the locus of centres of sections of ax'^+ bi/^+ cz- = l

which pass through the line ~^=-l—"= ~y
is a conic whose centre

is given 1 .y
^'•~"-= ^IzJ^= 2^-

7

^ _ aa-l + bf3m + cyn
^ -^

I m n al'^+ bm^+ cn^

49. If the axes are rectangular and P, (a\, ?/j, Zj), Q, (x2, 1/2, ?•>),

R, (^'3,2/3, 23) are the extremities of three conjugate diameters of the

ellipsoid -2+'4+^= l) prove that the planes through the centre and

the normals at P, Q, R pass through the line

a*{b^- - c^-).v_ b*(c'^ - a^)i/ _c\a'^ - b'^)z

<-l-^2''<'3 ~ yiy2.y3 ~ 21^2^3

50. If OP, OQ, OR are conjugate semidiameters of the ellipsoid

whose equation referred to rectangular axes is *—
, + rr,+ ^,= l, and theO Q,i ^^ (j^ J

areas of the triangles QOR, ROP, POQ are equal, the planes QOR,
ROP, POQ touch the cone

rn,=0.

51. If P(.Vi, yi, 2i), Q(^2) ?/2i ^2)' R('*'3) ^3) ^3) fii'6 the extremities of

three conjugate semidiameters of the ellipsoid H+'rs + -o=l, provei ^z ^j (,2 ' 1

that the cone through the coordinate axes and OP, OQ, OR is given

by i\^
.3 4- -y ''^2/3^ 11^213^Q g^jjjj ^jjg g^yg which touches the coordinate

a^^• by c-z

planes and the planes QOR, ROP, POQ by

(fi b^ c'^

52. If one axis of a central section of the ellipsoid '—,+fT, + ^,= l lies
a- 0- c-

in the plane ux+ vf/+ ii>z= 0, the other lies on the cone

a-{b'^ - c^)u b^{c^-a')v c^(a^ -&^)w_

53. If the radius of the director circle of the conic lx+ my-\-7iz= 0,

x^la^ + i/'^/b''+ z'^lc'^= l is of constant length r, prove that the plane of

the conic touches the cone
^'

+ ,...^\ .. + .,..,,1 ., . = 0.
a2(62+ c2-?-=J) 62(c2+ a2_,.2) (.-(a'+ b'^-r-)

54. Prove that the equal conjugate diameters of the conic in which
the plane x+y +z=0 cuts the conicoid 2x^+ S)/'^+ 4z^= 1 are the lines in

which the plane cuts the cone 8x^-t/^-10z^— 0.

55. If a plane section of ax^+ bi/^+ cz^= l has one of its axes along

the line '-^='^ = - its equation must be
A /x (/

(A- + /*2+ v2) {„Xx+ biui + rvz)= {,(X- + J>ij:' + rv-){Xx+ //.y + 1'4
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56. Prove that the lengths of tlie semi-axes of the section of tlio

surface 2;it + 2z.v + 2x>/+ a-= by the phme l.v+ mi/ + 7iz = are

a and a{P+ m^ + n-)^{2m7i + 27il+ 2lm-l'^-m--7i~)-ii.

By considering the cases (i) l+ 77i+ n= 0, (ii) l= 77i= n, show that the

surface is a hyperboloid of revohition whose axis is x=y= z and whose

equation referred to its principal axes is x^+y'^-2z'^= d^.

57. Prove that the axes of the conic in which the plane

lx+ mij-\-nz= Q

cuts the paraboloid ax-+ hy^= 2z are the lines in which the plane cuts

anx+ l h7iy-\-m abnh - bP - ai7i^

58. The fixed plane lv+ 77i7/+ 7iz=p, where ^+y+ 7=^' ^^^^ ^"®

cone ax-+ bi/- + cz'^= in a parabola. Prove that the axes of all

parallel parabolic sections lie in the plane

a^(h-c)x b^c-a)y^ eHa~b)z ^

I ?;i n '

and the vertices on the line

fx 7)1// nz

^i,.-af^<^i,.-hf <^ia-Uf,.^ib~cf -l^b-cf^'^,{c-af

59. If the axes are rectangular and a line moves so as to intersect

the lines x=a, 7/=0 ; .r= -a, ?/ = ?h2 and the circle x-+ i/^ = a-, z==0,

prove that its locus is a hyperboloid of one sheet whose circular sections

are perpendicular to the given lines.

