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FOREWORD TO THE ENGLISH EDITION

This collection of problems and exercises is suitable for use
in courses in which the student is expected to acquire some of
the fundamental mathematical techniques for formulating and
solving physical problems, In American universities, courses
of this nature are usually given for advanced undergraduate and
first year graduate students in various departments of physics,
mathematics and engineering.

The first three chapters deal with basic properties of scalar
and vector fields. The next three are devoted to the formulation
of initial and boundary value problems, and to their solution by
the method of waves, and the method of separation of variables.
Chapter 6 includes material on special functions whichis needed
for the application of the method of separation of variables in
polar and spherical coordinates. The last chapter contains
problems on the theory of probability.

The abundance of hints, directions, and of completely worked
out solutions make this little volume particularly valuable for
self-study.

M. Yanowitch
October, 1965






PREFACE

This collection of problems and exercises in the methods of
mathematical physics is designed to fit the present curriculum
of the departments of physics and mathematics in universities
and other institutes of higher education.

In compiling this collection, I made use of various text and
problem books pertinent to the different sections.

To assist in the solution of the difficult problems, and to
indicate more rational ways of solving them, I have given di-
rections concerning methods of solution for most problems, and
have included complete solutions of some. The more difficult
problems are indicated by an asterisk,

The author considers it his pleasant duty toexpress his deep
appreciation to Professor V. I. Levin, and also to Lecturers
V. M. Rudyak and S. I. Mogilevskiy, who read the manuscript
and made a number of valuable suggestions.

1. V. Misyurkeyev
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PART 1

The Foundations of Mathematical

Field Theory






CHAPTER 1

Two- and Three-Dimensional Scalar Fields

1. Level curves and surfaces

1. Describe the level curves of the following functions

2 2
P N=224y—1; o(x, )=+ — L
2. Construct the level curves of the following functions:

(@) x—y; (b) e*+ x; (c) sin x + sin y; (d)WI{-Tf; (e) Vxy;

() = @x—y+1) (x£0).

3. Describe the level surfaces of the following fields:

(@) o=x-+y—+2; (b)) ¢=x4y?42% (C) o=ux2+ y?—22%

4, Describe the level surfaces of a plane-parallel field, of
a field with axial symmetry, of a cylindrical field, and of a
spherical field.

5. Describe the isothermal surfaces in the temperature
field around a heated straight wire of infinite length.

6. What is the change in the temperature alongan isotherm?

7. Describe the equipotential surfaces of the potential due
to a point mass. Do the same for the potential due to a uniform
mass distribution along a straight line segment.

8. Show that the level curves (resp. surfaces) do not pass
through the extrema of a plane (resp. space) scalar field.

Can the level curves of the following plane fields pass
through the points shown:

(a) ¢(x, y)=x34y3—3xy through A (1, 1);

(b) f(x, y)=2xy—3x?2—2y?24-10 through B (0, 0);

() ¢(x, y)=4(x —y) — x2— y? through C (2, —2)?

9. A scalar ¢(x, y) is at every point (x, y) equal to the sum
of the distances of this point from two given fixed pomts F, and
F, What are the level curves ¢ = const.?

3



4 The Foundations of Mathematical Field Theory

10. In a three-dimensional space, ¢(M) is the sum of dis-
tances of a point M from two fixed points. Find the level sur-
faces of the function ¢ (M).

11. In a three-dimensional space, ¢(M) is the distance from
the point M to a fixed straight line. Find the level surfaces of
the function ¢ (M).

12. Consider two point charges e, and —e, at a certain dis-
tance from each other. Find the surface on which the potential

cp=%——?— is equal to zero (where r; denotes the distance from
1 2

the charge ¢, to an arbitrary point P of the unknown surface).

2. Directional derivatives

13. Does the function f(x, y) = 3x* — xy 4 y3 have a deriva-
tive in every direction at the point M (1, 2)7?

14. Does the function f(x, y)=V xy -+ y*—1have aderivative
in every direction at the point M (0, 2)?

15. Find the directional derivative of the function 5x? —
3x — y? — 1 at the point M (2, 1) along the line from this point to
the point N (5, 5).

16. Calculate the derivative of the function f(x, y) in the
following directions: (a) along the bisector of the first quad-
rant; (b) along the negative half of the x-axis.

17. Find the derivative of the field y?/x* at a point on the
ellipse 24?24 y2=C in the direction of the outward normal to the
ellipse.

18. Find the magnitude of the derivative of the function u =
In (x24 y%) at the point M(x, y,) in a direction perpendicular to
the level curve passing through that point.

19. Find the magnitude of the derivative of the function z =
x?+4y? at the point A (1, —2) in a direction perpendicular to the
level curve passing through that point.

20. Show that the rates of increase of a field ¢ at a given
point in the direction of the normal n to the level surface pass-
ing through that point and in any other direction 1 are related by

% =—37’: cos (n, D).
From this, it follows (1) that the derivative in the direction I
has its greatest value if this direction coincides with the direc-
tion of the normal n to the level surface and (2) that the deriva-

t.ive of the function in any direction tangent to the level surface
is equal to zero.
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21. In what direction should one take the derivative of the
function 4= xy at the point M,(x, y,)in order for the derivative
to have its maximum value? What is the derivative of the given
function in the direction tangential to the level curve Xy =Xy¥,
at the point M, (x, y,)?

3. The gradient of a function

22, Show that

grad Cu=Cgrad u, (C=const.),
grad (u -+ v) =grad u -} grad v,
grad (%) = :—z (vgrad u — u grad v),

grad (¢") = nu"-1grad ua,
grad [4 (v)] = u’ (v) grad v.

23, Show that

) 0
grad f (¢, §) = a—f; grad o+ Ff— grad ¢,

where ¢ and ¢ are scalar fields possessing gradients and f is a
differentiable scalar function of its arguments.

24, Find the gradients of the following fields:

(@) ¢=05x%—3xy>+y'z; (b) ¢= 2% (C) p=e"*"% (d) o=
y2z —2xyz—-+ 2% at the point M (0, 0, 0) and find the gradients of
the fields (e¢) ¢ = arctan (y/x) + C; (f) ¢=1/r (where r=
V x?*+y?+2?) at an arbitrary point other than the coordinate
origin,

25, Find the derivative of the function z=u(x, y, 2) in the
direction of the gradient of the function v=wv(x, y, ). Carry
out the calculations in particular for the functionsu= x2+y2 +
22—1 and v=x 4 y -+ 2. Using these results, show that if
grad « is perpendicular to grad v, the derivative of the function
u in the direction of grad v is zero.

26. Find the angle between the gradients of the field ¢=
xy 4+ yz-+xz at the points 4 (0, 1, 1) and B (2, 0, 1).

27. Find the magnitude and direction of the gradient of the
function ¢ (x, y, 2)= x24- 2y?+ 322 — xy — 4x + 2y — 4z at the point
M (0, 0, 0).

28. Find the gradient of the potential of the electric field
caused by a point charge e placed at the coordinate origin.

29. A temperature field is given by the function 7= x%y —
y2z-+ 1. What is the direction of the maximum temperature
increase at the point M;(0. 0, 1)?
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30. At what points of the xy-plane is the gradient of the field
¢=x2+ y2—3xy. (2) perpendicular to the y-axis; (b) parallel to
the y-axis? .

31. Figure 1 shows the vector MN=grad ¢(x, y). Find by a
geometrical construction the derivative of the scalar . field
¢(x,y) in the directions MA, MB, and MC [where the direction of
MC is tangent to the level curve ¢(x, y) =@ (M)].

N
4,
8 4
A
/ /‘;\
4 Ptr.y)= (M)
FIG.1

32, A scalar fieldis givenby the function ¢ (x, y)= 7’1‘; -{—%Z — 1.

Show that at a point M(x, y;) on the level curve ¢(x, y)==0 the
gradient of this field is equal to r®+-R° where r® and R® are unit
vectors in the directions r=FM and R=F,M respectively, F,
and F,being the foci of the ellipse serving as a level curve,

33, Consider an ellipsoid of revolution with foci at P, and
P,, and a mirrored inner surface. Suppose that a source of light
is located at the point P,, Show that all the rays of light origi-
nating at this focus and reflected from the surface of the ellip-
soid will meet at the other focus P,.

34, Suppose that the ellipsoid of the preceding problem is
replaced with a paraboloid of revolution and that a source of
light is located at its focus. Show that the rays of light origi-
nating at the focus will all be parallel after they are reflected
from the paraboloid.

35, A scalar field is given by the function ¢=g¢(r), where
r=Vx?+y2+ 2% Suppose, by treating r as an arbitrary func-
tion of a parameter A\, we can represent dy in the form of the
scalar product of some vector g (depending on r) and dr:

de=g -dr,

Show that the vector g coincides with the vector grad ¢.
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Use this result to evaluate (a) grad r; (b) grad r%; (c) grad r5;

(d) grad (ar) (where a is a constant vector); (e) f grad ¢-dr,
C

where ¢=¢(x, y) is a differentiable functiondefined ona simply-
connected domain D, C is a closed curve in D, and r is the
radius vector of the point (x, y).
36. Calculate the gradients of the scalar fields
¢y — wpr? (r < a),

(a) u= ?0_“pa2(1+21n 7;_) (r>a); (b) u=r+-z cos 0, expressed

in terms of the cylindrical coordinates r, 6, 2z and of the fields
©) u=—Eorcose(1 —g)—{-c; @) u=2mp (Rz_%’); ) u=

—q7aai (1 = 3 cos?b); () u=p co,sze expressed in terms of the

spherical coordinates r, 6, ¢.

37. Suppose (S) is a smooth curve (closed or otherwise) in
the xy-plane and p(P) is a continuous functiondefined on it. Then,
the function

1
u (Py) (Jp(P)ln 7 @Sp

where r,, is the distance from an arbitrary point P on the
curve (S) to a fixed point P,of the plane, is called the logarithmic
potential of a simple layer and the function p.(P)is the density of
this layer. Calculate the vector gradp, # at a point P, not on the
curve (S).

38*, Suppose a continuous functionp(P)isdefined in a bounded
region (v) of the xy-plane bounded by a piecewise-smooth closed
curve (IN. Then, the function

1
v(Po)szp(P)lnm dwp,
(@) ’

where r, , is the distance from an arbitrary point P of the re-
gion (w) to a fixed point P,of the plane is called the logarithmic
potential of the region (v) with density u. Find the vector
gradp,v at a point Py(x, y,) lying outside the region (w). Show
that this representation of gradp, v also holds when the point P,
is in (w).

Consider the behavior at infinity (as r=} x2+ y:—> o) of the
logarithmic potential of a region and show that it can be repre-
sented in the form

v(P)=MIn+ 40" (Py),
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where v*(P)—>0 as r—>oo and r?|gradp, v*| <C (C being some

constant) and where M=ffpdwp is the total ‘‘mass”’ in (w).

39*, Let (I) be a plane(‘”)curve, ¢-the angle between the nor-
mal to the curve (I') at the point P and the direction from this
point to a fixed point Py(x, y,), and r, ,-the distance between the
points P,and P. Then, the expression
COS ¢
Top aSp,

v(Py= [v(P)
@
is called the logarithmic potential of a double layer with dipole
moment of density v(P). Show that, for sufficiently large r =
V343

r?|gradp, vl < C,

where C is a positive constant,



CHAPTER 2

Vector Fields

1. Vector fields. Field lines

40, Show that, at a point P(x, y. z), the gravitational field in-
tensity F(P)due to a mass m,; concentrated at a point M, (x,. y,. 2,
is equal to the gradient of the scalar field ¢ (P)=— m,/r, where

r=rpy = V(x — %02+ (y — yo) + (2 — 2)%.

Generalize this result to the case of a Newtonian gravita-
tional field caused by n point masses m,, ..., m,.

41, Show that the gradient field of a plane-parallel scalar
field is a plane-parallel vector field, that the gradient field of a
scalar field with axial symmetry is also symmetric about the
same axis, and that the gradient field of a spherical scalar field
is a central vector field. Is the gravitational field of a point
mass a central field?

42, Suppose that a unit mass is displaced along a given path
AB in a potential field. Show that the work done by a force F in
causing this displacement is equal to the increase in the po-
tential function ¢ from the point A to the point B (the so-called
potential differvence).

43, Show that a central vector field R= —f—ﬁﬂ r, where f(r) is
a scalar function of a positive argument, is derivable from a
scalar potential. Find its potential.

44, Show that for a vector field to be derivable from a po-
tential, it is necessary and sufficient that it be the gradient of
some scalar field.

In problems 45-48, it is assumed that a unit mass is con-
centrated at the point in question and that on the attracting
surfaces there is a uniform distribution of mass with unit
density.
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45, Find the force of attraction on a point P(0, 0, {) by a
homogeneous surface of a sphere of radius R. Consider the
casesR >0 R<{ R=L

46, With what force F does the homogeneous lateral surface
of a right circular cylinder of altitude % attract the center of the
base of the cylinder?

47, Find the intensity of the field caused by the homogeneous
lateral surface of a right circular cone of altitude # at the cen-
ter of the base.

48, Calculate the potential of a Newtonian attractive force
at the point P (0, 0, {) by the homogeneous surface of a sphere or
radius R, Consider the cases R >{and R < (.

49, Compute the force with which a homogeneous sphere of
radius R and density u attracts a material point of mass m
located at a distance r (where r > R) from its center, Show that
the force of interaction is the same as if the entire mass of the
sphere were concentrated at its center,

50. Suppose there is a uniform mass (charge) distribution
of density u/2 along a line segment of length 2/ (—!< z <)
which is parallel to the z-axis and does not pass through the
point Py(x, y,). Compute the potential and the field intensity F,
at Py(x, y,)(see Fig. 2),

Solve this problem for the case in which the straight line is
infinitely long (but still homogeneous).

FIG. 2

51. A constant electric current / flows upward along an in-
finitely long wire placed along the z-axis. Find the magnetic
field intensity vector H and the lines of force, produced by the
current, at an arbitrary point M (x, y. 2),

52%, Let (v) denote a finite region in a three-dimensional
space bounded by a piecewise-smooth closed surface (S). Then,
if a continous bounded function p (P) is defined in (v), the function
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«Co=[ [ [re)r2,

(v)

where r,, is the distance between a fixed point P,(x, y, 2,)o0f
space and the point P(x, y, 2) of the region (v), is called the
Newtonian potential of the masses distributed in the region (v)
with density p (or the Coulomb potential of spatially distributed
charges).

(a) Calculate the vector gradp, # at a point P, outside the
region (v).

(b) Show that if the point P, is sufficiently far away r=
V x24y24 22 from the coordinate origin, the following approxi-
mation holds:

u(PO)N#'

where M = f f f pdvp is the mass located in the region (v).

(v)
(c) Examine the behavior of the potential «(P,) at infinity
(that is, as r —-o0), Show that in this case,

r?|gradp, | < C,

where C is a constant.

53. Find the field lines of the following vector fields.

(a) xi--2yj; (b) a= (x?— y?— 2%) i+ 2xyj+ 2zxk; (c) r=xi+
yi--zk; (d) a=xi—yj—2zk; (e) the field E=¢r/r® of a point
charge ¢, where r is the distance between the point in question
and the charge.

54, Show that the field lines of the homogeneous field R
(where R = const.) are parallel lines.

55. (a) Find the equation for the lines of force of the field
of two parallel infinitely-long wires with charges of +e¢ and —e
per unit length.

(b) Find the equation for the lines of force of the electric
field of a dipole at great distances from it in the xy-plane.
Assume that the y-axis coincides with the direction of the di-
pole field vector P.

56. Prove the following:

(a) If the vector field a=a,e,+ a1 a.e, is given in cylin-
drical coordinates (see Fig. 3a), the differential equations of
the family of field lines of the field a are of the form

__rde _ dz

ag a,

:.]t:.
~|S
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(b) If the vector field a= ae -+ agey 1 ace, 1s given. in spher-
ical coordinates (see Fig. 3b), the differential equations of the
family of field lines of the field a are of the form

dr __ rsinfde  rdb

ar- Qy ag

FIG. 3

57. Find the equation for the field lines of the field given in
spherical coordinates by

__2acos® asinb

r3 er+_,-3_—e8'

2. A hydrodynamical model

58, Let v=uv,i-+v,j be the velocity field corresponding to a
steady potential flow of an ideal incompressible fluid. Show that
the equation for the stream lines is u(x, y) = const., where
u(x, y) is a stream function defined by the following line inte-
gral (to within an additive constant):

(%, y)
u(x, y)= f v, dy—v,dx,
(*o, Yo
where (x, y,) is a fixed point, and (x, y) a variable point in the

. . . i}
field (which is assumed to be solenoidal, i.e., such that —;—:—}-

0
aiyy=0 at all points of the field).
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59. Let ¢=1¢(x, y) be the potential of the velocity field v=
v i—+wv,j (solenoidal) of an incompressible fluid. Show that the
stream function can be represented in the form:

(x, y)
u(x, y)y= f d_v— dx—l—const
(xo, ¥o)

where (x,, y,) is a fixed point and (x,y) is a variable point in the
field.

60, Show that the potential ¢(x. v) and the stream function
u(x. y) corresponding to the velocity field v=w,i4 v j of a po-
tential flow of an incompressible fluid are connected by means

of the following partial differential equations (Euler-d’Alembert
equations*):

dp_du O0p __ ou
9y ' oy~ ox°

From this, deduce the following:

(x, y)

du ou
e(x, V= f de—d—xdy-kconst.:
(X0, ¥o)
(x, y)
= f 'v,,dx-l—faydy—}—const.
(Xo, ¥o)

Show that the family of stream lines and the family of equi-
potential lines are mutually orthogonal.

61, Show that the velocity potential ¢ (x, y) of the steady-state
motion of an ideal incompressible liquid without sources or
sinks, and also the stream function u(x, y), satisfy Laplace’s
equation:

0% 0% 0%u 0%u

62, In the following problems, find the particle trajectories
and the magnitude and direction of the velocity vector from the
given velocity potential corresponding to the plane motion of an
ideal incompressible liquid without sources or sinks:

(a) ¢=x; (b) <P=,Tfp;z~: ©) ¢=x+ ;%,y

*More commonly called the Cauchy-Riemann equations,—~Trans.
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3. Surface integrals. The flux and divergence of a vector
field. Ostrogradskiy's theorem*

63. Evaluate the surface integrals:
(1) [ [yds. where s is the hemisphere z=+ VRI—x2—y,

(2) fs f (x2+ y?)zdS, where S is the upper half of a sphere of
radius a°with center at the coordinate origin.

(3) f f 2dS, where S is the total surface of the tetrahedron
intercepied from the first octant by the plane x4 y—+ z=1.

(4) fs f xf j_syz . where S is that portion of the paraboloid 2z =
x24y? intercepted by the cylinder x2-- y?=a?

(5) ffx?yﬁz dxdy, where S is (a) the outer surface of the

S
lower half of the sphere x2?--y?2-}22=R?; (b) the inner surface
of the same hemisphere.

(6) ffz"’dx dy, where S is the outer surface of the ellip-
S

. xZ y? 22
soid 717+F+72‘= 1.

(7) ffxyzdx dy, where S is the outer surface of that portion

of the s‘f)here x?24 y?- 22=1lying in the first and eighth octants:
x>0,y>0.

(8) ff(y—z)dydz—}—(z—-x) dx dz-+(x —y)dxdy, where S is
the uppér side of the surface of the spherex?- y?4 22=2Rx
intercepted by the cylinder x?—+ y?=2rx (where r < R and z > 0).

9) ffyz dxdy+ xzdydz—+ xydxdz, where S is the outer

S
side of the surface located in the first octant and formed by the
cylinder x?- y>=R?and the plane x=0, y= 0, 2= 0, andz=H.

64, (a) Use Ostrogradskiy’s formula to transform the sur-
face integral

!=ff(x"’dydz—l—y"’dxdz—}—z?dxdy)

S
into an integral over the region » bounded by the closed surface S.

(b) Use Ostrogradskiy’s formula to evaluate the surface
integral

ff(z?cos(n, Xy} x2cos(n, y)—+ y*cos(n, 2))dS.

N

*More commonly called Gauss' or Green’s theorem,-Trans.
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(c) Set Q=R =0 and P=uv in Ostrogradskiy’s formula and
obtain the formula for integrating a triple integral by parts:

fff d“’——fff dw—l—ffuvcos(n x)dS.

65. Suppose in a steady flow of an ideal incompressible
fluid, the velocity of each particle is equal in magnitude and
direction to the radius vector from the origin to the particle.
How much fluid flows out of volume 7 per unit time?

66. Find the flux of the vector r=xi+ yj+ zk (a) through
the outer side of the surface of aright circular cone whose apex
coincides with the coordinate origin if the radius of the base of
the cone is R and its altitude is H; (b) through the outer side of
the surface of a right circular cylinder whose lower base is
centered at the coordinate origin (as with the cone, the radius of
the base is R and the altitude is H); (c) from a sphere of radius
R with center at the coordinate origin,

67. Calculate the flux of the vector a=(x—2y)i+ zj+
(By+ 2)k through that portion of the surface of a unit sphere
with center at the coordinate origin that is contained in the first
octant, that is, in the region in which x2+4 y?}-22>1,

68. In a steady flow of an ideal incompressible liquid, the
velocity of each particle is directed to the coordinate origin and
has a magnitude equal to 1/r2, where r is the radius-vector of
the particle. Calculate the amount of liquid ﬂowing from a
volume G in unit time,

69. The projection of a certain vector R onto the outer nor-
mal of the surface of the tetrahedron formed by the planes
x+y+z=1, x>0, y>0, 2>0 is equal to 1/(14x+y)*. Calcu-
late the outward flux of this vector through the surface.

70. The magnitude of a vector R at a given point M is usu-
ally represented graphically by drawing field lines through a
surface element AS that is perpendicular to the vector R at the
point M, The number of lines drawn is proportional to the
magnitude of the vector R. Show that the flux of the field R
through a surface S is proportional to the number of field lines
crossing the surface S. '

71. (a) Calculate the flux of the electric field E = g¢r/r* due
to a point charge ¢ across a sphere of radius a with center at
the charge. What is the flux if the charge ¢ lies outside the
sphere? What is the flux of the vector E through an arbitrary
surface?

(o) Show that the flux of an arbitrary field R through an
arbitrary closed surface is equal to 4r times the sum of the
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masses m,, ..., m, producing the field, that are enclosed by the
surface:

QR; =—14r I m,

(In electrostatics, this assertion is called the Gauss-Ostro-
gradskiy electrostatic theorem), The equation

QR; =—14 [ [ [p(P)dvp.
(v)
is a generalization of this assertion for the case of continuously
distributed masses (or charges) with density p (P) within the
region (v) bounded by a closed surface S.

72, A sphere of radius a has an electric charge uniformly
distributed over the surface with surface density ¢= g¢/4na?
Find the intensity D of the field at points inside and outside the
sphere,

73. An infinitely long circular cylinder of radius a is elec-
trically charged with a uniform surface density o. Determine
the intensity of the field at a point located at a distance r from
the axis of the cylinder., Consider the casesr >a and r < a,

74. Suppose that a mass m is concentrated at the coordinate
origin, What is the flux of the gravitational field inward through
the surface of a cylinder of radius r and altitude 2% that is co-
axial with the z-axis and has one base in the xy-plane?

75. An infinitely thin plane is electrically charged with a
surface charge density o. Find the intensity of the field at a
point M located at a distance r from the plane,

76, Calculate the flux of the vector a= ae,+ae,+ ase,
(given in a cylindrical coordinate system) through that portion
S of a cylindrical surface of radius r whose axis coincides with
the z-axis.

