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FOREWORD TO THE ENGLISH EDITION

This collection of problems and exercises is suitable for use 
in courses in which the student is expected to acquire some of 
the fundamental mathematical techniques for formulating and 
solving physical problems. In American universities, courses 
of this nature are usually given for advanced undergraduate and 
first year graduate students in various departments of physics, 
mathematics and engineering.

The first three chapters deal with basic properties of scalar 
and vector fields. The next three are devoted to the formulation 
of initial and boundary value problems, and to their solution by 
the method of waves, and the method of separation of variables. 
Chapter 6 includes material on special functions which is needed 
for the application of the method of separation of variables in 
polar and spherical coordinates. The last chapter contains 
problems on the theory of probability.

The abundance of hints, directions, and of completely worked 
out solutions make this little volume particularly valuable for 
self-study.

October, 1965
M. Yanowitch





PREFACE

This collection of problems and exercises in the methods of 
mathematical physics is designed to fit the present curriculum 
of the departments of physics and mathematics in universities 
and other institutes of higher education.

In compiling this collection, I made use of various text and 
problem books pertinent to the different sections.

To assist in the solution of the difficult problems, and to 
indicate more rational ways of solving them, I have given di­
rections concerning methods of solution for most problems, and 
have included complete solutions of some. The more difficult 
problems are indicated by an asterisk.

The author considers it his pleasant duly to express his deep 
appreciation to Professor V. I. Levin, and also to Lecturers 
V. M. Rudyak and S. I. Mogilevskiy, who read the manuscript 
and made a number of valuable suggestions.

I. V. Misyurkeyev
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PART I

The Foundations of Mathematical 

Field Theory





CHAPTER 1

Two- and Three-Dimensional Scalar Fields

1. Level curves and surfaces

1. Describe the level curves of the following functions
<p(x, y) =  x2-j-y2— 1; <p(x, y) =  +  1-

2. Construct the level curves of the following functions:
(a) x — y; (b) ex-\-x; (c) sin a: + sin y; (d) ^ ^ 2'; (e) V~xyi

(f) — (2x —y - f l )  (a:=#0).
3. Describe the level surfaces of the following fields:
(a) <? =  x-\-y-\- z\ (b) cp =  x2-f-y2 +  z2\ (c) <p=Ar2+ y 2— z2.
4. Describe the level surfaces of a plane-parallel field, of 

a field with axial symmetry, of a cylindrical field, and of a 
spherical field.

5. Describe the isothermal surfaces in the temperature 
field around a heated straight wire of infinite length.

6 . What is the change in the temperature along an isotherm?
7. Describe the equipotential surfaces of the potential due 

to a point mass. Do the same for the potential due to a uniform 
mass distribution along a straight line segment.

8 . Show that the level curves (resp. surfaces) do not pass 
through the extrema of a plane (resp. space) scalar field.

Can the level curves of the following plane fields pass 
through the points shown:

(a) <p (x, y) =  x3 y3 — 3Ary through A (1, 1);
(b) f  {x, y) =  2Ary — 3at2— 2y2-f-10 through 5(0, 0);
(c) <]> (x, y) =  4 (x — y) — x2 — y2 through C (2, -  2)?
9. A scalar ip(x, y) is at every point (x, y) equal to the sum 

of the distances of this point from two given fixed points and 
F2 What are the level curves tp = const.?

3



4 The Foundations of Mathematical Field Theory

10. In a three-dimensional space, <p(M) is the sum of dis­
tances of a point M from two fixed points. Find the level sur­
faces of the function <? (M).

11. In a three-dimensional space, <p(M) is the distance from 
the point M to a fixed straight line. Find the level surfaces of
the function <p(jVI).

12. Consider two point charges ex and — e2 at a certain dis­
tance from each other. Find the surface on which the potential
v — £i — £i is equal to zero (where rt denotes the distance from ' r2
the charge et to an arbitrary point P of the unknown surface).

2. Directional derivatives

13. Does the function/(x, y) =  3x4 — xy -f- y3 have a deriva­
tive in every direction at the point A1J1, 2)?

14. Does the function /(x . y)=V^*y-f-y2 — 1 have a derivative 
in every direction at the point M (0 , 2)?

15. Find the directional derivative of the function 5x2 -  
3x -  y2 — 1 at the point M (2, 1) along the line from this point to 
the point N (5, 5).

16. Calculate the derivative of the function /(x, y) in the 
following directions: (a) along the bisector of the first quad­
rant; (b) along the negative half of the x-axis.

17. Find the derivative of the field yJA 2 at a point on the 
ellipse 2x2-f-y2 =  C in the direction of the outward normal to the 
ellipse.

18. Find the magnitude of the derivative of the function u = 
In (x2 -|- y2) at the point M (x0, y0) in a direction perpendicular to 
the level curve passing through that point.

19. Find the magnitude of the derivative of the function z = 
x2-|-y2 at the point M (1, —2) in a direction perpendicular to the 
level curve passing through that point.

20 . Show that the rates of increase of a field <p at a given 
point in the direction of the normal n to the level surface pass­
ing through that point and in any other direction 1 are related by

d<f d? ._  =  _ c ° s  ( „ .  | ) .

From this, it follows (1) that the derivative in the direction 1 
has its greatest value if this direction coincides with the direc­
tion of the normal n to the level surface and (2) that the deriva­
tive of the function in any direction tangent to the level surface 
is equal to zero.
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21. In what direction should one take the derivative of the 
function u =  xy at the point AI0(x0, y0) in order for the derivative 
to have its maximum value? What is the derivative of the given 
function in the direction tangential to the level curve xy =  .v0y0 
at the point Af0(jc0, y0)?

3. The gradient  of a function

22. Show that

grad Ca =  C grad a, (C =  const.), 
grad (a -f- v) =  grad a -f- grad v.

grad (v) — Srad u ~  a Srad 'y)>
grad (an) =  nun~l grad a, 
grad [a (-y)] =  ur (-u) grad v.

23. Show that

grad /  (cp. t) =  -§£ grad <P +  grad <{>.

where cp and <|> are scalar fields possessing gradients and /  is a 
differentiable scalar function of its arguments.

24. Find the gradients of the following fields:
(a) (p =  5xiy — 3xy5-{-y4z; (b) cp =  x2yz2; (c) cp =  eJr+y+*; (d)cp =  

y2z — 2xyz~i~z2 at the point M (0, 0, 0) and find the gradients of 
the fields (e) cp =  arctan (y/x) +  C; (f) <p= l / r  (where r =  
Y x 2 y2 z2) at an arbitrary point other than the coordinate 
origin.

25. Find the derivative of the function u =  u(x, y, z) in the 
direction of the gradient of the function v =  v(x, y, z). Carry 
out the calculations in particular for the functions a =  x2+y2 + 
z2 — 1 and v =  x 4- y -)- z. Using these results, show that if 
grad a is perpendicular to grad v, the derivative of the function 
a in the direction of grad v is zero.

26. Find the angle between the gradients of the field cp =  
jcy +  y z -f- xz at the points A (0, 1, 1) and B (2, 0, 1).

27. Find the magnitude and direction of the gradient of the 
function cp(jc, y, z ) =  x2+  2y2-f-3z2 — xy — 4x-{-2y — 4z at the point 
M (0 , 0, 0).

28. Find the gradient of the potential of the electric field 
caused by a point charge e placed at the coordinate origin.

29. A temperature field is given by the function T =  x2y — 
y2z - f- 1. What is the direction of the maximum temperature 
increase at the point M0(0. 0, 1)?
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30. At what points of the xy-plane is the gradient of the field 
tp =  x2-(-y2 — 3xy. (a) perpendicular to the y-axis; (b) parallel to 
the y-axis?

31. Figure 1 shows the vector MN =  grad <p(x, y). Find by a 
geometrical construction the derivative of the scalar field 
<p(x, y) in the directions MA, MB, and MC [where the direction of 
MC is tangent to the level curve <p (x, y) =  cp (M)\.

N

32. A scalar field is given by the function <p {x, y)=-^-+-fr— 1-
Show that at a point M (x0, y0) on the level curve cp(x, y) =  0 the 
gradient of this field is equal to r° +  R°, where r° and R° are unit 
vectors in the directions r =  FjM and R =  F2M respectively, F, 
and F2 being the foci of the ellipse serving as a level curve.

33. Consider an ellipsoid of revolution with foci at Px and 
P2, and a mirrored inner surface. Suppose that a source of light 
is located at the point Pa. Show that all the rays of light origi­
nating at this focus and reflected from the surface of the ellip­
soid will meet at the other focus P2.

34. Suppose that the ellipsoid of the preceding problem is 
replaced with a paraboloid of revolution and that a source of 
light is located at its focus. Show that the rays of light origi­
nating at the focus will all be parallel after they are reflected 
from the paraboloid.

35. A scalar field is given by the function cp =  <p(r), where 
r =  Y x2~h y2-\- z2- Suppose, by treating r as an arbitrary func­
tion of a parameter we can represent dtp in the form of the 
scalar product of some vector g (depending on r) and dr:

dcp =  g • dr.

Show that the vector g coincides with the vector grad cp.
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Use this result to evaluate (a) grad r; (b) grad r2; (c) grad r5; 
(d) grad (ar) (where a is a constant vector); (e) J  grad <p • dr,

C

where <p =  <p(x, y) is a differentiable function defined on a simply- 
connected domain D, C is a closed curve in D, and r is the 
radius vector of the point (jc, y).

36. Calculate the gradients of the scalar fields
tp0 —19r2 (r <  a),

(a) M = j cp0—upa2(l-|-2 In (r> a); c°s expressed

in terms of the cylindrical coordinates r, 0, z and of the fields 
(c) u =  — £0rcos9(l — ^  +  C; (d) « =  2wp JJ; (e) u =

(1 — 3 cos2 9); (f) m =  expressed in terms of the
spherical coordinates r, 0, <p.

37. Suppose (5) is a smooth curve (closed or otherwise) in 
thexy-plane and p(P) is a continuous function defined on it. Then, 
the function

«(^o)= /  F( )̂ 1" 
(5)

1
rPoP

dS p>

where p is the distance from an arbitrary point P on the 
curve (5) to a fixed point P0of the plane, is called the logarithmic 
potential of a simple layer and the function \>.(P) is the density of 
this layer. Calculate the vector grad/>„ a at a point P0 not on the 
curve (5).

38*. Suppose a continuous function p(P) is defined in a bounded 
region (u>) of the xy-plane bounded by a piecewise-smooth closed 
curve (I1). Then, the function

v (P0) =  f  f  F (P) *n
(ui)

1
rpcp

du>p,

where rPtP is the distance from an arbitrary point P of the re­
gion (u>) to a fixed point P0of the plane is called the logarithmic 
potential of the region (u>) with density n. Find the vector 
gradp, v at a point PQ (x0, y0) lying outside the region (u>). Show 
that this representation of gradp„ v also holds when the point P0
is in (o>). ______

Consider the behavior at infinity (as r = Y  xl +  -̂ o °°) °f the
logarithmic potential of a region and show that it can be repre­
sented in the form

v (P 0) =  y W ln | +  v*(P0).
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where v*(P0)-> 0 as r-> oo and r2 |gradp0 v*\ <  C (C being some 
constant) and where M — j  J\idwp is the total “mass” in (co).

39*. Let (T) be a plane<<u)curve, <p-theangle between the nor­
mal to the curve (I1) at the point P and the direction from this 
point to a fixed point PQ(xQ, y0), and r„p-the distance between the 
points P0 and P. Then, the expression

v (P0) =  /  HP) 
m

cos <p 
rptp

dSp,

is called the logarithmic potential of a double layer with dipole 
moment of density v(P). Show that, for sufficiently large r =
V 4 + y l

r21gradp0 v\ <  C, 

where C is a positive constant.



CHAPTER 2

Vector Fields

1. Vector fields. Field lines

40. Show that, at a point P(x, y, z), the gravitational field in­
tensity F(P)due to a mass m0 concentrated at a point M0 (x0, y0, z0) 
is equal to the gradient of the scalar field <p(P) = — m0/ r, where

r = rPM, =  V(*  — xo)2+ (y —  y0)2 - K *  —  ^0)2-

Generalize this result to the case of a Newtonian gravita­
tional field caused by n point masses mv . . mn.

41. Show that the gradient field of a plane-parallel scalar 
field is a plane-parallel vector field, that the gradient field of a 
scalar field with axial symmetry is also symmetric about the 
same axis, and that the gradient field of a spherical scalar field 
is a central vector field. Is the gravitational field of a point 
mass a central field?

42. Suppose that a unit mass is displaced along a given path 
AB in a potential field. Show that the work done by a force F in 
causing this displacement is equal to the increase in the po­
tential function <p from the point A to the point B (the so-called 
potential difference).

43. Show that a central vector field R =  ^ u r ,  where /(r) is 
a scalar function of a positive argument, is derivable from a 
scalar potential. Find its potential.

44. Show that for a vector field to be derivable from a po­
tential, it is necessary and sufficient that it be the gradient of 
some scalar field.

In problems 45-48, it is assumed that a unit mass is con­
centrated at the point in question and that on the attracting 
surfaces there is a uniform distribution of mass with unit 
density.

9



10 The Foundations of Mathematical Field Theory

45. Find the force of attraction on a point P(0. 0, t) by a 
homogeneous surface of a sphere of radius R. Consider the 
cases R >  C R <  C P =  C

46. With what force F does the homogeneous lateral surface 
of a right circular cylinder of altitude h attract the center of the 
base of the cylinder?

47. Find the intensity of the field caused by the homogeneous 
lateral surface of a right circular cone of altitude h at the cen­
ter of the base.

48. Calculate the potential of a Newtonian attractive force 
at the point P(0, 0, C)by the homogeneous surface of a sphere or 
radius R. Consider the cases P >  C and R <  C

49. Compute the force with which a homogeneous sphere of 
radius R and density n attracts a material point of mass m 
located at a distance r (where /• >  P) from its center. Show that 
the force of interaction is the same as if the entire mass of the 
sphere were concentrated at its center.

50. Suppose there is a uniform mass (charge) distribution 
of density ii/2 along a line segment of length 21 (—/ <  z < /)  
which is parallel to the z-axis and does not pass through the 
point P0(x0, y0). Compute the potential and the field intensity Ft 
at P0(x0. y0)(see Fig. 2).

Solve this problem for the case in which the straight line is 
infinitely long (but still homogeneous).

51. A constant electric current / flows upward along an in­
finitely long wire placed along the z-axis. Find the magnetic 
field intensity vector H and the lines of force, produced by the 
current, at an arbitrary point M (x, y. z \

52*. Let (v) denote a finite region in a three-dimensional 
space bounded by a piecewise-smooth closed surface (5). Then, 
if a continous bounded function p (P) is defined in (v ), the function

7

Q

X

FIG. 2
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«(P0) =  f f f  p ( P ) ^ .J J rp0pfa)
where rPoP is the distance between a fixed point PQ (x0, y0, z0) of 
space and the point P(x, y, z) of the region (v), is called the 
Newtonian potential of the masses distributed in the region (v) 
with density p (or the Coulomb potential of spatially distributed 
charges).

(a) Calculate the vector gradp„ a at a point P0 outside the 
region (v).

(b) Show that if the point P0 is sufficiently far away r — 
V xl~\~yl~\-zl from the coordinate origin, the following approxi­
mation holds:

u { P o ) ^ ~ ,

where M =  I I I  p dvp is the mass located in the region (v).
(V)

(c) Examine the behavior of the potential a (PQ) at infinity 
(that is , as r->oo). Show that in this case,

r21 gradp0 a | <  C,

where C is a constant.
53. Find the field lines of the following vector fields.
(a) * l- |-2yj; (b) a =  (x2— y1 — z2) i-j-2xyj-j-2zxk; (c) r =  xl-j- 

yj-f-zk; (d) a =  xi — yj — 2zk; (e) the field E =  ?r/r3 of a point 
charge q, where r is the distance between the point in question 
and the charge.

54. Show that the field lines of the homogeneous field R 
(where R = const.) are parallel lines.

55. (a) Find the equation for the lines of force of the field 
of two parallel infinitely-long wires with charges of -f-e and —e 
per unit length.

(b) Find the equation for the lines of force of the electric 
field of a dipole at great distances from it in thexy-plane. 
Assume that the y-axis coincides with the direction of the di­
pole field vector P.

56. Prove the following:
(a) If the vector field a =  afef +  a9eT +  az<tz is given in cylin­

drical coordinates (see Fig. 3a), the differential equations of 
the family of field lines of the field a are of the form

d r   r dy   dz
df
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(b) If the vector field a =  arzr -f- fle®e +  aT®? is given in spher­
ical coordinates (see Fig. 3b), the differential equations of the 
family of field lines of the field a are of the form

d r _ r sin 0 tfy __ r dQ
CLf- 0̂

57. Find the equation for the field lines of the field given in 
spherical coordinates by

2a cos 0 , a sin 0
a = — —  er +  ——  ee- 2

2. A hydrodynamical model
58. Let v =  vxi -f- vyj be the velocity field corresponding to a 

steady potential flow of an ideal incompressible fluid. Show that 
the equation for the stream lines is u(x, y) = const., where 
u(x, y) is a stream function defined by the following line inte­
gral (to within an additive constant):

<r. y)
u(x, y)=  j  vxdy — vydx,

(*o, Vol
where (x0, y0) is a fixed point, and (x, y) a variable point in the 
field (which is assumed to be solenoidal, i.e., such that
dVy
-r—=  0 at all points of the field).
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59. Let cp =  tp(A:, >0 be the potential of the velocity field v =  
vx't ~\~vyi (solenoidal) of an incompressible fluid. Show that the 
stream function can be represented in the form:

<-«•, y)
u(x, y )=  f  —  +const..

( * o ,  Vo)

where (jc0, y0) is a fixed point and (x, y) is a variable point in the 
field.

60. Show that the potential <p(x, y) and the stream function 
u(x, y) corresponding to the velocity field v =  vxi-\-vyj of a po­
tential flow of an incompressible fluid are connected by means 
of the following partial differential equations (Euler-d’Alembert 
equations*):

dy    du dy    du
dx dy * dy dx  *

From this, deduce the following:

(X, y)

<?(x, y )=  J  jfL ctx — dy +  const. =
(x„, y«)

(x. y)
=  J  vxdx~\-vydy-\-const.

( * o ,  y0)

Show that the family of stream lines and the family of equi- 
potential lines are mutually orthogonal.

61. Show that the velocity potential cp(x, y) of the steady-state 
motion of an ideal incompressible liquid without sources or 
sinks, and also the stream function u(x, y), satisfy Laplace’s 
equation:

d2? , d*? _  0 d*u d*u _  0
dx* dy* ~  ' dx2 dy2 ~

62. In the following problems, find the particle trajectories 
and the magnitude and direction of the velocity vector from the 
given velocity potential corresponding to the plane motion of an 
ideal incompressible liquid without sources or sinks:

(a) f  =  x i (b) <f =  .̂2 yj' 5 (c) <p =  x -j- y2 •

♦More commonly called the Cauchy-Riemann equations.—.Trans.
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3. Surface integrals. The flux and divergence of a vector 
field. Ostrogradskiy’s theorem*
63. Evaluate the surface integrals:
(1) J JydS,  where S is  the hemisphere 2 =  + / / ? 2— *2—y2.

S
(2) J  J  (x2 +  y2)z dS, where 5 is  the upper half of a sphere of 

radius a5with center at the coordinate origin.
<3> I f  zdS, where 5 is the total surface of the tetrahedron 

intercepted from the first octant by the plane x-\- y +  z = 1.
(4) f f .. zdS.. . where S is that portion of the paraboloid z =
'  ' JS J x2 y2

x2+ y 2 intercepted by the cylinder x2-l- y2 — a2.
(5) f  f x 2y2 z dx dy, where 5 is (a) the outer surface of the

lower half of the sphere x2 y2 z2 =  R2; (b) the inner surface 
of the same hemisphere.

<6> J > ! dxdy, where S is the outer surface of the ellip-
5y2 u2 p<2

soid -̂ r +  -p- +  7r =  1.

(7) J  J  xyzdxdy, where 5 is  the outer surface of that portion
of the sphere x2-j-y2+  z2= llying in the first and eighth octants:
jc >  0 , y >  0.

(8) f  f  (y — z)dydz +  (z — x)dx d z -h (x —y)dx dy, where 5 is
§

the upper side of the surface of the sphere Jc2 +  y2+ z<2 =  2/?* 
intercepted by the cylinder jc2-|- y2 =  rlrx (where r <  R and z >  0).

(9) /  J yz dx dy +  xzdy dz-{- xy dx dz, where 5 is the outer
side of the surface located in the first octant and formed by the 
cylinder x2-\-y2=.R2 and the plane x =  0, y =  0, z — 0, andz — H.

64. (a) Use Ostrogradskiy’s formula to transform the sur­
face integral

/  =  J  J  (x2 dy dz -|- y2 dx dz -|- z2 dx dy)
s

into an integral over the region w bounded by the closed surface 5.
(b) Use Ostrogradskiy’s formula to evaluate the surface 

integral
J J (z2 cos (n, x) -j- x2 cos (n, y) +  y2cos(rt, z))dS.

♦More commonly called Gauss* or Green's theorem.—.Trans.
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(c) Set Q =  R =  0 and P =  uv in Ostrogradskiy’s formula and 
obtain the formula for integrating a triple integral by parts:

J  f fa TZ d* =  ~  /  f f v W d* +  /  f uv'cos ("■ *>'dS-o» (I) 5

65. Suppose in a steady flow of an ideal incompressible 
fluid, the velocity of each particle is equal in magnitude and 
direction to the radius vector from the origin to the particle. 
How much fluid flows out of volume T per unit time?

66 . Find the flux of the vector r =  *i -J- yj -f- zk (a) through 
the outer side of the surface of aright circular cone whose apex 
coincides with the coordinate origin if the radius of the base of 
the cone is R and its altitude is  H; (b) through the outer side of 
the surface of a right circular cylinder whose lower base is 
centered at the coordinate origin (as with the cone, the radius of 
the base is R and the altitude is H) ; (c) from a sphere of radius 
R with center at the coordinate origin.

67. Calculate the flux of the vector a =  (v — 2y) i +  zj 4* 
(3y +  z) k through that portion of the surface of a unit sphere 
with center at the coordinate origin that is contained in the first 
octant, that is , in the region in which x2 y2-\-z2 >  1.

68 . In a steady flow of an ideal incompressible liquid, the 
velocity of each particle is directed to the coordinate origin and 
has a magnitude equal to 1 //•*, where r is the radius-vector of 
the particle. Calculate the amount of liquid flowing from a 
volume G in unit time.

69. The projection of a certain vector R onto the outer nor­
mal of the surface of the tetrahedron formed by the planes 
x-\-y~\-z—X, x > 0 ,  y > 0, 0 is equal to l/(l-F-*+y)2. Calcu­
late the outward flux of this vector through the surface.

70. The magnitude of a vector R at a given point M is usu­
ally represented graphically by drawing field lines through a 
surface element AS that is  perpendicular to the vector R at the 
point M. The number of lines drawn is  proportional to the 
magnitude of the vector R. Show that the flux of the field R 
through a surface 5 is proportional to the number of field lines 
crossing the surface S.

71. (a) Calculate the flux of the electric field E— qr/r3 due 
to a point charge q across a sphere of radius a with center at 
the charge. What is the flux if the charge q lies outside the 
sphere? What is the flux of the vector E through an arbitrary 
surface?

(b) Show that the flux of an arbitrary field R through an 
arbitrary closed surface is  equal to 4n times the sum of the
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masses m1....... mn producing the field, that are enclosed by the
surface:

(In electrostatics, this assertion is called the Gauss-Ostro 
gradskiy electrostatic theorem). The equation

is a generalization of this assertion for the case of continuously 
distributed masses (or charges) with density [x(P) within the 
region (v) bounded by a closed surface 5.

72. A sphere of radius a has an electric charge uniformly 
distributed over the surface with surface density a =  q/4.na2. 
Find the intensity D of the field at points inside and outside the 
sphere.

73. An infinitely long circular cylinder of radius a is elec­
trically charged with a uniform surface density a. Determine 
the intensity of the field at a point located at a distance r from 
the axis of the cylinder. Consider the cases r >  a and r <  a.

74. Suppose that a mass m is concentrated at the coordinate 
origin. What is the flux of the gravitational field inward through 
the surface of a cylinder of radius r and altitude 2h that is co­
axial with the 2-axis and has one base in the xy-plane?