60. Prove that the centre of any sphere which i)asses through the

origin and through a circular section of the ellipsoid

-!+f!+ ^, = l, (a>b>c),
a- ¥ c

lies on the hyperbola

61. Prove that the cylinders

41.r2 - 24:X>i+ 34y2 = 25, 2.5.^2 + 40.rs+ 34^^ = 9

have a common circular section, finding its equation and radius.

Ans. Ax-2y+ bz= 0, \.

62. Prove that any enveloping cone of the conicoid .7^+ Ayz -2z^= ii\

whose vertex lies on the 2-axis, touches the conicoid at all points of a

circle.

63. O is an umbilic of an ellipsoid and OP is tlie normal dmid
through O. The tangent planes at O and P intersect in a line AB.

Prove" that any cone whose vertex is O and whose ba.se is the section

of the ellipsoid by a plane through AB is right circular.

B.C. 2 B
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64. If the generators througli a point P on tlie hyperboloid

A-2/a2+3/-/62-2Vc2= l

meet the principal elliptic section in A and B, and if the eccentric

angle of A is three times the eccentric angle of B, prove that P lies on
the curve of intersection of the hyperboloid and the cylinder

2/2(22+ c2)= 46%2.

65. If P is an extremity of an equiconjugate diameter of the ellipse

x'^la^+y-jb'^= \, z= and '2iG'^= a^+ W, the two generators through P of

the hyperboloid x^/a^ +y^jb^ — z^/c^=l are at right angles.

66. P and D are the extremities of conjugate diameters of the
-^2 „2 ^2

princijoal elliptic section of the hyperboloid -i+'u--^^^ find the

generators thiough P and D form a skew quadrilateral PQDR. If

the angles QPR, QDR are 20 and 2c/), prove that

COt2^+ COt2<^ = (a2 + 62)/c2.

67. A generator of x^ + 7/^ — 2z^= a^ through the point («cosol,

asincx, 0) intersects a generator through the point (acos/^, a sin ft, 0)

at an angle 6. Prove that .3cos2^/2 = 2 cos2(a.-/3)/2, and show that if

Aj, A2, A3, A4, Aj, Ag are the vertices of a regular hexagon inscrilied

in the princijial circular section, the generators of the one system
through Aj, A3, Aj and the generators of the other system through

A2, A4, Aq are the edges of a cube whose volume is 2^20!^.

68. If a?>hc show that the points of intersection of perpendicular
^.2 2?/2

generators of the hyperboloid "-2-/7 = 1 lie on the real central

circular sections.

The generators through S, any point on the hyperboloid

meet the plane hr^my-\-nz= \ in the points P and Q. The other

generators through P and Q intersect in R. Find the equation of the

plane PQR, and prove that if R always lies on the plane 2= 0, S lies

on the plane
zicC-l"^+ &2»i2+ c2n2 _ 1 )+ 2?if2(/.x- + my - 1

)= 0.

70. If a hyperboloid passes through six edges of a cubejt must be

formed by the revolution of a hyperbola of eccentricity ^3/2 about a

diagonal of the cube.

71. Prove that any hyberboloid which passes through the ^-axis

and the circle x''-^]r= ax, s= is given by x{x-Vgz-a)-\-y{y^-fz) = Q.

If the two planes that pass through the origin and cut the hyperboloid

in circles are inclined at a constant angle ex., show that the generator

which passes through (a, 0, 0) and does not intersect OZ lies on the

cone {x+ of+ ?/2 = £- tan 2 a.