77. Show that the flux of the vector a=oae,+ aze,~4-age,
(given in a spherical coordinate system) through any portion S
of a spherical surface of radius r with center at the coordinate
origin is equal to the integral

ff(i a,)r?sinfdd dey.
s

78. Find the divergence of the field R=15xi-+ 3yj— 22k and
give a physical interpretation of this result,

79. What is the divergence of the homogeneous field a=
a,i—+ayj+ak (where a,, a,, a, are constants)? Give a hydro-
dynamic interpretation of the result.
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80. By using the definition of the divergence, evaluate

(a) the divergence of the vector r= xi-4} yj at the centers of
the circle x24 y?=R? and of the square —R < x,y <R,

(b) the divergence of the field r= xi-1 yj+ zk at the center
of the sphere x2-4 y24-22=R?,

81. Does the field R=3x2% —5xyj+ 2%k have either sources
or sinks at the points P (1, 2, 3), P,(1, -5, -1), P,(2, 0, —1)?
If so, determine their strength,

82. Evaluate the divergence ofa central vector field R=f(r)r,
where f(r) is a differentiable function and r = xi 4 yj 4 zk, where
r ::I T l

83. Find the source distribution belonging to the vector field
R=xi—y%+ xzk and the total output of the sources of the given
field that lie within the sphere x24+ y?4-22=1,

84, Find the divergence of the velocity field v of a liquid
rotating around an axis, and of the field H in problem 51,

85. A certain liquid that is moving with a velocity v fills a
volume G. Assuming that the velocity field in the region G is
solenoidal, derive the equation of continuity:

0
—B%+div (pv) =0,

where p=p(x, y, 2, £) is the density of the liquid at the instant ¢
at the point (x, y, 2).

From this, derive the condition for incompressibility of the
liquid:

divv=0.

86. Experiment shows that the velocity of anincompressible
liquid in a vector tube increases in places where the cross-
section of the tube decreases. Explain this fact from the point
of view of mathematical field theory.

Show that the fluxes of a solenoidal vector field through dif-
ferent cross sections of a vector tube are different,

87. (a) Show that the divergence of the gravitational field of
a finite number of point masses is everywhere zero outside
these masses. Generalize this assertion to the case of the
gravitational field of a continuously distributed mass in a
region (v).

(b) Show that the divergence of the gravitational field F of a
continuously distributed mass in a region (v) is equal to

div F = — 4mp,

where u is the density of the substance.
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88. The field of the electric displacement vector D. is di-
rected along the radius of a sphere aand its values are given by

Ir OLLra),

°=12e @<r<oo)

where r=xi-|yj+ 2k, r=|r|, and 0 <!/= const, Find the dis-
tribution of the charges producing this field.

89. Show that a central vector field R(r) = (f (r)/r) r will be
solenoidal only when the magnitudes of the vectors of this field
are inversely proportional to the squares of the distances of
the points in question from the center.

90. Evaluate the divergence of the following vectors:

3
(a) a=r2ze,+ z?@e?— -g—r— e,, defined in cylindrical coordinates

and
2 (i .
(b) a=a, (. 6, 9e,; (c) a=Lr°,s-e,—}— sin fe;; (d) a=
CO:‘Pe,—f—q:e?—éez; (e) —V(“cr‘;”), defined in spherical co-
ordinates.

. 2 [}
91. Show that the fields a = y%—+ 2%+ x% and b= —->" ¢

r3

sin 6
r3

e, (in spherical coordinates) are solenoidal.

4. The circulation of a vector field around a closed
contour. The curl of a vector. Stokes' theorem

92. Calculate the circulation of the given vector field along
the curve indicated and explain the physical meaning of the sign
of the circulation (here and in whatfollows, we take the counter-
clockwise direction around a curve in a right-handed coordinate
system as the positive direction);

(a) a=—yi4-xj45k, (C): x24y?=1, z = 0;

(b) a=yi+2zj+xk, (C): thecircle X4y 2= x+y -+ 2=0;

(c) a=— x’—){,—)ﬂ i+ ngf_),z is (C): any simple closed curve

(with no points of self-intersection);

(d) a=(x*y4e")i+ (xy*+ xe¥ — 2y)i, (C): any closed curve
that is symmetric about the origin or about both coordinate
axes;

(e) a=yi— xj, (C): the closed curve formed by the coordinate
axes and the first quarter of the astroidr = Rcog3¢ - i+ Rsind¢.j;
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() a=y2, (C): the closed curve consisting of the right half
of the ellipse r=a, cos ¢-i+4 56, sinf-j and a segment of the
y-axis;

(g a=y—2)i+(z—x)j+(x— y)k, (C: the circle x2+ y2}
22=R?% y=x tan « (for 0 <a < =), where the positive direction
is the counter-clockwise direction as viewed from the positive
half (x > R) of the x-axis;

(h) R=y%2% + x22%j+ x?y’k along the closed curve x =acos ¢,
y=—a COS 2t, z=a cos 3¢, taken in the direction of increasing
values of the parameter ¢,

93. (a) Show that the circulation of a vector field depends
on its orientation in the field by calculating the circulation of
the fielda= yiaround the circle with center at the point (0, &, 0)
and radius b that lies in the xy-plane and then for a circle of
same radius and center that is located in the plane y =b,

(b) Calculate the curl of the field a=yi around the circle
x=bcos t, y=0b-+"b sin ¢, z=0 (for 0 ¢ L 2r) at the center of
this circle P, (0, b, 0)in the positive direction of the z-axis.,

94, Calculate the circulation of the vector H in problem (51)
around the circle (L) x2+4 y?=R?, z2=0, What is the circulation
of this vector around any simple closed curve (C) not encircling
the conductor?

95. Suppose the components of the vector field a=a,i 4
a,j -+ a,k have continuous derivatives with respect to the coordi-
nates in the neighborhood of a point P, Show that the curl of the
field a at the point P can be calculated from the formula

i j k
0 0 0
arla=V X a= % Iy o
a, a, a,

From this formula, derive expressions for the components
of the vector curl a,

Use the formula given above to calculate the curl of the fol-
lowing vector fields at an arbitrary point:

(a) R=ai—+ bj+ ck (where a, &, and ¢ are constants),

(b) R= f(r)r, Wwhere r= xi— yj+ zk, and r=jrj.

96. Calculate the flux of the curl of the field a= x%y% 4
j+ zk: (a) throughthe hemisphere z= - }/R? — x2—y?, (b) through
an arbitrary piecewise-smooth 2-sided surface S ‘‘stretched”
across the circle x2+4 y2=R?, z=0, Compare the two results.
Show that the flux of the curl through a closed surface is inde-
pendent of the shape of the surface and depends only on the
shape and position of the curve bounding this surface.
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97. A propeller of infinitely small radius with a large num-
ber of blades that can rotate freely about an axis is placed in
the velocity field v of a liquid in motion. Let | denote a unit
vector in the direction of the axis of the propeller. Show that
the magnitude of the angular velocity o of the propeller will be
greatest if the vector 1 is directed alongthe vector curl v. Show
that the angular velocity vanishes if the axis of rotation is per-
pendicular to the direction of the vector curl v. Finally, show
that it is neither zero nor its maximum value if the axis of ro-
tation is in any other direction,

98. Show that Stokes’ formula can be written in vector form

as follows:
deL:ffcurles.
L S

where dL=dlt, dS=ndS, © is a unit vector tangential to the
curve L in the positive direction, and that n is a unit vector
normal to the surface S,

99. Show that the direction of the curl of the velocity field
corresponding to the flow of a liquid rotating like a solid around
some axis is along the axis of rotation and that its magnitude is
equal to twice the angular velocity.

100. Show that the circulation of the magnetic field intensity
H, due to an electric current, around a closed curve is equal to
4r/c times the albegraic sum of the currents “‘threading’’ the
curve, where ¢ is the velocity of light in a vacuum,

101. Calculate the curl of the field R(P)= f (p) = (P), where p
is the distance from the point P to a fixed straight line / and
©(P) is a unit vector perpendicular both to the line I and to the
line drawn from the point P to the line I (see Fig. 4), Assume
that the function f (p) is differentiable.

{

T(P)
90°

FIG. 4

102, Find conditions which are necessary and sufficient for
the field of the preceding problem to be irrotational.
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103. Show that the circulation of the magnetic field intensity
H, due to an electric current, around a closed curve [ that does
not encircle any current-carrying conductor is equal to zero,
Compare this result with the assertion in problem 100,

104. Determine the angular velocity w with which a rigid
body rotates about an axis that passes through some point of
the body if its lineav velocity is given by v ==2xi 4 y%j -+ xzk.

105. Show that the field of the curl of a vector R is free of
sources.

106, Show that the flux of the curl of a vector R through an
arbitrary closed surface S is zero.

107. Calculate the total strength of sources of the field of
the curl of a vector R that are enclosed by a closed surface S,

108. The velocity of each particle of a liquid in plane
steady flow is characterized by the vector

V = ui 4 vj.

(1) Find the amount of the liquid Q that flows through a
closed contour C enclosing a region S containing the source of
the liquid. (2) Calculate the circulation I of the velocity vector
V around the curve C. (3) Show that the components « and v of
the field V satisfy the Euler-d’Alembert (or Cauchy-Riemann)
equations

du _ Ov ou Jv
ox Ty’ oy — " ox’

if the liquid is incompressible and the flow is irrotational.
109. In a source-free space, a magnetic field H satisfies
the equations

cul H=0, divH=0.
Show that these equations imply that

0%u 0%u 0%u
H=—gradu, AUEW+W+W=O'

where « is the potential of the field H.

110. Suppose that a direct current / is flowing through a
cylindrical wire of radius a. Find the magnetic field intensity
at an arbitrary point located at a distance r from the wire.

111, Find the magnetic field intensity caused by a direct
current / flowing down a hollow cylindrical tube.
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112. Derive the differential equations of the magnetic field
of a direct current:

curl H=fc1j, (1)

divpH=0, 2)

where j is the current-density vector, u is the magnetic per-
meability of the medium, and ¢ is the velocity of light in a
vacuum,

113. Prove (a) that every field derivable from a scalar po-
tential is an irrotational field and (b) that identical vanishing of
the curl of a differentiable vector field in a simply-connected
domain implies that the field is derivable from a scalar po-
tential,

114, Show that the fields a=x% — y3j+4 2%k and b=yz(2x+
y+2)i+xz(x+2y+2)j+xy(x+y+22)k and the magnetic field H
of the line current / in problem 51 have corresponding potentials
and evaluate their potentials. How can we reconcile the state-
ment that the field H has a potential with the answer to prob-
lem 947

115. Calculate the curl of the following fields:

(a) The axis-symmetric fields a=ga,(r, 2)e,+ a,(r. 2)e, and
b=r?ze, —rz%,;

(b) a central field a=a,(r, 6, ¢)e; and fields:

cos ¢

(C) a=singe, + ——"e —rze;
cos 6 sin 0
(d) a= = €, -+ 73 €5

2ucosh ~ | psind
(e) a=— 7 e,+ 73 €he




CHAPTER 3

Second-Order Differential Operators.
The Laplacian. Harmonic Functions

116. Show that

div (p grad ) = ¢V +- Vo - V¢
and

A(¢d) =9 Ay ¢ A4 2V - V.

117. Calculate the Laplacian of the functions 2u 1n (1/r)
(where r2= x?-+ y2 and u = const.), (1/r) (where r?= x?+ y2+ 2?)
and

ou 1 0(ru
r o gt (= xi g ),

In the last two expressions, assume that «=u(x, y, 2) is har-
monic.

118. It is shown in electrodynamics that the intensity E of
an electric field caused by a charge density p satisfies Max-
well’s equations for an electrostatic field at every point of the
region in question:

div E=4Tﬁp, curl E =0.
Find the field E.
119. Suppose that the divergence and the curl of some field
a are given at all points of a region (v) bounded by a surface S:
curla=b, diva==c, (1)

23
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and that the values of the normal componenta, of the vector a on
the boundary S are given:

2, =1 (S). (2)

Show that there exists a unique vector a satisfying equations
(1) and the boundary condition (2).

120. Show that if a function #(x, y, z)is harmonic in a region
(w) bounded by a surface (S), then

fffwu]?dm:ffu-—dS

121. By using the expressions for the Laplacian in cylin-
drical and spherical coordinates, find the general form of the
function « =« (r) such that Au =0,

122, Write Ostrogradskiy’s formula for the vector grad .
By using this relation, show that, if ¢ is a harmonic function in
a region T bounded by a surface S, then

ff—?%dS:O.
S

Give a hydrodynamic interpretation of this result by consider-
ing the flux of the velocities v= grad ¢ of the steady motion of
a liquid.

123, Show that if the functions ¢ and ¢ are harmonic inside

the surface S, then
[Jeazas=][vaas

124, Show that if a nonconstant function« (x, y, z)is harmonic
and continuous in a region it cannot have extreme values in the
interior of the region but attains them only on its boundary (the
maximum-minimum principle).

Use this theorem to show that if two harmonic functions #,
and #, coincide on the boundary of a region, they must also co-
incide everywhere within that region.

125, Can a vector field with nonzero divergence possess a
vector potential?

126. Evaluate the magnetic field of an infinitely long straight
wire conducting a current / by evaluating first the vector po-
tentlial A and then the field intensity from the formula H =
curl A.
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127, Calculate the vector potential of a system of currents
flowing in three mutually orthogonal infinitely long conductors
at a point P(x, y, z) as shown in Fig. 5.

21

FIG. 5

128, The vector potential of the magnetic field of a circular
current / with radius « is, at great distances R (that is,R>> a),

A= [u Rl

where p is the magnetic moment of the current. Evaluate the
intensity of the field H.

129. Calculate the potential « of the electrostatic field caused
by a sphere of radius R throughoutwhicha charge e is uniformly
distributed.

130. By integrating Laplace’s equation in spherical coordi-
nates, calculate the potential of an electrostatic field inside and
outside a conducting sphere of radius « on the surface of which
a charge e is uniformly distributed.

131, Calculate the potential and intensity of the field of an
infinite circular cylinder of radius a if its interior is elec-
trically charged with a uniform density .






PART 11

Differential Equations of Mathematical

Physics






CHAPTER 4

Solution of the Vibrating String Equation
by the Method of Waves

(d’ Alembert’s Method)

132, Suppose the vibrations of an infinitely long string are
excited by an initial displacement of the segment (—C, C) in the
shape of a parabola, symmetric with respect to the u-axis («
denotes the displacement from equilibrium).

Formulate the initial value problem under the assumption
that the string is initially at rest, and that the maximum initial
displacement is 4.

133. Formulate the mixed initial-boundary value problem for
the longitudinal oscillations of a rod of uniform cross section,
under the hypothesis that one end (x= 0) is rigidly fastened,
while the other end (x =) is free, and that the initial displace-
ment and velocity are respectively p(x)and v(x).

134, Derive the equation for small torsional vibrations of a
homogeneous cylindrical rod of length /. Give a mathematical
formulation of the problem of torsional vibrations of a rod with
one end clamped and a pulley fastened to the other end.

135. Solve the Cauchy problems

0%u 0%u
(a) o8 T ox?

(
u(x, 0)=sinx, fu_(é:-_@_:O

—oo <L x <00, £t>0)

ou __ , 0%
0 G=a'F
ou (o";’ 9 _ 4 sin x (A =const.)

u(x, 0)=0,
(—oo<x<Loo, t>0).
29
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136. Suppose that a homogeneous infinitely-long string,
satisfying the initial conditions

u(x, =px) ZLD—y(x) (—o0<x<00)

is subjected to a uniform external load distribution ¢(x, £). Find
the displacement of an arbitrary point on the string for ¢> 0.

137. Find the distribution of voltages and currents along an
infinitely long conducting wire possessing self-inductance L,
capacitance C, resistance R, and leakage G, all measured per
unit of length, assuming that the initial conditions are

v(x )=o) I(x. =9 (—o0< x<oo)

and that the four parameters listed are related by the equation
R/L = G/cC (distortionless line).

138. Suppose that at an initial instant of time, a semi-
infinite string 0 < x < oo has the following shape

0 for x LC,
-%(x—C) for CLx<2C,
o ‘ (h>0, C>0)
___?.(x—3C) for 2C L x K3C,
0 for x> 3C

Draw the profiles of the string corresponding to the instants
t,= C/a, ty= 2¢/a, ty= 3C/a, and t,= 7C/22(where a is the
velocity of propagation along the string).

139. Solve the equation

sy=a%u,,, (0<x<oco, t>0)

with boundary and initial conditions

u(x, O=p(r), L& _,
u (0, H=4¢().

Calculate the solution when p (x) = x2, v(x) = sin x, and b ()=t
140. Suppose a backward wave described by f(x, =
1/2 sin n(x+¢) was traveling along a semi-infinite string 0 <
x < oo with velocity a= 1 when ¢ < 0. Calculate the displace-
ment from equilibrium of the point x = 2= at the time = 10 sec
(a) if theend x =0 is fixed, (b) if the end x =0 is free (4,0, t)y=0).
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141, Theend x= 0of a semi-infinite rod 0 <x<oco moves ac-
cording to the law «(0, ) =Ae-K'beginning at /= 0. Here, A and
K are constants. Find the displacement u(x, f) of points of the
rod for ¢> 0 if the initial velocities and displacements are
equal to zero.

142, The end x= 0 of a semi-infinite string whose cross
section is a circle of diameter 1 mm undergoes a harmonic
transverse vibration of the form A cos of (Wwhere A = const.).
Find the displacement u(x, ) of the string at an arbitrary in-
stant of time and also the velocity of propagation of a wave if
the tension is 7= 4 kg and the density is 7.8 gm/cm?, Assume
that the initial displacement and initial velocity of points on the
string are both zero.

143, A semi-infinite tube 0 < x < oo filled with an ideal gas
has a freely moving piston of mass M at the end of x=0, At
the instant /= 0, a blow imparts to the piston an initial velocity
v,. Study the propagation of a wave in the gas if the initial dis-
placements and velocities of particles of the gas are both zero,

144, A semi-infinite string x> 0 of linear density p and
tension pa? is originally in a state of rest. For ¢ > 0, the point
x= 0 undergoes small vibrations given by A sinoef, Find the
displacement of an aribtrary point x of the string.

145, Attheend x =0 of a semi-infinite cylindrical tube filled
with gas, a piston executes harmonic oscillations with displace-
ment A sin of. At some initial instant of time, the condensation
and the particle velocities are zero. Determine the displace-
ment «(x, ¢) of the gas for ¢ > 0,

146. Suppose the initial shape of a homogeneous string whose
ends at x= 0 and x=1 (see Fig. 6) are fixed is that of a para-
bola symmetric with respect to the perpendicular line drawn

FIG. 6

through the point x=1/2. Suppose that its maximum displace-
ment is #, Determine graphically the displacement of the string
at the instants #,= /22 and f,= t/a, where a is the velocity of
propagation, assuming that the string is initially at rest.
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147, Solve the following boundary-value problem:

”n=a2uxx'
u(x, 0)=p(x), u,(x, 0)=v(x), OD<x<Ll, £t>0
u@, )=u(l, £)=0

148, Suppose a gas is initially at rest, and that the initial
condensation S, is constant inside a sphere of radius R, and
vanishes outside the sphere. Determine the condensation S for
all #> 0 outside of the region where the gas is initially dis~
turbed.

149, Find the displacement for f> 0 of points on a finite
homogeneous string which is initially at rest, if the end points
x= 0 and x=1[ are fixed, while the initial velocities are zero
and the initial displacement is given by

u(x, O)=Asin£lx— for 0L xK!



CHAPTER 5

The Fourier Method. The Method

of Eigenfunctions

1. Problems associated with the one-dimensional
wave equation

150. Find the natural frequencies of the transverse vibra-
tions of a string of length /, linear density p, and tension T that
is fastened at both ends.

151, Find the natural frequencies of the longitudinal vibra-
tionsofarod 0  x |, theleftend of which is fastened, if a force
F (t)= At (where A = const,) is applied to the right end at the
instant £=0. Assume that the medium offers no resistance to
the vibrations.

Solve this problem with the hypothesis that a weight of mass
M, is attached to the free end.

152, Find the frequency of vibrations of a string 10 cm long
with rectangular cross section, 0.2 mm X 0.4 mm if its density
is y=17.8 gm/cm?® and if the tension in it is 1 kg.

153. One end of a rod (0 < x <) is fastened (x =0) and the
other is free., What are the amplitude and the period of the free
oscillations of the rod if the initial conditions are of the form

¢(x, 0)=p(x), ¢, (x, 0)=v(x)

154, Find the law of vibration of a homogeneous string of
length | with both ends fixed if at the initial instant it has the
shape of a parabola symmetric with respect toa line perpendic-
ular to the string at its midpoint. The string is initially at rest.

Solve this problem under the assumption that the length of
the string is /== and that the initial deviation from the equi-

librium position is given by p(x)=sin x.

33
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155, Integrate the equation of small longitudinal vibrations
of a cylindrical rod of length / one end of which (x=0) is fastened
and the other is free. The initial displacement and velocity are
respectively p(x) and v(x). Apply the general formula to the case
in which p(x)=x?and v(x)=sinx,

156. Suppose that a homogeneous string with fixed ends
x=0 and x=1 is stretched by displacing the point x = x,a dis-
tance £ from the equilibrium position and released with zero
initial velocity at the instant ¢= 0, Calculate the energy of the
nth harmonic of the vibrating string.

157, Examine the forced vibrations of a string of finite
length (0 < x<!) caused by a periodic disturbing force ¢=
A sinwt under the hypothesis that the ends of the string are
fastened and the initial conditions are nonhomogeneous:

u(x, O)=p(x), u,(x, 0)=v(x)
where p(x) and v(x) are given continuous functions defined for
0 x ! that vanish at x =0 and x =/ (compatibility conditions).

Do not consider the resonant case,
158. Show that the solution of the equation

—_— k
utt - uxx + t

for x €0, =] and ¢> 0 that satisfies the conditions

@, )y=u(w £)=0,
u(x, 0)=u,(x, 0)=0,

is the function

@ !

\Y sinnx ,

L —F f‘CkSIﬂfl(t—‘t)d‘t
n=1 0

u(x =~

where % is an arbitrary natural number.

159. A homogeneous rod of length 2/, with center at the
point x =0, is compressed by forces applied to its ends. This
compression shortens the rod to a length 2/(/ —¢), At the in-
stant =0, these forces are removed. Find the displacement
u(x, tyof a cross section with abscissa x for ¢ >0,

160. A string with fixed ends is set into vibration by a blow

from a flat hammer which imparts to it the following initial
velocity distribution:

0 0 x L xp—3,
4 (x, 0)=v(x)=1{ v, X =3 L x L xp+3,
0 xo+3gx Ll
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Find the vibrations of the string if the initial displacement is 0.
Solve the problem under the condition that the string is set into
vibration by a sharp hammer which gives it an inpulse P at the
point x,.

161. A string fastened at the end points is displaced by a
force F, applied at the point x=¢. Find the vibrations of the
string if this force is suddenly removed at the initial instant,

162. One end of a rod is held in place and a constant force
F,is applied to the other. Find the longitudinal vibrations of the
rod if this force is removed at the initial instant,

163. A string of length / is placed in a medium that offers a
resistance proportional to the speed of motion of the string. In
this case, the wave equation has the form

2 2
=gy
where k£ = hr/¢ (2 being a proportionality constant and p the
density of the string).

Solve this equation by the Fourier method with the initial

conditions

ur. =1, 2D =F(x)

and the boundary conditions
u, H)y=u(l, H)=0

164, A continuously distributed force with linear density
x sin of is suddenly applied to a string fastened at the ends.
Find the purely forced vibrations of the string. Neglect the re-
sistance.