75. An infinitely thin plane is electrically charged with a 
surface charge density a. Find the intensity of the field at a 
point M located at a distance r from the plane.

7 6. Calculate the flux of the vector a =  arer -f- -f- azez
(given in a cylindrical coordinate system) through that portion 
S of a cylindrical surface of radius r whose axis coincides with 
the 2-axis.

77. Show that the flux of the vector a =  are,-|-a e 
(given in a spherical coordinate system) through any portion 5 
of a spherical surface of radius r with center at the coordinate 
origin is equal to the integral

78. Find the divergence of the field R =  5xi +  3yj — 2zk and 
give a physical interpretation of this result.

79. What is the divergence of the homogeneous field a== 
fljri +  flyJ +  azk (where ax, ay, az are constants)? Give a hydro- 
dynamic interpretation of the result.

n
Q(R; S) =  — 4 « 2  m„

Q(R; S) =  — 4* f  f  f  v{P)dvP.
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80. By using the definition of the divergence, evaluate
(a) the divergence of the vector r == xi +  yj at the centers of 

the circle x2-\- y2 =  R2 and of the square — R -< x, y R.
(b) the divergence of the field r =  xi +  yj - f  zk at the center 

of the sphere x2-\- y2-f- z2 =  R?.
81. Does the field R =  3jc2i —5xyj-\-z2k have either sources 

or sinks at the points P,(l,  2, 3), P2(l, - 5 ,  - 1 ) ,  P3(2, 0, - 1)? 
If so, determine their strength.

8 2 . Evaluate the divergence of a central vector field R =  /  (r) r, 
where /  (r) is a differentiable function and r =  xi +  yj +  zk, where 
r =  |r|.

83. Find the source distribution belonging to the vector field 
R =  *i — y~l +  xzk and the total output of the sources of the given 
field that lie within the sphere x2-\-y2-\- z2 =  l .

84. Find the divergence of the velocity field v of a liquid 
rotating around an axis, and of the field H in problem 51.

85. A certain liquid that is moving with a velocity v fills a 
volume 0 . Assuming that the velocity field in the region G is  
solenoidal, derive the equation of continuity:

-£ -+d iv (pv)  =  0.

where p =  p(x y, z, t) is the density of the liquid at the instant t 
at the point (x, y, z).

From this, derive the condition for incompressibility of the 
liquid:

dlv v =  0.
86. Experiment shows that the velocity of an incompressible 

liquid in a vector tube increases in places where the cross- 
section of the tube decreases. Explain this fact from the point 
of view of mathematical field theory.

Show that the fluxes of a solenoidal vector field through dif­
ferent cross sections of a vector tube are different.

87. (a) Show that the divergence of the gravitational field of 
a finite number of point masses is everywhere zero outside 
these masses. Generalize this assertion to the case of the 
gravitational field of a continuously distributed mass in a 
region (v).

(b) Show that the divergence of the gravitational field F of a 
continuously distributed mass in a region (v) is equal to

div F =  — 4rcp.,

where m is the density of the substance.
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88. The field of the electric displacement vector D is di­
rected along the radius of a sphere a and its values are given by

/r (0 < r < a ) ,
la3
7 r r (a <  r <  °o),

where r == xl -f-  yj -f- z k , r =  | r |, and 0 <  / =  const. Find the dis­
tribution of the charges producing this field.

89. Show that a central vector field R(r) =  ( f(r) / r)r  will be 
solenoidal only when the magnitudes of the vectors of this field 
are inversely proportional to the squares of the distances of 
the points in question from the center.

90. Evaluate the divergence of the following vectors:
<2*3(a) a =  r2zer +  *2<peT—-g-e„ defined in cylindrical coordinates

and
(b) a =  ar{r, 6, cp)er; (c) a =  2C°2S6 er -f- sin 0ea; (d) a =

 ̂e, +  tpef — y  ê ; (e) —V  ̂- c°s 9j, defined in spherical co­
ordinates.

91. Show that the fields a =  y2f -f- z2j -|- x2k and b =  - C°3S 9 ef -f- 

sl”3 6 ee (in spherical coordinates) are solenoidal.

4. The circulation of a vector field around a closed
contour. The curl of a vector. Stokes' theorem

92. Calculate the circulation of the given vector field along 
the curve indicated and explain the physical meaning of the sign 
of the circulation (here and in what follows, we take the counter­
clockwise direction around a curve in a right-handed coordinate 
system as the positive direction);

(a) a =  —-y i4 - xj-j-5k. (C): Jt2+ y 2 =  l ,  2 =  0;
(b) & — (C): the circlex2-\-y2-\-z2= a 2t x- |-y  -f- z == 0;
/ v  y « 1 x(C) a =  — 7,_j_yS l +  (C;: any simple closed curve

(with no points of self-intersection);
(d) a ( 3̂y-f- ey) i -j- (xy3-|- xey — 2y) j, (C): any closed curve 

that is symmetric about the origin or about both coordinate 
axes;

(e) a =  _yi — xj, (C): the closed curve formed by the coordinate 
axes and the first quarter of theastroidr =  flco s3  ̂• i +  /?sin3/! • j;
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(f) a =  y2i, (C): the closed curve consisting of the right half
of the ellipse r =  aj cos sin t • j and a segment of the
y-axis;

(g) a =  (y —z)i-f-(z —x)jH-(jc — y)k, (C): the circle x2-\- y2-{- 
z2 =  R2, y =  x tan a (for 0 <  a <  rc), where the positive direction 
is  the counter-clockwise direction as viewed from the positive 
half (x >  R) of the x-axis;

(h) R =  y2z2i -f- x2z2j +  x2y2k along the closed curve x =  a cos t , 
y =  a cos 2t , z =  a cos 31, taken in the direction of increasing 
values of the parameter t.

93. (a) Show that the circulation of a vector field depends 
on its orientation in the field by calculating the circulation of 
the field a =  yi around the circle with center at the point (0 , b, 0) 
and radius b that lies in the xy-plane and then for a circle of 
same radius and center that is located in the plane y =  b.

(b) Calculate the curl of the field a =  yi around the circle 
x =  b cos t, y = b  +  b sin t, z — 0 (for at the center of
this circle Pu(0, b, 0)in the positive direction of the z-axis.

94. Calculate the circulation of the vector H in problem (51) 
around the circle (L): x2-\-y2 =  R2, z =  0. What is the circulation 
of this vector around any simple closed curve (C) not encircling 
the conductor?

95. Suppose the components of the vector field & =  axi-4- 
ayj -j- azk have continuous derivatives with respect to the coordi­
nates in the neighborhood of a point P. Show that the curl of the 
field a at the point P can be calculated from the formula

i j k
d d d

d x d y d z

a x ay a z

From this formula, derive expressions for the components 
of the vector curl a.

Use the formula given above to calculate the curl of the fol­
lowing vector fields at an arbitrary point:

(a) R =  oi-f-b\-f-ck (where a, b, and c are constants),
(b) R =  /  (/•) r, where r =  xi +  yj zk. and r =  | r |.
96. Calculate the flux of the curl of the field a =  x3y:i\ -f- 

j +  zk: (a) through the hemi sphere z =  -f- YR2 — x2 — y2, (b) through 
an arbitrary piecewise-smooth 2-sided surface 5 “ stretched” 
across the circle x2-f-y2 — R2, z =  0. Compare the two results. 
Show that the flux of the curl through a closed surface is inde­
pendent of the shape of the surface and depends only on the 
shape and position of the curve bounding this surface.
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97. A propeller of infinitely small radius with a large num­
ber of blades that can rotate freely about an axis is placed in 
the velocity field v of a liquid in motion. Let 1 denote a unit 
vector in the direction of the axis of the propeller. Show that 
the magnitude of the angular velocity a) of the propeller will be 
greatest if the vector 1 is directed along the vector curl v. Show 
that the angular velocity vanishes if the axis of rotation is per­
pendicular to the direction of the vector curl v. Finally, show 
that it is neither zero nor its maximum value if the axis of ro­
tation is in any other direction.

98. Show that Stokes’ formula can be written in vector form 
as follows:

J  F dL =  J  j  curl F dS.
L S

where dL =  dLt, dS =  n dS, * is a unit vector tangential to the 
curve L in the positive direction, and that n is a unit vector 
normal to the surface S.

99. Show that the direction of the curl of the velocity field 
corresponding to the flow of a liquid rotating like a solid around 
some axis is along the axis of rotation and that its magnitude is 
equal to twice the angular velocity.

100. Show that the circulation of the magnetic field intensity 
II, due to an electric current, around a closed curve is equal to 
4rc/c times the albegraic sum of the currents “threading” the 
curve, where c is the velocity of light in a vacuum.

101. Calculate the curl of the field R(P) =  /(p)'t(P), where p 
is the distance from the point P to a fixed straight line / and 
t (P) is a unit vector perpendicular both to the line I and to the 
line drawn from the point P to the line I (see Fig. 4). Assume 
that the function/(p) is differentiable.

FIG. 4

102. Find conditions which are necessary and sufficient for 
the field of the preceding problem to be irrotational.
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103. Show that the circulation of the magnetic field intensity 
H, due to an electric current, around a closed curve I that does 
not encircle any current-carrying conductor is equal to zero. 
Compare this result with the assertion in problem 100.

104. Determine the angular velocity w with which a rigid 
body rotates about an axis that passes through some point of 
the body if its linear velocity is given by v =  2xi y2j -|- xzk.

105. Show that the field of the curl of a vector R is free of 
sources.

106. Show that the flux of the curl of a vector R through an 
arbitrary closed surface 5 is zero.

107. Calculate the total strength of sources of the field of 
the curl of a vector R that are enclosed by a closed surface S.

108. The velocity of each particle of a liquid in plane 
steady flow is characterized by the vector

V =  « i-f-v j.

(1) Find the amount of the liquid Q that flows through a 
closed contour C enclosing a region 5 containing the source of 
the liquid. (2) Calculate the circulation r  of the velocity vector 
V around the curve C. (3) Show that the components u and v of 
the field V satisfy the Euler-d’Alembert (or Cauchy-Riemann) 
equations

du   dv du   dv
dx dy 9 dy dx *

if the liquid is incompressible and the flow is irrotational.
109. In a source-free space, a magnetic field H satisfies 

the equations

curl H =  0, div H =  0.

Show that these equations imply that

H — grad a, Am _  +  dyt +  dg2 — 0.

where u is the potential of the field H.
110. Suppose that a direct current / is flowing through a 

cylindrical wire of radius a. Find the magnetic field intensity 
at an arbitrary point located at a distance r from the wire.

111. Find the magnetic field intensity caused by a direct 
current / flowing down a hollow cylindrical tube.
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112. Derive the differential equations of the magnetic field 
of a direct current:

where j is the current-density vector, n is the magnetic per­
meability of the medium, and c is the velocity of light in a 
vacuum.

113. Prove (a) that every field derivable from a scalar po­
tential is an irrotational field and (b) that identical vanishing of 
the curl of a differentiable vector field in a simply-connected 
domain implies that the field is derivable from a scalar po­
tential.

114. Show that the fields a =  x3i —y3j +  z3k and b =  yz (2x-\- 
y-\-z)i-j-xz(x-\-2y+z)}-}-xy(x-t-y-\-2z)k and the magnetic field H 
of the line current /  in problem 51 have corresponding potentials 
and evaluate their potentials. How can we reconcile the state­
ment that the field H has a potential with the answer to prob­
lem 94?

115. Calculate the curl of the following fields:
(a) The axis-symmetric fields a =  ar(r, z ) t r + a z(r, z)e2 and 

b =  r2zer— rz2z2‘,
(b) a central field a =  ar(r, 6, cp)ê  and fields:

curl H =  ^ -j, (1)

div(xH =  0. (2 )

(c) a =  sin cper +  e? — rze./,



CHAPTER 3

Second-Order Differential Operators. 
The Laplacian. Harmonic Functions

116. Show that

and
div (t{» grad cp) =  t|;V2<p-f- V<p •

A (cpiji) =  cp - f -  t|i Acp - j -  2Vcp • V<j>.

117. Calculate the Laplacian of the functions 2/u In (1 / r) 
(where r2= x 2-\-y2 and n = const.), (1 / r) (where r2 =  x2 -f- y2 +  z2) 
and

In the last two expressions, assume that u =  u(x, y, z) is har­
monic.

118. It is shown in electrodynamics that the intensity E of 
an electric field caused by a charge density p satisfies Max­
well’s equations for an electrostatic field at every point of the 
region in question:

divE  =  — p, curlE =  0.
£ r

Find the field E.
119. Suppose that the divergence and the curl of some field 

a are given at all points of a region (v) bounded by a surface 5:

curla =  b> diva =  c,

23

(1)
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and that the values of the normal component a„ of the vector a on 
the boundary 5 are given:

Show that there exists a unique vector a satisfying equations
(1) and the boundary condition (2).

120. Show that if a function u(x, y, 2) is harmonic in a region 
( id)  bounded by a surface (S), then

121. By using the expressions for the Laplacian in cylin­
drical and spherical coordinates, find the general form of the 
function u — u (r) such that Am =  0.

122. Write Ostrogradskiy’s formula for the vector grad cp. 
By using this relation, show that, if cp is a harmonic function in 
a region T bounded by a surface S, then

Give a hydrodynamic interpretation of this result by consider­
ing the flux of the velocities v =  grad <p of the steady motion of 
a liquid.

123. Show that if the functions <p and 41 are harmonic inside 
the surface S, then

124. Show that if a nonconstant function//(v, y, 2)is harmonic 
and continuous in a region it cannot have extreme values in the 
interior of the region but attains them only on its boundary (the 
maximum-minimum principle).

Use this theorem to show that if two harmonic functions u1 
and u2 coincide on the boundary of a region, they must also co­
incide everywhere within that region.

125. Can a vector field with nonzero divergence possess a 
vector potential?

126. Evaluate the magnetic field of an infinitely long straight 
wire conducting a current I by evaluating first the vector po­
tential A and then the field intensity from the formula H = 
curl A.

(2)
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127. Calculate the vector potential of a system of currents 
flowing in three mutually orthogonal infinitely long conductors 
at a point P(x, y, z) as shown in Fig. 5.

2 

21
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FIG. 5

128. The vector potential of the magnetic field of a circular 
current / with radius a is, at great distances R (that is,f?^>a),

A =  — •[{!. R].

where p is the magnetic moment of the current. Evaluate the 
intensity of the field H.

129. Calculate the potential u of the electrostatic field caused 
by a sphere of radius R throughout which a charge e is uniformly 
distributed.

130. By integrating Laplace’s equation in spherical coordi­
nates, calculate the potential of an electrostatic field inside and 
outside a conducting sphere of radius a on the surface of which 
a charge e is uniformly distributed.

131. Calculate the potential and intensity of the field of an 
infinite circular cylinder of radius a if its interior is elec­
trically charged with a uniform density p .





PART II

Differential Equations of Mathematical 

Physics





CHAPTER 4

Solution of the Vibrating String Equation 
by the Method of Wa ves 

(d’ Alembert’s Method)

132. Suppose the vibrations of an infinitely long string are 
excited by an initial displacement of the segment (— C, C) in the 
shape of a parabola, symmetric with respect to the u-axis (u 
denotes the displacement from equilibrium).

Formulate the initial value problem under the assumption 
that the string is initially at rest, and that the maximum initial 
displacement is h.

133. Formulate the mixed initial-boundary value problem for 
the longitudinal oscillations of a rod of uniform cross section, 
under the hypothesis that one end (x =  0) is rigidiy fastened, 
while the other end (x =  l) is free, and that the initial displace­
ment and velocity are respectively ^(x)and v(jc).

134. Derive the equation for small torsional vibrations of a 
homogeneous cylindrical rod of length I. Give a mathematical 
formulation of the problem of torsional vibrations of a rod with 
one end clamped and a pulley fastened to the other end.

135. Solve the Cauchy problems

. .  d2a d2u
(a) -faT dxi»

/  da {xt 0)  nu{x% 0) =  sin*, --- j t—-  — 0
(— oo <  * <  oo, t >  0)

(b) d2a
~W a1 d2u

'dx2t
u(x, 0) =  0, - U- - =  A sin x (A =  const-)

(— oo < x <  co, t >  0).

29
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136. Suppose that a homogeneous infinitely-long string, 
satisfying the initial conditions

u ( x ,  0) =  p. (at). dU °-  =  v (a:) (— oo <  at <  co)

is subjected to a uniform external load distribution q(x, t). Find 
the displacement of an arbitrary point on the string for t >  0.

137. Find the distribution of voltages and currents along an 
infinitely long conducting wire possessing self-inductance L, 
capacitance C, resistance R, and leakage G, all measured per 
unit of length, assuming that the initial conditions are

v (jc. 0) =  tp(jc). /(x . 0) =  <1>(*) (— co <  x <  co).
and that the four parameters listed are related by the equation 
R / l  -  g / c  (distortionless line).

138. Suppose that at an initial instant of time, a semi­
infinite string 0 x <  co has the following shape

u =
- ( x - C )

for

for

x < C .
C  <  x <  2C,

-0- (x — 3C) for 2C  <  x <  3C,  

0 for x >  3C

(A> 0. C > 0)

Draw the profiles of the string corresponding to the instants 
c/a,  t2=  2c/a,  t3=  3 c /a, and t4=  7c/2a(where a is the 

velocity of propagation along the string).
139. Solve the equation

a tt =  a 2uxx , (0 <  x <  co, / >  0) 

with boundary and initial conditions

«(x, 0) =  [a (x), -  U(£ 0) =  v (x);
«(0, o =  t(0 -

Calculate the solution when (x) =  x2, v (x) =  sin x9 and (t) — t, 
140* Suppose a backward wave described by f ( x , t) =  

1/2 sin was traveling along a semi“infinite string 0 <
x <  oo with velocity a =  1 when t <  0. Calculate the displace­
ment from equilibrium of the point x =  2k at the time t =  10 sec 
(a) if the end * = 0 is fixed, (b) if the end * =  0 is fre e (^ (0, 0 =  0).
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141. The end x =  Oof a semi-infinite rod 0 O < o o  moves ac­
cording to the law «(0, t)=r,Ae~KIbeginning at t — 0. Here, A and 
K are constants. Find the displacement a (x, t) of points of the 
rod for / >  0 if the initial velocities and displacements are 
equal to zero.

142. The end x =  0 of a semi-infinite string whose cross 
section is a circle of diameter 1 mm undergoes a harmonic 
transverse vibration of the form A cos u>t (where A = const.). 
Find the displacement u (x, t) of the string at an arbitrary in­
stant of time and also the velocity of propagation of a wave if 
the tension is T — 4 kg and the density is 7.8 gm/cm3. Assume 
that the initial displacement and initial velocity of points on the 
string are both zero.

143. A semi-infinite tube 0 <  x <  co filled with an ideal gas 
has a freely moving piston of mass M at the end of x — 0. At 
the instant t — 0 , a blow imparts to the piston an initial velocity 
v0. Study the propagation of a wave in the gas if the initial dis­
placements and velocities of particles of the gas are both zero.

144. A semi-infinite string 0 of linear density p and 
tension pa2 is  originally in a state of rest. For t >  0 , the point 
x =  0 undergoes small vibrations given by A sin u>/. Find the 
displacement of an aribtrary point x of the string.

145. At the end x — 0 of a semi-infinite cylindrical tube filled 
with gas, a piston executes harmonic oscillations with displace­
ment A sin u>/. At some initial instant of time, the condensation 
and the particle velocities are zero. Determine the displace­
ment u(x, t) of the gas for / >  0.

146. Suppose the initial shape of a homogeneous string whose 
ends at x =  0 and x — l (see Fig. 6) are fixed is that of a para­
bola symmetric with respect to the perpendicular line drawn

F IG . 6

through the point x — l/2.  Suppose that its maximum displace­
ment is  h. Determine graphically the displacement of the string 
at the instants t }=  i/2a and t2~  i /a,  where a is  the velocity of 
propagation, assuming that the string is initially at rest.
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147. Solve the following boundary-value problem:

ln =  a2“xx>
u(x,  0) =  p.(-v). ut (x, 0) =  v(at), 

u (0, t) =  a (I, t) =  0
(0 <  * <  /, t >  0)

148. Suppose a gas is initially at rest, and that the initial 
condensation S0 is constant inside a sphere of radius R, and 
vanishes outside the sphere. Determine the condensation 5 for 
all t >  0 outside of the region where the gas is initially dis­
turbed.

149. Find the displacement for t >  0 of points on a finite 
homogeneous string which is initially at rest, if the end points 
x =  0 and a: =  I are fixed, while the initial velocities are zero 
and the initial displacement is given by

u (x, 0) =  A sin - j -  for



CHAPTER 5

The Fourier Method. The Method 
of Eigenfunctions

1. Problems associated with the one-dimensional
wave equation

150. Find the natural frequencies of the transverse vibra­
tions of a string of length I, linear density p, and tension T that 
is fastened at both ends.

151. Find the natural frequencies of the longitudinal vibra­
tions of a rod 0 <  x <  /, the left end of which is fastened, if a force 
F(t) =  At (where A = const.) is  applied to the right end at the 
instant / =  0. Assume that the medium offers no resistance to 
the vibrations.

Solve this problem with the hypothesis that a weight of mass 
M0 is attached to the free end.

152. Find the frequency of vibrations of a string 10 cm long 
with rectangular cross section, 0.2 mm x 0.4 mm if its density 
is  t =  7.8 gm/cm? and if the tension in it is 1 kg.

153. One end of a rod (0 < j c < »  is fastened (* =  0) and the 
other is free. What are the amplitude and the period of the free 
oscillations of the rod if the initial conditions are of the form

<f (x, 0) =  (a (x), <st (x , 0) =  v (x)

154. Find the law of vibration of a homogeneous string of 
length I with both ends fixed if at the initial instant it has the 
shape of a parabola symmetric with respect to a line perpendic­
ular to the string at its midpoint. The string is initially at rest.

Solve this problem under the assumption that the length of 
the string is  / =  * and that the initial deviation from the equi­
librium position is given by P (x) — sin x.

33
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155. Integrate the equation of small longitudinal vibrations 
of a cylindrical rod of length/one end of which (a: =  0) is fastened 
and the other is free. The initial displacement and velocity are 
respectively p(jt)and v ( x ) .  Apply the general formula to the case 
in which p ( jc) =  x 2 and v ( x )  = sin  x .

156. Suppose that a homogeneous string with fixed ends 
jc = 0  and x  =  l is stretched by displacing the point x  =  x Qa. dis­
tance h from the equilibrium position and released with zero 
initial velocity at the instant / =  0. Calculate the energy of the 
rath harmonic of the vibrating string.

157. Examine the forced vibrations of a string of finite 
length (0 < * < / )  caused by a periodic disturbing force q =  
A sinu>/ under the hypothesis that the ends of the string are 
fastened and the initial conditions are nonhomogeneous:

u ( x ,  0) =  (i(jc), ut ( x ,  0) =  v ( x )

where p- (-v) and v(je) are given continuous functions defined for 
0 x / that vanish at a: =  0 and x =  / (compatibility conditions). 
Do not consider the resonant case.

158. Show that the solution of the equation

U tt — 11X X  +  ^

for x  £ [0, it] and / >  0 that satisfies the conditions

ra(0, /) =  u (it, /) =  0, 
u ( x ,  0) =  «,(*, 0) =  0,

is the function

u(x, t) =  ±  V  f  x*sina ( t - x ) < h
n = \ o

where k is an arbitrary natural number.
159. A homogeneous rod of length 21, with center at the 

point x =  0, is compressed by forces applied to its ends. This 
compression shortens the rod to a length 21 (/ — e). At the in­
stant t == 0 , these forces are removed. Find the displacement 
u (x, t) of a cross section with abscissa a- for / >  0.

160. A string with fixed ends is set into vibration by a blow 
from a flat hammer which imparts to it the following initial 
velocity distribution:

0 —  8 .

*0 —8O < j c 0- |-8.
0 A-0 +  8 ^  X  /.

at {x. 0) =  v(jc) =
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Find the vibrations of the string if the initial displacement is 0. 
Solve the problem under the condition that the string is set into 
vibration by a sharp hammer which gives it an inpulse P at the 
point x0.

161. A string fastened at the end points is displaced by a 
force F0 applied at the point x =  c. Find the vibrations of the 
string if this force is suddenly removed at the initial instant.

162. One end of a rod is held in place and a constant force 
F0 is applied to the other. Find the longitudinal vibrations of the 
rod if this force is removed at the initial instant.