72. The centres of conicoids that pass through the circle

xr -\-z'-= a2, y = 0,

and the parabola x' = iay + a'^, s= lie on the parabola

x = 0, z^-h2ay= 0.
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73. Prove that the equation of the conicuid whicli passes through tlie

lines ^— 0,z= c; .v— 0, z= -c, and has a centre at ((x, /3, y) is, if y^O,

XI _ .v {z-c) y{z+ e)
^

z^-c"- ^^
cLJi a.{y-c) ji{y+ c) y--c'^

State what this equation represents, and discuss the case in which y = 0.

74. riyperboloids are drawn through the lines x=0, z= -c; y= 0,

z = c, with their centres at the origin. Prove that the lines of inter-

section of the polar planes with respect to them of two fixed points

((X, /?, y), («.', Id', y') lie on the paraboloid

yziya: - y'u.) - z.vifSy' ~ (3y) + c^[.>ifS - d') +y{c». - a')] = 0.

75. A variable line is drawn through the origin to meet the fixed

planes .r= «, i/ = h, z = e in P, Q, R, and through P, Q, R parallels ai-e

drawn to OX, OY, OZ respectively. Prove that the centre of the

hyperboloid which passes through these parallels lies on the sui'face

abc a b c

76. If a cone intersects a conicoid in plane curves, their planes and
the plane of contact of the enveloping cone which has the same
vertex pass through one line.

77. A variable cone is drawn through the conic 2 = 0, cuv-+ b>/' = l,

and one of its principal axes passes through the fixed point (p, q, 0).

Prove that the vertex must lie on the circle

bq{x-p)= ap{>/-q\ apz- + (ap.v + bqi/-\)(.v-p) = 0.

78. Prove that the coordinate axes and the three lines of intersection

of tlie three pairs of planes that pass through the four common gene-

rators of the cones ay- + bj/' + cz- = 0,fyz+gzx+ /t.v>/ = lie on the cone

79. If l,-, '»r, »r ('=!, -, ^) are the direction-cosines of the principal

axes of the conicoid a.v"+ bi/-+ cz^+ 2f>/z+ 2gz.v + 2/i.ri/ = 0, prove that

(i) flj,.,l^+gmim.^m^+hn^n2n^=0
;

(ii) F^iW3-l-G)Hjrn2'"3+ H?Jin2«3 = 0.

Hence or otherwise show that the cone through the coordinate axes

and the principal axes is given by

yzigH - hG)+ zx{hF -/H) -f xy{fG - gF) = 0,

and the cone which touches the coordinate planes and the principal

planes by
sIxigH - AG) -I- s'y{hF -/H) -t- s/z(fG-gF) = 0.

80. Show that if ax^ + by-+ cz^+ 2fyz+ 2gzx+ -2/ixy=l transforms

into A,^''-f-A.2i/--t-X3{"- = l, the equations of O^ are

x{F+fX,)=y{G+g\,) = :iH+/i\,),

with similar equations for Or/ and 0<^

B-c, 2 I". 2
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81. Show that the necessary and sufficient condition that a conicoid
should be of revolution is that its two systems of real circular sections
should coincide, and hence prove that {abcfghxyzf= \ represents a
conicoid of revolution if

(a - A) .r- + {b- X)f-+ {c-X)z'' + 2f)/z + 2gz.v+ "Ihxy

is a perfect square.

82. Prove that, for all values of ^, the equation

(a' sin ^-?/ cos ^)2+ 25(.rcos 6' + ?/sin (9) = rt2

represents a hyperboloid of revolution, and that the axis lies in one of

the coordinate planes, or on the cone x--{-'if- = z'.

83. Piove that the geneial equation of conicoids of revolution that
pass through the fixed point (0, 0, c), and the parabola y'^= Aax, z= 0, is

y'i^^ax+ 2kzx-\-{l-X'^)z{z-c)= Q,

and show that their axes envelope the jmrabola

?/==0, {x-%af= c{'2.z-c).

84. Prove that, for all values of A, the equation

{X'-l){z''-c')+ 2X[y{z + c)+ x{z-c)]+ 2xy=
represents a hyperboloid of revolution which passes through the given
lines _2/= 0, z=c; x= 0, z—-c; and show that the axes of all such
hyperboloids lie on the paraboloid i/^-x^= 4cz.