165. Find the general solution of the problem of transverse
vibrations of a beam simply supported at its end x=0 and
x =1 subject to arbitrary initial conditions:

w(r =7, LG =g) ©<x<D

166. An isolated homogeneous electric cable 0 L x </ is
charged to some constant potential. At the initial instant, the
end x=0 is grounded, while the end x =1 remains isolated.
Find the potential distribution in the conductor if the self-
inductance is L, the resistance is R and the capacitance is C
per unit length of the conductor.
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0 x ! . .
167*, In the region Q<02t <oo>, the following mixed

boundary-value problem is posed:

p(x) =L (a).

w@ H=ul, =0, u(x, O=p(x), 22Dy

where
L= (k) 5] — 9@
k>0, (>0, p(x)>0)

Show that the eigenfunctions of the problem are orthogonal with
weight p(x) in the interval [0, /] and that the eigenvalues are all

positive,

2. Problems associated with the two-dimensional
wave equation; Laplace’s equation, and Poisson’s equation

168. (a) Find the natural frequencies of vibration of a rec-
tangular membrane with sides [/, and /, that is fastened along the
edges. Consider the case in which [, =/1,.

(b) Find the frequency of the fundamental tone of a square
membrane of side / that is fastened along the edges.

169, Find the eigenvalues and eigenfunctions of the boundary-
value problem

A+ rv=0 (v=uo(x, y); 0<xLa; 0LyLh)
=

]yzb: 0.

Vlgzg=7v lxza =9 ly=0
170. A homogeneous square membrane is fastened along
its edges. If its shape at the initial instant /=0 is given by
u(x, vy, 0)= Axy(—x)(!—y), where A = const,, and if its initial
velocity is zero, find the free vibrations of the membrane.
171. Solve the boundary-value problem

0<x <l
2 | 1,
(PH — a (Qp.t’x (?y‘y) <0 < y < 12 ’ ¢ > 0>

C.of,r:o:‘?’(:[1‘—:‘?‘)@0:?[,.:1,:0
(X ¥, 0)=0. o (x, y, 0)==Axy(, — x)(, —y)
<O<x<l1

) A: .
0< y< l?> const
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172, Suppose that a rectangular membrane 0< x </, 0<
y <!, is fastened along the edges. Find the transverse vibra-
tions caused by a force of density

F(x, y, t)y=A(x, y)sinot (¢>0).

applied perpendicularly to the surface of the membrane. Con-
sider the resonant case.
173. Solve the boundary-value problem

0%u

0%u
bu= 5ot 57 =0 0<x<a 0<y<H)
Ul gmo=v=const., u|,_,=ul,_o=0, u|,_,=v,=const.

174, Find the harmonic function ¢(x, y) inside the rectangle
0 <x<ga,0 Ly?bh, if its values on the boundary are given:

?lx:Osz(b—y)’ <\°Ix=a=0 Oy LKD),
¢ly-o=Bsin==, ¢l,., =0 (0<<xa)

where A and B are constants,

175. Find the electrostatic field inside the region bounded
by conducting plates y= 0, y=06, and x= 0 (x > 0), if the plate
x =0 is charged to a potential v,=const., if the plases y = 0 and
y=~bare grounded, and if there are nocharges inside the region
in question.

176. TFind the potential of an electrostatic field «(x, y) inside
a rectangular box, 0 < x<a, — 6/2 <y < /2 (see Fig. 7) if
the potentials on its edges are as follows:

b
¢, (x) for y=-g,

b

¢, (y) for x=0,
P2 (y) for x=a

and if there are no charges inside the box.
177. Find the solution of the equation

Au=—ycosx

inside the semicircle x?-y?< 1, y> 0 that satisfies the con-
ditions
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u=20 for y=0.
u=Vl———x2(cos x—%) for y>0.

on the boundary.

Y

b U=9,

2
U:W’ U:‘Pz

0 a A
b

2 V=9,

FIG. 7

178. We know that the problem of torsion of an arbitrary
prismatic body whose cross section is a region D bounded by a
contour L leads to the following boundary-value problem: Find
the solution of Poisson’s equation

Ay=—2,

that vanishes on the contour L. Here, the basic quantities needed
for the analysis are the components t,, and =7,,.of the shear
stress and the twisting moment M, These are expressed in
terms of a stress function « as follows:
ou ou
szzoed—y" szz—Geﬁ:
M:ﬂGBffumwy
(D)

where 8 is the angle oftwist perunit length and G is the modulus
of shear.

Give a direct solution of the problem (that is, find the stress
function, ,,, ,, and M) for the torsion of the rectangle

D<m<x<a
0y <b)

. 172*. Find the static deflection of a rectangular membrane
with sides 2z and 25 under the action of a line load uniformly
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182. Find the temperature at each point of an insulated
copper rod of length /= 100 cm if the temperature at the ends
of the rod is held at 0° and the initial temperature in the rod is
p(x)==50° sin 2=x/1.

For copper, ¢ = 0.094 cal/gm, k= 0.9 cal-sec/cm, and
p= 8.9 gm/cm3.

183. Find the temperature distribution for positive values
of ¢ in an infinitely long plate whose surfaces x==0 and x =/
are insulated if at the initial instant, T (x, 0)=A4 sin x(! — x)/I;
that is, show just how the temperature becomes equalized
throughout the plate.

184, If a thread of very small cross section is bent to form
a closed circle, it is called a ring. In a certain ring of length
2rx, an initial temperature distribution f(x)is given, If the ring
is allowed to cool freely, what will the temperature distribution
be after an arbitrary interval of time?

185. (The problem of the cooling of a sphere.) A sphere of
radius R is immersed in a medium at temperature 0°, The
initial temperature at each point of the sphere is given by 7 (r),
where r denotes the distance from the center of the sphere. On
the surface of the sphere, the cooling proceeds according to
Newton’s law:

=0,

r=R

()

where % is a positive constant.

Study the process of cooling of the sphere for #> 0,

186. Derive the equation for diffusion in a hollow tube (with-
out sources of matter) when there is no diffusion through the
walls of the tube:

du__ 0 ou
W—W(Dw)'

wherg D is the coefficient of diffusion, C is the coefficient of
porosity, and «=u(x, £) is the concentration of the substance in
the cross section x at the instant t. If C and D are constants
the equation then takes the form '

C

Ou __ 0%
of Y gxte

(See Tikhonov and Samarskiy, Uravneniya mate J
See ! , matichesk
fiziki [Equations of Mathematical Physics].g) osRey
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187. Suppose that a sphere of radius R with initial tempera-
ture distribution f(r) is given., At an initial instant of time, the
sphere is dipped into icewater, so that the surface temperature
is maintained at 0°C. Find the temperature distribution within
the sphere at any subsequent instant. The cooling proceeds uni-
formly since the temperature depends only on the radius-vector
r and the time ¢, Consider the case in which f(r)=¢,= const.

188. One end of a rod x= 0 is thermally isolated and the
other x=1! is held at 0°. At the instant = 0, the temperature
has the same value T, at all points of the rod., Determine the
temperature u«(x. ) at every point x at an arbitrary subsequent
instant of time.

189, Solve the boundary-value problem

uy=a%u,+g(x ) O<x<l 0<t<0)

g =1 (x) O<x<)
=0, (0 < t < o0)
h(u|poy—u)=—rku,|,; (g=1u/t)).

Give a physical interpretation of this problem,

190. Set up the one-dimensional heat-flow equation taking
account of the heat exchange through the lateral surface of a
homogeneous rod.

191, Find the steady-state temperature distribution u«(x, y)
in an infinitely long beam of square cross section (see Fig. 9),
three sides of which are held at 0° and the fourth is held at a
constant temperature «(x, a)=T.

U
a/u-—r
us0 / u=0
A,
0| u=0 a
FIG. 9

192, Consider a rod of rectangular cross section, two op-
posite sides of which y= 0 and y=1» are held respectively at
temperatures 0° and T = const. and the other two sides (x = % q)
radiate heat into the surrounding medium according to Newton’s
law. If the temperature of this medium is 0°, find the tem-
perature at the point (0, 5/2) of the rod.
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193. Find the temperature of a rod 0 < x <! with thermally
insulated lateral surface if the initial temperature is every-
where zero, if the temperature at the ends is held at zero, and
if a source of constant strength Q is concentrated at the point x,

(where 0 < x, < /) in the rod.

4.Fourier integrals and the Fourier transformation
194, Represent the function

1 for |x|<1,

f(x>=!% for |x|=1,

0 for |x|>1.

by means of a Fourier integral, Show that

©o

sint T
f Fdt=z-
0

195, Determine the functions f(x)and ¢(x)from the following
relations:

o) ©o
k A
Off(x)coslxdx=m. !‘P(X)Si“)\de=m'

196. Show that the functions

)Z-"()\)=e_am’ §(1)= )\2_[]_;12
are the Fourier cosine transforms of the functions
= ®, =ty Ten
Vaa ’ h 2 )

197. Solve the following Cauchy problems

() w,=a’u,, + xt, (—oo < x <o, £>0)
u(x, 0)=0, u,(x, 0)=0, (— o0 < x < o).

() uy=au,, (o< x<oo, £>0)
#(x, O)=p(x), (—o0 < x < oo).

Evaluate the unknown function when p (x) = T, = const,

(c) u,=a2u”+f(x. ), (~oo<x<oo.t>0)
u(x, 0)=np (x).
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198, Solve the following boundary-value problems:

(a) uy=a%u,,, O<x t <o)
u(0, t) =13, 0 <t <o)
u(x, 0)=u,(x, 0)=0, (0< x < o0).

(b) u,=a%u,,. 0L x, t <o)
u(0, £)y=0, (0 <t <o)
u(x, 0)=f(x), 0L x <o)

() u,=a%u,, 0O <x, t<o0)

u#, 0, )=0, u(x, 0)=f (x).
199, Find the solution of Laplace’s equation

d%u

02
W+d_yl:_=0 <Ly <o, 0Ly <o)

with boundary conditions

a
uly=o=0' ‘54%1=0=f(y).

200, Find the solution of the heat-flow equation in a homo-
geneous rod in a medium of temperature U:

ou o%u . . )

S — @ ga— Pt U—n=g(x 1) (—oo < x <oco, £>0)
with the initial condition «(x, 0)= f(x). Consider this problem
when U =U_ = const, and there are no heat sources.






CHAPTER 6

Problems Involving Special Functions

201, Euler’s gamma function is defined for all positive p by
the convergent improper integral

I‘(p)=fx”' =" dx.
0
Show that I' (p + 1) = pI'(p)for arbitrary real p. Derive the formula
P(n+1)=n! =fx"e'*’dx (n=1, 2, 3, ...).
0

202, Prove the identities
@) J,(x)==D"J(x) (r=1,2,3....).
(0) J,(x)=—Jo(x); (2 (X)) = xJp().

(© [th®dt=uxJ(x)
0

X

[ 86 (@t ae= f;— (43 (ax) + J} (ax)]
0

[ 89,0 di = 2620 () + (£ — 40) ) ().

0
(A) -2 (2P, () = %P ),y (2

e P, () = = xR, ()

for arbitrary p.

45



46 Differential Equations of Mathematical Physics

(€) xJp(X) = plp(x)==xJp-1 (%),
£y () = plp () == £Jpe1 (),
Jpe1 (£) = a1 (%)= 2p (),
Byt ) Iy (=24, ()

for arbitrary p. By setting p=n—1 (for n=1, 2, 3, ... inthe
last relationship, derive the recursion formula

Jp (X)=

22 ()= Jpa(®) (=23 4 ).

Express J,(x), J; (x), and J; (x) in terms of J,(x¥) and J; (x).
203. Find expressions for J; (x), J 1(x), J3 (x)
F) 2 2

204, Integrate the equations:

(a) %j—x(x%)jL(a?—’;i)y:o (1=0, 1, 2, ...).

(b) y//+_)1c_y/__(1+_;_l_z.)y:0 (n:o, 1, 2, ).
y”—}—xy=0.
© y 42y 4y=0.

205, Prove the relations

Y fa tpn ( 0, if  m#p,
o = [ ’ .
ij"( I x)“'"( I )dx_‘l‘éj,,z(amn), if m=np

where the «,, are the positive roots of the equation J, () =0, the
subscript m indicating the ordinal number of the root.
206, Expand the following functions in Fourier-Bessel series:
(a) f(x)==x? (for p>—1/2) in a series of the functions
Jo(\x)y J,(x), o . . in the interval 0 < .x < 1 (where the A are
the positive roots of the equation J,(})= 0).
(b) f(x)=x* in a series of the functions {/;(};x)} in the in-
terval 0 < x < 2 (where J;(A)=0 for A\, > Owithi= 1,2,3,...).
207. Use Rodrigues’ formula for the Legendre polynomials

A i
2711 dxn

Pn ()‘) -

to find the first five Legendre polynomials and draw their graphs.
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208, The Legendre polynomials may be defined as the co-
efficients of rl" in the expansion of the generating function

(1 — 2rx-+r? %in a series of powers of r (where | x| < 1 and
[r]|<11):
-1 @ 1
(1 —2rx—4-r? 2=§%)P,,(x)r". )
n=

5...@2n—2k—1) . _o
X .
2 . k1 (n— 2k)!

P, (x) = N (=1 2
k=0

Evaluate P,(1), P,(~1), and P, (0).
Derive the recursion formula

mn+1D)P,+@4+1)xP,—nP,_,=0(®r=1,23...).

by differentiating the relation (1) with respect to r and equating
terms of like powers of r” on the two sides of the equation.
209, Expand the functions

1

s o={1=a 3o+ ()

and
0 for —1Lx<0,
f(x)=[l for 0<f¢<1

in a series of Legendre polynomials.
210. Prove the identities:

1-3.5...(2n—1
(a) P2ns1(0)=0, Py, (0)=(—1)" 2-4..(.371 )'

() Pacsy 0)— Pris (0= 2557 P,y O).

(€) (@n—1)Ppn(x)=Prs1(X) — Pa_1(x).

1 0, if n#m
@ _lan<x>Pm<x>dx= . i a=m.
Y1 for n=0
1 0 for n>2 and even,
(e) fP,.(X)dx= 1"—2—" 3.5.-7...(n—2)
5 =D * 5% .. =aFD

) for n>1 and odd.
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211. Find the bounded solutions of Laplace’s equation
0 ou 1 9 /(.. du\__
W(’Q??)Jr——sme W(S‘“"a—e)—o

inside and outside a sphere of radius R if the solutions are equal
to a function f(0) on its surface, Carry out the calculations for
r<R=1and f(0)= cos?6.

212, Examine the axially symmetric vibrations of a circular
membrane of radius R that are caused by an irapulse P applied
at the instant = 0anddistributed overa circular area of radius
e. The membrane is fastened along its edge.

213. Determine the form of forced vibrations of a circular
membrane of radius R that is fastened along its edge if a pul-
sating load is uniformly distributed over its surface according
to the law ¢ sin (ot +¢) (Wwhere ¢ is a constant),

214, Suppose that a weight is applied at the instant = 0 to
a circular membrane of radius R, If the weight is uniformly
distributed with density ¢(¢) over the annulus r, <r < r,, deter-
mine the form of the membrane for > 0, Assume that the
membrane is fastened along the edge.

215, A homogeneous circular membrane of radius R has the
form of a paraboloid of revolution

u(r, 0)=u0(r)=b(l -"/%Z_)'

at an initial instant = 0, where 5 is the initial deviation of the
center r= 0, The initial velocities and the boundary condition
are given in the form

oJu
W g =M =0; u(R, £)=0.

Find the displacement of the center r— 0 of the membrane at
an arbitrary instant ¢> 0. Calculate the period of the funda-
mental tone of the membrane, assuming that it is made of paper
of thickness 0.2 mm. The radius R—5 cm, and the tension is
T=100 gm/cm. The density of paper is 1 gm/cm?,

216, A sphere of radius R is placed in an irrotational par-
allel flow of an incompressible liquid moving with a constant
velocity a. Study the distribution of the velocities in this flow.

217. Study the free radial vibrations of a circular membrane
qf radius R fastened along its edge with arbitrary initial condi-
tions. Also, carry out the calculations for the case in which the
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initial 2displaLcement is f(r)=r? and the initial velocity is
g(r)y=r?,

218, Determine the natural frequencies of the radial vibra-
tions of the circular membrane of problem 217 and also the
amplitude of the vibrations of each tone.

219, Consider an infinitely long cylinder of radius a the
lateral surface of which is thermally insulated. Find the tem-
perature as a function of position and time if the initial tem-
perature is axially symmetric and is given by «(r, 0)=r2,

220, Solve the boundary-value problem

02 T or or ] Tt
'w)’_ (ro. t)= 0 (>0,
w(r, O)=or, w,(r, 0)=0 (0L r<ry, v=const).

ozw=a2{1 9 (r2o_w) Qw} <0<f\<.fov>'

by the method of separation of variables.

221, Suppose that a spherical vessel containing a liquid (gas)
is in uniform motion with velocity v. If at the instant ¢= 0 the
vessel suddenly stops, find the resulting vibrations in the fluid.

222, Suppose that the temperature in an infinitely long cyl-
inder of radius R is radially distributed and given by a function
f(r). At an initial instant, the surface of the cylinder is suddenly
cooled to 0° and is then held atthat value, Find the temperature
distribution inside the cylinder at an arbitrary instant of time.
Consider the case in which f (r)={,= const.

223, Show that the function

4y =(e1ar" -+ ) V2 (8. )

is a particular solution of Laplace’s equation Au(r, 8, ¢)= 0
(where the ¢;,, for i= 1, 2, are arbitrary constants).

224, A homogeneous circular membrane of radius R is
fastened along its edge. It is in equilibrium under tension T,
At an instant ¢#= 0, a uniformly distributed pulsating load
P, sin ot is applied to the surface of the membrane. Find the
radial vibrations of the membrane,

225, Find the potential of the horizontal velocities of water
particles vibrating in a right circular cylinder with horizontal
base if the initial conditions possess radial symmetry and the
pressure on the surface of the water is constant.

226, A spherical conductor is partitioned into two hemis-
pheres by a layer of insulating material. The upper hemisphere
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al U, and the lower to a potential U;. Find

i ed to a potenti
is charg p ary point M of the

the potential of such a conductor at an arbitr
electrostatic field (see Fig. 10).

FIG. 10

227, A homogeneous nth degree polynomial U, satisfying
Laplace’s equation Au(x, y. 2)= 0 is called a harmonic poly-
nomial. Obviously, the polynomials

UO =a,
U=ax—+by+cz
are polynomials of degree 0 and 1.

Find the general form of the second- and third-degree har-
monic polynomials U, and U,. Show that the spherical functions

sinhcp}

r'"Y (8, ¢)=r"P_, (cos 8) { cosh

are harmonic polynomials of degree m.



PART III

The Elements of Probability Theory
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236. A region D of area S contains a circle C of radius R
with center at the point A. Suppose that N points are chosen at
random in D. What is the probability that at least one of these

points will be inside the circle C?
237. If 4 and B are two events, show that

P(A+B)=P A+ P(B)—P(AB)

Generalize this equation to an arbitrary finite number of
events:

P(E A,>=EP<A[>—— 2 PAA)+
(=1 lel l,je=l

+ l jzk‘. XP(AiA,Ak)—i— e (=D PAA, .. A

238. An urn contains 5 white and 3 black balls, Two balls
are taken from the urn, one after the other. Find the probability
that both balls will be white. Solve the problem both under the
hypothesis that the first ball is not returned to the urn and then
under the hypothesis that it is returned.

239, In a lot of 200 objects, 150 are of first grade, 30 are of
second grade, 16 are of third grade, and 4 are rejects. What is
the probability that an object chosen at random will be either of
first or of second grade?

240, An urn contains white, black, red, and green balls, The
probability of taking a white ball at random is 0.15, a black ball
0.23, and a red ball 0.17, What is the probability of taking a
green ball?

241, Someone fires at a circular target consisting of three
zones: I, II, I (see Fig. 11). The probability of his scoring a
hit in the first zone is 0.25, in the second zone 0.35, and in the
third zone 0.15. What is the probability of his missing the tar-
get entirely?

242, Two dice are thrown. What are the probabilities that
(a) the sum of the spots thrown will be a multiple of 3, (b) the
sum will be equal to 7 and the difference will be equal to 3,
(c) the sum will be equal to 7 when it is known that the differ-
ence is 37 '

243. An airplane is fired on three times. The probabilities
of a hit are, in the three cases, 0.4, 0.5, and 0.7. What is the
probability that exactly one hit will be scored? What is the
probability that at least one hit will be scored?
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O |\o

FIG. 11

244, Consider two lots of objects:

1st lot 2nd lot
Grade |Number of objects Grade | Number of objects
I 8 I 12
II 3 II 2
I 1 III 1
Rejects 1 Rejects 2
Total 13 Total 17

One object is chosen at random from each lot., What is the
probability that these two objects chosen will both be grade I?

245. Suppose that the conditions of the preceding problem
are modified as follows: both objects are chosen from the first
lot and the first object chosen is returned before the second
object is chosen. What is the probability that the first object
will be grade I and that the second will be grade II?

246, As a second modification, suppose that three objects
are chosen, all from the first lot, and that each object is re-
turned before another selection is made. Find the probability
that all three objects will be grade I.

247, A student seeking a particular book decides to try three
libraries, In each case, there is a fifty-fifty chance that the
library has the book, and, if so, the chances are fifty-fifty that
someone already has the book out. What is more probable: that
the student will find the book, or that he will not?

248, One marksman hits a target 80% of the time; another
hits it 709% of the time. If both fire at the target, what is the
probability that at least one will hit it?
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249, Consider an event A that may occur together with one
of a set of events E,. E, ..., E,. If the E’s constitute a complete
set of mutually exclusive events (i.e., a partition of the sample
space), prove the following formula for the probability of 4 (the
complete probability formula):

P (A)== ; P(E) P (A[E)

250. A bag of wheat seed for sowing that is classified
grade I contains small admixtures of grade II, III, and IV seeds.
The probability that an individual seed taken at random will be
grade I is 0.96; that it will be grade II is 0.01; that it will be
grade II, 0.02; that it will be grade IV, 0.01. Suppose that the
conditional probability that a seed that is grade I will yield a
stalk containing no fewer than 50 seeds is 0.50; for a grade II
seed, the figure is 0.15; for a grade III seed, it is 0.20; for a
grade IV seed, it is 0.05. Find the unconditional probability that
a seed chosen at random will yield a stalk with at least 50 seeds.

251, Suppose that each of six identical boxes contains 15 ob-
jects and that the number of first-grade objects in each is given
by the following table:

Number of objects
Box

number total

first-grade

15
15
15
15
15
15

DU W N
U1 O O 00 00 0o

Someone takes an object at random from one of the boxes.
What is the probability that he will take a first-grade object?
252, By using the theorem on multiplication of probabilities
and the formula for total probability (see problem 249) prove
the following theorem: suppose that Ey Ey ..., E,constitute a
complete set of mutually exclusive events. Denote the prob-
abilities of these events before an experiment by P(E)), P (E,),
cees P(E,). Let an experiment be performed as a result of
which an event 4 is observed to happen. Then, the probability
of the event E;, for /=1, 2,..., n, after this experiment is
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given by Bayes’ formula

P (E)) P(AIEY)

n

P (Ep) P(AIER)
£=1

253. Two marksmen each fire a shot at a target. Suppose
that the probability that the first will get a hit is 0.6 and the
probability that the second will get a hit is 0.3. Suppose that
after both have taken their shots, someone examines the target
and finds one bullet-hole in it. What is the probability that it
was made by the first marksman? By the second?

254, Buffon’s problem. A set of parallel lines are drawn in
a plane at a distance 2a from each other. A needle of length 2a
(and negligible diameter) is tossed onto the plane. Show that the
probability that the needle will cross one of the straight lines is
equal to 2/~ ~ 0.637.