163. A string of length I is placed in a medium that offers a 
resistance proportional to the speed of motion of the string. In 
this case, the wave equation has the form

d2u 9 d2u
~W =  a T ? 2k du

~St

where k — hh {h being a proportionality constant and p the 
density of the string).

Solve this equation by the Fourier method with the initial 
conditions

u(x, Q) =  f(x). du{*’V = F( x )

and the boundary conditions

u (0, f) — u (I, 0  =  0

164. A continuously distributed force with linear density 
* sin uit is suddenly applied to a string fastened at the ends. 
Find the purely forced vibrations of the string. Neglect the re­
sistance.

165. Find the general solution of the problem of transverse 
vibrations of a beam simply supported at its end * =  0 and 
x =  l subject to arbitrary initial conditions:

u(x,0 ) =  f(x), du^ ’°  ̂=  g(x) (0 < x < l )

166. An isolated homogeneous electric cable 0 < x < /  is 
charged to some constant potential. At the initial instant, the 
end x =  0 is grounded, while the end x — l remains isolated. 
Find the potential distribution in the conductor if the self­
inductance is L, the resistance is R and the capacitance is C 
per unit length of the conductor.



36 Differential Equations of Mathematical Physics

167*. In the region Q 
boundary-value problem is posed:

. d2U ! / \

the following mixed

u (0, t) =  u(l, 0 = 0. «(*. 0) =  (*(*), da 0) =  *(*)•

where
L(u) =  £ ( k ( x ) £ ) - q ( x)u

(k (x) > 0, q (x) > 0, p (x) >  0)

Show that the eigenfunctions of the problem are orthogonal with 
weight p (*) in the interval [0, I] and that the eigenvalues are all 
positive.

2. Problems associated with the two-dimensional
wave equation; Laplace’s equation, and Poisson’s equation
168. (a) Find the natural frequencies of vibration of a rec­

tangular membrane with sides /, and /2 that is fastened along the 
edges. Consider the case in which /, =  /2.

(b) Find the frequency of the fundamental tone of a square 
membrane of side I that is fastened along the edges.

169. Find the eigenvalues and eigenfunctions of the boundary- 
value problem

170. A homogeneous square membrane is fastened along 
its edges. If its shape at the initial instant t =  0 is given by 
a(x, y, 0 )=  Axy(l— x)(l — y)t where A = const., and if its initial 
velocity is zero, find the free vibrations of the membrane.

171. Solve the boundary-value problem

Av-f-^v =  0 (v =  v(x, y); 0 x a; 0 ^ y ^ . b )  
v\x = 0 =  v\x = a =  v\y = 0 =  v\y=t) =  0.

A =  const.
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172. Suppose that a rectangular membrane 0<; x /„ 0 <  
y <1 h is fastened along the edges. Find the transverse vibra­
tions caused by a force of density

F(x, y, t) =  A(x, y)sinu>/ ( />  0).

applied perpendicularly to the surface of the membrane. Con­
sider the resonant case.

173. Solve the boundary-value problem
A d2U . d2U ^ ,rs ^ ^ r, /  . , .A“ =  - ^ 4 - - ^ 2- =  0 ( 0 < x < a ;  0 < y < 6 )

u l.*=o =  v =  const., u\JC=a =  ujy=0 =  0, u |y=6=©o=const.

174. Find the harmonic function <p(x, y) inside the rectangle 
0 <  x <  a, 0 <  y <  b, if its values on the boundary are given:

<pL=o =  Ay{b — y), cp|J.=o =  0 (0 < y < 6),
cp|y=0=5sin-^-,  cp|y=6= 0  (0< x < a ) ,

where A and B are constants.
17 5. Find the electrostatic field inside the region bounded 

by conducting plates y =  0 , y = b ,  and x =  0 (x >  0), if the plate 
x =  0 is charged to a potential v0 =const., if the plases y =  0 and 
y — b are grounded, and if there are no charges inside the region 
in question.

176. Find the potential of an electrostatic field u(x, y) inside 
a rectangular box, 0 < x < c ,  — 6 / 2 < y < 6 / 2  (see Fig. 7) if 
the potentials on its edges are as follows:

<Pi(x) for y

U = <p2(x) for y

b_
2 ’
_  b_

2 ’
'l'i(y) f°r
'h 00 for x =  a

and if there are no charges inside the box. 
177. Find the solution of the equation

Am = — y cos x

inside the semicircle x2-f-y2< l ,  y > 0  that satisfies the con­
ditions
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u =  0 for y =  0,

u =  Y  1—x2^cosv— f°r y >

on the boundary.

y

b U:<P,2
u=v2

0
b

a *

~ 2 U-fi

FIG. 7

178. We know that the problem of torsion of an arbitrary 
prismatic body whose cross section is a region D bounded by a 
contour L leads to the following boundary-value problem: Find 
the solution of Poisson’s equation

Aa =  — 2,

that vanishes on the contour L. Here, the basic quantities needed 
for the analysis are the components x.zx and ~2y, of the shear 
stress and the twisting moment M, These are expressed in 
terms of a stress function u as follows:

da
i , zy =  — G0 da 

dx  ’

M — 2G0 s i  u dxdy , 
(D)

where 9 is the angle of twist per unit length and 0 is the modulus 
of shear.

Give a direct solution of the problem (that is , find the stress 
function, x2X, and M) for the torsion of the rectangle

179*. Find the static deflection of a rectangular membrane 
with sides 2a and 2d under the action of a line load uniformly
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182. Find the temperature at each point of an insulated 
copper rod of length l =  100 cm if the temperature at the ends 
of the rod is held at 0° and the initial temperature in the rod is
p(x)— 50° sin 2*x/i.

For copper, c — 0.094 cal/gm, £.= 0.9 cal-sec/cm , and
p= 8.9 gm/cm3.

183. Find the temperature distribution for positive values 
of t in an infinitely long plate whose surfaces * — 0 and x =  I 
are insulated if at the initial instant, T(x, 0) =  A sin x(l — x)/i\  
that is, show just how the temperature becomes equalized 
throughout the plate.

184. If a thread of very small cross section is bent to form 
a closed circle, it is called a ring. In a certain ring of length 
2u, an initial temperature distribution f  (x) is given. If the ring 
is allowed to cool freely, what will the temperature distribution 
be after an arbitrary interval of time?

185. (The problem of the cooling of a sphere.) A sphere of 
radius R is immersed in a medium at temperature 0°. The 
initial temperature at each point of the sphere is given by f  (r), 
where r denotes the distance from the center of the sphere. On 
the surface of the sphere, the cooling proceeds according to 
Newton’s law:

=  0.
r = R

where h is a positive constant.
Study the process of cooling of the sphere for t >  0.
186. Derive the equation for diffusion in a hollow tube (with­

out sources of matter) when there is no diffusion through the 
walls of the tube:

where D is the coefficient of diffusion, C is the coefficient of 
porosity, and u — u{x, t) is the concentration of the substance in 
the cross section x at the instant t . If C and D are constants, 
the equation then takes the form

du 9 d2a

(See Tikhonov and Samarskiy, Uravneniya 
fiziki [Equations of Mathematical Physics].) matematicheskoy
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187. Suppose that a sphere of radius R with initial tempera­
ture distribution /(r) is given. At an initial instant of time, the 
sphere is dipped into icewater, so that the surface temperature 
is maintained at 0°C. Find the temperature distribution within 
the sphere at any subsequent instant. The cooling proceeds uni­
formly since the temperature depends only on the radius-vector 
r and the time t. Consider the case in which /  (r) =  t0=  const.

188. One end of a rod x =  0 is thermally isolated and the 
other jc =  / is held at 0°. At the instant t — 0, the temperature 
has the same value T0 at all points of the rod. Determine the 
temperature u (x. t) at every point x at an arbitrary subsequent 
instant of time.

189. Solve the boundary-value problem

ut =  a2uxx -f- g (x, t), (0 <  * <  /. 0 <  t <  oo)
«Uo =  /(*)« (0 < x < l )
ux Lr=0 =  0* (0 <  t <  CO)
A (« L = /  —  «/) =  — k u x \x= i  («/ =  «/ (01-

Give a physical interpretation of this problem.
190. Set up the one-dimensional heat-flow equation taking 

account of the heat exchange through the lateral surface of a 
homogeneous rod.

191. Find the steady-state temperature distribution u(x, y) 
in an infinitely long beam of square cross section (see Fig. 9), 
three sides of which are held at 0° and the fourth is held at a 
constant temperature u(x, a) =  T.

192. Consider a rod of rectangular cross section, two op­
posite sides of which y =  0 and y =  b are held respectively at 
temperatures 0° and T== const, and the other two sides ( x =  ± a) 
radiate heat into the surrounding medium according to Newton’s 
law. If the temperature of this medium is 0°, find the tem­
perature at the point (0 , b/2) of the rod.
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193. Find the temperature of a rod 0 x with thermally 
insulated lateral surface if the initial temperature is every­
where zero, if the temperature at the ends is held at zero, and 
if a source of constant strength Q is concentrated at the point x0 
(where 0 <  x0 <  /.) in the rod.

4. Fourier integrals and the Fourier transformation
194. Represent the function

1 for | x | <  1. 

/(* )  =  ' j  for |* |= 1 ,  
0 for | * | >  1. 

by means of a Fourier integral. Show that

/ sin t  k

~ r d t =  t -o
Determine the functions /  (x) and cp (x) from the following: 

relations: ^
° °  OO

f / ( x ) c o s X x d x  = j r ~ T , J<p(x)sinXx d x  
0 0

196. Show that the functions

*2 4 - x* *

/(X) =  «-•", g ( k )  = 1
X2- f  a2

are the Fourier cosine transforms of the functions

fix) =  Y ^ e~*-  *(*)“ £ v^f*"**•

197. Solve the following Cauchy problems
(a) utt — a?uxx -f- x t ,  (— oo <  x <  oo. / >  0)

«(x. 0) =  0. « ,(x .0) =  0. ( - o o < x < o o ) .
( =  0 ( co'< x <  co, / > 0 )

«(x. 0) =  fx(x). ( -  00 <  * <  co).
valuate the unknown function when [x(x)= T0=  const

(c) ut =  a?uxx -f- /  (x, t), (— 00 <  x < 00. / >  0)
u ( x ,  0) =  (j, (x).
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198. Solve the following boundary-value problems:
(a) uit =  a2uxx, 

a (0, t) =  t2, 
a(x, 0) =  at (x, 0) =  0,

(b) u, =  a2uxx, 
u (0, 0 =  0. 
u (x , 0) =  f(x),

(C) ut =  a2axx,

(0 <  x, t <  d o ) 

(0 <  / <  co)
(0 <  x <  oo).
(0 <  x, t <  oo) 
(0 <  t <  oo)
(0 <  * <  oo).
(0 <  / <  oo)

ux(0, 0 =  0. a(x, 0) =  /  (x).

199. Find the solution of Laplace’s equation

■g-̂  +  -gp- =  ° (0 < a: < o o . 0 < y < o o )

with boundary conditions

“ly=o =  °- I f L =0 =  /(:y)'

200. Find the solution of the heat-flow equation in a homo­
geneous rod in a medium of temperature U:

*± — a2j ^ - b 2{U-a) =  g{x. t) (— o o < x < o o ,  />0)

with the initial condition u(x, 0) =  /(*). Consider this problem 
when £/ =  £/„ =  const, and there are no heat sources.





CHAPTER 6

Problems Involving Special Functions

201. Euler’s gamma function is defined for all positive p by 
the convergent improper integral

oo
Y ( p )  =  f x p-  le~x d x .

o
Show that 1) =  pT(p)foT arbitrary real p. Derive the formula

oo
Y ( n - \ -  \ )  —  tt \ —  ^  x ne~x d x  ( n —  1, 2, 3, . . . ) .

o
202. Prove the identities

(a) (« =  1. 2. 3. ...)•

(b) A (x )  —  —  Jo (x);  {x J t (x)] '  =  xJ 0 (x) .
X

(c) f l / 0 ( Q d t  =  x J t (x )
0

xf v l  (05) d \  = —  [Jl ( a x )  +  A (a->c)]
0

Xf 1 %  © d l  =  2* V0 (Jt) +  ( x 3 — 4 x )  Jx (x) .
0

(d) ^

•gj \ x ~ pJp (*)] =  — x ~ pJp + l (x)  

for arbitrary p.

45
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(e) xJp (x) pJp (x) — xJp-1 (x), 
x/p( X)  — pJp ( X)  =  -  xJpMx). 
Jp-1 (x) — JP+1 (-*■)=  2Jp(x),

Jp-i (x) -f- Jp+\(x) =  ~£ /p (x)

for arbitrary p. By setting p =  n- 1 (for n — 1 , 2, 3, . . .) in the 
last relationship, derive the recursion formula

Jn(x) =  ̂ — Jn- A x) -Jn- 2{x) ( " = 2' 3- 4- •••)•

Express J2 (x), J3 (x), and JA (x) in terms of J„ (x) and Jx (x).
203. Find expressions for Ji (x), i  i (x), Jjs (x).

2 2 2

204. Integrate the equations:

<a> T ^ ( x £ r )  +  ( a 2 - ^ y  =  0 ( n  =  ° '  h  2’
(b) /  +  =  o (« =  o*

/'-j- JCy =  0.

( ° )

205. Prove the relations

if m +  p,
if m — p.

where the amn are the positive roots of the equation Jn(*) =  0, the 
subscript m indicating the ordinal number of the root.

206. Expand the following functions in Fourier-Bessel series:
(a) f(x) =  xp (for P — l/2 ) in a series of the functions 

JP(KX\  Jp(X2x), . . .  in the interval 0 < x <  1 (where the X(. are 
the positive roots of the equation Jp (X) =  0).

(b) /  (x) =  x3 in a series of the functions {J3 (X,x)) in the in­
terval 0 < x < 2 (where J3(X(.) =  0 for X; > 0with/=  1,2, 3, . . .).

207. Use Rodrigues’ formula for the Legendre polynomials

2" n!
dn (x* — l ) n 

d x n

to find the first five Legendre polynomials and draw their graphs.
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208. The Legendre polynomials may be defined as the co­
efficients of r" in the expansion of the generating function
(1 — 2rx-j-r2) ?in a series of powers of r (where | x | <  1 and
M O D :

Evaluate P„(l), Pn( -D »  and Pn(0).
Derive the recursion formula

(« +  1) Pn+i +  (2» +  1) xPn -  nPn_, =  0 (n =  1. 2, 3 ...).

by differentiating the relation (1) with respect to r and equating 
terms of like powers of r" on the two sides of the equation.

209. Expand the functions

co
(D(l _ 2rx +  r2)"2=  2 />»Wr",

(* 1 • 3 • 5 ... (2n — 2k— 1) x„_2k

®) =  (1—2 (7 ) cos 2

and

/(*) =
0 for — 1 ^  x <  0,
1 for 0 <  x 1

in a series of Legendre polynomials 
210. Prove the identities:

(a) P2n+1 (0) =  0. P2n(0) =  ( - ! )" — 7 :1.3.5... (2« — l) 
2 • 4 ... 2n

(b) P„-1(0) - P n+1(0) =  ̂ LPn- 1(0).

(C) (2»+ \)Pn(x) =  Pn + l(x) — Pn-l(x).

( 2/1 +  1 ’
1 for n — 0

n =£ m
n — m.

0 for 2 and even,
(e) f P n( x ) d x = \  Li 3.5-7... (n-2) 

0 l) ‘ 2-4-6 ... (/i+l)
for n ̂  1 and odd.
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211. Find the bounded solutions of Laplace’s equation

inside and outside a sphere of radius R if the solutions are equal 
to a function /(0) on its surface. Carry out the calculations for 
r <  R =  1 and /  (6) =  cos2 0.

212. Examine the axially symmetric vibrations of a circular 
membrane of radius R that are caused by an impulse P applied 
at the instant t — 0 and distributed over a circular area of radius 
e. The membrane is fastened along its edge.

213. Determine the form of forced vibrations of a circular 
membrane of radius R that is fastened along its edge if a pul­
sating load is uniformly distributed over its surface according 
to the law q sin (u>i +  ijj) (where q is a constant).

214. Suppose that a weight is applied at the instant t =  0 to 
a circular membrane of radius R. If the weight is uniformly 
distributed with density q(t) over the annulus <  r <  r2, deter­
mine the form of the membrane for t >  0. Assume that the 
membrane is fastened along the edge.

215. A homogeneous circular membrane of radius R has the 
form of a paraboloid of revolution

at an initial instant t — 0, where b is the initial deviation of the 
center r =  0. The initial velocities and the boundary condition 
are given in the form

Find the displacement of the center r = 0  of the membrane at 
an arbitrary instant t >  0. Calculate the period of the funda­
mental tone of the membrane, assuming that it is made of paper 
of thickness 0.2 mm. The radius R =  5 cm, and the tension is 
T — 100 gm/cm. The density of paper is 1 gm/cm2.

216. A sphere of radius R is placed in an irrotational par- 
allel flow of an incompressible liquid moving with a constant 
veiocity a. Study the distribution of the velocities in this flow.

17. Study the free radial vibrations of a circular membrane 
of radius R fastened along its edge with arbitrary initial condi­
tions. Also, carry out the calculations for the case in which the

d f  t=0 =  v o ( r )  =  0;  u ( R , t )  =  0.
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initial displacement is /(r) =  r2 and the initial velocity is
g{r) =  r2.

218. Determine the natural frequencies of the radial vibra­
tions of the circular membrane of problem 217 and also the 
amplitude of the vibrations of each tone.

219. Consider an infinitely long cylinder of radius a the 
lateral surface of which is thermally insulated. Find the tem­
perature as a function of position and time if the initial tem­
perature is axially symmetric and is given by u(r, 0) =  r2.

220. Solve the boundary-value problem

d3w _ 2 / _L  ̂ I 2 dw \ 2w ) /0 r roA
dt* a ( 7 r "57\r ~dF) W  j y t >  0 / ’

Wr(r0’ 0  =  ° <*>°>*
w(r, 0) =  vr, w't (r, 0) =  0 (0 < > .<> 0, v =  const.).

by the method of separation of variables.
221. Suppose that a spherical vessel containing a liquid (gas) 

is  in uniform motion with velocity v. If at the instant t =  0 the 
vessel suddenly stops, find the resulting vibrations in the fluid.

222. Suppose that the temperature in an infinitely long cyl­
inder of radius R is radially distributed and given by a function 
/(r). At an initial instant, the surface of the cylinder is suddenly 
cooled to 0° and is then held atthat value. Find the temperature 
distribution inside the cylinder at an arbitrary instant of time. 
Consider the case in which f(r) =  i0 =  const.

223. Show that the function

Un={curn +  - $ r ) Y n{Q, 9)

is a particular solution of Laplace’s equation A«(r, 9, <p)= 0 
(where the cin, for i — 1 , 2 , are arbitrary constants).

224. A homogeneous circular membrane of radius R is 
fastened along its edge. It is in equilibrium under tension T. 
At an instant t =  0, a uniformly distributed pulsating load 
PQ sin u)t is applied to the surface of the membrane. Find the 
radial vibrations of the membrane.

225. Find the potential of the horizontal velocities of water 
particles vibrating in a right circular cylinder with horizontal 
base if the initial conditions possess radial symmetry and the 
pressure on the surface of the water is constant.

226. A spherical conductor is partitioned into two hemis­
pheres by a layer of insulating material. The upper hemisphere
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is charged to a potential U1 and the lower to a potential U2. Find 
the potential of such a conductor at an arbitrary point M of the 
electrostatic field (see Fig. 10).

227. A homogeneous nth degree polynomial Un satisfying 
Laplace’s equation Au(x, y, z )=  0 is called a harmonic poly­
nomial. Obviously, the polynomials

U0 — a,
Ux =  ax-{-by -f- cz

are polynomials of degree 0 and 1.
Find the general form of the second- and third-degree har­

monic polynomials U2 and Uz. Show that the spherical functions

( sinh ® '
r v mh(fi, T) =  r"Pm.(cos0) ( coshTJ

are harmonic polynomials of degree rn.



PART III

The Elements of Probability Theory
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236 A region D of area 5 contains a circle C of radius R 
with center at the point A. Suppose that N points are chosen at 
random in D. What is the probability that at least one of these
points will be inside the circle Cl

237. If A and B are two events, show that

P  {A +  B) =  P (A) ■+ P (B) — P (AB)

Generalize this equation to an arbitrary finite number of 
events:

p(t V ) = £ m ) -  2  /’( ¥ / )  +V -i /  i - i  i , j “ i

-f- 2  ••• ”b(—1)" •^>(AiA2 . . .  An)i,j, * = i

238. An urn contains 5 white and 3 black balls. Two balls 
are taken from the urn, one after the other. Find the probability 
that both balls will be white. Solve the problem both under the 
hypothesis that the first ball is not returned to the urn and then 
under the hypothesis that it is returned.

239. In a lot of 200 objects, 150 are of first grade, 30 are of 
second grade, 16 are of third grade, and 4 are rejects. What is 
the probability that an object chosen at random will be either of 
first or of second grade?

240. An urn contains white, black, red, and green balls. The 
probability of taking a white ball at random is 0.15, a black ball 
0.23, and a red ball 0.17, What is the probability of taking a 
green ball?

241. Someone fires at a circular target consisting of three 
zones: I, II, in  (see Fig. 11). The probability of his scoring a 
hit in the first zone is 0.25, in the second zone 0.35, and in the 
third zone 0.15. What is the probability of his missing the tar­
get entirely?

242. Two dice are thrown. What are the probabilities that 
(a) the sum of the spots thrown will be a multiple of 3 , (b) the 
sum will be equal to 7 and the difference will be equal to 3,
(c) the sum will be equal to 7 when it is known that the differ­
ence is 3?

243. An airplane is fired on three times. The probabilities 
of a hit are, in the three cases, 0.4, 0.5, and 0.7. What is the 
probability that exactly one hit will be scored? What is the 
probability that at least one hit will be scored?
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FIG. 11

244. Consider two lots of objects:

1st lot

Grade Number of objects

I 8
II 3

III 1
Rejects 1

Total 13

2nd lot

Grade Number of objects

I 12
II 2

III 1
Rejects 2

Total 17

One object is chosen at random from each lot. What is the 
probability that these two objects chosen will both be grade I?

245. Suppose that the conditions of the preceding problem 
are modified as follows: both objects are chosen from the first 
lot and the first object chosen is returned before the second 
object is chosen. What is the probability that the first object 
will be grade I and that the second will be grade II?

246. As a second modification, suppose that three objects 
are chosen, all from the first lot, and that each object is re­
turned before another selection is made. Find the probability 
that all three objects will be grade I.

247. A student seeking a particular book decides to try three 
libraries. In each case, there is a fifty-fifty chance that the 
library has the book, and, if so, the chances are fifty-fifty that 
someone already has the book out. What is more probable: that 
the student will find the book, or that he will not?

248. One marksman hits a target 80% of the time; another 
hits it 70% of the time. If both fire at the target, what is the 
probability that at least one will hit it?
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249. Consider an event A that may occur together with one 
of a set of events Ev Ev . . . .  En. If the £ ’s constitute a complete 
set of mutually exclusive events (i.e., a partition of the sample 
space), prove the following formula for the probability of A (the 
complete probability formula):

P ( A ) ^ i 1P(Ei)P(A/Ei)/ = 1
250. A bag of wheat seed for sowing that is classified 

grade I contains small admixtures of grade n, III, and IV seeds. 
The probability that an individual seed taken at random will be 
grade I is 0.96; that it will be grade II is 0.01; that it will be 
grade HI, 0.02; that it will be grade TV, 0.01. Suppose that the 
conditional probability that a seed that is grade I will yield a 
stalk containing no fewer than 50 seeds is 0.50; for a grade II 
seed, the figure is 0.15; for a grade III seed, it is 0.20; for a 
grade IV seed, it is 0.05. Find the unconditional probability that 
a seed chosen at random will yield a stalk with at least 50 seeds.

251. Suppose that each of six identical boxes contains 15 ob­
jects and that the number of first-grade objects in each is given 
by the following table:

Box
number

Number of objects

total first-grade

1 15 8
2 15 8
3 15 8
4 15 6
5 15 6
6 15 5

Someone takes an object at random from one of the boxes. 
What is the probability that he will take a first-grade object?