85. The only conicoid of revolution which has its centre at the
origin, and passes through the parabola z= b, y^= 4ax+ 40^ - b'^ is a
right cone whose semivertical angle is tan~i 2a/b.

86. For the curve
x= a{3t-fi), y= 3at% z= a(3t+ t^),

prove that p=(r=Sa{l + t'^)-.

87. Show that the tangent at any point to the curve of intersection
of the cylinders y'^= 4a.r, y=2ae^l«' makes a constant angle with tlie

line z=x, y= 0, and prove that p= a-=^^-^——.

88. For the curve x=2abt, y= a^\ogt, z= bH\

prove that p=.J.^±^^.

Prove also that the centre of circular curvature at {x,y, z) is given by
^-x ^ -q-y ^(-z a^+ 2bn^

d^-2b'H'^ -2abt 2abt~ 2abt '

89. Prove that the locus of the feet of the perpendiculars from the
origin to the tangents to the helix .r=:acos6^, y= frsin^, z= a6 is the
curve 2,(,' = a(2cos^+6'sin(9), 2y= «(2sin ^- (^cose*), 2z= ad. Show
that this curve lies on the hyperboloid x'^-\-y'^-z^ = d', and that it

crosses the generator
X — a cos g. y - a sin a. z

sin (X — cos a. 1

at right angles at the point where 6= a.. Prove also that

p= __

V

^ ^^^ that 0-= ^-Z - •

2^(1 + ^^)2 2
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90. A semicircle A'BA is drawn witli A'OA as diameter and O as

centre, and a second semiciicle OCA is dcscril)e(l on OA as diameter,

so as to lie within the first. The semicircle A'BA is then cnt out of

the paper and folded so as to form a rifi;ht cone with OA ;ind OA'
coincidinsf along a generator. Show that tlie curve on the cone which
the semicircle OCA assumes can be represented by the equations

2.i-= rt(cos3^+ cos^), 2y= a(sin3^ + sin^), ?= >/3acos^,

and obtain for it the results : (i) the length of the arc measured from

the point («, 0. \'Sa) is 2ad, (ii) 4a^= p"{-i + ^cos-6), and (iii)

2q(4 + 3cos'-^(9)

^~3V3sin^(2 + cos2^)"

91. A curve is drawn on a sphere of centre O, so that the tangent at

a variable point P makes a constant angle with a fixed line. A is a

point on the curve where the osculating plane passes through O.

Show that the length of the arc AP of the'curve is proportional to the

perpendicular from O to the osculating plane at P.

92. P is a variable point on a curve Ci, and the arc AP, measured

from a fixed point A, is of length s. A distance PT equal to s is

measured backwards along the tangent at P, and the locus of T is a

curve C2. If the radii of curvature and torsion of C, at P are p and
0-, and tiie radius of curvature of C2 at T is pg, prove that

4= 1 + 4

93. Prove that the tangent to the locus of the centres of circular

curvature of a curve makes an angle 6 with the corresponding principal

normal to the curve such that sin B=^pjH.

94. If W is the angle between the radii of spherical curvature at

the ends of an infinitesimal arc 6*', prove that

95. P is a variable point on a given curve and PQ a line tlirough

P whicli makes fixed angles, whose cosines are a, 6, c, with the tangent,

princijial normal, and binomial at P respectively. Show that if the

locus of PQ, as P moves along the curve, is a developable surface,

(62+ c2)/)+ aco- = 0, where p-> and 0-1 are the curvature and torsion

at P.

96. Show that the edge of regression of the developable surface

which passes through the two curves,

x= 2ae, y= 'iat, 2=0; .^= 0, .?/= -Zat\ z = Aafl

lies on the conicoidsy2+ 6aa;= 0, 64.n/= 9i2.