255, A box contains white, black, and red balls. The prob-
ability of taking a white, black, or red ball is respectively p, =
0.15, p, = 0.22, p;= 0.12, Find

(1) the probability of taking a white ball in a single random
selection;

(2) the probability of taking a white ball in10 random selec-
tions;

(3) the probability of taking at least one white ball in 10
random selections;

(4) the probability of taking at least 9 white balls in 10 ran-
dom selections. )

256. Suppose that

P(Ei/A) =

¢ (2) = g (piz+q)

where p; denotes the probability of occurrence of an event 4 in
the /th Bernoulli trial and ¢;=1—p,.

Show that the probability that the event A will occur exactly
m times in » independent trials is equal to the coefficient of 2™
in the expression for the function ¢,(z). The function ¢,(2) is
called the generating function of the probabilities £, (m).

Use the expansion of the generating function to solve the
following problem: four persons shoot at a target from different
distances. The probabilities of their scoring a hit are respec-
tively p,= 0.1, p,= 0.2, p,= 0.3, and p,= 0.4, Find the proba-
bility of one, two, three, four, no hits.

257. From the data of problem 239, find the probability that
in a random selection of five objects,
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(1) all five objects will be of first-grade,
(2) four will be of first-grade and one will not be of first-

grade, .
(3) three objects will be of first-grade and two will not be

of first-grade,
(4) not one of the objects will be of first-grade.

2. Random variables. Distribution functions. Numerical
characteristics of random variables

258, Give some examples of discrete and continuous random
variables.,

What is a distribution series (or distribution table) of a ran-
dom variable? Give some examples. What is the distribution
function of a random variable? What are its properties? What
is the probability density function of a random variable? What
are its properties?

259, Someone fires a single shot at a target. The proba-
bility of a hit is 0.2, Write the distribution series and the dis-
tribution function of the number of hits ¢,

260, A random variable & has the following probability
density

[ T k
acosx for — 5 <x <3

f )= ]
0 for *x<—5 or x>

(a) Find the coefficient a.

(b) Construct a graph of the probability density I (x).

(c) Find the distribution function F (x)and construct its graph,

(d) Find the probability that the random variable ¢ will fall
in the interval (0, =/4),

261. What is the probability that a random variable ¢ with
probability density

_ 1
T )=y

will fall in the interval (—1, + 1)?

262. A random variable & is defined by the f i is-
tribution table: , y the following dis
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A second random variable 7, independent of the first, is defined
by the following distribution table:

7 1 2 3

p 0.2 0.5 0.3

Find the law of distribution for the sum t+-7.

263. A coin is tossed until it falls heads. Find the average
value of the number of tosses that will be necessary.

264, Suppose that an electric current flows through a con-
ductor whose resistance depends on random causes and that the
current strength is also randomly determined. Suppose that it
is known that the average value of the resistance of the conduc-
tor is 25 ohms and that the average value of the current is
6 amps. What is the average value of the emf & across the con-
ductor?

265. Suppose that a random variable can assume only two
values: 1—if a particular event occurs and 0—if this event does
not occur, Show that the mathematical expectation of this ran-
dom variable is equal to the probability of the event referred to.

266, A box contains 500 objects, three of them grade I.
Suppose that someone takes an object from the box. Find the
mathematical expectation of the number of grade I objects.
Compare the result with the assertion in the preceding problem.

267, Show that the mathematical expectation of a random
variable always lies between its smallest and largest values:

Emlu < ME < Emax

268. Show that the variance of a discrete random variable ¢.
that assumes the values ¢, &, ...,%, With probabilities p,,
Pas « « « » P,is equal to

Dz = 12 -— (ME)2

where
n
— 2
=

269. Calculate the mathematical expectationand the variance
of a random variable whose probability density function is

109 aia for a<x<B;
xX) =

0 for x<a2 or x>0




60 The Elements of Probability Theory

270. An airplane is fired upon until a hit is scored. :I‘he
probability of a hit is p for each shot. Find the nflat_hematmal
expectation, the variance, and the standard deviation of the
number of shots that are made.

271. An approximative measurement of the diameter 4 of a
circle indicates that ¢ <d<b. For successive calculations, d
is treated as a random variable with a uniform law of distribu-
tion in the interval (a, #). Find the mean value and the variance
of the area of the circle.

272. Find the probability that a random variable i witha
normal Gaussian law of distribution will fall in the following
intervals:

(1) (@—o, a+o0); (2) (a—20, a+20); (3) (a =30, a-39).

273. The law of distribution of the absolute value of the
velocity v of a molecule is given by the formula¥*

Pv)y=+4 1/%3 v2e-a”’

(The constant @ is determined by the temperature of the gas and
the mass of the particle in question: a= m/2tT, where & is
Boltzmann’s constant.)

(a) Find the mean value of the path traversed by the mole-
cule in a unit of time (the mean free path of the molecule).

(b) Find the mean value of the kinetic energy of the molecule
(the ¢‘average energy’’ of the molecule).

274, A random variable ¢ obeys a normal Gaussian law with
known mean value ¢ and standard deviation ¢, Find the proba-
bility that & will fall in the interval (a, 8). Evaluate this proba-
bility for (z, B)= (5, 10), a =20, and o= 5.

275. Calculate the probability that a random variable & that
obeys a normal Gaussian law will fall on a segment of length 2/
symmetric about the center of dispersion ga.

27 6. Suppose that a particle (for example, a molecule of gas)
is, at the instant /= 0, at a distance x, from an infinite plane
wall that exerts a repelling force on the particle when the latter
is close to it. According to the theory of Brownian motion, the
expression

1 _ (t—xoP? _ + xo\?
w(x)dx = — 4Dt 4Dt
(x) VD +e ] dx

gives the probability that this particle will at any instant ¢ be at
a distance between x and x4 dx from the wall, Find the mean

*See, for example, G. P. Boyev, Teoriya veroyatnost ili
Gostekhi’zdat, 1950, p. 108, . erovatnostey (Probabilicy Theory),
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value of the displacement, the mean value of the square of the
displacement of the particle in the time ¢, and the variance of
the quantity x.

277. Suppose that t and 7 are independent random variables
with a uniform law of distribution, ¢ in the interval (a, b),7 in
the interval (c. d) (see problem 269). Find the mean value and
the variance of the product of these random variables.

278. A random variable x is distributed according to a
normal law with mean x and standard deviation Q,. Show that
the probability that the absolute value of the deviation x — x will
be between the numbers ¢ and 6 (where 0 < a < b) is equal to

Pa<|x—ux| <b)=@(—ij)—(D(Qix)'

where
t .

@(t):—v%fe_sz
0

279. A certain object is manufactured at a factory. Its
length x is a random variable distributed according to a nor-
mal Gaussian law, Its mean value is 20 ¢m and its variance is
0.2 cm, Find the probability that the length of a particular ob-
ject will be between 19.7 cm and 20.3 cm, that is, that its length
will not deviate from the mean length either way by more than
0.3 cm.

280, With the hypotheses of the preceding problem, what
precision in the length can be guaranteed with probability 0.95?

281, When a gun is fired, three mutually independent factors
may cause the shell to veer away from the target: (1) inaccuracy
in determining the position of the target, (2) error in sighting,
and (3) errors resulting from causes that vary from shot to shot
(the weight of the shell, atmospheric conditions, etc.). Suppose
that all three of these types of error are distributed according
to a normal law with mean value zero and that their probable
deviations are 24 m, 8 m, and 12 m. Find the probability that
the final deviation from the target will not exceed 40 m.

282, A random variable ¢ is distributed according tothe law

0, if x<0
fy={1 =
ae 9, if  x>0.

Find its mathematical expectation, variance, and distribution
function F (x)and construct its graph,
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283. A gun is fired from a point O along the x-axis. The
mean distance covered by a shell is x= l5pO m. Assume that
the distance covered /1 is distributed according to a normal law
with mean square deviation 40 m. What percent of the shells
will overshoot the targetbyan amount between 60 ar}d 89 mc.eters?

284. In technology, we often encounter a d1str1but’1on of
(necessarily positive) quantities & according to Maxwell’s law:

fO=g e

where o is the parameter of the distribution, equal to 0.6267 M:.

Show that ,
(1) the variance of a random variable that obeys Maxwell’s

law is equal to (3 — 8/x) a?==0,4540%
(2) the distribution function is given by

F ()= ()—2t¢ (),
where

t 12 £

2 e 2dt, ¢ ()= Vl?_’_ e 2

Vor 5

D (t) =

3. Limit theorems in probability theory

285. The probability of a certain event is equal to 0.005.
What is the probability that this event will occur exactly 40
times when 10,000 trials are performed?

286. Suppose that 409 of a certain lot ofarticles are of first
grade. If 50 objects are chosen in succession with each object
returned before the next is chosen, what is the probability that
exactly 25 of those chosen will be of first grade?

287. In problem 285, find the probability that the event will
occur no more than 70 times.

288, Suppose that 100 series of bombs are dropped on a
strip of enemy fortifications. With each such series, the mathe-
matical expectation of the number of hits is 2 and the mean
square deviation of the number of hits is 1.5. Find approxi-
mately the probability that with 100 such series the number of
bombs that will hit the strip will be between 180 and 200,

289. An urn contains white and black balls. The probability
of taking a white ball at random is p== 0,75,

(a) What is the probability that 8 out of 10 randomly chosen
balls will be white?
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Evaluate the probability that, out of 100 randomly chosen
balls (with replacement), the number of white balls will be

(b) no fewer than 70 and no more than 80;

(¢) no fewer than 81;

(d) no more than 70,

(¢) What is the probability that, out of 400 balls chosen at
random (with replacement) the relative frequency of appearance
of a white ball will deviate from pby an amount less than 0.035?

290, Suppose that a lot of 500 objects contains 300 that are
of first grade, If 150 objects are chosenat random with replace-
ment, what is the probability that the number of first-grade ob-
jects chosen will be

(a) between 78 and 1027

(b) between 78 and 1087

291. Use Laplace’s local theorem to find the probability
that, out of 10,000 births, 4,800 will be girls if the probability
of the birth of a girl is p= 0.485.

292, Suppose that the probability of occurrence of a certain
event is p= 0.3 ineachof2500 independenttrials, Use Laplace’s
integral theorem to find the probability that the event will occur
no fewer than 1500 and no more than 2000 times.

293. The average percent of rejects among certain manu-
factured articles is 3%. How large must a sample of these ob-
jects be for the probability that the deviation of the frequency of
occurrence of rejects from the value 0.03 will not exceed 0,02
to be 0.97? (Use Laplace’s integral theorem.,)

294, (a) The probability of occurrence of an event A4 in each
of n independent trials is p. If the number of trials is increased
indefinitely, the frequency m/n of the event A converges in prob-
ability to its probability p; that is, for arbitrary ¢ > 0,

. m
nan:oP{~—n——p’<e}__l
(Jakok Bernoulli’s theorem). Prove this by using Laplace’s
integral theorem,

(b) The probability of occurrence of an event in a single
trial is p= 0.6. Use Bernoulli’s theorem to find the smallest
number n of independent trials that will make the probability of
the inequality | m./n — 0.6 | < 0.1 exceed 0.97.

(c) If p=0.8, what is the lowest number r of independent

trials that will verify the inequality P{ 2 —p | <0.05 } > 0.98?

(Again use Bernoulli’s theorem.)
(d) In a certain factory, the percentage of rejects is 2.5%.
Use Bernoulli’s theorem to find the probability that the deviation
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from this figure in a sample of 8000 objects will be less than

0,005, .
295. Fifty objects are chosen (with replacement) from a

certain lot. What is the probability that half of those chosen will
be of first grade if the probability of choosing a first-grade ob-
ject is 0.47?

296. An observer makes a count of the number of calls
people make from a certain phone booth during an interval of
time ¢, Find

(a) the probability that he will not witness a single call;

(b) the probability that he will witness exactly two calls;
exactly n calls.

297. Suppose that on the average n electrons are emitted
from a hot cathode per unit of time. What is the probability
that exactly m electrons will be emitted fromthe cathode during
an interval Af?

298. A certain volume V of an ideal gas contains N mole-
cules. Find the mean square deviation of the number of mole-
cules 7 in a volume v (where v < V) from its mean value » and
the probability P, (z) that the number of particles in this volume
is exactly n.

299, Suppose that exactly n calls are made througha certain
switchboard in an hour, What is the probability that exactly m
calls will be made through this switchboard during a specified
one-minute interval?

300. There are n particles of an impurity ina volume V of a
certain liquid. Suppose that we examine a small portion of
volume v under a microscope, What will be the probability that
this small volume will contain m particles of the impurity?

301. Prove the following assertion: For any positive num-
ber e, the probability that a discrete random variable : with
mathematical expectation Mt and variance D: will deviate from
its mathematical expectation by an amountless than e is bounded
above by the ratio pt/¢2:

P(ls—Mi|>0) < 25

This is known as Chebyshev’s inequality. To what is the prob-
ability

Pt — Mi| <o)

equal?
302, Th.e mean length of objects in a certain set is 50 cm
and the variance is 0.1. Use Chebyshev’s inequality (problem 301)
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to get a bound for the probability that the length of any one of
these objects will lie between 49.5 cm and 50.5 cm.

303. Suppose that the probability of the birth of a boy is
0.515. Use Chebyshev’s inequality to obtain a bound for the
probability that out of 1000 births, the number of boys will be
between 480 and 550 inclusively.

304. Let

Xy Xg X3u es Xpoo..

be a sequence of independent random variables. Suppose that

the random variable x, can assume the values —na, 0, na with

probabilities 1/2r2, 1 — 1/n?, 1/2n? respectively. Is the law of

large numbers applicable to this sequence of random variables?
305. In a set of Bernoulli trials p= 0.5. Show that

1
Vont1'

.2_11/—;\<P2n(n)<

306. Suppose that x),x, « + +» X, - - » are dependent random

variables and that
n
o(3)
i=1 —_ 0

lim ———— =0,
nre
Show that the arithmetic mean of the observed values of these

random variables converges in probability to the arithmetic
mean of their mathematical expectations (Markov’s theorem).
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3. (a) A family of parallel planes; (b) a family of concentric
spheres with center at the coordinate origin; (c) a family of
hyperboloids of two sheets for ¢ < 0; a family of hyperboloids of
one sheet for ¢ > 0; a cone for ¢= 0,

8. In parts (a), (b), and (c), the given points are the extreme
values of the corresponding fields.

9. The level curves ¢= const, > F,F,are confocal ellipses
with foci at F,and F,. The level curve ¢= const, = F,F,de-
generates into the segment F\F,,

10. Ellipsoids of revolution (with axis of revolution passing
through the fixed points).

1. Circular cylinders for which the fixed straight line is
the axis.

FIG. 12 FIG. 13

12, A sphere of radius R =V p,p,, where p, is the distance
from the charge ¢, (for i= 1, 2) to the center of the sphere,
which lies on the continuation of the line segment joining the
given charges at a point that satisfies the equation

Pa "%

13. Yes.
14, No.
15, 8.6.

69
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0 af\ve. of
16. (a) (’0{_-*_'5) 5 (b)) — 557+
17. 0.

9
'8. e ——— ]

VX?,_—H?)

19. 2 V5.

20, Suggestion: Consider two infinitesimally close level sur-
faces ¢ and ¢+ Ag, where A¢p > 0 (see Fig. 13). From the c}raw-
ing, we see that the magnitudes of the displacements in the
direction n from the point A4 to the point B and in the direction I
from the point A to the point C are connected by the relationship

An = Al cos (n, 1), Consequently, %‘f—:i—f‘ cos(n, ). In the limit,

this equation gives the desired relationship.

21. In the direction of the vector y,i + x,j. The derivative in
the direction tangential to the level curve is 0. Hint: See prob-
lem 20,

24. () 0; (b) 0; (o) 1+]+ki (@) 03 (&) T2 (0 — o/,
25 u _ gradu-gradv, 2v

ol T |grad v | V3T _

26, cos (grad ¢(4), grad ¢(8)) = V21/6,

27, |grad ¢(M)|= 6. The direction cosines of the vector
grad ¢ (M) are respectively — 2/3, 1/3, and — 2/3.

28, — (e/r)rs, Hint: The potential of the field ¢= ¢/r.

29, Hint: The increase in the temperature T at the pointM,
is in the direction of the vector grad 7 (M), which is perpendicu-
lar to the isothermal surface T (M)=T (M,).

30./ (a) On the straight line y = 3x/2; (b) on the straight line
y=2x/3.

31. Hint: Draw a circle with diameter MN, Then, the de-
rivative of the function ¢(x, y) in the directions MA, MB, and MC
will be respectively MA,, — MB,, and 0,

32. Solution: The level curve ¢(x, y)== 0 is the ellipse _';_:+

2
Jr=1 (see Fig. 14). Since |r| + [R|=2a (- = F,M. R =F,M), we

have d|r|+4d|R[=0. But R=r—F,F, and dR=dr. By using the
relations d{R|=dR - R0 and dr =dr - r%, we easily obtain (dr, r®4 R0 =
0. This means that the vector r°4-R? is perpendicular to the
vector dr, which is tangent to the ellipse. Thus, the vector
r’+R% is directed along the outward normal to the level curve
¢(x. y) =0, that is, in the direction of increasing values of the
sum [r{- |R| and, consequently, of grad ¢(M)=r0—+R%, The
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reader should observe how |grad ¢(M)| varies as the point M is
moved around the ellipse,

FIG. 14

33*, Solution: The surface of an ellipsoid of revolution is
one of the level surfaces of the scalar field o(M)=r(P,. M)+
r(Pyy M)y=r,~r,. Therefore, grad ¢(M)= grad r,+4 grad r,=

—;'——i——:i From the sum of the unit vectors r,/r, and r,/r, we
2

construct the vector grad ¢ (M) (according to the parallelogram
rule). The diagonal of the parallelogram constructed bisects
the angle between the sides. Since the vector grad ¢(M) is
orthogonal to the level surface of the function ¢ (M) (cf. the
solution of problem 32), it follows that the normal to the ellip-
soid at the point M bisects the angle between the rays P,M and
P,M,. The assertion of the problem then follows easily.

34*, Cf. the solution to problem 33*,

35, (a) r/r; (b) 2r; (c) 57%; (d) a; (e) O.

36. (a) —2rpre, (r<a) and — 2'rrpa2—er—’ (r > a).
(b) e, — ; sin fey -} cos fe,.

© —Eyeost(14+2)e, By (1 =25 )sinte,.

3(1—3cos 0)

@) —iﬂpre,. e — 3 ’+34a sin 20

2yt cos 0 @ cos 0
(f) - €, — P e

37. gradpou_—fp.(P) frp dSp.

s Pn
38*, gradp.,v——ff P P“ dwp,

(@) Pop
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where

rpep=(x0-—x)i—{—(y0—y)j.

r
43. The potential of the field is equal to [ 7(r)rdr4-C, where
To

ro= const. -
45, F,=F, =0, F,="3R+L—|R—{)X [I—RZ—:C—,I—I];

forR>¢ F,=0; for R<(, F,=— 47252; forR=¢(, F,==— 2r.

Hint: The Newtonian force of attraction of the point PG, 7, 0),
at which the unit mass is concentrated, due to the gravitational
field caused by a mass continuously distributed on the surface

(S) with surface density p(x, y. 2)is given by the formula

FP)=F,P)i+F,(P)i+F.(P)k

where

F,=f(s)fp<M> 22 48y,

Fy=(fs)fp(M) ey A

r=r@® M=V x—+—n"+(z—0%

46, If the z-axis is used as the axis of the cylinder and the
base is in the xy-plane, then

F,—=F, — = 1___1
x Fy 0, Fz QKR(R V-R__2+h2).

. 4'7. If' t'he center of the base of the cone is at the coordinate
origin and its axis coincides with the z-axis, then

2xRh (o k(4 h)

2
Fa=Fy,=0. F,=F R+ H—=p~Ingtpy,

where

I~ VIR
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2
48, ¢=2B R4t —|R—L]). For R> ¢=4R; for R <{,
4n R?
C L d
49, &Mm/r?, where M is the mass of the sphere and % is the

gravitational constant.
13
1 dz 1 Vi o241
50, u(Py)=+5p —«—_«—plnL F,(PY=grad, u,=
YT _‘xr Tpq 2 Vi +2—1’ (Po)=grady,

1 i

rPQQ { rP p N . .
— = | 3—dz=y ———— - —*~, Where Q is anarbitrary point
2 _{ 5.0 V’?%P'HZ 5 p yp
on the straight line.
In the case of an infinite line, the desired potential is

v=tln Tp,p
and the gravitational field strength is grad ». To obtain the po-
tential v, take the limit of #; as - o,

51, H= 2r1/¢* (— yi+ xj), where p2=x2+4y2, The field lines
are given by the equations x?4- y2=2¢,, z=vc,.

Procedure: Consider a small element PP, =d{ of the z-axis
(where OP =¢{). According to the Biot-Savart law, the direction
of the magnetic field strength dH that will exist at a pointM as a
result of a current passing through the element d{ of the con-
ductor will be perpendicular to the plane defmed by the point M
and the elementdt,

z H
u 9
b, aq M(x,y,2)
p
z r
G Y
X
FIG. 15

More specifically, the magnetic field vector will point in a
direction such that it will tend to produce a rotation that ap-
pears clockwise as viewed from the negative z-axis (whence the
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current flows) (see Fig. 15). In other words, the direction of the

vector dH coincides with that of the cross product 4 X r;,, where
di=PP, (]d}|=dC) and r,=PM. From the same law, the calcu-

lated value of the magnetic field intensityis dH = 1/} sin (d5. ry) dl
(where r,=|ry[). Since [df X r|=T, d% sin (d.r;), we may write

dH =5 (@ X 1)
r

Therefore,

[=e)

1
H=fr—?(dg><rl)

-0

To evaluate this integral, it is convenient to work with the pro-
jections. We have
r1=PM=0M—0P=r-—0P=(xi—{-yj+zk) — k=
=xi+yl+(z—0k

and

n=yY24+y+—=0"=yp—(z—0%

where p=} x?+y? is the distance between the point M and the
conductor, Therefore, we easily find df X r;= — y dli + x d(j and

© .
H=I(—)’i+XJ)_f [PZ+(Z—K)2F/’

Here, the integral is easily evaluated by means of the substitu-
tion d=2z—19 tan ¢.
We finally obtain
27 . 27
H=—7 (—yi4+x) [H]= -

The system of differential equations of the field lines of the field
H is of the form

dx dy‘dz
—y  x 0

By integrating this system, we find the family of field lines that
we are seeking.
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52*, gradp, a_.—fffp(P) Ipp dvp.
@

53. (a) x2=cy; (b) y=1¢y2, x2-|- v 422 =c,y; (C)x =c,y,y = ¢,2;
(d) the curves of intersection of the hyperbolic cylinder with the
parabolic cylinders are of the form xy=c,, y?=c¢,2z; (e) rays
issuing from the point at which the charge is placed.