252. By using the theorem on multiplication of probabilities 
and the formula for total probability (see problem 249) prove 
the following theorem: suppose that Ey, E.2........... En constitute a

s e t  o f  m u t u a l ly  exclusive events. Denote the prob- 
abilities of these events before an experiment by P(El)t P(E2)$
• * * » p (En)’ Let an experiment be performed as a result of 
which an event A is observed to happen. Then, the probability 
o the event Eit for i =  l ,  2, . . . , n, after this experiment is
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given by Bayes’ formula

57

P (EiIA)=  / ( g J ' W d  
%P(Ek)P(AIEk)

253. Two marksmen each fire a shot at a target. Suppose 
that the probability that the first will get a hit is 0.6 and the 
probability that the second will get a hit is 0.3. Suppose that 
after both have taken their shots, someone examines the target 
and finds one bullet-hole in it. What is the probability that it 
was made by the first marksman? By the second?

254. Buffon’s problem. A set of parallel lines are drawn in 
a plane at a distance 2a from each other. A needle of length 2a 
(and negligible diameter) is tossed onto the plane. Show that the 
probability that the needle will cross one of the straight lines is 
equal to 2/* »  0.637.

255. A box contains white, black, and red balls. The prob­
ability of taking a white, black, or red ball is respectively px — 
0.15,p2 — 0.22,pz=  0.12. Find

(1) the probability of taking a white ball in a single random 
selection;

(2) the probability of taking a white ball in 10 random selec­
tions;

(3) the probability of taking at least one white ball in 10 
random selections;

(4) the probability of taking at least 9 white balls in 10 ran­
dom selections.

256. Suppose that
n

<?n(Z)=Yl(PlZ+<h)i = 1

where denotes the probability of occurrence of an event A in 
the fth Bernoulli trial and =  1 —/>,.

Show that the probability that the event A will occur exactly 
m times in n independent trials is equal to the coefficient of zm 
in the expression for the function <?n (z). The function <p„ (z) is 
called the generating function of the probabilities Pn (m).

Use the expansion of the generating function to solve the 
following problem: four persons shoot at a target from different 
distances. The probabilities of their scoring a hit are respec­
tively />,= 0.1, p2=  0.2, Pi=  0.3, and pA=  0.4. Find the proba­
bility of one, two, three, four, no hits.

257. From the data of problem 239, find the probability that 
in a random selection of five objects.
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(1) all five objects will be of first-grade,
(2) four will be of first-grade and one will not be of first-

grade,
(3) three objects will be of first-grade and two will not be

of first-grade,
(4) not one of the objects will be of first-grade.

2. Random variables. Distribution functions. Numerical 
characteristics of random variables
258. Give some examples of discrete and continuous random 

variables.
What is a distribution series (or distribution table) of a ran­

dom variable? Give some examples. What is the distribution 
function of a random variable? What are its properties? What 
is the probability density function of a random variable? What 
are its properties?

259. Someone fires a single shot at a target. The proba­
bility of a hit is 0.2. Write the distribution series and the dis­
tribution function of the number of hits I.

260. A random variable $ has the following probability 
density

f(x) =
a cosx for — -y < * < - £ ;

0 for x <  — — or x >  -£-

(a) Find the coefficient a.
(b) Construct a graph of the probability density/(x).
(c) Find the distribution function F (x)and construct its graph.
(d) Find the probability that the random variable S will fall 

in the interval (0, n/4).
261, What is the probability that a random variable ; with 

probability density

/(x) = 1
71(1 4-JC*)

will fall in the interval (— 1 , + 1) ?
262. A random variable $ is defined by the following dis­

tribution table:

€ i 2 3

p 0 0.2 0.8
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A second random variable tj, independent of the first, is defined 
by the following distribution table:

**] 1 2 3

p 0.2 0.5 0.3

Find the law of distribution for the sum
263. A coin is tossed until it falls heads. Find the average 

value of the number of tosses that will be necessary.
264. Suppose that an electric current flows through a con­

ductor whose resistance depends on random causes and that the 
current strength is also randomly determined. Suppose that it 
is known that the average value of the resistance of the conduc­
tor is 25 ohms and that the average value of the current is 
6 amps. What is the average value of the emf $ across the con­
ductor?

265. Suppose that a random variable can assume only two 
values: 1—if a particular event occurs and 0—if this event does 
not occur. Show that the mathematical expectation of this ran­
dom variable is equal to the probability of the event referred to.

266. A box contains 500 objects, three of them grade I. 
Suppose that someone takes an object from the box. Find the 
mathematical expectation of the number of grade I objects. 
Compare the result with the assertion in the preceding problem.

267. Show that the mathematical expectation of a random 
variable always lies between its smallest and largest values:

^mln ^  ^  ^max

268. Show that the variance of a discrete random variable 
that assumes the values $2, . . . , £„ with probabilities px, 
/?2» . . . , p^is equal to

£>: =  a2-(M D2
where

*2= 2 ^ /

269. Calculate the mathematical expectation and the variance 
of a random variable whose probability density function is

/(•*) =
1

P — «
0

for a < x <  p;

for x <  a or x > $
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270 An airplane is fired upon until a hit is scored. The 
probability of a hit is P for each shot. Find the mathematical 
expectation, the variance, and the standard deviation of the
number of shots that are made. ,

271 An approximative measurement of the diameter a ot a
circle indicates that For successive calculations, d
is treated as a random variable with a uniform law of distribu- 
tion in the interval (a ,  b) .  Find the mean value and the variance
of the area of the circle.

272. Find the probability that a random variable ; with a 
normal Gaussian law of distribution will fall in the following 
intervals i

(1) (a  — a, a - f  °): (2) ( a  — 2a, a - f- 2a); (3) (a — 3a, a  -f- 3a).
273. The law of distribution of the absolute value of the 

velocity v  of a molecule is given by the formula*

P ( v ) =  4 1f

(The constant a  is determined by the temperature of the gas and 
the mass of the particle in question: a — m/2kT, where k is 
Boltzmann’s constant.)

(a) Find the mean value of the path traversed by the mole­
cule in a unit of time (the mean free path of the molecule).

(b) Find the mean value of the kinetic energy of the molecule 
(the “average energy” of the molecule).

274. A random variable S obeys a normal Gaussian law with 
known mean value a  and standard deviation a. Find the proba­
bility that $ will fall in the interval (a, (3). Evaluate this proba­
bility for (a. p)= (5, 10), a  =  20, and a =  5.

275. Calculate the probability that a random variable 5 that 
obeys a normal Gaussian law will fall on a segment of length 2/ 
symmetric about the center of dispersion a .

276. Suppose that a particle (for example, a molecule of gas) 
is, at the instant / =  0 , at a distance x 0 from an infinite plane 
wall that exerts a repelling force on the particle when the latter 
is close to it. According to the theory of Brownian motion, the 
expression

w ( x ) d x  =  — e- - \ - e  w t  \ d x

gives the probability that this particle will at any instant t be at 
a distance between a: and x-\-dx from the wall. Find the mean

‘See, for example, G. P. Boyev, Teoriya veroyatnostey (Probability Theory), 
Gostekhizdat, 1950, p. 108.
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value of the displacement, the mean value of the square of the 
displacement of the particle in the time t, and the variance of 
the quantity x.

277. Suppose that 5 and are independent random variables 
with a uniform law of distribution, 5 in the interval (a, b), yj in 
the interval (c, d) (see problem 269). Find the mean value and 
the variance of the product of these random variables.

278. A random variable x is distributed according to a 
normal law with mean x and standard deviation Qx. Show that 
the probability that the absolute value of the deviation x — x will 
be between the numbers a and b (where 0 <  a <  b) is equal to

where
t Z 1

2 dz

279. A certain object is manufactured at a factory. Its 
length a: is a random variable distributed according to a nor­
mal Gaussian law. Its mean value is 20 cm and its variance is 
0.2 cm. Find the probability that the length of a particular ob­
ject will be between 19.7 cm and 20.3 cm, that is, that its length 
will not deviate from the mean length either way by more than 
0.3 cm.

280. With the hypotheses of the preceding problem, what 
precision in the length can be guaranteed with probability 0.95?

281. When a gun is fired, three mutually independent factors 
may cause the shell to veer away from the target: (1) inaccuracy 
in determining the position of the target, (2) error in sighting, 
and (3) errors resulting from causes that vary from shot to shot 
(the weight of the shell, atmospheric conditions, etc.). Suppose 
that all three of these types of error are distributed according 
to a normal law with mean value zero and that their probable 
deviations are 24 m, 8 m, and 12 m. Find the probability that 
the final deviation from the target will not exceed 40 m.

282. A random variable 5 is distributed according to the law

/(*) =
0,

1
a e a

if x < 0  

if x > 0.

Find its mathematical expectation, variance, and distribution 
function/7(x)and construct its graph.
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fired from a point_0 along the x-axis. The 
hv a shell i s x =  1500 m. Assume that

where a is the parameter of the distribution, equal to 0.6267 M̂ .
Show that , . ,
(1) the variance of a random variable that obeys Maxwell s

law is equal to (3 — 8/*) a2 =  0.454a2;
(2) the distribution function is given by

3. Limit theorems in probability theory
285. The probability of a certain event is equal to 0.005. 

What is the probability that this event will occur exactly 40 
times when 10,000 trials are performed?

286. Suppose that 40% of a certain lot of articles are of first 
grade. If 50 objects are chosen in succession with each object 
returned before the next is chosen, what is the probability that 
exactly 25 of those chosen will be of first grade?

287. In problem 285, find the probability that the event will 
occur no more than 70 times.

288. Suppose that 100 series of bombs are dropped on a 
strip of enemy fortifications. With each such series, the mathe­
matical expectation of the number of hits is 2 and the mean 
square deviation of the number of hits is 1.5. Find approxi­
mately the probability that with 100 such series the number of 
bombs that will hit the strip will' be between 180 and 200.

289. An urn contains white and black balls. The probability 
of taking a white ball at random is p — 0 .75.

(a) What is the probability that 8 out of 10 randomly chosen 
balls will be white?

where
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Evaluate the probability that, out of 100 randomly chosen 
balls (with replacement), the number of white balls will be

(b) no fewer than 70 and no more than 80;
(c) no fewer than 81;
(d) no more than 70.
(e) What is the probability that, out of 400 balls chosen at 

random (with replacement) the relative frequency of appearance 
of a white ball will deviate from pby an amount less than 0.035?

2 9 0 .  Suppose that a lot of 500 objects contains 300 that are 
of first grade. If 150 objects are chosen at random with replace­
ment, what is the probability that the number of first-grade ob­
jects chosen will be

(a) between 78 and 102?
(b) between 78 and 108?

2 9 1 .  Use Laplace’s local theorem to find the probability 
that, out of 10,000 births, 4,800 will be girls if the probability 
of the birth of a girl is p =  0.485.

2 9 2 .  Suppose that the probability of occurrence of a certain 
event is p =  0.3 in each of 2 500 independent trials. Use Laplace’s 
integral theorem to find the probability that the event will occur 
no fewer than 1500 and no more than 2000 times.

2 9 3 .  The average percent of rejects among certain manu­
factured articles is 3%. How large must a sample of these ob­
jects be for the probability that the deviation of the frequency of 
occurrence of rejects from the value 0.03 will not exceed 0.02 
to be 0.9? (Use Laplace’s integral theorem.)

2 9 4 .  (a) The probability of occurrence of an event A in each 
of n independent trials is p. If the number of trials is increased 
indefinitely, the frequency m,/n of the event A converges in prob­
ability to its probability p; that is , for arbitrary e > 0 ,

lim P
n - tc o

(Jakok Bernoulli’s theorem). Prove this by using Laplace’s 
integral theorem.

(b) The probability of occurrence of an event in a single 
trial is p =  0.6. Use Bernoulli’s theorem to find the smallest 
number n of independent trials that will make the probability of 
the inequality | m./n  — 0.6 | <  0.1 exceed 0.97.

(c) If p =  0.8, what is the lowest number n of independent
trials that will verify the inequality P j m

n p  | ^  0.05 0.98?
(Again use Bernoulli’s theorem.)

(d) In a certain factory, the percentage of rejects is 2.5%. 
Use Bernoulli’s theorem to find the probability that the deviation
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from this figure in a sample of 8000 objects will be less than

295 Fifty objects are chosen (with replacement) from a 
certain lot. What is the probability that half of those chosen will 
be of first grade if the probability of choosing a first-grade ob­
ject is 0.4? . . .

296. An observer makes a count of the number ot calls
people make from a certain phone booth during an interval of 
time t. Find

(a) the probability that he will not witness a single call;
(b) the probability that he will witness exactly two calls; 

exactly n calls.
297. Suppose that on the average n electrons are emitted 

from a hot cathode per unit of time. What is the probability 
that exactly m electrons will be emitted from the cathode during 
an interval ht?

298. A certain volume V of an ideal gas contains N mole­
cules. Find the mean square deviation of the number of mole­
cules n in a volume v (where v <  V ) from its mean value n and 
the probability PN(n) that the number of particles in this volume
is exactly n.

299. Suppose that exactly n calls are made through a certain 
switchboard in an hour. What is the probability that exactly m 
calls will be made through this switchboard during a specified 
one-minute interval?

300. There are n particles of an impurity in a volume V of a 
certain liquid. Suppose that we examine a small portion of 
volume v under a microscope. What will be the probability that 
this small volume will contain m particles of the impurity?

301. Prove the following assertion: For any positive num­
ber s, the probability that a discrete random variable » with 
mathematical expectation and variance D\ will deviate from 
its mathematical expectation by an amount less than e is bounded 
above by the ratio Dk/P:

P(|S-jW S|>8) < - 5 -

This is known as Chebyshev’s inequality. To what is the prob­
ability

P(|$ — M\\ < e ) .
equal?

302. The mean length of objects in a certain set is 50 cm 
and the variance is 0.1. Use Chebyshev’s inequality (problem 301)
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to get a bound for the probability that the length of any one of 
these objects will lie between 49.5 cm and 50.5 cm.

303. Suppose that the probability of the birth of a boy is 
0.515. Use Chebyshev’s inequality to obtain a bound for the 
probability that out of 1000 births, the number of boys will be 
between 480 and 550 inclusively.

304. Let

n’

be a sequence of independent random variables. Suppose that 
the random variable xn can assume the values —na, 0 , n% with 
probabilities l / 2n2, 1 — l / n 2, 1/2n2 respectively. Is the law of 
large numbers applicable to this sequence of random variables?

305. In a set of Bernoulli trials p =  0.5. Show that

1
i^ r + T '

306. Suppose that ...................xn, . . .  are dependent random
variables and that

D
lim

oo

f = 1
n2 =  0.

Show that the arithmetic mean of the observed values of these 
random variables converges in probability to the arithmetic 
mean of their mathematical expectations (Markov’s theorem).
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3. (a) A family of parallel planes; (b) a family of concentric 
spheres with center at the coordinate origin; (c) a family of 
hyperboloids of two sheets for cp< 0 ; a family of hyperboloids of 
one sheet for <p >  0 ; a cone for cp== 0.

8. In parts (a), (b), and (c), the given points are the extreme 
values of the corresponding fields.

9. The level curves <p =  const. >  Z7,/^ are confocal ellipses 
with foci at Z7, and F2. The level curve <p= const. =  Z7,Z72de­
generates into the segment/7,/^.

10. Ellipsoids of revolution (with axis of revolution passing 
through the fixed points).

11. Circular cylinders for which the fixed straight line is 
the axis.

12. A sphere of radius R =  VP\Pi» where pt is the distance 
from the charge et (for l =  1, 2) to the center of the sphere, 
which lies on the continuation of the line segment joining the 
given charges at a point that satisfies the equation

FIG. 12 FIG. 13

13. Yes
14. No.
15. 8.6.

69
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16* <a) ( | j  +  ly )  (b)
17. 0.
18 ^

* V 4 + y l '
19. 2 / 5 .  „ , . .
20. Suggestion: Consider two infinitesimally close level sur­

faces and <p +  Acp, where A<p >  0 (see Fig. 13). From the draw­
ing, we see that the magnitudes of the displacements in the 
direction n from the point A to the point B and in the direction I 
from tiie point A to the point C are connected by the relationship
A/t =  A/cos (n. I). Consequently, -|f-= cos (n, *)• I*1 the limit,
this equation gives the desired relationship.

21. In the direction of the vector y0i +  *oJ* The derivative in 
the direction tangential to the level curve is 0. Hint: See prob­
lem 20.

24. (a) 0 ; (b) 0; (c) i +  j +  k; (d) 0 ; ( e ) ^ = ^ ;  (f) -  r/ r \
du _grad u ■ grad v . 2v
dl | grad v \ ’ Y  3 _

26. cos (grad <p(A), grad <?(B)) =  V21/6.
27. | grad cp(Ai)|= 6. The direction cosines of the vector 

grad tp(M) are respectively — 2/3, l /3 ,  and — 2/3.
28. — (e / r ) r \  Hint: The potential of the field 9 =  e/r .
29. Hint: The increase in the temperature T at the pointAt0 

is in the direction of the vector grad T (Af0), which is perpendicu­
lar to the isothermal surface T (M) =  T (Al0).

30. (a) On the straight line y — 2>x/2\ (b) on the straight line 
y =  2jc/3.

31. Hint: Draw a circle with diameter AIN. Then, the de­
rivative of the function cp(.r, y) in the directions MA, MB, and MC 
will be respectivelyMAV — MBlt and 0.

32. Solution: The level curve <p(*, y )=  0 is the ellipse -̂ r +

-51- =  1 (see Fig. 14). Since |r| +  |R| =  2a(r =  FlM, R = F 2M), we
have d |r |-M |R |= 0 . Bu t R = r  +  F2F1 and dR =  dr. By using the 
relations d jR|=dR • R°and dr =  dr • r°,we easily obtain (dr, r°-f-R°) =  
0. This means that the vector r°-(-R0 is perpendicular to the 
vector dr, which is tangent to the ellipse. Thus, the vector 
r° +  R° is directed along the outward normal to the level curve 
y(x, y) =  0, that is, in the direction of increasing values of the 
sum (rJ —J— JR| and, consequently, of grad <p(AI) =  r° +  R°. The
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reader should observe how | grad <p(Ai)| varies as the point M is 
moved around the ellipse.

N

33*. Solution: The surface of an ellipsoid of revolution is 
one of the level surfaces of the scalar field ®(M)=/-(Pl, M)-\- 
r(Pv M ) = r x-\-rr  Therefore, grad <p(Af)= grad r t -(- grad r2 =
— -1——. From the sum of the unit vectors rt/ r ,  andr2/r2we 
r  i
construct the vector grad <p (M) (according to the parallelogram 
rule). The diagonal of the parallelogram constructed bisects 
the angle between the sides. Since the vector grad <p(Af) is 
orthogonal to the level surface of the function <p(M) (cf. the 
solution of problem 32), it follows that the normal to the ellip­
soid at the point Ai bisects the angle between the rays PXM and 
P2M. The assertion of the problem then follows easily.

34*. Cf. the solution to problem 33*.
35. (a) t /r-,  (b) 2 r ; (c) 5r3r; (d) a; (e) 0.
36. (a) —2irp/-ef (r o) and —2npa2—

(b) e, — y sin 0e9 +  cos0e2.

(c)

(d )  

(f)

—  E0 cos 0 ( l  + - ^ ) e , + £ 0( l —  ̂ -jslnfle,.

4 / v— jr.pre,. (e) 3(1 — 3cos2 0) ^ 
r5 e'

, 3<702 s in 2 0
— e»*

2jj. cos 0 ^ 
r3 e'

u cos 0 
73— eV

37. grad P,u =  - 

38*. gradp0v =

f M P ) ^ PoP
2
PoP

P'

PoP
.2
PoP

dmp•
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where

rPiP=(*<>— x) ‘ + (y<>— y) j •

r

43. The potential of the field is equal to f  f ( r ) r d r - \ - C ,  where
r»

rQ=  const.
45. Fx =  Fy =  0, =  l^ - '•D *  [|fl2 —1*| *]’

for R > L  Fz = 0; for R <  C, P* =  — for R =  C, Fz =  — 2ir.
Hint: The Newtonian force of attraction of the point P (S. y\. C), 

at which the unit mass is concentrated, due to the gravitational 
field caused by a mass continuously distributed on the surface
(5) with surface density p. (at, y, z) is given by the formula

F (P) =  Fx (P) i - f  Fy (P) j +  Fz (P) k.

where

P, =  /  f
(5)

F , = f f r W * p < t s M.
(S)

F z ~  I  f
(5)

r = r ( P ,  M) =  Y ( x  — f)2 +  (y — +  (z — C)2.
46. If the z-axis is used as the axis of the cylinder and the 

base is in the xy-plane, then

FX =  F = 0 ,  Fz =  2i:R(--------- 1 V
y * \ R  V R ' + h * )

47. If the center of the base of the cone is at the coordinate 
origin and its axis coincides with the 2- axis, then

Fx =  Fy=  0, Fz =  ^ ( R + h ) - ^ \

where

l =  Y h2+ R 2-
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48. ? =  —— (/? —f- C— |/?—C|). For R >  C. <f =  4nR; for /?<C,

49. kMm / r2, where M is the mass of the sphere and k is the 
gravitational constant.

on the straight line.
In the case of an infinite line, the desired potential is

and the gravitational field strength is grad v. To obtain the po­
tential v, take the limit of ul as /-> oo.

51. II =  2//p2 (—yl —|— jcj), where p2 =  x2-\-y2. The field lines 
are given by the equations *2+ y 2 =  2ct, z =  c2.

Procedure: Consider a small element PPX =  rfC of the z-axis 
(where OP =  C). According to the Biot-Savart law, the direction 
of the magnetic field strength dH that will exist at a point M as a 
result of a current passing through the element d(. of the con­
ductor will be perpendicular to the plane defined by the point M 
and the elem ents.

4n R*

<o =  |x In------
rp ,p

x
FIG. 15

More specifically, the magnetic field vector will point in a 
direction such that it will tend to produce a rotation that ap­
pears clockwise as viewed from the negative z-axis (whence the
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current flows) (see Fig. 15). In other words, the direction of the 
vector dtt coincides with that of the cross product X r;, where 
dl =  PPx (|dC|=dC) and r^P M . From the same law, the calcu- 
lated value of the magnetic field intensity is d H = l / r l sin r ,)<*(.
(where rt == |r,|). Since |dt X r| =  sin (<$. O , we may write

dH =-V(dC X rt) 
r\

Therefore,

H =  f  4 ( 4 X r . )

To evaluate this integral, it is convenient to work with the pro­
jections. We have

r, =  PM =  OM — OP =  r — OP =  (xi +  yj +  zk) — Ck =
=  *l +  yj +  Cz — Qk

and
r , = Y x 2~\~y2~\~(z — Q2= V ?2— (z — C)2,

where p =  y x 2-)-y2 is the distance between the point M and the 
conductor. Therefore, we easily find d^X rt =  — y d£i +  * and

oo

H =  /(— yi +  xj) f ------- -------sj-
J [p2 + (̂  — i)2]Vl—oo

Here, the integral is easily evaluated by means of the substitu­
tion 6 =  z — } tan t.

We finally obtain

H =  ̂ ( - y i  +  xj); |H| =  —-

The system of differential equations of the field lines of the field 
H is of the form

dx   dy dz
— y x  0

By integrating this system, we find the family of field lines that 
we are seeking.
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52*. grad/>„« =

53. (a) x 2 =  cy ;  (b) y  =  c xz ,  *2+ y 2+ z 2 =  c2y; ( c ) x  =  c xy , y  =  c2z \
(d) the curves of intersection of the hyperbolic cylinder with the 
parabolic cylinders are of the form x y = c v  y 2=  c2z \  (e) rays 
issuing from the point at which the charge is placed.

55. (a) (x — c)2H-y2 =  a2 +  c2, where 2a is the distance be­
tween the wires; (b) (x2-\-y2),h =  cx2. Solution: Since the wires 
are infinitely long, the field E  caused by them cannot depend on 
the coordinate z; that is , the field is the same at all points of 
any straight line MN (see Fig. 16) parallel to the wires: if we 
draw a plane perpendicular to the wires through an arbitrary 
point on this straight line, this plane will divide the wires into 
two infinitely long parts. Thus, the field in question is plane. 
Suppose that E  =£J- \ -E yj. Then, the differential equation of the 
lines of force can be written in the form

Let us find Ex and Ey. A sa  preliminary to this, we find the po­
tential <p of the field. Because of the symmetry referred to 
above, we may take a point P in theAF-plane as our point of 
observation. Then, the potential caused by the wires at the point 
P is , because of the principle of superposition of fields,

If we integrate, we obtain cp =  2e(ln r2 — ln/-j). Also, if we start 
with the relation E = —. grad <p, we find

If we denote the distance between the wires by L =  2a, so that 
the coordinates of the points A and Bare respectively (0, — a, 0) 
and (0 , a, 0), we have

oo oo

=  ; r2 - 7  ri'9 '12  r l

fj =  xi (y +  a) j,r2 — jci -f- (y — a) j
and
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The differential equation of the lines of force (1) becomes, 
after we substitute the values found for Ex and Ey,

[x2 — (y2 — a2)] dx +  2xy dy =  0
If we now set f - a 2 =  u2, we obtain the homogeneous equation
/ x 2 _u2)dx +  2xu du =  0. When we solve this equation and return
to the original variables, we obtain the desired equation of the 
lines of force of this field: (x — c)2 +  y2=  a2-\-c2..