97. OA, OB, OC are the principal semiaxes of an ellipsoid, and are

of lengths a, b, c respectively. Prove that the curvature at A of the

section of the ellipsoid by the plane ABC is

2 (ftV + c2a2 + a-62)u (6-' + c'-)~ l-

.

-m
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98. For the surface z'^{x^+y'^)= G^ show that the principal radii are

99. A surface is generated by a variable straight line which meets

the circle x^+y^ = d\ z= in P, and OZ in Q, so that the angle POX
is equal to the angle OQP. Prove that at any point of the surface,

x=uco?, 9, y = ic &in 6, 2= (a -tt)cot ^, and that the measure of curva-

ture of the surface at P is — a~'^.

100. The curve in the plane XOY, for which x= ae ", is rotated

about OY. Show that the measure of curvature of the surface of

revolution so formed is - a-^, and that the whole curvature of the

part of the surface intercepted between the plane ZOX and the

pai'aliel plane through {.v, y, z) is 27r (*/«- 1).
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Anticlastic surface, 271.

Area of plane section, 135.

Asymptotic lines, 358.

Axes of plane sections, 131.

of central conicoid, 131, 134

of paraboloid, 137.

Axes, principal, 101.

of enveloping cone, 183.

Axis of paraboloid, 124.

of surface of revolution, 229.

Basset, Geometry' of Surfaces, 266.

Bertrand curves, 297.

Besant, Meunier's theorem, 330.

Bianclii, Oeometria Diffcrenziale,

352, 373.

Bifocal chords, 18G.

Binode, 264.

Binormal, 282, 289.

Bisectors of angles between two
lines, 29.

between two planes, 37.

Blythe, Cubic Surfaces, 266.

Catenoid, 336.
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Centre of curvature, 202, 208.

Centre of spherical curvature, 293,

299.

Characteristic, 307.

Characteristic points, 311.

Circle of curvature, 292.

Circular sections, 138.

of ellipsoid, 1.3S.

of hypcrlioloid, 130.

of general central conicoid, 140.

of paraboloid, 142.

Circumscribing cone, 109, 202.
conicoids, 249.

cylinder, 110, 203.
Condition for developable surface,

318.

tangency of plane and conicoid,
92, 103, 120, 124, 199.

Conditions for umbilic, 342, 352.
singular point, 263.

zero-roots of discriminating cubic,

206.

equal roots of discriminating
cubic, 210.

Conditions satisfied by plane, 34.

conicoid, 196.

surface of degree n, 259.

Cone, defined, 88.

equation homogeneous, 88.

equation when base given, 93.

witli three mutually perpendicu-
lar generators, 92.

reciprocal, 92.

liuougK six normals to ellipsoid,

114.

condition for, 219.

enveloping conicoid, 109, 202.

conjugate diameters of, 120.

lines of curvature on, 334.

geodesies on, 365.

Cones through intersecti(jn of two
conicoids, 245.

Confocal conicoids, 176.

Conic node or conical point, 264.

Conicoid through three given lines,

16.3.

toucliing skew surface, 320.

Conicoids of revolution, 228.

with double contixct, 246.
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The Humbert

Conicoids through eight points,

251.

thi-ough seven points, 252.

Conjugate lines, see polar lines,

diameters, 101, 114, 120.

diametral planes, 101, 114, 123.

Conoid, definition and equation of,

257.

Constants in equations to the plane,

34.

the straight line, 42.

the conicoid, 196.

the surface of degree n, 259.

Contact of conicoids, 246.

of curve and surface, 278.

Coordinates, cartesian, 1.

cylindrical, 4.

polar, 4.

elliptic, 178.

curvilinear, 348.

of a point of a curve in terms of s,

301,

Cross-ratio of four planes, 38.

Curvature, of curve, 284.

of surfaces, 326.

of normal sections, 326.

of oblique sections, 330.

specific, 346.

spherical, 293, 299.

geodesic, 371.

of line of curvature, 336, 341.

of geodesic, 369.

sign of, 288.

lines of, 333, 352.

on conicoid, 333.

on developable, 333.

on surface of revolution, 335.

Curve, equations to, 12, 275.