55. (a) (x—c)2+y*=a’+c?, where 2a is the distance be-
tween the wires; (b) (x2+ y?)”=cx2, Solution: Since the wires
are infinitely long, the field E caused by them cannot depend on
the coordinate z; that is, the field is the same at all points of
any straight line MN (see Fig. 16) parallel to the wires: if we
draw a plane perpendicular to the wires through an arbitrary
point on this straight line, this plane will divide the wires into
two infinitely long parts. Thus, the field in question is plane,
Suppose that E =<E d--E,j. Then, the differential equation of the
lines of force can be written in the form

=7 (1)
Let us find E, and E,. As a preliminary to this, we find the po-
tential ¢ of the f1e1d Because of the symmetry referred to
above, we may take a point P in theXY-plane as our point of
observation, Then, the potential caused by the wiresat the point
P is, because of the principle of superposition of fields,
v=9,+o.=¢ [F—e [F=

-—00

- dz ~ dz
=2 _ — —_—
(of ViA+2 oer¥+z2)
If we integrate, we obtain ¢=2e(Inr,—Inr)). Also, if we start
with the relation E=—. grad ¢, we find

E= 2 — I— 2§ r
’2
If we denote the distance between the wires by L= 2a, so that
the coordinates of the points 4 and Bare respectively (0, — a, 0)
and (0, a, 0), we have

n=xi+@y+ajr=xi4(y—a)j

and

E,— 3axy. 8eaxy  E, = 4ea (x'-’—y2+a7)
rir}
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The differential equation of the lines of force (1) becomes,
after we substitute the values found for E,and E,,
[x2—(y?—ad)]dx+2xydy=0

If we now set y2— a?=u?, We obtain the homoger}eous equation
(x? — u?) dx —+ 2xudu=0. When we solve this 9quat1on apd return
to the original variables, we obtain the desired equation of the
lines of force of this field: (x — ¢+ y*= a?-}c2,

-e
\

l=2a M

©

FIG. 16

57. r=c sin? 8, ¢= const. Hint: Use the assertion in prob-
lem 56b,

62, (a) The trajectories are the lines y = const.; the motion
proceeds in the direction of the positive x-axis with velocity
equal to 1. (b) The trajectories constitute a family of circles
passing through the coordinate origin with centers onthe y-axis.
The fluid streams out from the coordinate origin to the left and
into the coordinate origin from the right (see Fig. 17) with

velocity
v= 1/ (%)2 +(_g;7)2: 2 ~1+—_y2

(c) The trajectories are the curves y—ﬁywz const. The

velocity is

—_ P —x? Yy, 2xy .
v (1+ x’—|—y2)2)l+ (x’—}—y’)’-’

63. (1) 0; () ma% (3) 1/6 (24 V/3); (4) =/6 [(1+ 4a)" — 1];
(5) (a) 2s=R7/105; (b) — 2=R7/105; (6) 0; (7) 2/15; (8) =Rr% (9)
R?H (2/3 R + =H/8B).
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FIG. 17

64, (1)I=2fff(x+y+z)du); (2) 0.
65. Solution: (wc)g (v; S) =Q (r; S) =ffr,,dS= ff(x cos a—
N N

y cos f+ 2 cosy)dS=3T, where v= r=xi +yj 4+ 2k, r,=r-n,
where in turn n= cos @i cos Bj+ cos 7k is the unit outer nor-
mal vector to the surface S of the body (7).

66. (a) nR*H; (b) 3nRH; (c) 4 7R3,

67, (=4 2)/3.

68. Q= 0, if the body (G) does not contain the coordinate
origin, If it does contain the coordinate origin, Q =—4=, Pro-
cedure: Let r=xi-4 yj+ zk denote the velocity of a particle of

o 1 r r
the liquid v=ma X =7,
note the outer normal to the surface S of the body (G). Then, the
amount of liquid is given by

Q=0Q(v; S)=ffv,, dS =

(S)

=ff—r17(xcosa—|—ycosﬁ—}—zcos 1dS

(s
Obviously, the direction cosines of the vector r are

Let n= cos «i 4 cos Bj+ cos 1k de-

’ X . r_ Y r__ =2
cosa’ =, cosf'=-=>, cosy =—.

Therefore

Q=ff—r!,—(cosacosa’—}-cosBcos@’—FcosTcosy’)dS:

)
—ff cos(n r) ds

S
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and we have arrived at what isknownas Gauss’ surface integral.
(For the evaluation of this integral, see, for example, Kurs dif-

jal’ j 1 ’ ) ) 'ya [Course indifferential
ferentsial’nogo i integral nogoischisleniya| .
and integral calculus], Vol. 3, by G. M. Fikhtengol’ts, 1949,
p. 409). B
69. 2=Y3 1 (yz—1)mz2,
70. Solution: The flux of the vector R througb the surface

S is

where dS is a vector directed along the normal to a surface ele-
ment 4S and equal in magnitude to the area of that element. We
may represent this flux as the limit of the corresponding ap-
proximating sum

QR. S)= lim  R,AS,

max d (ASl)->0 (é)

where d(AS)) is the diameter of the element 4S,. In the scalar
product R,AS,=R;AS, cos (R;. AS)), the factor AS;cos (R;. AS)) rep-
resents the projection of the element AS, in the direction per-
pendicular to the vector R;:

AS,cos R, AS) =AS;n=(4S), (|n|=1)

Through an area (AS;), there pass N,=k|R,|(AS), field lines.
Therefore,

R, AS; = [R;[(4S), = A,/}
and

R Sj= lim Y RAS =1
QR. S a(AéSLo/,aR‘AS‘ w N

where N is the number of field lines crossing the surface S.

71, (a) The flux is equal to —4rq if the charge ¢ lies within
the sphere and it is equal to zero if it lies outside. This result
holds for an arbitrary closed surface—a consequence of the fact
that the flux of an arbitrary vector a is independent of the shape
of the surface, which is a consequence of the Gauss-Ostrogradskiy
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theorem, Let us prove this. Suppose that there is an isolated
source of a field a at a point P enclosed by an arbitrary surface
S. Consider the region (v) bounded by the two surfaces S and S,,
where S, lies inside S (see Fig.18). Within this region, diva =0,
It follows from the Gauss-Ostrogradskiy theorem that

[ [enaS+ [ [ anas=o.
(S Sy

Here, the projections of the vector a are taken on the outer
normals to the surfaces in question. If we reverse the direction
of the outer normal to the surface S,, the projection will change
its sign and we will obtain

ffa,,dS:ffa,,‘ S, 1. e. Q(a; S)=Q(a; S.
S Sy

This equation may be interpreted as follows: The flux of the
vector through a closed surface remains unchanged as a result
of deformation of that surface so long as this surface does not
touch new sources or sinks (where div a -£ 0), Therefore, it
follows in particular that ina solenoidal field a (where div a = 0)
the same number of field lines will pass through all sections of
a vector tube (see problem 70); that is, in such a field, the field
lines neither appear nor disappear but either go out to infinity
or form closed curves.

FIG. 18

72, Solution: Let us construct a spherical surface S through
the point in question. Then,

Q(D; S)::ffD,,dSszDcos(D. a)ds.
) (s)
From the Gauss-Ostrogradskiy theorem (problem 71),
fchos(D. a)dS = 4rlq.
©®

Because of the symmetry of the situation, the vector D must
have the same value at all points of the spherical surface and,
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since cos (D, a)= 1, it follows from the preceding equation

that
D . 4nr? = 4xlq

and

where r is the distance from the point in question to the center
of the sphere (which we may assume to be at the coordinate
origin). Therefore, we note that if the point in question lies
inside the charged sphere (where r < a) (see Fig. 19), there will
be no charges within the sphere of radius r, so that g =0 and
D=0, On the other hand, ifthe point in question lies outside the
sphere S, this sphere of radius r will enclose the sphere of
radius a. Therefore, it will enclose a charge ¢. In this case,

Zq=q=0-4ﬁ¢12

and

FIG, 19

73. Solution: Let us draw a cylindrical surface S i
20) of altitude 4 through the poin%,in question. And lét(?sefgll';gr;
a closed cylinder by drawing plane surfaces S, and S, through
the top and bottom of this cylindrical surface. Because of the
symmetry of the situation, the vector D is directed perpendicu-
larly to the lateral surface Soand must be of the same magnitude
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at all points of it, From this it follows that the flux through the
surfaces S, and S, is 0. From Ostrogradskiy’s theorem,

‘ﬁfDMS=ffD¢&=DQwh=%£.

So+S1+S2 So

A charge Yq enclosed by the combined surface Sy+ S, S, is
distributed on a cylinder of radius a and altitude # and is equal
to g =2nahs, From this, we find

2rahs 4nas | __ 4mas
D-—-4Tf'—2—1_ﬁ'o-——r——, D= 72 r (r>a).

By a procedure analogous to that followed in solving problem
72, we can verify that the field within the charged cylinder is
equal to zero,

2a
Sﬂ
/’4’ ————— 4\\50 =
4 | | \\
Sy !
D mTTES D
FIG. 20
74, —4”—""2"—, where 7 is the universal gravitational constant,
Ve F il
75, 2na.
76. Q@ 9= [ [(ta)rdsaz.
6
78, 6.
79. 0

80. (a) 2; (b) 3.

81. (a) At the point P, there is a source of density 7/4=; at
the point P,, there is a sink of density 1/4r; at the point P, there
is neither a source nor a sink,
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82, divR= 3 f(r)—rf'(r) .
83. Method of solution: The scalar field defined by the equa-

tion ¢= div R is called the source field belonging to the vectc?r
field R. The total strength of the sources of the f.ield R that lie
within a closed surface bounding a region (G) is equal to the

integral f f f div Rdwv.
@)

84. The divergence of both fields is zero. Procedur?: As-
suming that the axis of rotation of the liquid coincides with the
Z-axis and that r is the radius-vector of the revolving point
M(x, y, z), we find v=uv X r, where o = ok is the angular veloc-
ity. From this, we easily obtain v=o(— yi+- xj), where o = |o].

86, Hint: Cf. the answer to problem 71,

87. Hint for part (b): Since the flux of the vector F from

within the region (v) is equal to

Q=—4r [ [ [pav.

()

to compute div F, we may use the invariant definition of the di-
vergence and the mean-value theorem for integrals.

88. The field is caused by charges distributed with constant
density p= 3//4~ inside the given sphere. (Outside the sphere,
the charge density is 0.)

89. Solution: Let us find divR (P) = r¢’ (r)+ 37(r), where o(r) =
f()/r. From this, we conclude that the field R will be solenoidal
only when the function ¢(r) satisfies the differential equation
r¢’ (r)=+ 3¢(r)= 0. If we solve this equation, we obtain ¢ (r)= ¢/rs.
Consequently,

IR = 1£ ()| =L

90. (a) 3rz; (b) % %(ri’a,); (c) 2cos ) 0; (e) 0.

-

92, (a) 2r; (b) — 4%a?V3; () = 0 if the coordinate origin
is outside the circle andT' = 2r ifthe coordinate origin is within
the circle (€); (d) 0; (e) — 3=R?/16; (f) 0; (g) 2= V2 R?sin (z/4 — a);
(h) 0. If the vectors in the condition of the problem are thought
of as a distribution of forces applied to the contour, the inequality
['> 0 means that the contour will rotate in the positive direc-
tion, If I' < 0, the contour rotates in the negative direction,

93. (a) If the circle lies in the X Y-plane, the circulation T of

the vector a will be — =62, If the circle lies in the plane y =1,
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C>Py

. 1
(b w, (P.)= lim - ad = — 1.
a3 o)
94, I‘=fHdr=41cI; 0.
L

95. (a) 0; (b) O.

96. The assertion that the flux of the curl is independent of
the shape of the surface follows immediately from Stokes’
theorem:

fadL:ffcurlads
L

()

(Cf. answer to problem 71a),
97. Hint: Derive the formula o= 1/2 curl v -1,
99. Hint: Cf. problem 97 and the hint to it.
100. Hint: The assertion in the problem is a specific case
of Stokes’ theorem (as applied to the magnetic field vector).
101, curl R(P)=1[p%’ (p)-+ 27 (o)1 k, Where ¢(p)= 7 (»)/ .
Solution: It is convenient to write the vector R (P)in the form

RP)=1® L =40)t(P)

where ¢(p)= 7 ()/¢, and t(P) is a vector collinear with < (P) and of
length p. We direct the Z-axis along the straight line / and the
X- and Y-axes in a plane perpendicular to it. We denote the co-
ordinates of the point P by x, y, and 2. Then, the components of
the vector t(P)will be — y,x,0 and the components of the vector
R (P)will be

R (P)=—y9() R,(P)=x9(p) R,(P)=0.

Therefore,
R, (P 0
——gy‘ Y= — ¢ () 7y — ¢
or, since
dp dp __ Yy
2 — 2 2 —_ = N =L
p? = x?2 4 y? and dey—Qy. ay =5
we have

IR (P) _

¥ o
Jy — 5 ¥ @O—¢0
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Analogously,
ORy (P) . x )
et i Ok 4O
Also, obviously,
ORy _ OR,
o = ez =

Finally, by using the formula given in problem 95 for curl

R (P) we obtain the desired result.
102, The length of the vector R(P) must be inversely propor-

tional to the distance p.

Hint: Use the result of the solution of problem 101,

103. Solution: For simplicity, let us consider the field of a
direct current /, The circulation of the vector H around a curve
can be represented in the form

I‘=f(H, ) ds = f(H. dl), (I=abcda),
l abcda
where
dl=~=dS.
We represent the vector denoting the displacement of a point
in the form (Fig, 21a)
dl=dl, +dl,

where dl; is directed along the tangent toa line of force, which,
in the present case, is a circle with center on the axis of the
current and dl, is a vector directed along the normal to the line
of force or to the vector H.

Obviously,

(M. d)=(H, dl,+dl,)=(H. dl,).

But di =ds=rdyand H=21I/cr, This formula is obtained from
the Biot-Savart law, Therefore,

(H, dly= % de.

Consequently,
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We note that this formula is valid for an arbitrary relative po-
sition of the curve abcda with respect to the conductor; that is,
it applies both when the curve abcda encircles the conductor and
when it does not. If the curve abcda does not encircle the con-
ductor (Fig. 21b),

r=— f(ﬂ. dl) = f(u. dl)—f—f(ﬂ. dl).
abeda abe cda

But since

[ an =L, —0)

abe

and

2/
[ d) = -6, — 9y,

cda

we finally obtain I'= 0,

FIG. 21

104, o (P)=—zj.

Hint: w(P)=:1/2 curl v (see problem 99).

105. Hint: It will be sufficient to show that div curl R= 0.
106. Hint: The problem consists in showing that

ff curl ,RdS =0.
()]

Use Ostrogradskiy’s theorem and the assertion of problem 105,
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107. 0. Cf. the hint to problem 83.

108, Q=f(s)fdivvd5={s)f (—;’;—;—g—;’)dxdy;
= (5 e
)

110. Solution: It follows from the symmetry of the problem
that the magnetic field intensity is the same at all points equi-
distant from the axis and that it is directed tangentially to a
circle with center on the axis of the conductor. To solve the
problem, we use the assertion in problem 100. As our curve |/,
we take a magnetic line of force (see Fig. 22). Then, the circu-
lation of the vector H will be

4n
f(H. dl)=Hfdl=TZI.
U] )

or, sincefdl: 2nr, we have H = 237/ c¢r, If the point in question
0
lies outside the conductor (that is, ifr > a), £/ is the total cur-
rent / flowing through the conductor and H =27/ cr. If the point
in question lies within the conductor (in which case,r < a), £/
denotes the current flowing through the circle with density =r2,
and is equal to
Ir?

2/=_/'7tr2-— 27

where /is the current density (/= 1/ na?). Consequently, in this
case, H= 2Ir/ca,

a) b)
FIG, 22

111, The field outside the tube is H,,, = 2//cr; the field in-
side the tube is 0, ext /cr; ield in
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112, Solution: According to assertion of problem 100,

f(H. a1 =i‘c.’i A
()]

where (/) is an arbitrary closed contour in the magnetic field in
question. In the expression above, I/ represents the algebraic
sum of the currents threading the contour. If a surface S is
drawn over the contour (!) (that is, if (/) is the boundary of the
surface S), all these currents pass through S. Therefore, £/ can
be represented as the integral of the currentdensity through the
surface

):1=f(s)fjds.

where 4S is an area vector, that is, a vector directed perpen-
dicularly to the surface and equal in magnitude to the area. Thus,

[, an = % jas.
U]

(S)

But, from Stokes’ theorem,

fﬂdl:ffcurlﬂds.
) (&)

Therefore, for an arbitrary surface S,

ffcurlﬂds=ff“c—"jds.
() (S)

From this we get

curl H=ic’ij.

This equation is the differential form of the circulation theorem
formulated in problem 100.

Equation (2) expresses the fact that the divergence of the
magnetic flux density vector B=pH of a constant magnetic field
is 0,

114. As an example, let us consider the solution of the
problem for the field H= 2//r? (xj — yi), where r?=x?+-y2. If we
use, for example, the formula given in problem 95, we easily
find that curl H= 0, Consequently, the field H has a potential
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(see problem 113) and therefore, H= grad ¢ (where ¢ is the po-
tential of the field H). Furthermore,

Hdr=21;1_:;;(idx+jdy+kdz)=

xdy—ydx __ Y
=2/—72—;7-—2Id(arctan x ‘+'C).

Therefore (see problem 35), we conclude that the desired po-
tential is

— Y
<p_21(arctan x-{-c).

9 i )
15, (a) curla:(—da?’— dar‘)eq,, curlb=(r24 2% e,;
1 da, 1 da, .
(b) curl a= a5~ & —7 Gp O
(c) curl a=ze -+ Coi? 2

(d) curl a= Sl:,e e,
(e) O.
117. The Laplacians of all these functions are equal to zero
(in the first two expressions, we assume that r + 0).

18.
E=fffp—e—:7dv.
(v)

119. Hint: If we assume that there exist two vectors a; and
a, satisfying equations (1) and the boundary condition (2), we ob-
tain the boundary-value problem

divb=0, curlb=0,
b,=0.

for the vector b=a, —a,. From this it follows that the vector b
has a potential: b = grad ¢; therefore, div grad ¢ =23¢= 0.
Green’s formula can then be used if we setu=v=q.

120. Hint: Set ¢= 1 and y=u? in the second of Green’s
formulas.,

121, In the case of cylindrical coordinates,u=c,lnr4-¢,; in
the case of spherical coordinates, u= ¢,/r +c,.

. 122, Ostrogradskiy’s formula for the vector grad ¢ is of the
orm

f(rf)fﬁwT:fo%:dS. Q)
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The integral f f % dS is equal to the flux of the vector v (that
()

is, the amount of liquid flowing through the surface S in a unit of
time). Since v= grad ¢, we have Ap= div v. Equation (1) shows
that the integral of the divergence of the vector v over the vol-
ume T occupied by the liquid is equal to the flux of this vector
through the boundary of the region 'T. If the liquid is incom-
pressible (in which case div v= 0), this flux will be equal to
Zero,

125, No.

126, Solution: By definition, the vector potential of the mag-
netic field of a linear current is

=i %
~co

Because of the symmetry of the situation, the field will be the
same in all planes perpendicular to the Z-axis (see Fig. 23);
therefore, we may take our point of observation P on theXVY-plane.
Obviously, 4,= A, = 0 and

—

oo N
I dz I .. dz
A‘_7_£Vr2+zz _?/Jme_,fv Vg
=2 im [In(N+ VN2 y?) — Inr].
N> <
Also,
. 0A 0A
H=H’ti+H"J=( 0)'2 I—5x )N-co’
so that
04, 2f . _ 0A A
Hx: 0)’ N-(x:=__[_r?y' Hy—_ dxz N-w_?r—zx
Consequently,
I . 2/ 2 1 142 21
H=—%;y|+mxj. H=1H|=VH?(+Hy=7,

As the final expression for the vector H shows, the logarithmic
divergence of the vector A has no significance. Therefox:e, the
logarithmically divergent term In (N VN4 x2+ y?) in the
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expression A, can be discarded. (The vector A has nq ac!;ual
physical meaning but the vector H represents forces acting in a
magnetic field on moving charges and conductors.) Therefore,
the desired potential A can be represented in the form A = A4,k=

— 27/cInr-k.

dl=dz

[

Pix,y,0)

FIG. 23

127. A= — 1/c [i In (r—x)+jln(r—y)+kin(r — 2)], where
r?=x2+ y2+ 22, (In the expressions for the projections of the
vector A, the terms that are logarithmically divergent at in-
finity and which do not contribute in the evaluation of the field
intensity are discarded. Cf. the solution to problem 126.)

128.

129,

where u is the volume charge density:

[ =const. for r <R,
=10
for r>R.

. Solution: The problem reduces tointegrating Poisson’s equa-
t1'on Au=—4mp, Because of the spherically symmetric charge
distribution (note that the potential « depends only on the dis-
tance r), in spherical coordinates (with origin at the center of
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the sphere) the equation becomes

| [, duy  [—4m (<R
7w (P @)=l o ¢>n.

The arbitrary constants that appear in the general solution of
this equation must be determined from the boundary conditions:

(1) The potential must remain finite as r— 0 and it must
vanish at infinity; (2) the potential of an electrostatic field
must be a continuous function of the points in space, so that

o (R) = ¢, (R); (3) (0‘9‘ )r: ( %“;e )r_ . This last condition means

that the normal component of the vector E must not have a dis-
continuity on the surface of the sphere since the surface charge
density is zero,

130, o/r.

131.

.
’

ttg — wpr? (r < a)
= uo——ﬂpa2<1 +21in _ar_) (r>a)

2mpr r<a)

2

E 21:9% r (r>a),
where u, is the potential of the field on the axis of the cylinder.
Solution: The problem leads to Poisson’s integral equation Au =
— 4mp, where p=p for r <eand p= 0 for r > a., Because of the
obvious symmetry of the field, this equation can be written in

cylindrical coordinates, r, 6, z (with z-axis placed along the
axis of the cylinder) in the form

i_d_(rﬂ)_{"‘““’ (r <o
r o 0 (r> a).

Solving this equation, we obtain

uy=—mwpri4cInr—+c¢, (r<a)
{ue::calnr-{—q (r>a)

and the field intensity is

lI

l ’““ =2mpr —--  (r <o),
| E
{

d“f 5 (r> a).
dr r

Il
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To keep E, bounded for r= 0, we must take ¢, = 0. Since
u;—c, as r— 0 (because we are taking ¢, = 0), we take €y = Uy
which is the potential of the field on the axis of the cylinder,
The constants ¢, and ¢, are determined by the requirement that
the potential and the normal component of the vector E be con-
tinuous on the surface of the cylinder:

w@=q @ () =(g) .

132, The displacement «(x, f) of the point x from the equilib-
rium positionat an arbitrary instant # > 0 satisfies the equation

uy=a0a%u,, (—oo<x<oo, t>0)

and the initial conditions

h o 0

o (62— x? —c<x <o),

u(x, 0)= o7 (€ >« <o

0 (—ee<x L —e <L x < oo)
u,(x, 0)=20.

133. The displacement u(x, f) of the cross section with
abscissa x at an instant ¢ > 0 satisfies the equation

E
llxx-"—‘:?u” (aZ:—P_' O<x<lr t>0)'

where £ is Young’s modulus and ¢ is the line density. The ad-
ditional conditions are:

u(0, £)=0 (the condition that the end x — 0 be clamped)
u,(l, t)=0 (the condition that the end x =1/ be free)
u(x, 0)=np(x)

U, (. 0)=v(x) } the initial conditions (0 < x < /).

134.
0% 9% _ /Gl
134. S =al5, o= %
60, H=0, 28ELH o i"b(ﬂ; 2 Gl
X

dt?

b, =g (x), T8N o) 0<x<)

wher.e b is the a.ngle of twist of the cross section of the rod with
gbsqssa X, G is the shear modulus, / is the polar moment of
inertia of the cross section, £ is the moment of inertia per unit
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length of the rod, and %, is the moment of inertia of the pulley
about the axis of the rod. Remark: The term ‘‘torsional vibra-
tions’’ of a rod is applied to vibrations such that the cross sec-

tions of the rod rotate with respect to each other while rotating
about the axis of the rod.

135. (a) u(x, )= sin x cos ¢; (b) u(x. {)=A/a sin x sin at.

u(x, f=- [p(x—at) +-p(x+ahl +

xX+at
o [ @&+ [ [aG vaian
x-at (D)
where a?= T/, is the region of integration (D) shown in Fig. 24,
that is, a triangle whose sides are segments of the character-
istics x — at =const. and x4 af = const.