57. r =  c sin? 0, <p= const. Hint: Use the assertion in prob­
lem 56b.

62. (a) The trajectories are the lines y =  const.; the motion 
proceeds in the direction of the positive jc-axis with velocity 
equal to 1. (b) The trajectories constitute a family of circles 
passing through the coordinate origin with centers on the y-axis. 
The fluid streams out from the coordinate origin to the left and 
into the coordinate origin from the right (see Fig. 17) with 
velocity

v - y r ( i^ )  + (-§ t)2- ^ t 4 :72

(c) The trajectories are the curves y--- rx- r =  const. Thex  - j -  y
velocity is

v _£zi£L  Vi 
(jc, +y*)* I

2xy
(**+y*)2 J

63. (1) 0; (2) na2; (3) l /6  (2 +  ] /l);  (4) n/6 [ ( l + 4o2)Vl — 1];
(5) (a) 2n7?7/l05; (b) — 2*/?7/105; (6) 0; (7) 2/15; (8) ^Rr2; (9) 
R2H (2/3 R +  rJf/8).
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FIG. 17

64. ( l ) /  =  2 J  J  z)rfu>; (2) 0.

65. Solution: Q (v; S) = Q  (r; S) — J  j  rnd S =  J  J  (x cos a-f-

y cos p +  z cos i ) dS =  3 T, where v =  r =  jcI H— yj -j- zk, rn =  r • n, 
where in turn n =  cos ai +  cos pj +  cos -(k is the unit outer nor­
mal vector to the surface 5 of the body (T).

6 6 .  (a) it/?2//;  (b) 3it/?2//;  (c) 4w/?3.
67. (« +  2)/3.
68. Q =  0, if the body (0) does not contain the coordinate 

origin. If it does contain the coordinate origin, Q =  —4 it. Pro- 
cedure: Let r =  xi -j- yj -|- zk denote the velocity of a particle of

1 r rthe liquid v =  -pTX y  =  -pr- Let n =  cos ai -f- cos pj +  cos fk de­
note the outer normal to the surface 5 of the body (0). Then, the 
amount of liquid is given by

Q =  Q(v, S) =  f  f v ndS

(S)

Obviously, the direction cosines of the vector r are
/ X  n ,  y  ,  Z

COS  a ' —  —  , COS P = y ,  COS 7  =  y

Therefore

Q =  j  J  (cos a cos a ' -f- cos p cos p(S) * 7 +  cos 7 cos 7') dS =
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and we have arrived at what is known as Gauss’ surface integral. 
(For the evaluation of this integral, see, for example, Kurs dif- 
ferentsial’nogo i integral’nogo ischisleniya [Course in differential 
and integral calculus], Vol. 3, by G. M. Fikhtengol’ts, 1949, 
p. 409).

69. l l ^ l - l - ( / 2 - l ) l n  2.
70. Solution: The flux of the vector R through the surface 

5 is

Q(R, S) = f f  RdS
(S)

where dS is a vector directed along the normal to a surface ele­
ment dS and equal in magnitude to the area of that element. We 
may represent this flux as the limit of the corresponding ap­
proximating sum

Q(R. S ) =  lim 2 M S ,
m a x  d  {i )

where d (ASt) is the diameter of the element dSt. In the scalar 
product R; AS[=Ri hSi cos (R,. AS;), the factor AS;cos (R;, AS;) rep­
resents the projection of the element AS; in the direction per­
pendicular to the vector R;:

AS; COS (R;, AS;) =  AS;n =  (AS;)„ ( | n I =  1)

Through an area (AS;)„ there pass Nt =  fc|R;| (AS;)„ field lines. 
Therefore,

R;AS;=|R;|(AS;)n= " L

and

Q(R, S )=  lim "S\ R( AS; =  i- N 
d (45<)'>0 ; k

where N is the number of field lines crossing the surface S.
71. (a) The flux is equal to —4t:<7 if the charge q lies within 

the sphere and it is equal to zero if it lies outside. This result 
holds for an arbitrary closed surface—a consequence of the fact 
that the flux of an arbitrary vector a is independent of the shape 
of the surface, which is a consequence of the Gauss-Ostrogradskiy
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theorem. Let us prove this. Suppose that there is an isolated 
source of a field a at a point P enclosed by an arbitrary surface
5. Consider the region (v) bounded by the two surfaces 5 and 5,, 
where 5, lies inside 5 (see Fig. 18). Within this region, div a =  0. 
It follows from the Gauss-Ostrogradskiy theorem that

f  f  andS +  {  {  Qnt dS —- 0•
(5) 5,

Here, the projections of the vector a are taken on the outer 
normals to the surfaces in question. If we reverse the direction 
of the outer normal to the surface 5,, the projection will change 
its sign and we will obtain

f  J  andS — f  J  an)dS, t .  e. Q(a; S ) — Q(a; S,). 
s s.

This equation may be interpreted as follows: The flux of the 
vector through a closed surface remains unchanged as a result 
of deformation of that surface so long as this surface does not 
touch new sources or sinks (where div a 0). Therefore, it 
follows in particular that in a solenoidal field a (where div a =  0) 
the same number of field lines will pass through all sections of 
a vector tube (see problem 70); that is , in such a field, the field 
lines neither appear nor disappear but either go out to infinity 
or form closed curves.

72. Solution'. Let us construct a spherical surface 5 through 
the point in question. Then,

Q(D; S) =  D cos (D. a) dS.
( S )  ( S )

From the Gauss-Ostrogradskiy theorem (problem 71),

J jDcos(D, a)dS — 4icl.q.
($)

Because of the symmetry of the situation, the vector D must 
have the same value at all points of the spherical surface and,
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since cos (D, a)=  1, it follows from the preceding equation 
that

D ■ 4izr2 =  4tzlq

and

where r is the distance from the point in question to the center 
of the sphere (which we may assume to be at the coordinate 
origin). Therefore, we note that if the point in question lies 
inside the charged sphere (where r <  a) (see Fig. 19), there will 
be no charges within the sphere of radius r, so that 1q =  0 and 
D =  0. On the other hand, if the point in question lies outside the 
sphere 5, this sphere of radius r will enclose the sphere of 
radius a. Therefore, it will enclose a charge q. In this case,

Fq =  q =  a ■ 4ira2
and

D = I?
r2

4-a2(
r3 (r >  a).

riu . i s

on.73/  So/whon; Let us draw a cylindrical surface S0 (see Fig. 
20) of altitude h through the point in question. And let us form 
a closed cylinder by drawing plane surfaces S, and S2 through 
the top and bottom of this cylindrical surface. Because of the 
symmetry of the situation, the vector D is directed perpendicu­
larly to the lateral surface S0 and must be of the same magnitude
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at all points of it. From this it follows that the flux through the 
surfaces Sj and S2 is 0. From Ostrogradskiy’s theorem,

J  J  Dnd S =  f  f  DdS =  D • 2izrh =  4itlq.
Sq+ S i+S i So

A charge Iq enclosed by the combined surface 50-(-5 ,+  52is 
distributed on a cylinder of radius a and altitude h and is equal 
to Lq =  2-!zaho. From this, we find

D — At.
2 Tiah<3 
2r.rh

4naQ
r2 r (r > a).

By a procedure analogous to that followed in solving problem 
72, we can verify that the field within the charged cylinder is 
equal to zero.

2a

F IG . 20

74 Ar.imr*h wjjere the universal gravitational constant.

75. 2ico.
76. Q(a; S) =  j  f  (± a r)rd<?dz,

(S )

78. 6.
79. 0.
80. (a) 2 ; (b) 3.
81. (a) At the point Pu there is a source of density 7 /4tc ; at 

the point P2» there is a sink of density 1/4ti; at the point P3 there 
is neither a source nor a sink.
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82. div R = 3 /  (r)— rf' (r).
83. Method of solution: The scalar field defined by the equa­

tion <p =  div R is called the source field belonging to the vector 
field R. The total strength of the sources of the field R that lie 
within a closed surface bounding a region (G) is equal to the
integral f f f  div R dv.

(0)
84. The divergence of both fields is zero. Procedure: As­

suming that the axis of rotation of the liquid coincides with the 
Z-axis and that r is the radius-vector of the revolving point 
M (x, y, z), we find v =  w X r, where w =  u>k is the angular veloc­
ity. From this, we easily obtain v =  o> (— yi +  xj)., where u> =  |u>|.

86. Hint: Cf. the answer to problem 71.
87. Hint for part (b): Since the flux of the vector F from 

within the region (v) is equal to

Q =  ~ 4« f  /  JV
( V )

dv.

to compute div F, we may use the invariant definition of the di­
vergence and the mean-value theorem for integrals.

88. The field is caused by charges distributed with constant 
density p =  3//4tc inside the given sphere. (Outside the sphere, 
the charge density is 0.)

89. Solution: Let us find div R (P) =  rep' (r) +  3? (r), where <p (r) =  
/(r)/r. From this, we conclude that the field R will be solenoidal 
only when the function cp (r) satisfies the differential equation 
r?'(r)~h 3<p(r)= 0. If we solve this equation, we obtain cp(r) =  c/r3. 
Consequently,

|R| =  1 /(0 1  =  — r-

9°. (a) 3rz.i (b) — £-(r2ar); (c) (d) 0; (e) 0.
92. (a) 2-re; (b) — 4ita2\^3; (c) r== 0 if the coordinate origin 

is outside the circle and F — 2  ̂ if the coordinate origin is within 
the circle (C); (d) 0; (e) -  3re/?Vl6; (f) 0; (g) 2* V~2R? sin («/4 -  a); 
(h) 0, If the vectors in the condition of the problem are thought 
of as a distribution of forces applied to the contour, the inequality 
F 0 means that the contour will rotate in the positive direc- 
tion. If r < 0, the contour rotates in the negative direction.

93. (a) If the circle lies in the A'K-plane, the circulation Tof 
the vector a will be — id>2. If the circle lies in the plane v =  b, 
then r =  0.



Answers and Directions 83

—  1 .

94. r =  J  H rfr =  4it/; 0
L

95. (a) 0 ; (b) 0.
96. The assertion that the flux of the curl is independent of 

the shape of the surface follows immediately from Stokes’ 
theorem:

(Cf. answer to problem 71a).
97. Hint'. Derive the formula m— l / 2  curl v • 1.
99. Hint'. Cf. problem 97 and the hint to it.
100. Hint'. The assertion in the problem is a specific case 

of Stokes’ theorem (as applied to the magnetic field vector).
101. curl R (P) — (pep' (p)-f- 2'? (p)] k, where <p(p)= /(p)/p.
Solution: It is convenient to write the vector R(P)in the form

where <p(p)= / ( p)./p, and t(P) is a vector colli near with-c(P) and of 
length p. We direct the Z-axis along the straight line I and the 
X- and K-axes in a plane perpendicular to it. We denote the co­
ordinates of the point P by x, y, and z. Then, the components of 
the vector t(P)will be — y,x ,0  and the components of the vector 
R (P)will be

!

R(/>) =  / ( p ) - ^ p -  =  < P ( p ) t ( P ) .

R x ( P ) = * ~ y < ? ( p); R y ( P )  =  x <p(p); R Z ( P ) = =  o.

Therefore

or, since

we have
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Analogously,
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d Ry  (P)
dx

X 2

p
<?' ( p )  - i -  ?  ( p ) -

Also, obviously,

dRx dRv =  0.
d z  d z

Finally, by using the formula given in problem 95 for curl 
R (P) we obtain the desired result.

102. The length of the vector R (P) must be inversely propor­
tional to the distance p.

Hint: Use the result of the solution of problem 101.
103. Solution: For simplicity, let us consider the field of a 

direct current /. The circulation of the vector H around a curve 
can be represented in the form

r =  J(H, t ) d s =  J  (H, d\), (I =  abcda),
I abcda

where
dl =  x dS.

We represent the vector denoting the displacement of a point 
in the form (Fig. 21a)

dl =  d\v -\~d\r

where dlf is directed along the tangent to a line of force, which, 
in the present case, is a circle with center on the axis of the 
current and d\r is a vector directed along the normal to the line 
of force or to the vector H.

Obviously,
(H. dl) =  (H, dl? +  rfl/.) =  (H. d y .

But dlv =  ds =  r d<? and H — 2 l /c r . This formula is obtained from 
the Biot-Savart law. Therefore,

(H. rfl).= ^rfcp.

Consequently,
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We note that this formula is valid for an arbitrary relative po­
sition of the curve abcda with respect to the conductor; that is, 
it applies both when the curve abcda encircles the conductor and 
when it does not. If the curve abcda does not encircle the con­
ductor (Fig. 21b),

P =  f (H. d l )=  f  (H, d\) + f  (H. dl).
abcda abc cda

But since

/  (H. rf!)= — (<P2—?,)
abc

and

/  (H. dl) =  --(?! — <p2) .
c d a

we finally obtain r =  0.

104. w (/>) =  — zj.
Hint: to(P) =  1/2 curl v (see problem 99).
105. Hint: It will be sufficient to show that div curl R = 0.
106. Hint: The problem consists in showing that

J  J  curl„R dS =  0.
IS)

Use Ostrogradskiy’s theorem and the assertion of problem 105.
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107. 0. Cf. the hint to problem 83.

108. Q =  f  J'divvdS =  f  f  ( ^ - h - ^ ) d x  d y>
( S ) ( 5 )

(S)

110. Solution: It follows from the symmetry of the problem 
that the magnetic field intensity is the same at all points equi­
distant from the axis and that it is directed tangentially to a 
circle with center on the axis of the conductor. To solve the 
problem, we use the assertion in problem 100. As our curve /, 
we take a magnetic line of force (see Fig. 22). Then, the circu­
lation of the vector H will be

f  (H, dl) =  H f  dl =  ^-Zi, 
« (i) C

or, since f  dl =  2nr, we have H =  22/./cr. if the point in question 
(0

lies outside the conductor (that is , if r >  a), i /  is the total cur­
rent / flowing through the conductor and H =  2i/  cr.  If the point 
in question lies within the conductor (in which case, r <  a), £/ 
denotes the current flowing through the circle with density nr2, 
and is equal to

£'= -A 'i = - £ .

where j  is the current density ( / =  l /*<?). Consequently, in this 
case, / / =  2 /r/caJ.

FIG. 22

111. The field 
side the tube is 0. outside the tube is Hext =  21/cr; the field in-
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112. Solution: According to assertion of problem 100,

/  (H, d\) =  h i ,
(0

where (/) is an arbitrary closed contour in the magnetic field in 
question. In the expression above, h i  represents the algebraic 
sum of the currents threading the contour. If a surface 5 is 
drawn over the contour (I) (that is , if (/) is the boundary of the 
surface S), all these currents pass through S. Therefore, E/ can 
be represented as the integral of the current density through the 
surface

(S)

where <#S is an area vector, that is , a vector directed perpen­
dicularly to the surface and equal in magnitude to the area. Thus,

/ ( « ■ * > = / / £ ) ■ * •
(0 (5)

But, from Stokes’ theorem,

/H U
(I)

=  f  J curl H dS. 
(s)

Therefore, for an arbitrary surface 5,

curl H dS =  f  f  dS.
(S) (s)

From this we get

curl H =  — j.
C

This equation is the differential form of the circulation theorem 
formulated in problem 100.

Equation (2) expresses the fact that the divergence of the 
magnetic flux density vector B =  p.H of a constant magnetic field 
is  0.

114. As an example, let us consider the solution of the 
problem for the field H =  2/A2 (xj — yi ) , where r2 — x2-\-y2. If we 
use, for example, the formula given in problem 95, we easily 
find that curl H =  0. Consequently, the field H has a potential
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(see problem 113) and therefore, H =  grad ,  (where ,  Is the po- 
tential of the field H). Furthermore,

Hdr =  2 / £ = j £ ( i d x  +  }(ty-\-kdz) =

= 2/ = 2fd (arctan i  + 1c ) ■

Therefore (see problem 35), we conclude that the desired po­
tential is

<p =  2 /  ârctan ^ +

115. (a) curla =  ( - ^ - - ^ r ) v  curl b =  (r2 +  z2) e9;

(b) curl a =  FiJrF|^ e ,  —
, k , , cos <p(c) curl a =  ze9-{---- —  e*.

i s!n 0(d) curl a =  —pr  e<p \
(e) 0.

117. The Laplacians of all these functions are equal to zero 
(in the first two expressions, we assume that r j= 0).

118.

E=f f h~^dv-
(V)

119. Hint: If we assume that there exist two vectors ai and 
a2 satisfying equations (1) and the boundary condition (2), we ob­
tain the boundary-value problem

divb =  0, curlb =  0,
*„ =  ()•

for the vector b =  aL — a2. From this it follows that the vector b 
has a potential: b =  grad <p; therefore, div grad <p==A<p =  0. 
Green’s formula can then be used if we set u =  v =  <p.

120. Hint: Set 9 =  1 and ty =  w2 in the second of Green’s 
formulas.

121. In the case of cylindrical coordinates, u =  c1 Inr-\-c2\ in 
the case of spherical coordinates, u =  cJr - \ -c2.

122. Ostrogradskiy’s formula for the vector grad <p is of the 
form

/ / / A T d 7 ' = / / | i rfs.
(r) s

( 1 )
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The integral J  J  dS is equal to the flux of the vector v (that
(S)

is , the amount of liquid flowing through the surface 5 in a unit of 
time). Since v =  grad <p, we have Acp= div v. Equation (1) shows 
that the integral of the divergence of the vector v over the vol­
ume T occupied by the liquid is equal to the flux of this vector 
through the boundary of the region T. If the liquid is incom­
pressible (in which case div v =  0), this flux will be equal to 
zero.

125. No.
126. Solution: By definition, the vector potential of the mag­

netic field of a linear current is
oo

— oo

Because of the symmetry of the situation, the field will be the 
same in all planes perpendicular to the Z-axis (see Fig. 23); 
therefore, we may take our point of observation P on the AY-plane. 
Obviously, Ax =  Ay =  0 and

oc

- r f
dz

N

V  r* +  .
— lim
c yv-> oo

- N

dz
Vr* +  -

=  —  lim fin (A /+  y  /V2-f- x 2-J- y2) — In r\.
C iV*>oo w

Also,

H =  H xi +  H yj dAz
dy

dAz
dx >).N » o o

so that

dAz
dy

jV - oc
cr2  ̂ y

dAz
dx TV-co

Consequently,

H =  H=\W\ =  YHl +  H2y^ ^ .

As the final expression for the vector H shows, the logarithmic 
divergence of the vector A has no significance. Therefore, the 
logarithmically divergent term In (N -f- *\f N2 ~t~ *2 y2) the
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expression A can be discarded. (The vector A has no actual 
S S  meaning but the vector H represents: forces acbngjna  
magnetic field on moving charges and conductors.) Thenifore, 
the desired potential A can be represented in the form A Azk 
— 2l /c In r • k..

127. A =  -  l /c  [i ln ( r - * )+ j ln ( r - y )  +  k ln (r -z )], where 
r2 _  x2_j_ 2̂ z2, (in the expressions for the projections of the 
vector A, the terms that are logarithmically divergent at in­
finity and which do not contribute in the evaluation of the field 
intensity are discarded. Cf. the solution to problem 126.)

128.

129.

3(ti, R)R (i
n — R3 R3 •

2^
£_
r

(r < R )  

(r>R).

where n is the volume charge density:

p =  const. 
0

for r <R,
for r >  R .

Solution: The problem reduces to integrating Poisson’s equa­
tion Aa =  —4itp.. Because of the spherically symmetric charge 
distribution (note that the potential u depends only on the dis­
tance r), in spherical coordinates (with origin at the center of
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the sphere) the equation becomes

j _ j _ / 2 du_ \ _ ( — 4 * p  ( : < * > •

r* d r  V d r  ) —  \  0 (r >  R).

The arbitrary constants that appear in the general solution of 
this equation must be determined from the boundary conditions: 

(1) The potential must remain finite as r -> 0 and it must 
vanish at infinity; (2) the potential of an electrostatic field 
must be a continuous function of the points in space, so that

=  ?«(/?); (3) (-^r) =  . This last condition means
that the normal component of the vector E must not have a dis­
continuity on the surface of the sphere since the surface charge 
density is zero.

130. e / r .
131.

«0 — -izpr2 (r a)

u0— i r p a 2 ^ l  4 -  2  I n  -^j (r^>a)

2itpr (r <  a),

2irp-^ r (r >  a),

where u0 is the potential of the field on the axis of the cylinder. 
Solution: The problem leads to Poisson’s integral equation Au =  
— where [x =  p for r < ; a and fx =  0 for r >> a. Because of the 
obvious symmetry of the field, this equation can be written in 
cylindrical coordinates, r, 6, z (with z-axis placed along the 
axis of the cylinder) in the form

1 d_ / du_\ __ { 4lrP (r <
~r ~dr\ dr )' \ 0 (r > a).

Solving this equation, we obtain

u =
Uj =  — tzpr2 -f- cj In r c2 
ue =  c3 In r -)- c4

(r <  a). 
( r > a )

and the field intensity is

P _____ due- ____
dr r

(r <  a). 

(/•> a).
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To keep Et bounded for r =  0, we must take c ,=  0. Since 
ui ->c2 as r —> 0 (because we are taking cx — 0), we take c2 =  «0> 
which is the potential of the field on the axis of the cylinder. 
The constants c3 and c4 are determined by the requirement that 
the potential and the normal component of the vector E be con­
tinuous on the surface of the cylinder:

»,(«)-?.(«); ( 4 ? - L = ( 4 H . „ -
132. The displacement k (x. t) of the point a: from the equilib­

rium position at an arbitrary instant t >  0 satisfies the equation

utt =  a2uxx (— oo <  x  <  co, / >  0)

and the initial conditions

(c2 —  X 2)  ( —  C <  *  <  C ) .

(— oo <  X <  — c, C <  X <  oo). 
ut (x,  0) =  0.

133. The displacement «(*, t) of the cross section with 
abscissa x at an instant / >  0 satisfies the equation

M J r . r  = =  ~^2 u l t  —  " y  i 0  <  A '  /  >  0 ) ,

where £ is Young’s modulus and f is the line density. The ad­
ditional conditions are:

u (0, t) — 0 (the condition that the end a- =  0 be clamped)
ux (I, 0 =  0 (the condition that the end a; =  / be free)
u(x,  0) =  [i (x)  | '
u, (x, 0) =  v(x) ) thG inltial conditions (0 <  x  <  /).
134.

I h_ 
c2

0

, d20 2 d2Q f
134- — a =  V

0(0, 0 = 0 ,

GI-
=  “ =  y  T '

V' 0 — C2 <?0(/-O. 2 O/

( a : , 0 )  =  cp0 ( at) ,  — ( * ’' 0 )  =  y i  ( jc )  ( 0  < * < / ) ,

a b sc is sV ^ b p  ° f ^  ° f the Cr° SS Section of the rod with
inertia of thr?^ ^  S^ ar modulus* 1 is the polar moment of oss section, k is the moment of inertia per unit



Answers and Directions 93

length of the rod, and k} is the moment of inertia of the pulley 
about the axis of the rod. Remark: The term “torsional vibra­
tions” of a rod is applied to vibrations such that the cross sec­
tions of the rod rotate with respect to each other while rotating 
about the axis of the rod.

135. (a) u ( x ,  t ) —  sin x  cos t ;  (b) u ( x ,  t)  — A / a  sin x  sin a t .
136.

u ( x ,  t) =  -i- Ip. ( x  — a t )  -t-p(* +
x + a t

+-ST f
x - a t  (£*)

where a 2 =  t / p is the region of integration (D)  shown in Fig. 24, 
that is , a triangle whose sides are segments of the character­
istics x — a t  =  const, and x - \ - a t  =  const.