Curves, cubic, 113, 239, 245.

quartic, 238.

Curvilinear coordinates, 348.

Cuspidal edge, 309.

Cylinder, enveloping, 110, 203, 229.

Cylindroid, 258.

Degree of a surface, 259.

De Longehamps, 95.

Developable, polar, of curve, .SOO.

Developal>le surfaces, 313, 316.

condition for, 318.

lines of curvature on, 333.

torsion of curve on, 370.

Diameters, of paraboloid, 124.

Diametral planes, of central coni-

coids, 101, 114.

of cone, 120.

of paraboloid, 123, 125.

of general conicoid, 204.

refer to pages.

Differential equations, of as\'mptotic
lines, 358.

of geodesies, 363.
of Imes of curvature, 338, 352.
of splierieal curves, 293.

Direction-cosines, 19, 25.

of three perpendicular lines, 69.
of normal to ellipsoid, 111.

of tangent to curve, 277.
of principal normal and binomial,

283, 289.

of normal to surface, 272, 349.
Direction-i'atios, 28, 40.

relation between direction-cosines
and, 30.

Discriminating cubic, 205.
reality of roots, 208.

conditions for zero-roots, 206.
conditions for equal roots, 210.

Distance between two points, 6, 20,
26.

of a point from a plane, 35.

of a point from a line, 24.

Double contact, of conicoids, 246.

Double tangent planes, 266.

Dupin's theorem, 344.

Edge of regression, 309.

Element, linear, 350.

Ellipsoid, equation to, 99.

principal radii of, 332.

lines of curvature on, 333.

Elliptic point on surface, 270,
326.

Envelope of plane—one pai-ameter,
316.

Envelopes—one parameter, 307.

two parameters. 311.

Enveloping cone,-109, 183, 184, 202.

cylinder, 110, 203.

Equation, to surface, 8.

to cjdinder, 9.

to surface of revolution, 13.

to plane, 32, 33.

to cone with given base, 93.

to conicoid when origin is at a
centre, 217.

to conoid, 257.

Equations, to curve, 12.

parametric, 271.

Factors of

(abc/gh) [xijzf - \{x- -f i/ + z^), 209.

Focal ellipse, hyperbola, 177, 190.

parabolas, 192.

lii:es, of cone, 193.

Foci of conicoids, 187.

Frenet's formulae, 286.
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Qauss, measure of curvature, 34G.

<A'nerating lines of hyperboluid, 14S.

of paraboloid, 149.

systems of, ir)4, IGl.

Generator, proi)erties of a, 167, 320.

Generators of cone, 88.

condition that cone has three

mutually perpendicular, 92.

of conicoid, equations to, loS, 197.

conicoids with common, 239, 241.

of developable, 310.

Geodesies, definition, 362.

differential equations, 363.

on developable, 363.

on surface of revolution, 365.

on cone, 365.

on conicoid, 367.

Geodesic curvature, 371.

Geodesic torsion, 373.

Helicoid, 258, 339.

Helix, 258, 290.

Horograph, 346.

Hudson, Rummer's Quartic Sur-

face, 266.

Hyperbolic point on surface, 270,

327.

Hyperboloid of one sheet, equation
to, 100, 106.

generators of, 148, 153.

asymptotic lines of, .358.

H^'perboloid of two sheets, equation
to, 101.

Indicatrix, 270, .326.

spherical, of curve, 285.

Inflexional tangents, 261.

Integral curvature, 346.

Intersection of three planes, 47.

of conicoids, 238.

Invariants, 231.

Joaohinisthal, geodesic on conicoid,

367.

Lagrange's identity, 22.

Linear element, 350.

Line, equations to straight, 38, 40.

parallel to plane, 43.

normal to plane, 43.

of striction, 321.

Lines, coplanar, 50.

intersecting two given lines, 53.

intersecting three given lines,

54.

intersecting four given lines, 105.

asymptotic, 358.

of curvature, 333,

efer to pages.