T

Pix.t)

(D)

x-at x+at

FIG. 24
1370

ve, h=e{§lo(x—an+y(x4an +
+ e W (x—at) = (x +an},
I(e, =t {51y (x— a1 (e anl+

_}_T;L—[cp(x—at)—cp(x—}—at)]}.

where
S
L' T VIC
Hint: The intensity v=wv(x. ¢ and the current /(x, ¢) ina
distortionless line satisfy the equations

a4 =

1
Vy= azvxx' IU = azlxx (a = Vﬁ)
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(See, for example, A. N. Tikhonov and A. A.Samars%ciy,
Uravneniya matematicheskoy fiziki (Equations of Mathemat_lﬁal
Physics).) To integrate these equations, we set v=¢ "w,
choosing 7 so that the coefficient ow/ot will vanish.

139. Hint: Seek a solution for

u(x, H=U(x, t)+v(x 1)
where U (x, t)is the solution of the boundary-value problem
Up=a"Uy (0<x<oo; ¢>0)

Ux, 0)=p(x), Us(x, 0)=v(x) (1)
U, £)=0,

and v(x, f)is a solution of the problem

Vy=a"Ug (0 < x <005 £>0),
v(x, 0)=wv;(x, 0)=0, (v)
v(0, )=19(¢).
To solve the problem («), we extend the initial conditions as

odd functions to the entire real line (-— oo < x < o) and we then
use d’Alembert’s formula, We obtain

{ e at) — (ot ) x+at
" ;:( —X)+% f v(E)ds  for
at-x
t> 2
U(x‘ t)= x4+ at
t —
p(x+a)-2l-!*(x at)_*_g_la_ f v(¢)at for
x-at
X
t<—a'-

The solution of problem (v) is the function

X
e, t)=J xp(t—7) for ¢>
0

x
a
X
a

for ¢+ <

140. (a) #(2x, 10) = sin 2x2; (b) u(2x, 10) =0,
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141,

—k (,_i) ¥
Ae a for t > -,
u(x, t)= P> a

0 for 0<t<§.

Hint: The problem consists in integrating the equation
uy=au,, (x>0, t>0)
with the conditions

u(0, )y=yp () (¢ >0);
u(x, O=u,(x. 0=0 O<x<<o0).

Seek a solution in the form of a wave being propagated with
velocity a along the rod: u(x, £)="0(x— at),
142, u4(x,t)=A cos o (¢t — x/a) for x<at and u(x, )=0 for
x> at, The velocity of propagation of the wave a = 80.8 m/sec.
143,

1Po
aMuo[ ——<x-an]
u(x, y={ Fps L1 =™ for x—at <0,
0 for x—at > 0.

Hint: The problem consists in integrating the equation

P
”tr =a uxx'

where u(x, ¢t) is the condensation of the gas, that is, the relative
change in the density of the vibrating gas (¢ —p)/p (see V. 1.
Levin, Metody matematicheskoy fiziki [ Methods of Mathematical
Physics], p. 96) with the conditions
Muy (0, £)=S87Pou(0, 1),
20, 0)=0, /0, O)=19, u,(x, 0)=0 (x>0,
Here, P, is the initial pressure of the gas, S is the area of a

cross section of the tube, 1= cP/c is the ratio of the specific
heat at constant pressure to the specific heat at constant vol-

¢ P
ume, &= CPPO , and p, is the initial density of the gas.
vPo
144,
0 for ¢ < .{_'

u(x, )= .

Asinu)(t—ai) for ¢ > =
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145.

X

0 for t<7,

u(x, )=
Asin%(at—x) for t>%.

146. At the instant #,= [/2a, all points of the string lie on
the X-axis. At the instant #,= 1/a, the string is in the position
occupied by the mirror image of its original position with re-
spect to the X-axis.

147. Pvocedure: The functionsp (x)andy(x)should be extended
as odd functions from the interval [0, /] to the interval [—{, 0]
and then as periodic functions with period 2! to the entire x-
axis., The function @ (x, ¢), defined according to d’Alembert’s
formula in terms of the extensions described above of the orig-
inal functions p(x) and v(x), gives an initial disturbance of an
infinite string (— oo < x < o0), that coincides with the desired
disturbance on the interval [0, {].

148.
0 for 0<t<r:R.
So (r —at) r—R r+R
S = T for T <t< L
0 for %_—R<t<oo.

Procedure: The condensation S(x, y, z, f) satisfies the wave
equation

anc_ o[0% | 028 . o°S
Se=eraS=a(Tn+ 50+ 53).

Between the condensation S and the velocity potential « of the
gas, we have the relationship

1
a?

R ’
S = u,.

' The problem amounts to integrating the wave equation above
with the initial conditions

S

———lSO fOl' f<R, S
{0 for r>R TOF =0,

=0 =0
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where r is the distance from the coordinate origin (the center
of the sphere is assumed to be at the origin) to a variable point
M(x, y. 2). In solving the problem, one must remember that the

initial vibrations of the gas are of a radial nature.
149,

u(x, )= AsinZlcos B (0 < x <L >0).
]50.

w,,=""l”=£l’1‘/—€— (n=1, 2 3....)
151,

0, =241 g ’ (n=0,1,2 3, ...)

where a = ‘/%. E is Young’s modulus, and p is the density of
the rod. In the case in which a weight M, is attached to the free
end, mn=‘;—1,, (for n=1, 2, ...), where the 7, are the positive

roots of the equationy tany= M/M,, M being the mass of the rod.
152, 632 vibrations per second.
153. The amplitudesare H,=V A2+ B; the period of vibra-
tion is
__ 4 .
""=%on+1 V E
where

4
A, =2 [p@sin)id

!

0
2 .
By =7 ofv(e)sinx,,gdc.

__2n+41 .
Ny=Zg—n  (1=0. 1,2 3 ...),
p is the density of the rod, and £ is the modulus of elasticity of
the material of which the rod is made.
Procedure: Remember that the stress is zero at the free
end. Therefore, u,(!, t)==0. The harmonics

u,(x, t)=(A,cosal,t + B,sinak f)sin} x,

241
A, a= ”jl‘ £ (r=0,1,2...)
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represent standing waves in the rod. If we write 4,(x, ) in the
formula

u, (%, ty=H_ sin(akt 4 a,)sink x,
i = A cosa —ﬂ)
(Snan——ﬁn, S n—Hn ’

we find

H,=V A& +B.

The period is given by the formula

_2r _ 2= _ 1/?
Tfl = 'm—”' = a)\n » a = —P—" .
The quantities 4, and B, are determined in the course of solving

the boundary-value problem.
154,

u(x, t)y=— 32k 2 (2 +1)3 sin

where # is the maximum initial deviation of the string from its
equilibrium position. In the particular case mentioned,

(2n+l)1tx cos 2n;{-1 xat,

u(x, t)y=cosatsinx O<x<x, ¢t>0).
155,
u(x t) =

_2‘ [a cos ﬂat—}—b sin +1 ﬂat]sin QHQTI "X,

n=g

where

!
2 . 2n41
=—lfp(x)sm——2—1l— rxdx,
0

!
4 N .2
b, = ———_J v(x)sin n;lnxdx.
0

@2n+1) na
Procedure: The problem amounts to integrating the equation

— 2 _E
“u—a ux.r' az—"p"
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under the conditions
u@©, H=0, u,(l H=0 (¢>0).
u(x, 0)=p(x), u,(x, =v(x) OLxL,

where u(x, ¢£) is the displacement of the cross section whose

abs;.}issa is x, p is the linear density,and E is Young’s modulus.
56.

— ol A2 al? nnx,
En =0l =S T

Hint: The energy of the nth harmonic (the nth standing wave
u,) of the transverse vibrations of the string is equal to

]
1 ou, \2 oupy\2
En—‘z'of["('oT') +7(G2) e
where T is the tension and p is the linear density of the string.

157. The deviation z(x, ¢) at an instant ¢ > 0 of the point on
the string whose abscissa is x is given by the formula

nnx

u(x, t)y= E (@, c0s 0t 4 b, sin @, f) sin —— -

n=1
a (o 2(x=1)
+?w_2 _— < | }sinwt,

cosQ—(';l
where
!
0, = ﬂ;w ’ an=%-fp(x)sinf';—x-dx.
0
2 nnx

dx.

v(x)sin

Tna {

&
Il
O,

Hint: First solve the problem of the purely forced vibrations
of the string under the action of an external force equal to
A/e sin of, where p is the constant density of the string, and
then seek a solution in the form

uy(x, )= X (x)sinot.
159.

8el —1)nt! 2n 41 2n+41
u(x, )y=—5 Z (én_*)_ Ty sin 2’}' mx - COS 5 — mat,
n

=0
where a is the velocity of propagation of longitudinal waves in
the rod.
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Hint: The problem amounts to integrating the equation «,, =
au,, with the conditions

u (—1 =0, u,(l, t)y=0,
u(x, )= —ex, u,(x, 0)=0.

160. For the flat hammer,

oo
4v,! 1 . =nx, ., =nd . =nx . m=nat
= in
7‘202 7 sin —=sin ——sin ——s >
n=1

u(x, t)y=

for the sharp hammer,

o

2 1 . =n . nx . Tnat
u(x, t)=;m%-2—;sm nlx°sm ﬁl sin ———.
ne=l
161,
o
2IF, 1 . =mnc ., =nx rnat
u(x,t)=—n—27.- —7 Sin —— sin —=C0s ——.

n=1

Procedure: The problem amounts to integrating the equation

u“ = a"’u;x with the conditions

u(0, H=u(l, £)=0,
u(x, 0)=p(x), u,(x, 0)==0,

where the function p (x) (the initial deviation) must first be found
from the given condition. Obviously (see Fig. 25), to determine
p(x) it will be sufficient to find the maximum initial displace-
ment ~, It can be found from the condition of equilibrium. The
projection onto the U-axis of the tensile force T acting at a point
M of the string on the left portionOMis T, =T sin «, Analogously,
the projection of the tensile force T on the right portion /M will
be

T, =Tsinf.

Obviously, the projection of the force T onto the X-axis will
be equal in magnitude on the two portions but opposite in sign.
By applying d’Alembert’s principle, we obtain

T (sina—-sinB) = F,.

Since the vibrations are of small amplitude, we may take

sina ztanalel.
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Now, we easily obtain

Foc (I —¢)
h —T'q

At this point, the determination of the initial shape of the
string is obvious.

v

FIG, 25

162, The displacement of the section whose abscissa is x at
an instant £> 0 is

2n+41

2n+41
BFOI 2 cos 51 nat sin 5 X
ulx, )=y 24— PIEmY '
n=0

where a?= Eg/p, E is Young’s modulus, p is the linear density,
and ! is the length of the rod,

163,
u (%, t)_V T,(¢)sin - x,
=
where

2
] e~k (a,cosq,t +b,sing,t) for (nTn) > k2,

T,(t)= nn)\2
n |l e_kt (an Ch pnt+bn Sh pﬂt) for (Tn') < k2|

qf,=(1l'5 2_k2. p:=k2_(_1_tirl)2;

!
D) nnx
an—_:-l—ff(x)sin—l—dx.
0

!
_Q_fF(x)sinmd x4
0

ka,,

lgn
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if

(>
If

<

¢,should be replaced with p,in the expression fors,.

u(x, t)=( ‘,a,,

) sin? of
Slﬂ-z'x—x »

sin—1{
a

where p is the density of the string.

Procedure: The problem amounts to integrating the equation
4y =0%,,+x/¢ sin ot (for 0 < x <!, t> 0) with homogeneous
boundary and initial conditions

4O, )y=u(, )=0; u(x 0)=6L$;_'ﬂ=0

>0 0<x<<).

We seek a solution in the form u#=X,(x) sinwt+4X,(x)cos ot. It
should be borne in mind that it is always convenient to seek a
solution of a problem dealing with purely forced vibrations of a
string in this form if the external force is of the form F = A sin ¢,
where A is a function of x, In the present case, it is more con-
venient yet to seek a solution in the form = Xe'ef, where
X = X (x) is a function to be determined.

165.
2 % '
u(x, t)=72 [cos tn,,tff(E)sin—’EI'iEdE%—
n=l 0
I
2
+ 75,7 sin mntfg(i)sin"—l" EdEJ sin %’1 X,
Y]
2n2,2
where o, ="7", a2=%, E is Young’s modulus, J/ is the mo-

ment of inertia of a cross section, p is the density of the beam,
and S is the area of a cross section. Hint: The problem amounts
to integration of the differential equation for transverse vibra-
tions of a beam

” EJ
4y + 0211_(‘[.\’) =0 ((12 = —p?-)
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with the initial conditions
u(x, O)=f(x) u,(x, 0)=g(x)
and boundary conditions
u@©, t)y=u" 0, t)=u(l, t)=u:x(l. t)=0.

Usel ghe method of separating the variables.
6.

”
XX

[oe]

R
-yt . 2n41
v(x, t)=e U an,,sm—%ﬂxsin(mnt—{-%),
N=
where Qn+41)= ‘/ C?R?
u)n=__‘ 1_%‘
AV CL n2L (2n - 1)

(it is assumed thatL > Caf:lz),
a4 =
" m@rF1)sing,
and
tan P = 20)“ R—'

Procedure: The passage of an electric current through a
conductor with the parameters C, L, R, and: G (the leakage)
evenly distributed along the length of the conductor is char-
acterized by a current / and voltage v. These last are functions
of the position of a point x and the time ¢ and they satisfy the
following system known as the telegraph equations:

v, + Li,+ Rt =0. @

From this system, we easily find equations for ¢ and v:
1/ =Ct/,+ (CR+ GL) {;,+ GRI. )
v, = CL}, +(CR +- GL) v;+ GRv. G

(See A. N. Tikhonov and A. A. Samarskiy, Uravneniya mate-
maticheskoy fiziki (Equations of Mathematical Physics), 1951,

p. 29.)
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For problem 166, equation (3) takes the form

v/ =CLuj,+ CRv; (0<x<L t>0) (4)

!

since the assumption that the conductor is insulated implies
that G— 0. The boundary and initial conditions take the form

v (0, H=v,( H=0 (¢>0), (5)
v(x, 0)=uv, v;(x, 0=0 (0 <x D). (6)
If we set
u=ely (v=eM-u),
where .= R/2L, equation (4) is reduced to the form
= 0%, - b ™
where
a"’:—CIT, b= %

For the function «, conditions (5) and (6) take the form
20, y=u/ (I, £)=0, (8)
u(x, 0)=wv; —Au(x, 0)+u;(x, 0)=0. (9)

If we set u(x, f)= X (x)T(¢) and separate the variables in equa-
tion (7), we obtain the following equation for X (x)

X' 4+0X=0 (0<x<I. (10)

Because of conditions (8), the function.X (x)must satisfy the
boundary conditions

The eigenvalues and eigenfunctions of problem (10) and (11) are

=T X ()=sinTx (@a=1 23 ...)

(up to an arbitrary constant factor).
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A solution of problem (7), (8), (9) should be sought in the
form

u(x, )= ¥ T,(#)sin o (12)

n=1

The boundary conditions are satisfied, If we substitute (12) into
(7), we obtain the differential equation for T,():

) +[("”“) — o2 T=o0. (13)

By virtue of conditions (9), the function T, (f) must satisfy the
conditions

!

Tn(O)’:TQf

0

200

o (=17 —1], (14)

To(0)=A,T, (0 =22 (—1y —1). (15)

168, (a) ,,—ra ‘/(%)2+(%)2 (for m, n= 1, 2, 3,...),

where a = ‘/; T is the tension per unit length of the contour,
o
P

169. The eigenvalues are l,,,,,:zci"[(%)?'—i—(%)?]; the eigen-

and p is the surface density of the membrane; (b) mu=%

functions (up to a constant factor) are

Upn (X, y)=sin ”Zx sin T'Zy (m, n=1, 2, 3, ...).
170.
n—}—l . sin 2m+1 =y
64Al‘
a(x, )= E (2n+l)3(2m+1)3 X
% cos YV @n—+ 1)2+(2m+1)2 ’“‘
171.
- +1 2r1+1
16AU)? O sin wx-sin ysmw ;
ey =" )4 (2m+l)3(2n—|-l)3w,,,,, mn’

m,n=0
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where
2m 4-1\2 2n41 )2
oo/ T+ (FET
172,
< . \
u(x, y, )= 2 Am,,(sinwt—-a:—nswwm,,t)x
m,n-l
X sin 1‘11{ sin "7)’ (0 # 0,,),
1 2
where

X

4 L

. mx
Apn = _—_24__2— f dxf A® (x. y)sin 1'lm
1112 (mmn—m ) 0 0 !

X sin%dy (0,0 F 0),
YA G 3 T ST

If ©=wm,s, (this is the resonance frequency),

oo
: o . . mmx
u(x, y, t)= Z Ann (sm of — o sin wmnt) sin I X
m, n=0
(msk my, n<Eno)
menx . ngny
7, sin L

X sin "2 A Apga, (sin of — of cos of)sin
2

where A, is determined from the preceding formula and

Tmyx

I L
=2 ) ; oy
Amnnu-—m fdx f A0 (x, y)sm 7, sin T dy

0 0

Remark: If the frequency o, is a multiple frequency, that
is, if it corresponds to a multiple eigenvalue, we shall have not
just one resonance term [the term not under the summation sign
in the expression for u«(x, y. )] but a set of resonance terms of
the form shown. The number of these terms is equal to the
multiplicity of the frequency onu,.

Hint: The problem reduces to integrating the equation

uy = a?(uy +uy )+ AQ (x, y)sin ot

(4 ¢ == A0x v)
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under the conditions

ul, o=ul =u|y=0=u|y_11=0,

X =l

u(x, y, 0)=0, uj(x, y, 0)=0
O<x<l. 0<y<L).

We neglect the reaction of the surrounding medium,
173.

[>e]
_ ﬁ’l sin a,,xsinha,y
u(x, y)= n ZO(Qm ~+- )sinhapb -+
ms=

oo
4v \\ sinbpysinh b, (@ — x)

+= 0 @mF l)sinhba '
where
_ n@m4-1) _ m@m41)
Gp=—"7—", b= —
174,
sinhw
%, y)=B ——— sin =X ¢
¢ (x: ¥) s A
652 ©  inh (2n+1)1;(a—x) sin 2n-b{—1 ny
+ = @n+1)° . sinh 2ntl na.
n=0 b
175. The potential of the field is
) 2m + 1

4v, _2n;+1“ sin B Ty .
u(x, y)=—- e T 2m 1 -
m=0
L
Sin ——
:—‘?-T'f’—"arctan ﬂb .
" h %5

Hint: The problem reduces to integrating Laplace’s equation

uxx

) . 0< x < o0,
+uw=o in the region G 0<y<b.
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with the conditions

u| emg =Ty u|y=0=u|y=b=0

u(x, yy<co as x—>oQ.

To obtain a solution in closed form, one should use the ex-
pansion

0

-@m+1) 1
2 2mm+1x sm(2m+l)y_—arctansmy (x> 0).

m=0

176,

u(x, y=u(x. y)+uy(x. y)
where

- (1) + (2) Ty d(l) _— a(ﬁ) zn
%n %n n n . y
u (x, )= E ———-n;z—bCOSh - -+ = b—smh ~ :'X

. n
e L2cosh o 2 sinh 52
X sin rnx
o
- 5(1)_}_5(2) n a 3D 3@
u2(x. y)= —n——;"%hCOShT x-—-§- +2_USIRIIIITZX
2‘:' LQCosh 55 %

L TR a . Tn b
X sinh T(X—' 7)-, sin T(y -+ 7),
2
a,g):

° a
2
2 [o@sin ey a®=2 [g@sin T iay
0 0

a

b
2
W= {‘P(n)sm (71-!- )dn;
s
P]
0 =2 [ hsin T (74 ) dn
b
-7

Procedure: The solution of the problem may be obtained as
the sum of the solutions of the following two simpler problems:

2u; 0%y .

A""—d —“+ === I =0 (=1, 2),
l 9, (x) for y—— ¢, (y) for x =0,
I o (x) for y:—% u,={¢,(y) for x=a
l for x=0Q and x =aq l 0 for y= t

5.
PN
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By means of the coordinate transformation

K=ytgi y=x—%
the problem (u,) reduces to the probelm (¢;). However, the roles
of the numbers @ and & are reversed and, instead of the func-
tions ¢, and ¢,, we shall have ¢, and ¢,.

177, u(x, y)=y(cos x — 1/2),

178. The solution of Poisson’s equation in the region D that
vanishes on the boundary of D is

B Y
8a? cosh 57 . Tnx
u(x, y)y=x(@a—x)— -— b SN
ndcosh
n=1,3,5, ...
adh 32at 1 nnb
n=13,5, ...

The tangential stresses can be found by differentiatingthe equa-
tion for u(x, y).

17 9*.
o cosh?n—'*-—l—ny cos 2n2+1 X
u(x. y)=4,2oa E | — 2a . 5 al2
=T COSh—Q—'l——*;]—ﬂb ( fl+ )
n=0 2a

Another form of the solution is

- sinh ___2n+1 n(a—]x|)
__4pb —=n" . 2a %
u(x, y) =7 @nF 1y SN2

n=0 26
2n+1
X cos o7 Ty

Procedure: First, assume that the external line load p is
uniformly distributed along some strip (Jx| <e. |y.| < b). Then,
the problem reduces to integrating Poisson’s equation:

|
u
|

P
Qu , Ou gy | — 3 Ax¥1<e)
e ! 0 (xi>9.

with the homogeneous boundary conditions

ulx-ta=u|y-zb=0
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Now take the limit as ¢ — 0. Here, g is the external load per
unit of area, and T is the tension per unit length of contour of

the membrane,
180*, The problem amounts to integrating the equation

ou Q(am 0’u) 1 9P,

=%\t or) T v e

with the conditions

du

Ox

_ou|  _ouf _ouw)
k=0 0X |y=gq Oy y=o——7y- y=t
u(x, y, 0)=0, g (x, y, 00=0

where a?=g#h, ¢ being the acceleration due to gravity.

i _ (2n+ 1) n2g@?

5]
181, (a) u(x, 0=i—§2 e L (?n—}-[l)nx;

n=0

@ _ 42,2
(b) u(x, y=u,+ > a,e”’ 'l cosh,x,

n=y

where

L
27, (=11 4u, 2n 41
a,,_TJQ(x)cosknxdx+—m, kn—_—Tg

wna

b 2
8) v(x, t)=_?_':“’2 %e‘(z*) £y
n=l

X sin

¢ 2
anx ATE
i fe 7 cos wi dt
0
where \, =rna/!,
2nx

182, 7(x, 5 =50°e‘°-°"‘“sin—l~
183.

!
T (x, t)=[if'r(x, 0)dx -+
0

9 % 22t !
<. T nnx Tnx
+,Hé’ COSTIT(x, 0) cos T—dx
0

n=l

The reader can continue the calculations.
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. 184, Procedure: The heat-flow equation in a ring is of the
orm

U= aguxx —qu (1)

where a and ¢ are positive constants, ¢ denotes the time, x is
the length of wire as measured along its axis from some chosen
zero point, u=u(x, t) is the temperature of the cross section
whose abscissa is x at the instant ¢, If we set «=wve-%, Eq. (1)
is reduced to the form

! e 22y
'Ut_avxx,

and the problem is reduced to integrating this equation with the
conditions

v(x, 0)=f(x), v(x+42n, t)=v(x, 1)

(The last condition indicates the periodicity (with period 2r) of
the desired function and fills the role of a boundary condition.)

o 2,2
185. u(r. t)=2 A" L sin A:r ’

n=1

where

R

f rf(rysink,rdr,

0

2 RA2 L (Rh—1)?

A= R T L (Rh—1) Ri

and the A, are the positive roots of the equation

AR
tan )\nR = 1—_’:—m~ .