137.

v(x, t) — e~al | l<p (x — 4~
+  -2 ^ (* — at) — }.

/ (x, t) =  e~al | |<]> (x — at)-\- (x +

+  “2oT1<p(a: — — +  } ’

where

Hint: The intensity v  =  v { x . t )  and the current I { x , t )  in a 
distortionless line satisfy the equations

v u =  a 2v xx , l ti —  a 2I xx [a  =
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(See, for example, A. N. Tikhonov and A. A. Samarskiy, 
Uravneniya matematicheskoy fiziki (Equations of Mathematical 
Physics).) To integrate these equations, we set v = e  w, 
choosing f so that the coefficient d w / d t  will vanish.

139. Hint: Seek a solution for

u ( x ,  t ) = U ( x ,  r, t ),

where U  (x ,  t ) is the solution of the boundary-value problem

U"t, =  aU"xx (0 < * <  oo; t >  0) 
U(x, 0) =  ^(v). Ut(x, 0) =  v(at)
U(0. o =  o,

and v(x, t) is a solution of the problem

(«)

v'u =  av"xx (0 <  jc <  co; t >  0). 
v ( x ,  0)  =  v'l ( x ,  0) =  0, 
v(0. 0  =  <K0 -

( v)

To solve the problem («), we extend the initial conditions as 
odd functions to the entire real line (— co < x  < oo) and we then 
use d’Alembert’s formula. We obtain

P ( x - \ - a t )  — [i (at — x) . 1 x+at

+  2a /  v (0 ̂  f°r
at-x

U  (x ,  0  =  '
t  >  — :a

P (x  -f- at) -f M- ( x  — at) , 1
2

x-\ at
f  V ($) dl for

x-a t

t <  — .a

The solution of problem ( v )  is the function

for t > 4-;a

0 for t < — . 
a

140. (a) u(2*, 10) =  sin 2^; (b) «(2ir, 10) =  0.
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141.

u(x, t) =
Ae for .a

0 for o <  t <  - .a

Hint: The problem consists in integrating the equation
ui( =  a2uxx (x > 0, t >  0)

with the conditions

«(0, t) =  \i(t) ( / > 0);
«(x, 0 )  =  « , ( • * •  0 )  =  0  ( 0  <  x  <  o o ) .

Seek a solution in the form of a wave being propagated with 
velocity a along the rod: u (x , t) — 0 (x — at).

142. u(x, t) =  A cos o) (/ — x / a )  for x^.at  and u(x, t )= 0 for 
x >  at. The velocity of propagation of the wave a =  80.8 m /sec.

143.

u(x, 0  =
aMv9 I , 
-tP»s L1 

0

T P'S
— pMa* ( x —at)

for x  — at <  0, 

for x — at >  0.

Hint: The problem consists in integrating the equation

u tt  =  * 2 u xx>

where u(x, t) is the condensation of the gas, that is, the relative 
change in the density of the vibrating gas (p — p0)/p (see V. I. 
Levin, Metody matematicheskoy fiziki  [Methods of Mathematical 
Physics], p. 96) with the conditions

Mutt (0, t) =  S-\PQu(0. t), 
u(0, 0) =  0, ut{0, 0) =  v0, ut (x, 0) =  0 (x >  0),

Here, P0 is the initial pressure of the gas, 5 is the area of a 
cross section of the tube, ? =  cp/ cy is the ratio of the specific 
heat at constant pressure to the specific heat at constant vol­
ume . * = ] /

144 .

cp̂ o
V o

and p0 is the initial density of the gas.

0 for t <  —,a
i4sinu>^ — for ̂ > - L .

u (x, t) =
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145.

0 for t <  — ,a

A  sin — ( a t  — x )  for / > — . a v ' a

146. At the instant / i=  //2a, all points of the string lie on 
the A-axis. At the instant t2=  1 /a ,  the string is in the position 
occupied by the mirror image of its original position with re­
spect to the A-axis.

147. Procedure: The functions^ ( x )  and v(;t) should be extended 
as odd functions from the interval [0, /] to the interval [— /, 0] 
and then as periodic functions with period 21 to the entire x -  
axis. The function <1* (x, t). defined according to d’Alembert’s 
formula in terms of the extensions described above of the orig­
inal functions p. (at) and v ( x ) ,  gives an initial disturbance of an 
infinite string (— oo <  x  <  oo), that coincides with the desired 
disturbance on the interval [0, /].

148.

5 =

for 0 < t < r  — R

So (r  — at) 
2 r for <  t <  ^  -a a

r + R0 for ' " <  t <  oo.

Procedure'. The condensation S(x, y, z, t) satisfies the wave 
equation

Stt =  a2hS =

Between the condensation S and the velocity potential u of the 
gas, we have the relationship

• Problem amounts to integrating the wave equation above 
with the initial conditions

S
( =  0

S 0 for r  <  R ,  

0 for r >  R;
dS
dt =  0.

t=o
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where r is the distance from the coordinate origin (the center 
of the sphere is assumed to be at the origin) to a variable point 
M (x , y. z). In solving the problem, one must remember that the 
initial vibrations of the gas are of a radial nature.

149.

u(x, t) =  A s in c o s  • (0 <  at <  /. t >  0).

150.

nan  nn ,  f  T , . 0 „ .— y  Y  ( n = \ ,  2. 3. ...) .

151.

=  (» =  0. 1.2. 3. ...).

where a =  j / ’y , E is Young’s modulus, and p is  the density of 
the rod. In the case in which a weight M0 is attached to the free 
end, u>„ =  j - y n (for n =  1 , 2 , . . .), where the are the positive
roots of the equation y tan y =  m/ m0, m being the mass of the rod.

152. 632 vibrations per second^______
153. The amplitudes are Hn =  V A2n-\-B 2n; the period of vibra­

tion is

X -  4/ l / ~ -" ~ 2 ( i  +  l  F  E '

where
i

A, =  T  /1^(0 sin 
0

I

0
=  (» =  0. 1. 2. 3. ...) .

p is the density of the rod, and E is the modulus of elasticity of 
the material of which the rod is  made.

Procedure: Remember that the stress is  zero at the free 
end. Therefore, ux(l, 0 =  0. The harmonics

un (x. 0 =  (Aa cos aknt +  Bn sin a\nt) sin lnx,
X„= (» =  0. 1. 2. . ..)
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represent standing waves in the rod. If we write un (x, t) in the 
formula

«„(*• 0  =  ̂ nsin(flV  +  a«)sinX«A:-
(sina„ =  - ^ ,  cosa„ =  - ^ ) ,

we find
Hn =  V  a I + b I.

The period is given by the formula

2n _ 2tc
“n — ’

The quantities An and Bn are determined in the course of solving 
the boundary-value problem.

154.
„ 2,2h 1 • <2n+l)itjc 2/j-f-l

“<*• ^ ) = - ^ 2 ^(2n+ l)3 Sln -----1-----C0S---- J— ™*'
n - 0

where h is the maximum initial deviation of the string from its 
equilibrium position. In the particular case mentioned.

u(x, t) =  cosatsinx (0 <  x <  it, / >  0).

155.
u{x, t) =

=  ^  [an cos ~ 2i 1 *at +  b„ sin ^2T~ sin 2n21 1
«“ 0

where

2 f . . . 2n + lan =  ~[ J V-(x)sm—^j— nxdx,
\) I

t _ 4 r / \ • i »
*» =  W + T ) ^ J  Hx) s i n - ^ - * x d x .

• 0

Procedure: The problem amounts to integrating the equation
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under the conditions
«(0. 0  =  0, «,(/, 0 =  0 (t >  0),
u(x, 0) =  p.(x), u,(x, 0) =  v(x) (0 < * < /) .

where u (x , t) is the displacement of the cross section whose 
abscissa is x,  p is the linear density, and E is Young’s modulus. 

156.

En =  plh2 a*P
n*n2x 0 (/ — *o)2sin rc tlXt

I '
Hint: The energy of the nth harmonic (the /tth standing wave 

un) of the transverse vibrations of the string is equal to

0
where T is the tension and p is the linear density of the string.

157. The deviation u(x, t) at an instant t >  0 of the point on 
the string whose abscissa is x is given by the formula

u(x. 0  =  2 (o«COSU)̂  +  ̂ sin(“'»̂ sin ^T~~^
n« 1

where

sin oit.

nna
“T~

bn

2 C / x • nn*
a n =  T  J M * )s m  —  

0I
2 r / \ • nnx j----  I v(jc)sin—y-dx.%na J v / I

dx,

Hint: First solve the problem of the purely forced vibrations 
of the string under the action of an external force equal to 
a / ? sin or/, where p is the constant density of the string, and 
then seek a solution in the form

u2(x, t) =  X (x)sinotf.

159.

.  0  -  ■ £  £  £ ¥ £  « ■  ^  « •  cos ^
2/J +  l

21
n~ 0

where a is the velocity of propagation of longitudinal waves in 
the rod.
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Hint: The problem amounts to integrating the equation utt —
a ^ w ith  the conditions

ux (— l, 0  =  0, ux {l, t) =  0,
u(x,  0 ) =  — sx, ut (x, 0) =  0.

160. For the flat hammer,
oo

4v J  VI 1 . n n x 0 . nnh . n n x  . nnat
“ (X- o =  iSr 2 j :s,n V * :8,11 ~ r s,n ~ r s,n —  ■

n = l

for the sharp hammer,

,  ̂ 2P V  1 • «/uf0 . Ktu
«(*• () =  w i l s,nT sl" 'T

161.

71/ZJC . TTfia/sin —r -
1

(30
, 21F0 V 1 1 . nnc . nnx r.nat

U(x, 0 =  ^ sin ~ r sin ~ t ~ cos ~ ■
n = 1

Procedure-, The problem amounts to integrating the equation 
u"t =  a,2u"xx with the conditions

u (0, t) =  u(l ,  0  =  0. 
u (x, 0) =  |x (jc), a '( jc, 0) =  0,

where the function p. (a:) (the initial deviation) must first be found 
from the given condition. Obviously (see Fig. 25), to determine 
jx (jc) it will be sufficient to find the maximum initial displace­
ment h. It can be found from the condition of equilibrium. The 
projection onto the U-axis of the tensile force T acting at a point 
M of the string on the left portion OM is Tv — T sin a. Analogously, 
the projection of the tensile force T on the right portion IM will 
be

TU =  T sinp.
Obviously, the projection of the force T onto the A-axis will 

be equal in magnitude on the two portions but opposite in sign. 
By applying d’Alembert’s principle, we obtain

7  (sin cc —|- sin P) =  F q.

Since the vibrations are of small amplitude, we may take
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Now, we easily obtain

h _  Foc (i — c)
IT

At this point, the determination of the initial shape of the 
string is obvious.

162. The displacement of the section whose abscissa is x at 
an instant / >  0 is

2n +  \ , , 2 n + \
cos —21— S n —21— nX

/z-0
-f  1)J

where a2=  e / p, B is Young’s modulus, p is the linear density, 
and / is the length of the rod.

163.
oo

«(x , t) == Tn (t) sin —- x,
n -1

where

^ ( 0  =
e - w ( a „  cos (]nt -f- sin for ( ^ - j 2 >  / e 2 .

(fln ch p„t +  sh p„t) for

a„ =  j  f / ( x ) s i n - ^ d x ,
0

I
. 2 f  „ / \ , %nx , , kan
bn =  l T n ) F{X)%Xn- r dX +  - ^ '
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( = ) ’ >  **.

i t

( - s f  <  *».

should be replaced with p„in the expression forbn. 
164.

u(x' t ) = (~r*~i\ sinT l
where p is  the density of the string.

Procedure: The problem amounts to integrating the equation 
utt =  aluxx- \ -x h  sin at (for 0 < x < l .  t >  0) with homogeneous 
boundary and initial conditions

tt(0, t) =  u(l, 0  =  0; u(x, 0) =  = 0
(t >  0; 0 < * < /) .

We seek a solution in the form u = X l (x) sinat-^X^x)cos at. It 
should be borne in mind that it is always convenient to seek a 
solution of a problem dealing with purely forced vibrations of a 
string in this form if the external force is of the form F =  A sin at, 
where A is a function of x. In the present case, it is more con­
venient yet to seek a solution in the form u =  XeM , where 
X =  X(x) is a function to be determined.

165.

t o  \  s i n 2  a it---X ----X \ ------S-,a po>2

u(x, 0  =  -7 ^  cosantJ/(^)sln-~idi-^-
n-lL

-OTTSlno.^ f  gQ) S ln ^ id t nn
s i n  —  x.

7t2n2#2 EJwhere an = —j?—, a'2 =  —g-, e  is Young’s modulus, J is the mo­
ment of inertia of a cross section, p is the density of the beam, 
and 5 is the area of a cross section. Hint: The problem amounts 
to integration of the differential equation for transverse vibra­
tions of a beam

+  =  0 («2= — )
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with the initial conditions
"(*• o) ==/(*) «;(*, o ) = g ( X) 

and boundary conditions
«(0. t )  =  u"xx(0, t )  =  u(l, t )  =  u'xx(l, 0  =  0.

Use the method of separating the variables.
166.

/? 00
v ( x ,  0  =  e 2L 1 ^ o„sin -^ J_itA :sin ((i)n/-(-tpn),

n«0
where  ̂ __ (2n +  i)n f '  c^RH1

U>n 2lV~CL V nH. (2/i-f 1)J

(it is assumed that L >

a n
____ 4t>o____
51 (2n+ 1) sin f„

and

t a n c P« =  2o» « | - -

Procedure: The passage of an electric current through a 
conductor with the parameters C, L, R, and 0 (the leakage) 
evenly distributed along the length of the conductor is char­
acterized by a current / and voltage v .  These last are functions 
of the position of a point x  and the time t  and they satisfy the 
following system known as the telegraph equations:

1‘ +  Cv'-+-Gv =  0,
(1 )vx +  Li' +  Rl =  0. ' '

From this system, we easily find equations for / and v:

l"xx =  Ci;t +  (CR +  GL) l\ +  GRl, (2)

vxx =  CLv"u +  (CR +  GL) v\ +  GRv. (3)

(See A. N. Tikhonov and A. A. Samarskiy, Uravneniya mate-  
maticheskoy fiziki (Equations of Mathematical Physics), 1951, 
P. 29.)
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For problem 166, equation (3) takes the form

v '  = C L v " . . - \ -  C R v '  (0 < x < l ,  t >  0), (4)XX tt ' ‘
since the assumption that the conductor is insulated implies 
that 0 = 0 .  The boundary and initial conditions take the form

v  (0, t )  —  v'x (I, t )  =  0 ( t >  0), (5)

v ( x ,  0) =  V0, v't ( x ,  0) =  0 (0 < * < / ) .  (6)

If we set

a =  ektv  ( v  =  e ~ u -u ) ,

where X  =  R/2l ,  equation (4) is reduced to the form

uu =  a2u"xx+ b2u'
where

(7)

For the function «, conditions (5) and (6) take the form

u(0, t) =  u'x(l, 0  =  0. (8)

a ( at, 0) =  i >0 ; —Xu(x, 0) +  « (' ( * ,  0) =  0. (9)

If we set u(x, t) =  X (x)T(t) and separate the variables in equa­
tion (7), we obtain the following equation for X (x)

X" +  \2X =  0 (0 <  -V' < /). (10)

Because of conditions (8), the function^ (v)must satisfy the 
boundary conditions

XQD) =  X(l) =  0. (11)

The eigenvalues and eigenfunctions of problem (10) and (11) are

X n {x )  =  s \ n ~  x  (a =  1, 2, 3, . . .)

(up to an arbitrary constant factor).
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A solution of problem (7), (8), (9) should be sought in the 
form

oo

u(x, 0 = 2  Tn (Osin +  (12)
rz-1

The boundary conditions are satisfied. If we substitute (12) into 
(7), we obtain the differential equation for Tn (ty

r ; +  [(— )’- » ']  7- =  0. (13)

By virtue of conditions (9), the function Tn (t) must satisfy the 
conditions

Tn(°) =  j  =  (14)

Tn (0) =  lnTn (0) =  ^ -  [(— 1)" — 1). (15)

168, (a) wmn — im (7 )̂ (for m, n— 1, 2 , 3 , . . . ) ,

where a =  j/"-y-, T is the tension per unit length of the contour,
71 2 Tand p is the surface density of the membrane; (b) u>n =  -j y  —•

169. The eigenvalues are Xmn =  tc2 -y-)2 +  (y )2J: the eigen­
functions (up to a constant factor) are

v mn(x > y) —  Sin ~7f “ s’n (m - « = ! •  2. 3, ...)•

170.

u(x, y, t) = 64 Al<
£

s i n

m ,  0
X c o s / ( 2 * + l ) 2  +  ( 2 m + l ) 2 ^

2/2 +  1 , 2/72 + 1
- - - - - ^ —  t i x  « sin - - - - - - j - - - - - 7i y

( 2 / 7 +  l ) 3 ( 2 / 7 2 +  l ) 3

r.at

x

2/71 -j- 1 2/z -j- 100 s  n ---------r - — T t j t r - s i n — - — 7 t y

(2m+l)3(2rt +  l)3«mn

171.
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where

172.

— Kd 2n + l \* 
h ) '

OO
u(x, y, t ) =  ^  Amn (s

__ -  _  i

X

where

Amn = ------r -----2T f dx [  /4<°) >*) Sin X
12v mn 7 o 0

X s in -^ f i fy  ¥=«>).to

»«« = ™ /  (tt)2+  (t )2 • ^(0) <*’ y) =  7  ^ ■y)-

If a) =  u)mo„, (this is the resonance frequency),
oo

A™ (sin — —  sin ®mfl/ J sin —  X
m ,  n = 0

X sin •— - Am (sin a)/ — u>* cos u>/) sin mf x-  sin/2 *2

where Amn is determined from the preceding formula and

A"*> =  i h ; i dx i  A(0){x' v)sini!7 r sin n f  dy-0 0

Remark: If the frequency is a multiple frequency, that 
is , if it corresponds to a multiple eigenvalue, we shall have not 
just one resonance term [the term not under the summation sign 
in the expression for u(x, y, /)] but a set of resonance terms of 
the form shown. The number of these terms is equal to the 
multiplicity of the frequency u>mo„0.

Hint: The problem reduces to integrating the equation

u"u =  a2 (u"xx -|- u"yy) +  Aw (x, y) sin wt 

(a(01 (,v , y) =  ~A(x,  y)J
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under the conditions

“U o = « L . ,1 =  «ly, o = “ly./J=°-
u( x ,  y,  0) =  0. «'(jc, y,  0) =  0

(0 <  x  <  l v  0 <  y  <  l2).

We neglect the reaction of the surrounding medium. 
173.

m «0

n*sinh amy 
l)sinhflm£

4v \ \  sin bmy sinh bm (a — x)

m  - 0
(2m-|- l)sinh6mn

where

u(2m +  l) _*<2m +  l) 
a • °m— b

174.

sinh71
?(•*. y) =  5

sinh nb
nx ,sin *------ba ‘

SAb2
CO

2n-0
(2n +  l)‘

175. The potential of the field is

cx>

“ <*•

,i„h *> , ! l , i » ± i - yb b
, 2n -}— 1sin h -----1----na

b

, 2m+  12w + i s in -----r — tzy—r--TOT b

m = 0
2m + 1 

=  ^ a r c t a n ( ! ^ | .

Hint: The problem reduces to integrating Laplace’s equation

/ 0  <  X  <  O O ,

«« +  «yy =  0 in the region G\ o < y < b .
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with the conditions
u \ =  Wo- W ly=0 == 1̂ y=b ®
u(x, y) <C oo as x —> oo.

To obtain a solution in closed form, one should use the ex­
pansion

S  -  (2-r +  1) y =  j  -ch m  4 ^  (* >  0).
m  = 0

176.
«(*. y ) = u l (x, y) +  u2(x, y).

where

«i(*. y): ^  , 7 tn b  cl . a2cosh—jr—  2sinh—̂—»=T L 2a 2a
r . n x

x

Z j ^ 2c°sh_ _
v . . , Tin ( ci \ . nn ( I b \
X s i n h - p j )  J Sln +  2 ) ’

«<'> =  -  /  <P, «) sin —  £ d£; «« =  1 /  <p2a)sin —  £ d£:

X sin- t*

1 n n

' n • u 7ina 2 S m h _
X

8«)==t  J ( )̂sinĴ  (7! + 4 ) d7i;

l(n f +2 (v) sin —  [r, +  drj.

Procedure: The solution of the problem may be obtained as 
the sum of the solutions of the following two simpler problems:

A ut
d2Ui
d x 2

d2at
d y2 0 0*= 1. 2),

tp, (x) for y =  -  

cp2(x) for y =  — -  it.

0 for x ^ Q  and x ~ a

1̂ (y ) for x  =  0, 

(y) for x  —  a 

0 for y =  ±
«i =
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By means of the coordinate transformation
/  _ _ _ _ _  | & /  CL

*  = y + 2 - ;  y = x  — -2

the problem («2) reduces to the probelm («j). However, the roles 
of the numbers a and b are reversed and, instead of the func­
tions <pj and tp2» we shall have <J», and <]>2.

177, u(x, y)=y(cos x — 1/ 2).
178. The solution of Poisson’s equation in the region D that 

vanishes on the boundary of D is

u (x , y) =  x(a — x) —

M =  2G» azb
T /i* 1,3, 5,

cosh

n3 cosh

7i ny 
2 a 
7mb 

a

sin

ns

7M X

a

The tangential stresses can be found by differentiating the equa­
tion foru(jc, y).

179*.

u(x, y)
n =  0 \

u 2/1 +  1cosh — —----- uy2 a J
, "4" 1 Lcosh — pc------ tio2 a

2/z+l
cos- i r w

(2n + l)2

Another form of the solution is

u(x, y) 4 pb 
+2f

CO

V  (-i)n 
Z j(2« + 1)2n = 0

sinh — * {a — | .r I)

u 2n+ l cosh --- 7̂---- 1MI2b 

X  cos
2 n +  : 

26

X

Procedure: First, assume that the external line load p  is
uniformly distributed along some strip 0 * 1 0  \y \ <b).  Then, 
the problem reduces to integrating Poisson’s equation:

£ u  . d?u _  q {x, y) _  J ~
<̂ 2 + °y2 T \ 0 (|*| >e).

with the homogeneous boundary conditions
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Now take the limit as e -+ 0. Here, q is the external load per 
unit of area, and T is the tension per unit length of contour of 
the membrane.

1 8 0 * .  The problem amounts to integrating the equation

02a _  9( d 2u 1 d P 0
dt2 °  \ d x 2 ' dy 2 ) '  ( dt

with the conditions

du
~dx

du I _ du I ____ du
x~o dx \x=a dy ly=o dy y = b

=  0
u(x, y, 0 ) = 0 ,  ut (x, y t 0) =  0 

where a2 =  gh, g  being the acceleration due to gravity.
(2n+l)»«»a» .

1 8 1 . -  8cI. (a) u{x,  0  =  2
n = 0 ( 2 n + l ) 3 sin I f o +  ‘) " * ;

(b) u(x,  0 =  a ne ° Kn> • COsXnJC,

where

___“L f r n f x ) c Or ) X d X  I  ̂ ^  ’ ^ u 0 l 2/1-+■ 11 -  / J V (X) C0S X»X dX +  ~(2n +1)  * 1

\ / 2Aco V  1 -(^ -)2,B) V ( X ,  t) = ------ —  2 j X
n =» 1

w . *nx r KZ X  sin —~j— J e ” cos u>; d$

where X„ =  *n a / i ,

1 8 2 . T(x, t) =  50°e-°-m is i n ~ ,
1 8 3 .

/
T(x,  t )  =  T  f  T(x,  0)dx +

o

+  e p cosn r f T °)cos n dx
n »I 0

The reader can continue the calculations.
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184. Procedure'. The heat-flow equation in a ring is of the 
form

Answers and Directions

ui — a2uxx — qu (1)

where a and q are positive constants, t denotes the time, x is 
the length of wire as measured along its axis from some chosen 
zero point, u =  u(x, t) is the temperature of the cross section 
whose abscissa is x at the instant t, If we set u =  ve~at, Eq. (1) 
is reduced to the form

and the problem is reduced to integrating this equation with the 
conditions

v(x, 0) =  /(x),  v (x -\-2k, t) =  v(x, t)

(The last condition indicates the periodicity (with period 2 k )  of 
the desired function and fills the role of a boundary condition.)

oo
185. u(r. 0 = 2  Ane - aH2"‘ • s in ^f ,

/I* 1

where

2 f ? l2n +  (Rh — l ) 2 
~R R2)^ -h  ( R h - \ )  Rh

Rf rf(r)sinl„r dr,
0

and the are the positive roots of the equation

tsmXnR  —  i J L r /i •

Procedure: Because of the radial symmetry of the problem, 
the heat-flow equation becomes

If we make the substitution u— v/ r ,  this equation becomes the 
following one:

d v  9  d2v  
W ~ ° 2~drT

0 <  r <  r :
0 <  t <  coi
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The boundary condition is transformed into the condition

llr =  V ir =  R , t > 0 )

and the new initial condition is
v(r. 0) =  r/(r) (0 <  r <  R).