Locus of mid-points of parallel
chords, 108, 125, 204.

of tangents from a point, 108.

of parallel tangents, 108, 203.
of intersection of mutually pcr-

l)cndicular tangent planes,
103, 125, 199.

of poles of ])lane with respect to
confocals, 181.

of centres of osculating spheres,

300.

MacCullagh, generation of conicoid;'.

187.

Measure of curvature, 346.

Meunier's theorem, 330, 331, 371.

Mid-point of given line, 7.

Mid-points of sj'stem of parallel

chords, 108, 125, 204.

Minimal surfaces, 336.

Nodal line, 205.

Node, conic, 204.

Normal plane, 277.

Normal, principal, to curve, 282.

Normal sections, curvature of, 320.

Normals, to ellipsoid, equations, 111.

six from a given point, 113.

to paraboloid, 126.

to confocals, 182.

to surface along a line of curva-

ture, 334.

Origin, change of, 6.

Orthogonal systems of surfaces, 344.

Osculating circle, 292.

Osculating plane of curve, 279.

of asymptotic line, 359.

O.sculating sphere, 292.

Parabolic point on surface, 270, .329.

Paraboloid, equation to, 122.

Parameter of distribution, 109, .321.

Parameters of confocals through a
point on a conicoid, 181.

Parametric equations, 271.

Perpendicular, condition that lines

should be, 22, 30.

Plane, equation to, .32, .33.

through three points, 34.

Point dividing line in given ratio,

7.

Points of intersection of line and
conicoid, 102, 197.

Polar developable, IMMX

Polar lines, 105, 202.

Power of point with resjject to

sphere, 84.
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Principal axes, 101.

planes, 101, 124, 204.

directions, 212.

normal, 282.

radii, 327, 332, 337, 350.

Problems on two straight lines, 61.

Projection of segment, 15.

of figure, 17.

of curve, 19.

Properties of a generator, 167, 320.

Quartic curve of intersection of

conicoids, 238.

Radical plane of two spheres, 83.

Radii, principal, 327, 337, 350.

Radius of curvature, 284, 288.

of torsion, 284, 289.

of spherical curvature, 293, 299.

Reciprocal cone, 92.

Rectifying plane, 282.

Reduction of general equation of

second degree, 219, 227.

Regression, edge of, 309.

Revolution, surface of, equation, 13.

conditions that conicoid is, 228.

lines of curvature on, 335.

geodesies on, 365.

Ruled surfaces, 148, 313.

Salmon, generation of conicoid, 187.

Section of surface by given plane,

72.

of conicoid, with given centre, 107,

204.

of conicoid, axes of, 131, 134, 137.

Sections, circular, 138.

Segments, 1.

Shortest distance of two lines, 57.

Signs of coordinates, 2.

of directions of rotation, 3.

of curvature and torsion, 288.

of volume of tetrahedron, 65.

refer to pages.

Singular points, 263.

tangent planes, 265.

Skew surfaces, 314.

Specific curvature, 346.

Sphere, equation to, 81.

Spherical curvature, 293.

Striction, line of, 321.

Surfaces, in general, 259.

of revolution, 13, 228.

developable and skew, 314.

Synclastic surface, 270.

Tangency of given plane and coni-

coid, 92, 103, 120, 124, 199.

Tangent plane to sphere, 82.

to conicoid, 102, 124, 198.

to surface, 261, 262, 272.

to ruled surface, 315.

singular, 265.

Tangent, to curve, 275.

Tangents, inflexional, 261.

Tetrahedron, volume of, 64.

Torsion, radius of, 284.

sign of, 288.

of asymptotic lines, 359.

of geodesies, 369.

of curve on developable, 375.

geodesic, 373.

Transformation of coordinates, 68,

75.

of {ahcfgh)[xyzf, 214.

Triply-orthogonal systems, 344.

Trope, 266.

Umbilics, of ellipsoid, 143.

conditions for, 342, 352.

Uuode, 264.

Vertex of paraboloid, 124, 221.

Volume of tetrahedron, 64.

Wave surface, 267.

Whole curvature, 346.
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