Procedure: Because of the radial symmetry of the problem,
the heat-flow equation becomes

ou 0% 2 ou
5 =G + 7 5)
If we make the substitution «= v/r, this equation becomes the
following one:

v , 0% <0<I‘<R,>

2 = 0Lt < oo
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The boundary condition is transformed into the condition

ov l— AR _
EF=7—U (I—R, t>0)

and the new initial condition is
v(r, 0V=rf(r) O<r<R).

To solve the problem, use Fourier’s method.
187.

2 at

where p,=n=x (for n=1, 2,3,...). For f(r)=t,= const., we
obtain

,
o Rsinp,— 2 at
\ 2 en —Bp =
u(r )=ty ¥ (—1)""" ;;”‘“r“R‘e "R

n=1]

Procedure: The problem amounts to integrating the equation

ou(r,t (% (r, t 2 0
= )=‘12( S "(”)) O0<r<R, t>0)

with the conditions

u(r, 0)=f(r).
ll(R, t)=f0=0°

«(0, t) < oo,
ou (0, x) —0
ox -

The last condition is the condition of symmetry. The differential
equation can be written in the fcrm

0 [ru(r, N __ o 0% ru(r, t)]
ot or?

Use the method of separating the variables.
188.

(2n—1)2 n2a?

4T, O pr-t AT _
u(x, t)= 024*—_—(&11-1 e al . COS 2'121 1 rx

n=1
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Hint: The problem amounts to integrating the equation Uy =

a%u’ with the initial condition u(x, 0)= T and the boundary con-
ditions

u;(O. 1)=0;, u(, H)=0
(The temperature of the external medium is assumed to be 0°.)

189. Hint: To use the method of separating the variables, it

is necessary to have homogeneous boundary conditions. By
means of the substitution

v(x, H=u(x, t)—u, (),

the boundary conditions of the problem are replaced with the
homogeneous conditions

v«l"lx:O:O; hv\x=l=—kv;|x=l

190. u),—a%! —b>(U —u)=g, Where a’>= &/cp and b is the
thermal conductivity of the surrounding medium, U is the tem-

perature of the medium, and g is the heat source density in the
rod.

191, u(x, y)=2 C, sinh—Q”—;tl—wy sin 22—‘;"'1-1-1r,\:,where

n=0

c — 4T
7= "2n4-1)nsinh@n+ )= °

192,

[ee]

sinh ¥, 2
1o\ —or SIn Tn L
u(o' 2 )= Yt Sin Y5 €OS Y b’

sinh Y —
n=1 inh Tn a

where the 1, are the positive roots of the equation tan 1= ah /Y
numbered in increasing order for n= 1, 2, 3, ..., the con-
stant # being the coefficient of heat exchange.
193. - .
2Q1 0 1 -—— ¢
Cpfgaz nr (.1 —e !
n=1

TnXy nnx

)sin 7 Sin——

u(x, t)y=

The problem reduces to the boundary-value problem
b= QB — ) O < x <L £>0)

4 (0, y=u(l t)=0 t > 0),
u(x, 0)=0 0<x<,

where 8 () is the delta function.
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194, f(x)=—

4

195. f(X)”e"”, o (x)=re""*,
197. () u(x, )= xt*/6;
(x—£)?
(b) u(x, t)—z V—— fp(E)e_ it gy for p=T, we set:

u(x, t)="Tey

oo

¢
(c)u(x, t): f :M(u))g—a?uﬂt,_{,_f G(u)' ’C)e—aimz (I-‘!)d-;} . elox g
0

where m
M (w)=2% fmp(x)e-‘wxdx,
G (o, t)=2i“ ff(x. t)elordx.
198, ! 0 for 0<i<Z
R (P e

Hint: Use the Fourier sine transformation.

X _ -y _ by
e

1 7 :
(b) u(x, t)=m6f gt __ g dad )f(E)dE.

Hint: Use the Fourier sine transformation, noting that

@ B]

fe-aixz COS@X dx=¥e 442‘
a

0

1 °°( (x—£)? _ xR
(¢] L )= sait a3t ) 5 dt.
(©) u(x. 1) QaVr—tdf +e JAGY:

199, s =
u(x, t)=—;f (ff(y)sinkydy)e-vsinxyd)\.
0

0

200, u(x Hy==U_ (1 —e-0)}

!x £) _ bt

N dH_Qthfm _‘_1 fm[g(e, )4

b lx—tp
v
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For U =U_= const., we have

(x=£)

u(x, )y=U_ (l—e-"’t)--i_2 V - ff(g)e’ @l g,

Procedure: By means of the substitution u=U_ - ve-4,
where U_ is the temperature of the outside space at infinity, the
equation of the problem can be reduced to the following equation
for the new function v (x, ¢):

v,—a,, =[g+ 02U —U,) e
(the reader should verify this) with initial conditions

v(x, O)=u(x, )—U_=f(x)—U
203.

J1(x)= ;-Q;sinx; J 1(x)= —ﬂ%—cosx;
P -7

2 2
J_g_(x)= ‘/W sin x — ‘/-E cos x.

Procedure: We have

Vx , 3
o=l et

+a 4x‘3 57 2- 4.6)f;.5.7+ )=

7
=Vﬂl‘(-‘3-—) (x—g—:-i-g—:—%—}- )=
2

. 1
——_—V—ﬂl‘(%) sin x.

But

(o]

(@)= yr(E) =t forsmfra =

0

We proceed analogously in the evaluation of J_ 1 (x). To evaluate
Ja (x), we make the substitution p= 1/2 in the last formula of
problem 202,
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204, (a) y=CJ,(ax)+CN, (ax); B
(b) Hint: Use the substitution z=} x y;
() y= 1/x* (CJy(x)+C,N,(x)), where N,is Bessel’s
function of the second kind of order k.
Procedure: Bessel’s equation x2y"+xy - (x2—p?) y=0, where
p> 0, can, by the substitutiony = x”z, be reduced to the equation

z”—-}-——ij_l 24+ 2z=0.

Setting p= 2 gives equation (c) of the problem,

206, (a) x” = 21 C.J, (A, x), where

2 1
o= Tt (P> =7 0< 2 <1);

© J, (% l,,x)
)

(b) x3=1621—-n-l4—0;)— 0L x<2).
207,
Py(x)=1; Py(x)=cosb = x;
Py(x) = 5 (3c0s20 — 1) = - (352 — 1y;
Py(x)= % (5cos®8—3cos )= % (5x3— 3x2);
Py (x)= 3 (35x% — 30x3 4 3).
208,
P.(N=1, P (—)=(—=1)"
5 1.3.5... (n—
P e L
10 for n odd.
209,

¢ =Y (3) Pacost) (> 1y
n=0

_ 1,3 7.2 11-4
=5 45 PL() =557 Pa () + mrgrar Py (0)—..
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mn,
2 A, (%)n P, (cos 6) (r<R),
n=0
u(r. )=y .
n+
Y 4 (F) T Pacosty >R
n=0
where
a,=2F1 [ £(0)P, (cos bysint ab.
0

;néche particular case, #(r, 0)=1/3 (1 — r2)+ r? cos?9.
12,

r 1nat

=
Jy (Tn R) dy <T,. 7?_) sin 2

2 52
Ya/1 (Yn)

(o]
2Pa \
uir = nel 2‘

n=1

where the y, are the successive positive roots of the equation
—, T is the tension per unit length of contour,

(=0, a=

and p is the surface density of the membrane,
Procedure: The problem amounts to integrating the equation

0%
or? +re T @ o
with the conditions
u (0, f) is bounded;
u(R, )=0;
for 0Lr<e,
u(r, 0)=0; ulr,9) gt 9 _{ =%
0 for e<r<R,

where p is the surface density of the membrane, assumed to be

constant.
213,
Jo (28
9 [1 — 0( a ) ]sin(wt+q}).
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where a = l/— T is the tension per unit length of contour, p is

the surface density of the membrane, and J;(x)is Bessel’s func-
tion of the first kind of order zero.
214,

© Tnl2) In"1
) 2 Z rzll( R ) rljl( R )
“e0=T )

n=1

X Jo('f,; 7%) . flq(t)sinﬁa—(;—-q—)d:,
0

where a = ‘/—« and the 7, are the positive roots of the equation

Jo(x)=0.
2] 5 .
(0, )=>b Y, B,cosu,t
kal
21\ 1 . ‘s
= —— k t of th -
where B, = b(l*k) T M is the kth positive root of the equa
tion S ()=0, and o,=a fRi is the angular frequency of the 4th
harmonic of the membrane,
The period of the fundamental tone is T =——R l/_"_z 0.00596

sec, 1 being the surface density of the membrane.

216, Solution: We place the origin of a spherical coordinate
system at the center of the sphere and we direct the Z-axis op-
posite to the direction of flow of the liquid (see Fig. 26). The
velocity potential « satisfies the equation

a7 (7 )+ (sn0 ) =o- 8

We see from the drawing that the normal component of the
velocity of a particle of the liquid onthe surface of the sphere is

AB =acos(n —0).
From this we obtain the boundary condition

du

5F ,=R=—acose. (2)
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We seek a solution of the problem (1), (2) in the form of a
series of Legendre polynomials:

o
n+1

u(r, 9= E C,P,(cos0) (%) r>R).

n=0

On the basis of condition (2), we have

_}.Q_E (n+ 1)C,P,(cos 0) =— a cos .

n=0

This equation will hold if

Consequently, the desired solution is

3
u(r, 9) =% cos §.

FIG. 26

217. The displacement of a point on the membrane is given
by the series

u(r, t)="2l (A, cos ak,t+ B,sinakt) Jo(Aar),

where
R

[ rfr)hdndr,

0

2
A = —7——
" RS ()
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R
[ rg )45y dr.

0

9
B ——
TR () @

Here, f(r) and g (r) are respectively the initial displacement and
the initial velocity of a point on the membrane:

uir, ) =5, 28D =g

and p, is the nth positive zero of the function Jy(p). A, = u,/R, and

VT
a = —_—
P
8tn __Hp T

218. The natural frequencies are w,=ak,=—p%=73 -

The amplitude of the vibrations of each tone is equal to H,[J,(A,7) |,
where H,=V A2+ B%, A, and B, having the values indicated in
the answer to problem 217,

Hint: The individual harmonic vibrations (A4, cos aAf—
B, sin akt) Jy(A,r), that combine to make the composite vibration
of the membrane can be represented in the form

u, (r, ) =H,sin(ar,t +a,) Jy(A,r).

where

Hr=' Ai"—Bi. Sinan=%ﬂ-. COSG,‘=—51
n

n

The reader should verify this.
219.

® g

uir t)=4022 ﬁflo (¥n) JO(T" %)

where the 1, are successive positive roots of the equation
J1(p)=0.

220.
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where the p, are the positive roots of the equation

’ 1
p/s () —5J3 () =0,
2 2
To
2 3
A,= ? J. rJ

2,2 2
ro/3 (k) (1—'—7) 0
r) B

To

(M)dr=

0] w

20/ (%)
-2- 0

eerol 3 (2) ( 1— —22-)
? Bp

221, Procedure: Let us place the origin of a spherical co-
ordinate system at the center of the vessel and let us direct the
6-axis in the direction of the motion of the vessel for ¢ < 0.
Then, the potential # of the velocities of the particles of the
liquid or gas will depend on the angle ¢ and we have the follow-
ing boundary-value problem for u:

e o &) ke o )
OLr<r, 0L0Lr 0Lt <oo),
u;(ro. 0, t)=0.

u(r, 6, 0)=vrcosb, .
u,(r, 8, 0)=0 0OLrry 08K

We should seek a solution of this problem in the form

u(r, 8, H)=w(r, t)cosh.

To determine the function w(r, ¢), we obtain the boundary-
value problem of problem 220.

222.
b Ln—c— R 2at
u(r, t)=§lf]galj—)-%z—!rf(r)lo(h—,%)dre n e

where the p, are the positive roots of the equation J;(p) = 0. For
f (r)=t,=const., we can verify that

R
2t
_I'% f rtOjO(p‘n %) dr = Tng' ‘II (l"‘n)‘
0
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122

Hint: The problem amounts to integrating the equation

ou(rt) _, (dzu(r t)_+_1 ou (r, t)) O<r<R, t>0)
at

with the conditions
u(r, 0)=f(r),

u(R, t)=0,
ﬂ(g%ﬁ:o. 1 (0, f) < oco.

224,

J ol
o(r, H=— 22 [1 ——0—(—%)} sin of —

2
To Jo(m )
a
sin Ynat Jo ( Tn")

__ 2aPpeR i R R
4 n ("R —a') Jo (va)

nlY"

where the 7, are the successive positive roots of the equation

Jo(y)=0.
Procedure: The problem amounts to integrating the equation

Py sin ot
It Ty T w T T T )

with the conditions

|90, £)| < oo, @(R., £)=0,

ay (r, 0)

o(r, 0)=0, 5

=0.

We seek a solution of this problem in the form of a sum
¢=u—+v, where u is a solution of the form B (r)sin wf of the
nonhomogeneous equation (*) that satisfies the boundary condi-
tions

[4(0, )] <oo, u(R., t)=0,

and v is the solution of the corresponding homogeneous equation
with the conditions

jv(0, £)] < oo, v(R, £)=0,

dv(r,0) ou(r, 0)
o = T e

v(r, 0)=—u(r, 0); 3t
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225,

w(r, =" [rloe)+tp)dr+
0o

1.t . 1
._|._2 (Ancos a:: —{-—anma_r"t.).lo(y:r),
n=1 ° °
where
2
=— | ro(r)J (ﬂ—r-)d;
" r%J%(un)of POB T
To
2
B, =——= | ry(r)J P"’)d'
n al‘nrO‘Ig () ! v 0( fo K

e()=u(r, 0y Y(r)=u(r. 0)

rois the radius of the base of the cylinder (0 <r <r¢) and the
are the positive roots of the equation J, ()= 0. ’

Hint: The desired potential is a solution of the boundary-
value problem

o Pu 10
W—_-az(_ﬁ.*_?a%) O<Lr<ry 0<t< o),

|u(0, 8)] < oo, i’%:o 0 < ¢ < o0),
u(r, )y=09(r), u,(r, 0)=9%(r) OLr<ry.

226.
u,—é—u, +“1;“= [%%Pl(cosﬂ)—
_%(%)3P3(c056)+...] (r <R
u =

g £y e (3],

_§(§)4P3(c056)+ ] (r >R).

ISy

Hint: Because of the symmetry of the problem, the potential
« is independent of the coordinate ¢ and is a function only of the
coordinates r and 6:u=u(r, 6), The problem amounts to inte-

grating the equation

0 ( o 0u 1 0 (.. gp08\__
37 (7 3)+ s g (o100 ) =0
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with the boundary condition

| T

u, for 0<9<§-

ul _p=
o= u, for -§<i6<;ﬂ,

where R is the radius of the conductor.

227. U,=a (x2—22)+b(y*—22)4dxy+teyz+ fxz;Uy;=a (x2y —
1/3 y3) b (222 — 1/32%) +¢ (y2x — 1/3 x%) +d (y22 — 1/3 29 +
e (22x— 1/3 x)+  (22y— 1/3 y*) +kxyz , where the coefficients in
both polynomials are arbitrary constants.

228. The event B consists in having exactly one of the three
shots hit the target. The event C consists in having at least two
shots hit the target. _ o

229, (1) B+ AC; (2) AB+ AC+ BC; (3) AB+ AB; (4) A+ B;
(5) 4AB; (6) A+ B; (7) AB. 3

230. (1) The event is equivalent to the event A+ A, thus, it is
certain, (2) The event is impossible.

231, 1/720.

232, 0.225,

233, 0.35.

234, 1/30,

235, p,—-M

236. Solution: "The probability that the first point will not
fall in C.is 1 — =Rr?/S, where S is the area of the region D. The
same holds for the second point, etc. Consequently, the proba-
bility that a single point will fall in C is equal to (1 — 2 )N.

men-—nm
CMCNM

Therefore, the desired probability is 1 — (1 — (1 —

238, 20/56; 25/64.

239, 0.9.

240, 0.45.

241, 0.25,

242, (a) 1/3; (b) 1/18; (c) 1/3.

243, 0.36; 0.91,

244, 0.,4344,

245, 0.142,

246, 0.2326,

247. Solution: Let P denote the probability that the library
in question does keep a copy of the book and let p denote the
probability that no one else has the book out. Then, the proba-
bility that the student will find the book available in one of the

TR2\N
s
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three libraries is 1 — (1 —Pp)®. By hypothesis, P=p= 1/2.
T}xerefore, the probability that he will find the book is 37/64 >
1/2.

248, 0.94.

250. 0.48.

251, 41/90.

253. 7/9; 2/9.

255. (1) = 0.49; (2) P, (1) = 0.1114; (3) = 0.9989; (4) =
0.0091.

257. (1) 243/1024; (2) 405/1024; (3) 270/1024; (4) 1/1024.
259.

0 for x L0,
F(x)=P@E<x)={ 08 for 0<x I
1 for x> 1.

260. Hint: To find the coefficient ¢, we use the property of
the probability density that

ff(x)dx:l;

0 for x<—=,

F (%)= —é—sin(x—}—l) for —%<x<%

0 for x>—72‘-.
P(O<E<%)=F(%)——F(0)=l/72—.

261, P(—1<i<)=0.5.

263.
1 1 1 .
l-—2—+2-2—2+3~23+...__ 1 2
=%(‘+%+7ﬁ+--') =2
264, 150 v.
266. 0.6.
269. ME=G_§'B; DE::TIQ-(E—Q)?.

270. ME=%: D=2 a=tlg=1—p.
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271,

M () =15 @+ ab+ e D(T) =15 D(@) =
= T (Ma*— (Md?] = o5 (b — ay (462 + Tab + 4a?).
272. (1) 0.68269; (2) 0.95450; (3) 0.99730,
273, (a) Ms—4 ‘/Z: fwsae-w ds——2:—21/2kr, (b) the en-
0

ergy of a molecule E = ms¥2, so that

ME=f%—nzs2p(s)ds=—g—kT.
V]
27 4, P(a<E<B)=%{®(B:a)—Q(a:“)},where
D (x) = V?‘Z% fe";;dz; P(5 <t < 10)=0.0214.

275, P(J:—e| <)=2®(3). The value of the function®(x)is

given in the answer to problem 274,
276, (1) The mean value of the variable x is

c
Mx—fxw(x)dx—Q‘/Dt C+13xo IE“°dx.
T

where

C= Xo_;
2V Dt

o

(2) M(x?)=of x?w(x)dxzﬁ[ J.(xo—}-?\/ﬁ-s)?e‘g’dﬁ—{-

-C

w_ YD P ,2m—sn:~ m—&z —
Cf( X042V DEt) e d,J == |:2.x00fe d: + 8Dt0fﬁ?e dﬁ] =
x2 + 2 Dt; and the desired variance is Dx = M (x?) — (Mx)%

(3) The mean value of the displacement x — x,is

(=]

M(x —xp)=2 ‘/ﬂ e-C1_ 2o e~*dx;
> Ve

T
0



Answers and Directions 127

(4) The mean value of the square of the displacement is

M(x —x0P? =2Dt — 4x Vﬁe ¢4 4x‘2’fm x1d
0) = — 44X —e- — | e~*'dx
P ﬁo

277.

M(E‘n)=a—;—b .c—|2—d;

D m—= a2+a;+b2 . c2+cg+d2 . (a-*;b)z (c-};d)’

Hint: Use the formula
DE- =M E%) — [MEDP = M2Mrn?2 — (ME)? (M)?

279. 0.866.
280. Procedure: The problem consists in finding a number
a > 0 such that

P(|lx—x| <a)> 0,95

We obtain a > 0.394; that is, with probability exceeding 0.95,
we may guarantee that the deviation of the length will not ex-
ceed approximately 0.4 cm.

281, =~ 0.665, Procedure: The probable deviation (or the
‘“‘mean deviation’’ or ‘“mean error”) is defined as one-half the
length of the interval symmetrically located about the center of
dispersion the probability of falling within which isequal to 1/2,
It can be shown that if x, y, and z are mutually independent ran-
dom variables obeying a normal law, the probable deviation of
the variable « =x + y—+ z is equal to

E,=VE+E+E
where E,, E, and E, are the probable deviations of x, y, and 2
respectively. In the present problem, the deviation of the total
error is V2874874 122= 28 &,
282, M:=a; D:=a%
0, if x<O0
F(x)= x

]l —e a, if x>0

283. = 4%. .
285. ~ 0.00206, Hint: Use Laplace’s asymptotic local

theorem:
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to obtain
11 0.3989
Vo —vE V= Vg
286, Hint: Use Laplace’s local theorem (see hint to prob-
lem 285), Since n= 50, p= 0.4, 9= 0.6, and m =25, the desired
probability is

25

0.3989 e 2500406 ~ (.1152-1992 ~ (,04]

Ps0(25)= V50.04.06

287, Solution: Use Laplace’s integral theorem to obtain

P(m<70)=P(— N _ o m—np 20)

VR S Voapg SV,
284 1

289 (a) P10(3)—C10(%) (z) ~ 0.2816. Since n is small, use
of the formula

_{m—-npp

! e 2npg

V 2rnpq

gives the crude result: =~ 0,2724,

(b) Since the given bounds (70 and 80) differ from np =
75 by the same amount, we use Laplace’s approx1mate integral
formula in the form

P,(m)=

¢

P,,(a<m<b)z—-v—12=n fe'7dz=¢>(t).

_ _ __np—a 2
In the present case, a= 170, b= 80, ¢ = Vire =73 so that the
desired probability is
2

(©) E Py (m)~0,5—® (]—/%) ~ 00,1241,

m =81
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70
@ X Pro(m) ~ @ (— 723-)-;- 0.5 ~ 0.1241,

me=0
0.035-1400\ _
€ o (m) ~ ©(1.62) = 0.8948.
290, (1) Pso(78 <m < 102) =@ (2) = 0.9545,
(2) Pi5o(78 < m < 108) = 0.9759.

295, 0.0408. Hint: Use Laplace’s local theorem,

296, Solution: We divide the interval ¢ into a large number
of small subintervals Az, Obviously, in case (1), there will not
be any calls at all in the interval ¢ if there are no calls in the
subintervals. Therefore, the probability P, () that there will be
no calls in the interval ¢is equal to the product of the analogous
probabilities P, (Af) for the subintervals As:

t
Py (t) =[Py (A1)],

where ¢/4At is the number of intervals. If ¢(Af) is the probability
that a call will be made during an interval A¢ the preceding
equation can be written in the form

t

Py(t)y=(1—gq)*.
Therefore,

t
In Py(t) = 57 In (1 —g)

and, for small ¢, In (1 —¢) =~ —g¢. Therefore,

so that
PO (t) == e—k'.

In case (2), we take an interval of length ¢ and, abutting it on
the right, a small interval A¢. Together, they form an interval
t-+Af, If n calls are made in this interval, either all will occur
in ¢ and none in Afor n — 1 will occur in f and one in Af, In all
other cases, more than one call will occur in the interval Af,
Since these cases are very unlikely, we may neglect them., The
probability of ~ calls in the interval ¢-}A¢ is equal to

P, (t+D0) =P, ()(1 —kA) P, _, () k At

(Here, we use the theorems on the multiplication and addition
of probabilities.) This last relation can easily be reduced to the
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recursion differential equation (letting At — 0):

dP
dtn zk(Pn—l—Pn)

for the desired probability P,. For n= 1,we obtain the equation

APt kP = kPy=keH,

where
P, = (c, 4 kt)e-*.