To solve the problem, use Fourier’s method.
187.

“ sinn*̂ - 9 r r V  —
«(r. 0 =  S  — — ‘ i f  rf(r)slnp„£dr-e n *

n = 1 6

where |*„ =  /nc (for « =  1, 2, 3, . . .). For f(r) =  t0 =  const., we 
obtain

u(r, t) =  t0 £  ( - l ) n
«=i

-1 _2_ 
Iln

R sin b n  -V? L̂n K2

Procedure: The problem amounts to integrating the equation

« , < , < * .  , > 0)

with the conditions
u(r, 0) =  /(/•). 
u(R, t) =  tc =  0° 
tf (0, /) <  oo, 
du (0, -y) __

The last condition is the condition of symmetry. The differential 
equation can be written in the form

d[ ru( r , 0 ]  _  „2 & \ r u ( r t t)] 
dt — a dP *

Use the method of separating the variables
188.

u(x, t) 4̂ 0 V  (—l)n~] 
AU 2/i—l

(2/1- 1)2 71̂2
4/2 2/2 — 1 1TJC£ • C O S 2/
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Hint: The problem amounts to integrating the equation u't =  
a2u" with the initial condition u(x, 0) =  T0 and the boundary con­
ditions

8^(0. 0  =  0; b (/./) =  0
(The temperature of the external medium is assumed to be 0°.)

189. Hint: To use the method of separating the variables, it 
is necessary to have homogeneous boundary conditions. By 
means of the substitution

v(x, t )= u(x ,  0  — 8, (0 .
the boundary conditions of the problem are replaced with the 
homogeneous conditions

^ L o = 0;
190. u't — a2u"x — b2(U — ii) =  g, where a2— k/cP and b is the 

thermal conductivity of the surrounding medium, U is the tem­
perature of the medium, and g is the heat source density in the 
rod.

co
191. u(x, y) =  ^ C „  sinh— tircy sin *x, where

n = 0

AT________
(2/i -|- 1) 7isinh(2/z -f- 1) it *

192.

n= 1

sinh

sinh Tn ~

where the f„ are the positive roots of the equation tan f =  oft A 
numbered in increasing order for «== 1, 2, 3, . . .  , the con­
stant h being the coefficient of heat exchange.

193.
U ( X .  0 = 2 Ql

cpu2as n«l

ii 2n 2a 2

)sln

The problem reduces to the boundary-value problem
u - a 2uXJC+ ^ - H x - x 0) (0 < x < l ,  t >  0)i ** cp
«(0. /) =  «(/. 0  =  0 (t>0)>
u(xt 0) =  0 (0 <  x <  /),

where 8(£). is the delta function.
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194. /(*) =  !■ / — cosuxdu.
0

195. /(*) =  «-**; <p (x )  =  «-*'.
197. (a) u(x, t ) =  xt*/6;

oo

<b> =  Z 11® '
( * - E ) J 

4a>/ ; for \>- =  T0 we set:

u(x, t)

where
(c)«(*. t ) =  f

— co
M (co) e ~a2ui2t r+  J G(to, j

o J

elux

M(u)) =  ~  J  p(x)  e~ilDX d x f
— oo

oo

G((o. / ) = 2̂  J  /(x.  t)e‘“>*dx.

198.
(a) <*(*, /) =

0 for 0 <  t <  —

M ) ’ f o r ' > T
f/mt: Use the Fourier sine transformation.

(b) u(x, t) -.
2a Y 'b f (

( X -  W

e  wt  —  e
U+El5
4a5/ )f(Vd\.

Hint: Use the Fourier sine transformation, noting that

“  ,r
j  e-av cos^x dx =  ~2 ~-e 4a’.

1 ? ( <*+W\
(C) u(x, t) =  ——  j  \e~ w  -j-<T ** }f(s)d\

199.
o

OO /  CO

u(x, t) =  — — J I J  /(y)sinX y dy I e- u sinXy d\.
o \o

200 . « (x, o — uw(i — c-f’04-

2a 5* / /( ! ) ‘
4a*/

2 a

r dz C
y w I y T ^ T  f lg('r x)+

U-EP
+ ^ ( u - .t y 00)]e
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For U =  Uay =  const., we have

bH «
u(x. =  - e - n - + — =- f / & e  dl

Procedure'. By means of the substitution u =  U03-\-ve-bH, 
where U^ is the temperature of the outside space at infinity, the 
equation of the problem can be reduced to the following equation 
for the new function v(x, t):

vt -  a?vxx =  [g +  b*{U- UJ]

(the reader should verify this) with initial conditions

v(x, 0) =  «(*. 0) — U00 =  f(x) — U00.
2 03 .

^ (*)  =  —  sin-*;; J _ i _ ( x ) = ] / r

Jz (*) =  ^ T Z  sin * -  C0S

Ji
2

nx cos jc;

Procedure: We have

J/ * , = 7 % ) ( ' “ 2~ 3+
.___ ^__________  i_ ) =

2-4-3-5 2 - 4 - 6 - 3 - 5 - 7 ^  )
1 / JC3 _l  ^L_i_ ) =

= 7 5 7 ( | ) 1 3 , + 5 ' 71 J

= 7 5 7 ( | )
sin jc.

But

V  «
r ( ! K r G K / * - * F 1 = / — ^

We proceed analogously in the evaluation of J_^(x). To evaluate 
j 3 (x), we make the substitution p=-  1/2 in the last formula of

problem 202.
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204. (a) y  =  C 1Jn (* x )  +  C 2N n (axy,
(b) Hint: Use the substitution z = Y  x y\
(c) y =  l / x *  ( C iJ2 (x )  +  C 2N 2 ( x ) ) ,  where N k is Bessel’s 

function of the second kind of order k.
Procedure: Bessel’s equation x 2y " - \ - x y ' - \ - ( x ‘1— p 1) y = 0 ,  where 

p ^ .  0, can, by the substitutiony  =  x pz ,  be reduced to the equation

z " _ ^ 2 p ± l  z ' +  z  =  0.
' X  '

Setting p =  2 gives equation (c) of the problem.

206. (a) x p =  Jj C nJ  (knx ) ,  where 1

Cn~  Vp+i (V (P >  2 * 0 <  * <  !) ;

("200 J 
(b) * 3= 1 6 £

207.
/I = 1 Kf* (K) ( ° < x <  2>-

Po (jc) =  1; Pi (*) =  cos 6 =  x;
/>2W =  -(3cos2e - l )  =  i ( 3 ^ - l ) ;

P3 (x) =  ~  (5 cos3 9 — 3 cos 9) =  1  (5*3 — 3 a : 2) ;

P4 (x) =  -  ( 3 5 a :4 — 30*3 +  3).

208.

^ ,0 ) =

Pn(0) =

1. ( - ! )  =  ( - If.
( _i\sf 1 • 3 • 5 , . .  (n — 1) p
( ’ 2 • 4 • 6 . . .  n ~ for n even-
0 for /i odd.

?(/■. 6)=]V] (~) P„(cos9)

/  (*) — "2 +  22" 00 7-21 
2*. 2!jj ^2(X)

( r>  I);

- 11' 4i p  ( x ) ^2a • 31 2! *3 W ——

209.
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211.
oo
2  A n (-£-) Pn (cos 6) (r <  R),

AX 71=0
“ (r' °) =  j oo

2  A .(T )n+l/U cos0> (/•>/?).

where

f f  (9) Pn (cos 6) sin 0 </0. 
0

In the particular case, «(r, 0)= 1/3 (1 — r2) +  r2 cos20.
212.

, ,, 2Pa Vi«('•. 0  =  —— \
n-1

7| I7'1 p )
I n ' l  ( I n )

•/>
Tn̂  
R ’

where the are the successive positive roots of the equation
M 7> = 0, a =  / ? •  ? is the tension per unit length of contour,
and p is the surface density of the membrane.

Procedure'. The problem amounts to integrating the equation

__ L i!fi
dr3 ' r dr a3 dt3

with the conditions
u (0. 0  is bounded; 
u (R , 0  =  0;

u{r, 0) =  0; du (r, 0) 
dt

where p is the surface density 
constant.

213 .

p
7U2p for 0 ^  r <  e,

| 0 for e <  r R,

of the membrane, assumed to be

u{r. 0  =  - - r sin (0)/ +  )̂*
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where a =  ] / ” T is the tension per unit length of contour, p is
the surface density of the membrane, and Jq (X) is Bessel s func­
tion of the first kind of order zero.

214.

u(r, t) 2 a Vi 
T 2ml//=* i 7^1 On)

X

■£) • f  9 (Osin y a{fR- ^  d-

where a =  y j ~ a n d  the are the positive roots of the equation

M  7 ) = ° -
215.

oo
u(0, t) =  b ^  Bkcosa>kt

(
9 \3  1
p- ) J (p ) * ^  is the P°sittve root of the equa­

tion y0((x) =  0 , and <oft =  a is the angular frequency of the £th 
harmonic of the membrane.

The period of the fundamental tone is Tl 0.00596
sec, 7 being the surface density of the membrane.

216. Solution: We place the origin of a spherical coordinate 
system at the center of the sphere and we direct the Z-axis op­
posite to the direction of flow of the liquid (see Fig. 26). The 
velocity potential u satisfies the equation

d_
dr sin 0 ( i )

We see from the drawing that the normal component of the 
velocity of a particle of the liquid on the surface of the sphere is

AB =  a cos (u — 0). 

From this we obtain the boundary condition

=  — a cos 0.
r = R

du
~5r (2)
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We seek a solution of the problem (1), (2) in the form of a 
series of Legendre polynomials:

co  j
« ( '•  0) =  S  Cnp n (cos 9 ) (— ). (r >  R).

//- 0
On the basis of condition (2), we have

oo

— -j=r 2  (» +  1) (cos 0) =  — a cos 9 .
/J —0

This equation will hold if

C0 =  0; =  C2 =  C3= . . . =  0.

Consequently, the desired solution is

«(/•. 0) =  ̂ -cOS0.

217. The displacement of a point on the membrane is given 
by the series

oo

u(r, t) =  2  G4 /i cos sin 7 0 (^//)*

A" r2A o-,)
/  rf (r)J0<k„r)dr.

where
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Here, /(/•) and g(r) are respectively the initial displacement and 
the initial velocity of a point on the membrane:

and is the nth positive zero of the 'function y0(p.). K — v-n/Rt and

218. The natural frequencies are co„ =  aln =  ^  y  —.
The amplitude of the vibrations of each tone is equal to Hn\J0(knr) |, 
where Hn =  VA2„ +  B2n, A„ and B„ having the values indicated in 
the answer to problem 217.

Hint: The individual harmonic vibrations (An cos aXnt -f-
Bn sin aknt) J0 (Artr), that combine to make the composite vibration 
of the membrane can be represented in the form

un (r, t) =  H„ sin (a\nt +  an) J0 (X„r),
where

Hr =  V Al +  Bl, sinan =  -,

The reader should verify this.
219.

2 <

where the yn are successive positive roots of the equation
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where the p* are the positive roots of the equation

V-j'l (pO—4^3 (pi) =  0,
2 T

PaA / j —  - j j j

221. Procedure-. Let us place the origin of a spherical co­
ordinate system at the center of the vessel and let us direct the 
0-axis in the direction of the motion of the vessel for t  <  0. 
Then, the potential u of the velocities of the particles of the 
liquid or gas will depend on the angle <p and we have the follow­
ing boundary-value problem for u:

d*u ,11  d (  , d u \  , 1 d ( f d u \ \
dt* ~  a ( r» dr  (r dr  ) +  rJ sin 0 «?8 (Sln 6 d6 j } *

(0 <  r  <  r Q, 0 <  0 <  ir. 0 <  t <  oo),
«;(r0. 0. / ) = 0.
u ( r ,  0, 0) =  v r  cos 0,
«'(r. 0, 0) =  0 ( 0 < r < r 0. O < 0 < » -

We should seek a solution of this problem in the form
u ( r ,  0, t) =  w ( r ,  t) cos 0.

To determine the function tv ( r ,  t ), we obtain the boundary- 
value problem of problem 220.

222 .

«(' • o= S  -if rf̂ J»(ft. t? ) dre~*n * •
„ = i ■'J 0

where the p„ are the positive roots of the equation J0(\>.) =  0. For 
/(r) =  t0= const., we can verify that

ft
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Hint: The problem amounts to integrating the equation

du(r , t )  (0 <■ r <  R,  t > 0 )
f t  I, dr1 ~  r dr }

with the conditions
«(r, 0) =  /(r). 
u(R,  0  =  0.

^ - ^  =  0, «(0, / ) < o o .

224.

f ( r • t) — — a*P0 
Ta>2

■(?)'

' • ( ¥ )
sin a)/ —

2 aP0<»R3
sin - n̂ — Jo

t a  ■'id.)'

where the y„ are the successive positive roots of the equation
4>(t) =  °*

Procedure: The problem amounts to integrating the equation

d2y , 1 dy 1 d2y __ P0 sin cat
dr2 ' r dr a2 dt2 T (*)

with the conditions

|cp(0, 01 <  °o, <f(R. 0  =  0.

? ( r -  0) =  0. ^ ° > -  =  0.

We seek a solution of this problem in the form of a sum 
<p =  u-\-v,  where u is a solution of the form B (r) sin a>t of the 
nonhomogeneous equation (*) that satisfies the boundary condi­
tions

|a (0 , 0 | < ° ° .  u(R,  0  =  0.

and v is the solution of the corresponding homogeneous equation 
with the conditions

|v (0 , 0 | < ° ° .  v(JR, t ) ~  0.

dv (r, 0) __ du (r, 0)
dt ~ ~  ~ tv  (r, 0) =  — u (r, 0);
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225.

where

0
u(r. 0 = 4 f r V?(')+ty{r)\dr +

r«o

+ | ; K coŝ ' + b, s, „ ^ ) Ji ( ^ ) ,
« = 1

f ^ ( r ) J 0 ( ^ ~ ) d r ;B„ —■
“Vo^o On) 0J

<p(r) =  «(r, 0); <l>(r) =  «J(r. 0)

r0 is the radius of the base of the cylinder (0 <  r  rc) and the j*n 
are the positive roots of the equation Jy (jj.) =  0.

Hint: The desired potential is a solution of the boundary- 
value problem

d2u , / d2u . 1 . . . . .
~ W — a  ( ° < r < ro- 0 < / < o o ) ,

|«(0, /)| <  °°> —■ =  0 (0 <  / <  oo),
u(r, 0) =  cp (r), u't (r ,  0) =  ̂ (r) ( 0 < r < r t)).

226.

J h p L + J h ^ [ ^ Pi(C0Se ) -

_  T("^)3/>3(COS6)+  • • •] (r < ^ '

- j ( t ) 4p3(cos9)+ . . . ]  (r >  R).

Hint: Because of the symmetry of the problem, the potential 
u is independent of the coordinate cp and is a function only of the 
coordinates r  and r) : u =  u ( r , 0), The problem amounts to inte­
grating the equation
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with the boundary condition

u l r=R —

ul for 0 <  0 <  y

u2 for y  <  0 <  i t ,

where R is the radius of the conductor.
227. U 2 =  a (x2- z 2) +  6 (y2—z2) +  dxy - f  eyz +  fxz  ' , U 3 =  a (*2y —

1/3 y3) t*2* “  1/3 z3) -he; (y2* — l/3 x3) -f-rf (y2̂  — 1/3 z3) +
e (z2x — 1/3 x3)- -̂/  (z2y— 1/3 y3).-|-ftA:yz , where the coefficients in 
both polynomials are arbitrary constants.

228. The event B consists in having exactly one of the three
shots hit the target. The event C consists in having at least two 
shots hit the target. _ _ _

229. (1) 5-M C; (2) AB +  AC +  BC\ (3) AB-\- ABr, (4) A +B .\  
(5) AB\ (6) A +  B ; (7)/IB.

230. (1) The event is equivalent to the eventA-|-A, thus, it is 
certain. (2) The event is impossible.

231. 1/720.
23Z 0.225.
233. 0.35.
234. 1/30.
235. Pm =

p m  p n  -  m

CN_236. Solution: The probability that the first point will not 
fall in C, is 1 — nR /̂S, where 5 is the area of the region D. The 
same holds for the second point, etc. Consequently, the proba­

it/?8 \N
S ) *bility that a single point will fall in C is equal to 1̂

Therefore, the desired probability is 1 — (1 — 1̂ —
238. 20/56; 25/64.
239. 0.9.
240. 0.45.
241. 0.25.
242. (a) 1/3; (b) 1/18; (c) 1/3.
243. 0.36; 0.91.
244. 0.4344.
245. 0.142.
246. 0.2326.
247. Solution: Let P denote the probability that the library 

in question does keep a copy of the book and let p denote the 
probability that no one else has the book out. Then, the proba­
bility that the student will find the book available in one of the
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three libraries is 1 — (1 — Ppf.  By hypothesis, P — p =  1/ 2. 
Therefore, the probability that he will find the book is 37/64 > 
1/ 2.

248. 0.94.
250. 0.48.
251. 41/90.
253 7/ 9* 2/9
255*. (1) »  0.49; (2) P10 (1) «  0.1114; (3) «  0.9989; (4) *  

0.0091.
257. (1) 243/1024; (2) 405/1024; (3) 270/1024; (4) 1/1024.
259.

260. Hint: To find the coefficient a , we use the property of 
the probability density that

0 for x 0,
F(x) =  P(l <  x) =  0,8 for 0 < j c < 1

1 for x >  1.

J  f  (x) d x =  1;

261. P{— 1 < ? <  1) =  0.5, 
263.

1 • J  +  2 ' 2*"  ̂3 2» +  ' ' '
(i •••) — 2

264. 150 v. 
266. 0 .6.
269. W =  £; D; =  ̂ -(p—a)2.
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271.

AI(Jr !)= T r ^ 2+ a* + fl2): D { ^ r ) = i & D ^  =
=  ^  [Md* — (Md2)21 =  —  (6 — a)2 (4A2 +  Tab +  4a2).

272. (1) 0.68269; (2) 0.95450; (3) 0.99730.
__ oo ___
— f s3e~aS3 rfs =  —  =  2 1/  — ; (b) the en-
n J V na v nm0 r

ergy of a molecule E =  ms2/ 2, so that
CO

ME =  J ~  ms2/? (s) ds =  --- £7\
o

274. iD( a < t < p ) = I | < D  — where

CO

2 dz; P(5 < f  <  10) =  0.0214.

275. P{\\  — a|<Z) =  $^—j. The value of the function4>(*)is
given in the answer to problem 274.

276. (1) The mean value of the variable x is

-----  cMx =  f xw(x)dx =  2 y  —  f e~x'dx
o v n y  k /

where

p __  -*0 .
' 2 y m  ’

CO CO

(2) M (x2) =  j  x2w (x) dx — ~=- J  (x0 +  2 ] / Dt • i f  e~ " d\-(-
-c

f  ( - x 0 +  2 V D n y e - i ’dt
V  * 2a:2 f  e-*dZ +  8 D t f

a2 -(- 2 D/; and the desired variance is Djc =  M (x2) — (Mx)2\ 
(3) The mean value of the displacement a — x0 is

M (x — x0) =  2 y r Dt e- c 1
r t f  ‘ - ' t *71
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(4) The mean value of the square of the displacement is

/ D f  a v 2  0 0

f e. x>dx
TC V Tl Jr 0

277.
j) =  £ ± ± . ± ± ± ;

n / t  +  c2+ cd  +  d* (a +  6)2 (c +  df
^  3 3 4----   4- - - -

Hint-. Use the formula

D (i ■ rj) =  M (<V) — IM (5̂ )]2 =  MpMrj2 — (MQ2 (Af̂ z

279. 0.866.
280. Procedure1. The problem consists in finding a number 

a >  0 such that
P(\x  — x\ < a ) >  0.95

We obtain a >  0.394; that is , with probability exceeding 0.95, 
we may guarantee that the deviation of the length will not ex­
ceed approximately 0.4 cm.

281. «  0.665. Procedure: The probable deviation (or the 
“ mean deviation” or “mean error”) is defined as one-half the 
length of the interval symmetrically located about the center of 
dispersion the probability of falling within which is equal to 1/ 2. 
It can be shown that if x, y, and z are mutually independent ran­
dom variables obeying a normal law, the probable deviation of 
the variable u =  x-\- y-{~ z is equal to

eu =  V eI + e] + e]
where Ex, Ev, and Et are the probable deviations of x, y, and z 
respectively. In the present problem, the deviation of the total
error is y 282-f-82-|- 122 = 28 m .

282. M' =  a; D5 =  a2;
0. if x <  0

F(*) = X

1 1 — e~~“. if x > 0
283. *  4%.
285. «  0.00206. Hint: Use Laplace’s asymptotic local

theorem:

P„ (m)

1 /  i n - n p  V  

* e 2 \ VTpq )  

Y2nnpq
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to obtain
1 1 , r ----  0.3989—f= =  — r_ : V npq =  , ■

V  2-r.npq Y  2w V  npq

286. Hint: Use Laplace’s local theorem (see hint to prob­
lem 285). Since n = 5 0 , p =  0 A , q =  0.6 , and m =  25, the desired 
probability is

P =  2-50-U.40.6 ~  0 ,1  1 5 ,-1 ,0 4 2  ^  Q , 0 4 |
50 Y so • 0.4 • 0.6

287. Solution: Use Laplace’s integral theorem to obtain

p (m < 7 0 ) = p ( --------5 0 _ <  2 £ \
I 1̂ 49,75 Y ^ p q  ^  Y 49.75 /

2.84 fj
=  p(_7,09 < ^ = ^ < 2 . 8 4 ) « —  f e ~ d t = 0.9975.\ V  npq 1 y  2n ^

288. 0.82.
289. (a) />io(8) =  C?0(-|-j8(-5-j2=:» 0.2816. Since n is small, use 

of the formula
I ( m - n p ) *

p’ (ro)~ F s 5 r

gives the crude result: «  0.2724.
(b) Since the given bounds (70 and 80) differ from np =  

75 by the same amount, we use Laplace’s approximate integral 
formula in the form

P„{a < m < b ) ^ Y ^  f  e~ ' dz =  $(t).

In the present case, a =  70, b =  80, t =  —̂ ^  so that the
y n p q  Y 3

desired probability is
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70

(d) S ^ W « * ( - ^ ) + 0 . 5 « 0 . 1 2 4 1 .
m-0 ' '

(e> M t S S H ® * 1-62’ = ° -8948-
290. (1) P1S0(78 <  m <  102) =  O (2) =  0.9545.

(2) Pxso(78 <  m <  108) =  0.9759.
295. 0.0408. Hint: Use Laplace’s local theorem.
296, Solution: We divide the interval / into a large number 

of small subintervals At. Obviously, in case (1), there will not 
be any calls at all in the interval t if there are no calls in the 
subintervals. Therefore, the probability P0(t) that there will be 
no calls in the interval t is equal to the product of the analogous 
probabilities P0(At) for the subintervals At:

/>o(0 =  [/>o(AoF.
where t/At is the number of intervals. If q(At) is the probability 
that a call will be made during an interval At, the preceding 
equation can be written in the form

Po(t) =  0 - q ) M.
Therefore,

lnP0(/) =  —  I n( l — 0  

and, for small q .  In (1 — q) « — q .  Therefore,

In =

so that

P0(f) =  e-k‘.

In case (2), we take an interval of length t and, abutting it on 
the right, a small interval A/. Together, they form an interval 

If n calls are made in this interval, either all will occur 
in t and none in A/ or n — 1 will occur in t and one in A/. In all 
other cases, more than one call will occur in the interval A/. 
Since these cases are very unlikely, we may neglect them. The 
probability of n calls in the interval /-f-A/ is equal to

P n (t +  At) = z P n ( t ) ( l  — k At) +  P n_ x (t) k At

(Here, we use the theorems on the multiplication and addition 
of probabilities.) This last relation can easily be reduced to the



130 Answers and Directions

recursion differential equation (letting M -> 0):

 ̂(P/i-i pfi)

for the desired probability Pn. For n— l ,we obtain the equation

l £ -  +  kPl =  kP0^ke-*t,

where

Px =  (cx-\-kt)e-kt.

The constant c1 is determined from the conditions that as
^  0, From this, we obtain

P ^ k t e - * 1.

Analogously, we find

P* <*01
2 !

e -kt'

Obviously, in general,

Pn
{kt)n

n\ e -kt'

297. The number of electrons flying off the cathode in the 
interval At is distributed according to a Poisson law:

Pm
(n At)m 

tn\
e - n  U '

298.

299.

300.

=  n2 — n —n.
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301. P( |5— M5I < « ) >  1—
302. P(|£ — Al̂ | ^  0.5 >• 0.6, where $ is the length of the 

object.
304. Yes, since the hypotheses of Chebyshev’s theorem are 

satisfied:

=  0, M?n =  a2, Dln =  a2.

306. HinU Apply Chebyshev’s inequality to the quantity
n

2  xl
ft
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APPENDIX I

Table of Valu es of Bessel Functions

X Jo(x) J i (x) YoOc) y  i u ) l o W Jl(x)

0.0 + 1 . 0 0 0 0 0 . 0 0 0 0 — oo — oo + 1 . 0 0 0 0 . 0 0 0 0

0.1 0.9975 +  0.0499 -1.5342 -6.4589 1.003 + 0.0501
0.2 0.9900 0.0995 1.0811 3.3238 1.010 0.1005
0.3 0.9776 0.1483 0.8073 2.2931 1.023 0.1517
0.4 0.9604 0.1960 0.6060 1.7809 1.040 0.2040
0.5 + 0.9385 + 0.2423 -0 .4445 -1.4715 1.063 0.2579
0.6 0.9120 0.2867 0.3085 1.2604 1.092 0.3137
0.7 0.8812 0.3290 0.1907 1.1032 1.126 0.3719
0.8 0.8463 0.3688 -0.0868 0.9781 1.167 0.4329
0.9 0.8075 0.4059 + 0.0056 0.8731 1.213 0.4971

1 . 0 + 0.7652 + 0.4401 + 0.0883 -0.7812 1.266 0.5652
1.1 0.7196 0.4709 0.1622 0.6981 1.326 0.6375
1.2 0.6711 0.4983 0.2281 0.6211 1.394 0.7147
1.3 0.6201 0.5220 0.2865 0.5485 1.469 0.7973
1.4 0.5669 0.5419 0.3379 0.4791 1.553 0.8861

1.5 + 0.5118 + 0.5579 + 0.3824 -0.4123 1.647 0.9817
1.6 0.4554 0.5699 0.4204 0.3476 1.750 1.085
1.7 0.3980 0.5778 0.4520 0.2847 1.864 1.196
1.8 0.3400 0.5815 0.4774 0.2237 1.990 1.317
1.9 0.2818 0.5812 0.4968 0.1644 2.128 1.448

2.0 + 0.2239 + 0.5767 + 0.5104 -0.1070 2.280 1.591
2.1 0.1666 0.5683 0.5183 -0.0517 2.446 1.745
2.2 0.1104 0.5560 0.5208 + 0.0015 2.629 1.914
2.3 0.0555 0.5399 0.5181 0.0523 2.830 2.098
2.4 0.0025 0.5202 0.5104 0.1005 3.049 2.298

2.5 -0 .0484 + 0.4971 + 0.4981 + 0.1459 3.290 2.517
2.6 0.0968 0.4708 0.4813 0.1884 3.553 2.755
2.7 0.1424 0.4416 0.4605 0.2276 3.842 3.016

2.8 0.1850 0.4097 0.4359 0.2635 4.157 3.301
2.9 0.2243 0.3754 0.4079 0.2959 4.503 3.613

3.0 -0 .2601 + 0.3391 + 0.3768 + 0.3247 4.881 3.953

3.1 0.2921 0.3009 0.3431 0.3496 5.294 4.326

3.2 0.3202 0.2613 0.3070 0.3707 5.747 4.734

3.3 0.3443 0.2207 0.2691 0.3878 6.243 5.181

3.4 0.3643 0.1792 0.2296 0.4010 6.785 5.670
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Appendix I (Continued)

X Jo (x ) J l(x) Y0 (%) Y i (x) / o(x) h (x )

3.5 -0.3801 -0.1374 + 0.1890 + 0.4102 7.378 6.206
3.6 0.3918 0.0955 0.1477 0.4154 8.028 6.793
3.7 0.3992 0.0538 0.1061 0.4167 8.739 7.436
3.8 0.4026 0.0128 0.6450 0.4141 9.517 8.140
3.9 0.4018 0.0272 0.2338 0.4078 10.37 8.913
4.0 “ 0.3971 -0.0660 “ 0.0169 + 0.3979 11.30 9.759
4.1 0.3887 0.1033 0.0561 0.3846 12.32 10.69
4.2 0.3766 0.1386 0.0937 0.3680 13.44 11.71
4.3 0.3610 0.1719 0.1296 0.3484 14.67 12.82
4.4 0.3423 0.2028 0.1633 0.3260 16.01 14.05
4.5 “ 0.3205 “ 0.2311 -0.1947 + 0.3010 17.48 15.39
4.6 0.2961 0.2566 0.2235 0.2737 19.09 16.86
4.7 0.2693 0.2791 0.2494 0.2445 20.86 18.4S
4.8 0.2404 0.2985 0.2723 0.2136 22.79 20.25
4.9 0.2097 0.3147 0.2920 0.1812 24.91 22.20
5.0 -0.1776 “ 0.3276 “ 0.3085 + 0.1479 27.24 24.34
5.1 0.1443 0.3371 0.3216 0.1137 29.79 26.68
5.2 0.1103 0.3432 0.3312 0.0792 32.58 29.25
5.3 0.0758 0.3460 0.3374 0.0445 35.65 32.08
5.4 0.0412 0.3453 0.3402 + 0.0101 39.01 35.18
5.5 “ 0.0068 “ 0.3414 -0.3395 -0 .0238 42.69 38.59
5.6 + 0.0270 0.3343 0.3354 0.0568 46.74 42.33
5.7 0.0599 0.3241 0.3282 0.0887 51.17 46.44
5.8 0.0917 0.3110 0.3177 0.1192 56.04 50.95
5.9 0.1220 0.2951 0.3044 0.1481 61.38 55.90
6.0 + 0.1506 -0.2767 “ 0.2882 -0 .1750 67.23 61.34
6.1 0.1773 0.2559 0.2694 0.1998 73.66 67.32
6.2 0.2017 0.2329 0.2483 0.2223 80.72 73.89
6.3 0.2238 0.2081 0.2251 0.2422 88.46 81.10
6.4 0.2433 0.1816 0.1999 0.2596 96.96 89.03
6.5 + 0.2601 -0.1538 -0.1732 -0.2741 106.3 97.73
6.6 0.2740 0.1250 0.1452 0.2857 116.5 107.3
6.7 0.2851 0.0953 0.1162 0.2945 127.8 117.8
6.8 0.2931 0.0652 0.0864 0.3002 140.1 129.4
6.9 0.2981 0.0349 0.0562 0.3029 153.7 142.1
7.0 + 0.3001 -0.0047 -0.0259 -0.3027 168.6 156.0
7.1 0.2991 + 0.0252 + 0.0042 0.2995 184.9 171.4
7.2 0.2951 0.0543 0.0338 0.2934 202.9 188.2
7.3 0.2882 0.0826 0.0628 0.2846 222.7 206.8
7.4 0.2786 0.1096 0.0907 0.2731 244.3 227.2
7.5 + 0.2663 + 0.1352 + 0.1173 -0.2591 268.2 249.6
7.6 0.2516 0.1592 0.1424 0.2428 294.3 274.2
7.7 0.2346 0.1813 0.1658 0.2243 323.1 301.3
7.8 0.2154 0.2014 0.1872 0.2039 354.7 331.1
7.9 0.1944 0.2192 0.2065 0.1817 389.4 363.8



Appendices

Appendix I (Continued)

137

X Jo(*) J i(x ) Y0 (x) Y i to /<>(*) h ( x )

8.0 + 0.1717 + 0.2346 + 0.2235 -0.1581 427.6 399.9
8.1 0.1475 0.2476 0.2381 0.1331 469.5 439.5
8.2 0.1222 0.2580 0.2501 0.1072 515.6 483.0
8.3 0.0960 0.2657 0.2595 0.0806 566.3 531.0
8.4 0.0692 0.2708 0.2662 0.0535 621.9 583.7
8.5 + 0.0419 + 0.2731 + 0.2702 -0.0262 683.2 641.6
8.6 + 0.0146 0.2728 0.2715 + 0.0011 750.5 705.4
8.7 -0 .0125 0.2697 0.2700 0.0280 824.4 775.5
8.8 0.0392 0.2641 0.2659 0.0544 905.8 852.7
8.9 0.0653 0.2559 0.2592 0.0799 995.2 937.5
9.0 -0 .0903 + 0.2453 + 0.2499 + 0.1043 1094 1031
9.1 0.1142 0.2324 0.2383 0.1275 1202 1134
9.2 0.1367 0.2174 0.2245 0.1491 1321 1247
9.3 0.1577 0.2004 0.2086 0.1691 1451 1371
9.4 0.1768 0.1816 0.1907 0.1871 1595 1508
9.5 -0 .1939 + 0.1613 + 0.1712 + 0.2032 1753 1658
9.6 0.2090 0.1395 0.1502 0.2171 1927 1824
9.7 0.2218 0.1166 0.1279 0.2287 2119 2006
9.8 0.2323 0.0928 0.1045 0.2379 2329 2207
9.9 0.2403 0.0684 0.0804 0.2447 2561 2428

10.0 -0 .2459 + 0.0435 + 0.0557 + 0.2490 2816 2671



APPENDIX II

Table of Roots of the Equations J q (x) = 0 ,  J \ ( x )  = 0

k j  i (/tfe) n fk Jo 0*1, fe)

1 2.405 + 0.5191 3.832 -0.4028
2 5.520 -0.3403 7.016 + 0.3001
3 8.654 + 0.2715 10.17 -0.2497
4 11.79 -0.2325 13.32 + 0.2184
5 14.93 + 0.2065 16.47 -0 .1965
6 18.07 -0.1877 19.62 + 0.1801
7 21.21 + 0.1733 22.76 -0 .1672
8 24.35 -0.1617 25.90 + 0.1567
9 27.49 + 0.1522 29.05 -0.1480

10 30.63 -0.1442 32.19 + 0.1406
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_t2
Table of Values of the Function (pit) = — e 2

yj2n

1 0 1 2 3 4 5 6 7 8 9

0.0 3989 3989 3989 3988 3986 3984 3982 3980 3977 3973
0.1 3970 3965 3961 3956 3951 3945 3939 3932 3925 3918
0.2 3910 3902 3894 3885 3876 3867 3857 3847 3836 3825
0.3 3814 3802 3790 3778 3765 3752 3739 3725 3712 3697
0.4 3683 3668 3653 3637 3621 3605 3589 3572 3555 3538
0.5 3521 3503 3485 3467 3448 3429 3410 3391 3372 3352
0.6 3332 3312 3292 3271 3251 3230 3209 3187 3166 3144
0.7 3123 3101 3079 3056 3034 3011 2989 2966 2943 2920

0.8 2897 2874 2850 2827 2803 2780 2756 2732 2709 2685
0.9 2661 2637 2613 2589 2565 2541 2516 2492 2468 2444
1.0 2420 2396 2371 2347 2323 2299 2275 2251 2227 2203
1.1 2179 2155 2131 2107 2083 2059 2036 ,2012 1989 1965

1.2 1942 1919 1895 1872 1849 1826 1804 1781 1758 1736
1.3 1714 1691 1669 1647 1626 1604 1582 1561 1539 1518
1.4 1497 1476 1456 1435 1415 1394 1374 1354 1334 1315
1.5 1295 1276 1257 1238 1219 1200 1182 1163 1145 1127

1.6 1109 1092 1074 1057 1040 1023 1006 0989 0973 0957
1.7 0940 0925 0909 0893 0878 0863 0848 0833 0818 0804
1.8 0790 0775 0761 0748 0734 0721 0707 0694 0681 0669
1.9 0656 0644 0632 0620 0608 0596 0584 0573 0562 0551

2.0 0540 0529 0519 0508 0498 0488 0478 0468 0459 0449
2.1 0440 0431 0422 0413 0404 0396 0387 0379 0371 0363
2.2 0855 0347 0339 0332 0325 0317 0310 0303 0297 0290
2.3 0283 0277 0270 0264 0258 0252 0246 0241 0235 0229

2.4 0224 0219 0213 0203 0203 0198 0194 0189 0184 0180

2.5 0175 0171 0167 0163 0158 0154 0151 0147 0143 0139

2.6 0136 0132 0129 0126 0122 0119 0116 0113 0110 0107

2.7 0104 0101 0099 0096 0093 0091 0088 0086 0084 0081

2.8 0079 0077 0075 0073 0071 0069 0067 0065 0063 0061

2.9 0060 0058 0056 0055 0053 0051 0050 0048 0047 0046

3 0 0044 0043 0042 0040 0039 0038 0037 0036 0035 0034

4.0 0001 0001 0001 0000 0000 0000 0000 0000 0000 0000
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Table of Values of ihe Function Fi t ) 2 ds

for different values of t

t F(t) t Fi t ) t F(t ) t Fi t )

0.00
01
02
03
04
05
06
07
08 
09

0.10
11
12
13
14
15
16
17
18 
19

0.20
21
22
23
24
25
26
27
28 
29

0.00000
00798
01596
02393
03191
03988
04784
05581
06376
07171

0.07966
08759
09552
10348
11134
11924
12712
13499
14285
15069

0.15852
16633
17413
18191
18967
19741
20514
21284
22052
22818

0.30
31
32
33
34
35
36
37
38
39

0.40
41
42
43
44
45
46
47
48
49

0.50
51
52
53
54
55
56
57
58
59

0.23582
24344
25103
25860
26614
27366
28115
28862
29605
30346

0.31084
31819
32552
33280
34006
34729
35448
36164
36877
37587

0.38292
38995
39694
40389
41080
41768
42452
43132
43809
44481

0.60
61
62
63
64
65
66
67
68 
69

0.70
71
72
73
74
75
76
77
78
79

0.80
81
82
83
84
85
86
87
88 
89

0.45149
45814
46474
47131
47783
48431
49075
49714
50350
50981

0.51607
52230
52848
53461
54070
54675
55275
55870
56461
57047

0.57629
58206
58778
59346
59909
60468
61021
61570
62114
62653

0.90
91
92
93
94
95
96
97
98
99

1.00
01
02
03
04
05
06
07
08 
09

1.10
11
12
13
14
15
16
17
18 
19

0.63188
63718
64243
64763
65278
65789
66294
66795
67291
67783

0.68269
68750
69227
69699
70166
70628
71086
71538
71986
72429

0.72867
73300
73729
74152
74571
74986
75395
75800
76200
76595
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t F( t ) t F(t ) t F( l ) t F(t)

1.20
21
22
23
24
25
26
27
28 
29

1.30
31
32
33
34
35
36
37
38
39 

1.40
41
42
43
44
45
46
47
48
49 

1.50
51
52
53
54
55
56
57
58
59 

1.60
61
62
63
64
65
66
67
68 
69

0.76986
77372
77754
78130
78502
78870
79233
79592
79945
80295

0.80640
80980
81316
81648
81975
82298
82617
82931
83241
83547

0.83849
84146
84439
84728
85013
85294
85571
85844
86113
86378

0.86639
86696
87149
87398
87644
87886
88124
88358
88589
88817

0.89040
89260
89477
89690
89899
90106
90309
90508
90704
90897

1.70
71
72
73
74
75
76
77
78
79 

1.80
81
82
83
84
85
86
87
88 
89

1.90
91
92
93
94
95
96
97
98
99 

2.00
01
02
03
04
05
06
07
08 
09

2.10
11
12
13
14
15
16
17
18 
19

0.91087
91273
91457
91637
91&14
91988
92159
92327
92492
92655

0.92814
92970
93124
93275
93423
93569
93711
93852
93989
94124

0.94257
94387
94514
94639
94762
94882
95000
95116
95230
95341

0.95450
95557
95662
95764
95865
95964
96060
96155
96247
96338

0.96427
96514
96599
96683
96765
96844
96923
96999
97074
97148

2.20
21
22
23
24
25
26
27
28 
29

2.30
31
32
33
34
35
36
37
38
39 

2.40
41
42
43
44
45
46
47
48
49 

2.50
51
52
53
54
55
56
57
58
59 

2.60
61
62
63
64
65
66
67
68 
69

0.97219 
97289 
97358 
97425 
97491 
97555 
97618 
97679 
97739 
97798 

0.97855 
97911 
97966 
98019 
98072 
98123 
98172 
98221 
98269 
98315 

0.98360 
98405 
98448 
98490 
98531 
98571 
98611 
98649 
98686 • 
98723 

0.98758 
98793 
98826 
98859 
98891 
98923 
98953 
98983 
99012 
99040 

0.99068 
99095 
99121 
99146 
99171 
99195 
99219 
99241 
99263 
99285

2.70
71
72
73
74
75
76
77
78
79 

2.80
81
82
83
84
85
86
87
88 
89

2.90
91
92
93
94
95
96
97
98
99 

3.00
01
02
03
04
05
06
07
08 
09

3.10
11
12
13
14
15
16
17
18 
19

0.99307
99327
99347
99367
99386
99404
99422
99439
99456
99473

0.99489
99505
99520
99535
99549
99563
99576
99590
99602
99615

0.99627
99639
99650
99661
99672
99682
99692
99702
99712
99721

0.99730
99739
99747
99755
99763
99771
99779
99786
99793
99800

0.99806
99813
99819
99825
99831
99837
99842
99848
99853
99858
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Appendix IV (Continued)

Appendi ces

t Fi t ) t Fi t ) t Fi t ) t Fi t )

3.20 0.99863 3.40 0.99933 3.60 0.99968 3.80 0.99986
21 99867 41 99935 61 99969 81 99986
22 99872 42 99937 62 99971 82 99987
23 99876 43 99940 63 99972 83 99987
24 99880 44 99942 64 99973 84 99988
25 99885 45 99944 65 99974 85 99988
26 99889 46 99946 66 99975 86 99989
27 99892 47 99948 67 99976 87 99989
28 99896 48 99950 68 99977 88 99990
29 99900 49 99952 69 99978 89 99990

3.30 0.99903 3.50 0.99953 3.70 0.99978 3.90 0.99990
31 99907 51 99955 71 99979 91 99991
32 99910 52 99957 72 99980 92 99991
33 99913 53 99958 73 99981 93 99992
34 99916 54 99960 74 99982 94 99992
35 99919 55 99961 75 99982 95 99992
36 99922 56 99963 76 99983 96 99992
37 99925 57 99964 77 99984 97 99993
38 99928 58 99966 78 99984 98 99993
39 99930 59 99967 79 99985 99 99993



INDEX

Angular velocity 21 
Astroid 18

Baye*s formula 57 
Bernoulli trial 57 
B essel functions, table of 135 
Binomial distribution 53 
Biot-Savart law 73 
Boundary-value problem 29 
Bounded function 10 
Boyer, G. P. 60 
Brownian motion 60 

theory of 60 
Buff on’s problem 57

Cauchy problems 29 
Cauchy-Riemann equations 13 
Charge distribution 10 
Charged sphere 80 
Chebyshev’s inequality 64, 131 

theorem 131 
Compatibility conditions 34 
Condensation 32 
Confocal ellip ses 69 
Continuity, equation of 17 
Continuous function 7 
Coulomb potential 11 
Current-density integral 87 
Curves, level of 3 
Cylindrical coordinates 11 
Cylindrical coordinate system 16

d’Alembert’s method 29 
Density, unit of 9 
Deviation, mean square 62 
Differentiable function 7 
Differential equations 12 
Diffusion 40 
Direct current 21 
Directional derivatives 4 
Distribution functions 58 
Distribution ser ies  58

Eigenfunctions, method of 33 
Eigenvalues 36 
Elasticity, modulus of 97

Electric cable 35 
Electric current, passage of 103 

characteristics of 103 
Electric displacement vector 18 
Electric field 11 

lines of force of 11 
Electrostatics 16 
Ellipse 4
Equipotential lines 13 
Equipotential surfaces 3 
Euler’s gamma function 45 
Euler-d’Alembert equations 13

Field intensity 24 
Field intensity, gravitational 9 
Field lines 9 
Fikhtengol’ts, G. M. 78 
Flat-hammer method 100 
Fluid, incompressible 13 
Fourier-Bessel series 46 
Fourier integrals 42 

method 33
sine transformation 114 
transformation 42 

Free oscillations 33 
Free vibrations 36 
Function, gradient of 5

Gas particles 121 
Gauss* surface integral 78 

theorem 14 
Gauss-Ostrogradskiy electrostic theorem 

16
Gaussian distribution 60 
Generating function 57 
Gravitational constant 73 
Gravitational field, flux of 16 
Green’s theorem 14

Harmonic functions 23 
Harmonic polynomial 50 
Harmonic transverse vibration 31 
Heat-flow equations 39 
Heat-source density 113 
Hydrodynamical model 12 
Hyperbolic cylinder 75

143



144 Index

Isothermal surface 70

Laplace’s asymptotic local theorem 127 
integral theorem 128 

Laplace’s equation 25, 36 
Laplacian 23 
Legendre polynomials 46 
Levin, V. I. 95 
Light source 6 

velocity of 22 
Limit theorems 62 

in probability theory 62 
Linear density 101 
Linear velocity 21 
Logarithmic potential 7

Magnetic field, intensity of 74 
Magnetic field vector 73 
Magnetic line of force 86 
Markov’s theorem 65 
Mass 8

uniform distribution of 9 
Mathematical field theory 17 
Maximum-minimum principle 24 
Maxwell's equation 23 
Mirror image 96 
Molecule, kinetic energy of 60

Newtonian force 72 
Newtonian gravitational field 9 
Newtonian potential 11 
Nonconstant function 24

One-dimensional wave equation 33 
Operators, second-order differential 23 
Oscillations, longitudinal 29 
Ostrogradskiy’s formula 24 
Ostrogradskiy’s theorem 14

Parallelogram rule 71 
Partial differential equations 13 
Particle trajectories 13 
Particle velocity 77 

in a liquid 77 
Poisson’s equation 36 
Potential difference 9 
Potential, gradient of the 5 
Prismatic body 38 
Probability theorems 53

Radial vibrations 49 
Random variables 58 

numerical characteristics of 58 
Recursion differential equation 130 
Resonance frequency 106 
Revolution, ellipsoid of 6 

paraboloid of 6 
Rodrigues’ formula 46

Samarskiy, A. A. 40, 94 
Scalar fields 3

Scalar fields, plane-parallel 9 
spherical 9 

Scalar potential 9 
Segment displacement 29 
Sharp-hammer method 35 
Sinks 13
Solenoidal field 12 
Sources 13
Space, three-dimensional 4 
Sphere, cooling of 40 
Spherical coordinates 7, 12 
Spherical functions 50 
Standard deviation 61 
Static deflection 38 
Stokes’ theorem 18 
Stream function 12, 13 
Stream lines 13 
Stress function 38 
S tresses, tangential 109 
Stretched surface 19 
String equation, vibrating 29 

solution of 29 
String profiles 30 
Subintervals 129
Superposition of fields, principle of 75 
Surface-charge density 91 
Surface integrals 14 
Surfaces, level 3 

isothermal 3

Telegraph equations 103 
Temperature distribution 40 
Tensile force 100 
Thermal conductivity 113 
Threading 20 
Tikhonov, A. N. 40, 94

Unit vectors, sum of 71 
Uniform distribution 9 

of m ass 9

Vector curl 18, 20 
Vector fields 9

flux and divergence of 14 
circulation of 18 
components of 19 

Vector potential 24 
Vector tube 17 
Velocity, distribution of 34 
Velocity field 13 
Velocity potential 13,118 
Velocity vector 13 
Vibrations, membrane of 36 

torsional 29 
transverse 99

Wave equation, two-dimensional 36 
Wave method 29 
Wave-propagation velocity 95

Young’s modulus 92






