The constant ¢, is determined from the conditions that P, —>0 as
t— 0, From this, we obtain

P =kte—*,

Analogously, we find

(Rt)* _
P2 = T e “.

Obviously, in general,

p

Rty _
n= et

297, The number of electrons flying off the cathode in the
interval Atf is distributed according to a Poisson law:

P — (nAtl)m e-nat,

m m

—n
—2

298, PN(n)=%e—7'; nt—n =n.

299, p

300, P,(m)=
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301, P(lt— Mg <o)>1—2¢,

302, P(jt— M| < 0.5 > 0.6, where & is the length of the
object.

304, Yes, since the hypotheses of Chebyshev’s theorem are
satisfied:

Mg, =0, ME%:GQ. DEn=a2.

306. Hint: Apply Chebyshev’s inequality to the quantity
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APPENDIX |

Table of Values of Bessel Functions

b2l

Jo (x) J1(x) Yo (x) Yix) Ig (%)

+1.0000 0.0000 —o0 —o0 +1.000
0.9975 | +0.0499 | -1.5342 | -6.4589 1.003
0.9900 0.0995 1.0811 3.3238 1.010
0.9776 0.1483 0.8073 2.2931 1.023
0.9604 0.1960 0.6060 1.7809 1.040

+0.9385 | +0.2423 | -0.4445 | -1.4715 1.063
0.9120 0.2867 0.3085 1.2604 1.092
0.8812 0.3290 0.1907 1.1032 1.126
0.8463 0.3688 | -0.0868 0.9781 1.167
0.8075 0.4059 | +0.0056 0.8731 1.213

+0.7652 | +0.4401 | +0.0883 -0.7812 1.266
0.7196 0.4709 0.1622 0.6981 1.326
0.6711 0.4983 0.2281 0.6211 1.394
0.6201 0.5220 0.2865 0.5485 1.469
0.5669 0.5419 0.3379 0.4791 1.553

+0.511¢ | +0.5579 | +0.3824 -0.4123 1.647
0.4554 0.5699 0.4204 0.3476 1.750
0.3980 0.5778 0.4520 0.2847 1.864
0.3400 0.5815 0.4774 0.2237 1.990
0.2818 0.5812 0.4968 0.1644 2.128

+0.2239 | +0.5767 | +0.5104 | -0.1070 2.280
0.1666 0.5683 0.5183 | -0.0517 2.446
0.1104 0.5560 0.5208 +0.0015 2.629
0.0555 0.5399 0.5181 0.0523 2.830
0.0025 0.5202 0.5104 0.1005 3.049

-0.0484 | +0.4971 | +0.4981 +0.1459 3.290
0.0968 0.4708 0.4813 0.1884 3.553
0.1424 0.4416 0.4605 0.2276 3.842
0.1850 0.4097 0.4359 0.2635 4.157
0.2243 0.3754 0.4079 0.2959 4.503

-~0.2601 | +0.3391 | +0.3768 +0.3247 4.881
0.2921 0.3009 0.3431 0.3496 5.294
0.3202 0.2613 0.3070 0.3707 5.747
0.3443 0.2207 0.2691 0.3878 6.243
0.3643 0.1792 0.2296 0.4010 6.785

wwwww NJN)E\')NJE\'J NN N NN - = QOO OO OOO0O O
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Appendix I (Continued)

=

Jo (x) J1(x) Yo (x) Y, () Io(x) I (x)

NNNNN NNNNN 00000 QNN NNUND NUNUNU RARAR BARAS BWWWW
VOOV AWNHFO VCONOU HWNHFO VONOU AWNHO VONOU »WNHO 00 -10 w0

-0.3801 | -0.1374 | +0.1890 +0.4102 7.378 6.206
0.3918 0.0955 0.1477 0.4154 8.028 6.793
0.3992 0.0538 0.1061 0.4167 8.739 7.436
0.4026 0.0128 0.6450 0.4141 9.517 8.140
0.4018 0.0272 0.2338 0.4078 10.37 8.913

-0.3971 | -0.0660 | -0.0169 +0.3979 11.30 9.759

0.3887 0.1033 0.0561 0.3846 12.32 10.69
0.3766 0.1386 0.0937 0.3680 13.44 11.71
0.3610 0.1719 0.1296 0.3484 14.67 12.82
0.3423 0.2028 0.1633 0.3260 16.01 14.05

-0.3205 | -0.2311 | -0.1947 +0.3010 17.48 15.39
0.2961 0.2566 0.2235 0.2737 19.09 16.86
0.2693 0.2791 0.2494 0.2445 20.86 18.48
0.2404 0.2985 0.2723 0.2136 22.79 20.25
0.2097 0.3147 0.2920 0.1812 24.91 22.20

-0.1776 | -0.3276 | -0.3085 +0.1479 27.24 24.34
0.1443 0.3371 0.3216 0.1137 29.79 26.68
0.1103 0.3432 0.3312 0.0792 32.58 29.25
0.0758 0.3460 0.3374 0.0445 35.65 32.08
0.0412 0.3453 0.3402 +0.0101 39.01 35.18

-0.0068 | -0.3414 { -0.3395 -0.0238 42.69 38.59
+0.0270 0.3343 0.3354 0.0568 46.74 42.33
0.0599 0.3241 0.3282 0.0887 51.17 46.44
0.0917 0.3110 0.3177 0.1192 56.04 50.95
0.1220 0.2951 0.3044 0.1481 61.38 55.90

+0.1506 | -0.2767 | -0.2882 -0.1750 67.23 61.34
0.1773 0.2559 0.2694 0.1998 73.66 67.32
0.2017 0.2329 0.2483 0.2223 80.72 73.89
0.2238 0.2081 0.2251 0.2422 88.46 81.10
0.2433 0.1816 0.1999 0.2596 96.96 89.03

+0.2601 } -0.1538 | -0.1732 -0.2741 106.3 97.73
0.2740 0.1250 0.1452 0.2857 116.5 107.3
0.2851 0.0953 0.1162 0.2945 | 127.8 117.8
0.2931 0.0652 0.0864 0.3002 140.1 129.4
0.2981 0.0349 0.0562 0.3029 153.7 142.1

+0.3001 | -0.0047 | -0.0259 -0.3027 168.6 156.0
0.2991 | +0.0252 | +0.0042 0.2995 184.9 171.4
0.2951 0.0543 0.0338 0.2934 | 202.9 188.2
0.2882 0.0826 0.0628 0.2846 | 222.7 206.8
0.2786 0.1096 0.0907 0.2731 244.3 227.2

+0.2663 | +0.1352 | +0.1173 -0.2591 268.2 249.6
0.2516 0.1592 0.1424 0.2428 294.3 274.2
0.2346 0.1813 0.1658 0.2243 | 323.1 301.3
0.2154 0.2014 0.1872 0.2039 | 354.7 331.1
0.1944 0.2192 0.2065 0.1817 389.4 363.8
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Appendix I (Continued)

x Jo (x) J1 (x) Yo (x) Y;(x) Io () I; (x)
8.0 +0.1717 +0.2346 +0.2235 —-0.1581 427.6 399.9
8.1 0.1475 0.2476 0.2381 0.1331 469.5 439.5
8.2 0.1222 0.2580 0.2501 0.1072 515.6 483.0
8.3 0.0960 0.2657 0.2595 0.0806 566.3 531.0
8.4 0.0692 0.2708 0.2662 0.0535 621.9 583.7
8.5 +0.0419 +0.2731 +0.2702 -0.0262 683.2 641.6
8.6 +0.0146 0.2728 0.2715 +0.0011 750.5 705.4
8.7 -0.0125 0.2697 0.2700 0.0280 824.4 775.5
8.8 0.0392 0.2641 0.2659 0.0544 905.8 852.7
8.9 0.0653 0.2559 0.2592 0.0799 995.2 937.5
9.0 —0.0903 +0.2453 +0.2499 +0.1043 1094 1031
9.1 0.1142 0.2324 0.2383 0.1275 1202 1134
9.2 0.1367 0.2174 0.2245 0.1491 1321 1247
9.3 0.1577 0.2004 0.2086 0.1691 1451 1371
9.4 0.1768 0.1816 0.1907 0.1871 1595 1508
9.5 -0.1939 +0.1613 +0.1712 +0.2032 1753 1658
9.6 0.2090 0.1395 0.1502 0.2171 1927 1824
9.7 0.2218 0.1166 0.1279 0.2287 2119 2006
9.8 0.2323 0.0928 0.1045 0.2379 2329 2207
9.9 0.2403 0.0684 0.0804 0.2447 2561 2428

10.0 -0.2459 +0.0435 +0.0557 +0.2490 2816 2671




APPENDIX (i

Table of Roots of the Equations Jg(x) = 0, J1(x) = 0

k e Jq (pr) 1,k Jo (i1, %)
1 2.405 +0.5191 3.832 -0.4028
2 5.520 ~0.3403 7.016 +0.3001
3 8.654 +0.2715 10.17 -0.2497
4 11.79 -0.2325 13.32 +0.2184
5 14.93 +0.2065 16.47 -0.1965
6 18.07 -0.1877 19.62 +0.1801
7 21.21 +0.1733 22.76 -0.1672
8 24.35 -0.1617 25.90 +0.1567
9 27.49 +0.1522 29.05 ~0.1480
10 30.63 -0.1442 32.19 +0.1406
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1 2

V2r

Table of Values of the Function ¢(t) =

—
o
—
[\
w
S
(92}
(@)

7 8 9

3989 | 3989 | 3989 | 3988 | 3986 | 3984 | 3982 | 3980 | 3977 | 3973
3970 | 3965 | 3961 | 3956 |3951 |3945 | 3939 | 3932 | 3925 | 3918
3910 | 3902 | 3894 | 3885 | 3876 | 3867 | 3857 | 3847 | 3836 | 3825
3814 | 3802 | 3790 | 3778 | 3765 | 3752 | 3739 | 3725 | 3712 | 3697

3683 | 3668 | 3653 | 3637 | 3621 | 3605 | 3589 | 3572 | 3555 | 3538
3521 | 3503 | 3485 | 3467 | 3448 | 3429 | 3410 | 3391 [ 3372 | 3352
3332 | 3312 | 3292 | 3271 | 3251 | 3230 | 3209 | 3187 | 3166 | 3144
3123 | 3101 | 3079 | 3056 {3034 (3011 | 2989 | 2966 | 2943 | 2920

2897 | 2874 | 2850 | 2827 (2803 | 2780 | 2756 | 2732 | 2709 | 2685
2661 | 2637 | 2613 | 2589 }2565 | 2541 | 2516 | 2492 | 2468 | 2444
2420 | 2396 | 2371 | 2347 [2323 | 2299 | 2275 | 2251 | 2227 | 2203
2179 | 2155 | 2131 | 2107 |2083 | 2059 | 2036 |.2012 | 1989 | 1965

1942 | 1919 | 1895 | 1872 | 1849 | 1826 | 1804 | 1781 | 1758 | 1736
1714 | 1691 | 1669 | 1647 | 1626 | 1604 | 1582 | 1561 | 1539 | 1518
1497 | 1476 | 1456 | 1435 | 1415 | 1394 | 1374 | 1354 | 1334 | 1315
1295 | 1276 | 1257 | 1238 | 1219 | 1200 | 1182 | 1163 | 1145 | 1127

1109 | 1092 | 1074 | 1057 | 1040 | 1023 | 1006 | 0989 | 0973 | 0957
0940 | 0925 | 0909 | 0893 | 0878 |0863 | 0848 | 0833 [ 0818 | 0804
0790 | 0775 | 0761 | 0748 | 0734 | 0721 | 0707 | 0694 | 0681 | 0669
0656 | 0644 | 0632 | 0620 | 0608 | 0596 | 0584 | 0573 | 0562 | 0551

0540 | 0529 | 0519 | 0508 | 0498 | 0488 | 0478 | 0468 | 0459 | 0449
0440 | 0431 | 0422 | 0413 | 0404 | 0396 | 0387 | 0379 | 0371 0363
0855 | 0347 | 0339 | 0332 {0325 [ 0317 | 0310 | 0303 | 0297 0290
0283 | 0277 | 0270 | 0264 | 0258 | 0252 | 0246 | 0241 0235 | 0229

0224 | 0219 | 0213 | 0203 | 0203 | 0198 {0194 | 0189 0184 | 0180
0175 | 0171 | 0167 | 0163 | 0158 {0154 [ 0151 | 0147 0143 | 0139
0136 | 0132 [ 0129 | 0126 |[0122 {0119 | 0116 | 0113 0110 | 0107
0104 | 0101 | 0099 | 0096 | 0093 | 0091 (0088 0086 | 0084 | 0081

0079 | 0077 | 0075 | 0073 | 0071 |0069 | 0067 0065 | 0063 | 0061
0060 | 0058 | 0056 | 0055 | 0053 | 0051 | 0050 0048 | 0047 | 0046
0044 | 0043 | 0042 | 0040 {0039 | 0038 |0037 0036 | 0035 | 0034
0001 | 0001 | 0001 | 0000 | 0000 | 0000 f 0000 0000 | 0000 | 0000

AWM PN PPN S e 200 0000 0000
DOO® NRND WD VPN NEWD HOO® NN WO
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APPENDIX IV

t
Table of Values of the Function F (¢) = 2_ f e % ds
Vo o
for different values of ¢
—

t F(1) t F () t F (1) t F ()

0.00 0.00000 0.30 0.23582 0.60 0.45149 0.90 0.63188
01 00798 31 24344 61 45814 91 63718
02 01596 32 25103 62 46474 92 64243
03 02393 33 25860 63 47131 93 64763
04 03191 34 26614 64 47783 94 65278
05 03988 35 27366 65 48431 95 65789
06 04784 36 28115 66 49075 96 66294
07 05581 37 28862 67 49714 97 66795
08 06376 38 29605 68 50350 98 67291
09 07171 39 30346 69 50981 99 67783

0.10 0.07966 0.40 0.31084 0.70 0.51607 1.00 0.68269
11 08759 41 31819 71 52230 01 68750
12 09552 42 32552 72 52848 02 69227
13 10348 43 33280 73 53461 03 69699
14 11134 44 34006 74 54070 04 70166
15 11924 45 34729 75 54675 05 70628
16 12712 46 35448 76 55275 06 71086
17 13499 47 36164 i 55870 07 71538
18 14285 48 36877 78 56461 08 71986
19 15069 49 37587 79 57047 09 72429

0.20 0.15852 0.50 0.38292 0.80 0.57629 1.10 0.72867
21 16633 Sl 38995 81 58206 11 73300
22 17413 52 39694 82 58778 12 73729
23 18191 53 40389 83 59346 13 74152
24 18967 54 41080 84 59909 14 74571
25 19741 55 41768 85 60468 15 74986
26 20514 56 42452 86 61021 16 75395
27 21284 57 43132 87 61570 17 75800
28 22052 58 43809 88 62114 18 76200
29 22818 59 44481 89 62653 19 76595
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Appendix IV (Continued)

141

t F (1) t F (1) t F (1) t F (1)
1.20 | 0.76986 | 1.70 | 0.91087 | 2.20 | 0.97219 | 2.70 | 0.99307
21 77372 71 91273 21 97289 71 99327
22 77754 72 91457 22 97358 72 99347
23 78130 73 91637 23 97425 73 99367
24 78502 74 91814 24 97491 74 99386
25 78870 75 91988 25 97555 75 99404
26 79233 76 92159 26 97618 76 99422
27 79592 77 92327 27 97679 77 99439
28 79945 78 92492 28 97739 78 99456
29 80295 79 92655 29 97798 79 99473
1.30 | 0.80640 | 1.80 | 0.92814 | 2.30 | 0.97855 | 2.80 | 0.99489
31 80980 81 92970 31 97911 81 99505
32 81316 82 93124 32 97966 82 99520
33 81648 83 93275 33 98019 83 99535
34 81975 84 93423 34 98072 84 99549
35 82298 85 93569 35 98123 85 99563
36 82617 86 93711 36 98172 86 99576
37 82931 87 93852 37 98221 87 99590
38 83241 88 93989 38 98269 88 99602
39 83547 89 94124 39 98315 89 99615
1.40 | 0.83849 | 1.90 | 0.94257 | 2.40 | 0.98360 | 2.90 | 0.99627
41 84146 91 94387 41 98405 91 99639
42 84439 92 94514 42 98448 92 99650
43 84728 93 94639 43 98490 93 99661
44 85013 94 94762 44 98531 94 99672
45 85294 95 94882 45 98571 95 99682
46 85571 96 95000 46 98611 96 99692
47 85844 97 95116 47 98649 97 99702
48 86113 98 95230 48 98686 | 98 99712
49 86378 99 95341 49 98723 99 99721
1.50 | 0.86639 | 2.00 | 0.95450 | 2.50 | 0.98758 | 3.00 0.997%0
51 86696 01 95557 51 98793 01 99739
52 87149 02 95662 52 98826 02 997gg
53 87398 03 95764 53 98859 03 99763
54 87644 04 95865 54 98891 04 99771
55 87886 05 95964 55 98923 05 997 ;
56 88124 06 96060 56 98953 06 99;;6
57 88358 07 96155 57 98983 07 33793
58 88589 08 96247 58 99012 08 0TS
59 88817 09 96338 59 99040 09
1.60 | 0.89040 | 2.10 0.96%27 2.22 0.33882 3.%? 0.33322
61 89260 11 96514 T 29319
62 89477 12 96599 62 99121 12 et
63 89690 13 96683 63 9914? 13 Sooas
64 89899 14 96765 64 99175 1 et
65 90106 15 96844 65 99529 18 e
66 90309 16 96923 66 99 1 20815
8 17 96999 67 99241
o 38384 18 97074 68 99263 18 99853
o8 6 99285 19 99858
69 90897 19 | 97148 9
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Appendix IV (Continued)

t F(t) t F (1) t F(t) t F(t)
3.20 | 0.99863 | 3.40 0.99933 | 3.60 | 0.99968 | 3.80 | 0.99986
21 99867 41 99935 61 99969 81 99986
22 99872 42 99937 62 99971 82 99987
23 99876 43 99940 63 99972 83 99987

24 99880 44 99942 64 99973 84 99988
25 99885 45 99944 65 99974 85 99988
26 99889 46 99946 66 99975 86 99989

27 99892 47 99948 67 99976 87 99989
28 99896 48 99950 68 99977 88 99990
29 99900 49 99952 69 99978 89 99990
3.30 | 0.99903 3.50 0.99953 | 3.70 | 0.99978 | 3.90 | 0.99990
31 99907 51 99955 71 99979 91 99991
32 99910 52 99957 72 99980 92 99991
33 99913 53 99958 73 99981 93 99992

34 99916 54 99960 74 99982 94 99992
35 99919 55 99961 75 99982 95 99992

36 99922 56 99963 76 99983 96 99992
37 99925 57 99964 77 99984 97 99993
38 99928 58 99966 78 99984 98 99993

39 99930 59 99967 79 99985 99 99993




INDEX

Angular velocity 21
Astroid 18

Baye’s formula S§7
Bernoulli trial S7
Bessel functions, table of 135
Binomial distribution 53
Biot-Savart law 73
Boundary-value problem 29
Bounded function 10
Boyer, G. P. 60
Brownian motion 60

theory of 60
Buffon’s problem 57

Cauchy problems 29
Cauchy-Riemann equations 13
Charge distribution 10
Charged sphere 80
Chebyshev’s inequality 64, 131
theorem 131
Compatibility conditions 34
Condensation 32
Confocal ellipses 69
Continuity, equation of 17
Continuous function 7
Coulomb potential 11
Current-density integral 87
Curves, level of 3
Cylindrical coordinates 11
Cylindrical coordinate system 16

d’Alembert’s method 29
Density, unit of 9
Deviation, mean square 62
Differentiable function 7
Differential equations 12
Diffusion 40

Direct current 21
Directional derivatives 4
Distribution functions S8
Distribution series 58

Eigenfunctions, method of 33
Eigenvalues 36
Elasticity, modulus of 97

Electric cable 35
Electric current, passage of 103
characteristics of 103
Electric displacement vector 18
Electric field 11
lines of force of 11
Electrostatics 16
Ellipse 4
Equipotential lines 13
Equipotential surfaces 3
Euler’'s gamma function 45
Euler-d’Alembert equations 13

Field intensity 24
Field intensity, gravitational 9
Field lines 9
Fikhtengol’ts, G. M, 78
Flat-hammer method 100
Fluid, incompressible 13
Fourier-Bessel series 46
Fourier integrals 42
method 33
sine transformation 114
transformation 42
Free oscillations 33
Free vibrations 36
Function, gradient of S

Gas particles 121
Gauss'’ surface integral 78
theorem 14
Gauss-Ostrogradskiy electrostic theorem
16
Gaussian distribution 60
Generating function 57
Gravitational constant 73
Gravitational field, flux of 16
Green’s theorem 14

Harmonic functions 23

Harmonic polynomial 50
Harmonic transverse vibration 31
Heat-flow equations 39
Heat-source density 113
Hydrodynamical model 12
Hyperbolic cylinder 75
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Isothermal surface 70 Scalar fields, plane-parallel 9
spherical 9
Laplace’s asymptotic local theorem 127 Scalar potential 9
integral theorem 128 Segment displacement 29
Laplace’s equation 25, 36 Sharp-hammer method 35
Laplacian 23 Sinks 13
Legendre polynomials 46 Solenoidal field 12
Levin, V. [. 95 Sources 13
Light source 6 Space, three-dimensional 4
velocity of 22 Sphere, cooling of 40
Limit theorems 62 Spherical coordinates 7, 12
in probability theory 62 Spherical functions 50
Linear density 101 Standard deviadon 61
Linear velocity 21 Static deflection 38
Logarithmic potential 7 Stokes' theorem 18
Stream function 12, 13
Magnetic field, intensity of 74 Stream lines 13
Magnetic field vector 73 Stress function 38
Magnetic line of force 86 Stresses, tangential 109
Markov’s theorem 65 Stretched surface 19
Mass 8 String equation, vibrating 29
uniform distribution of 9 solution of 29
Mathematical field theory 17 String profiles 30
Maximum-minimum principle 24 Subintervals 129
Maxwell’s equation 23 Superposition of fields, principle of 75
Mirror image 96 Surface-charge density 91
Molecule, kinetic energy of 60 Surface integrals 14
Surfaces, level 3
Newtonian force 72 isothermal 3
Newtonian gravitational field 9
Newtonian potential 11 Telegraph equations 103
Nonconstant function 24 Temperature distributdon 40
Tensile force 100
One-dimensional wave equation 33 Thermal conductivity 113
Operators, second-order differential 23 Threading 20
Oscillations, longitudinal 29 Tikhonov, A, N, 40, %4
Ostrogradskiy’s formula 24
Ostrogradskiy’s theorem 14 Unit vectors, sum of 71
Uniform distribudon 9
Parallelogram rule 71 of mass 9
Pardal differential equations 13
Particle trajectories 13 Vector curl 18, 20
Particle velocity 77 Vector fields 9
in a liquid 77 flux and divergence of 14
Poisson’s equation 36 circulation of 18
Potential difference 9 components of 19
Potential, gradient of the S Vector potential 24
Prismatic body 38 Vector tube 17
Probability theorems 53 Velocity, distribution of 34
Velocity field 13
Radial vibrations 49 Velocity potential 13, 118
Random variables 58 Velocity vector 13
numerical characteristics of 58 Vibrations, membrane of 36
Recursion differential equation 130 torsional 29
Resonance frequency 106 transverse 99
Revolution, ellipsoid of 6
paraboloid of 6 Wave equation, two~-dimensional 36
Rodrigues’ formula 46 Wave method 29

Wave-propagation velocity 95
Samarskiy, A, A, 40, 94
Scalar fields 3 Young's modulus 92

































